mmc: sdhci-brcmstb: remove 32-bit accessors for BCM2712
[platform/kernel/linux-rpi.git] / drivers / macintosh / smu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PowerMac G5 SMU driver
4  *
5  * Copyright 2004 J. Mayer <l_indien@magic.fr>
6  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7  */
8
9 /*
10  * TODO:
11  *  - maybe add timeout to commands ?
12  *  - blocking version of time functions
13  *  - polling version of i2c commands (including timer that works with
14  *    interrupts off)
15  *  - maybe avoid some data copies with i2c by directly using the smu cmd
16  *    buffer and a lower level internal interface
17  *  - understand SMU -> CPU events and implement reception of them via
18  *    the userland interface
19  */
20
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/dmapool.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/jiffies.h>
29 #include <linux/interrupt.h>
30 #include <linux/rtc.h>
31 #include <linux/completion.h>
32 #include <linux/miscdevice.h>
33 #include <linux/delay.h>
34 #include <linux/poll.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/of_address.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/platform_device.h>
41 #include <linux/slab.h>
42 #include <linux/sched/signal.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/pmac_feature.h>
48 #include <asm/smu.h>
49 #include <asm/sections.h>
50 #include <linux/uaccess.h>
51
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54
55 #undef DEBUG_SMU
56
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA    254
67
68 struct smu_cmd_buf {
69         u8 cmd;
70         u8 length;
71         u8 data[SMU_MAX_DATA];
72 };
73
74 struct smu_device {
75         spinlock_t              lock;
76         struct device_node      *of_node;
77         struct platform_device  *of_dev;
78         int                     doorbell;       /* doorbell gpio */
79         u32 __iomem             *db_buf;        /* doorbell buffer */
80         struct device_node      *db_node;
81         unsigned int            db_irq;
82         int                     msg;
83         struct device_node      *msg_node;
84         unsigned int            msg_irq;
85         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
86         u32                     cmd_buf_abs;    /* command buffer absolute */
87         struct list_head        cmd_list;
88         struct smu_cmd          *cmd_cur;       /* pending command */
89         int                     broken_nap;
90         struct list_head        cmd_i2c_list;
91         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
92         struct timer_list       i2c_timer;
93 };
94
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static DEFINE_MUTEX(smu_mutex);
100 static struct smu_device        *smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103 static unsigned long smu_cmdbuf_abs;
104
105 static void smu_i2c_retry(struct timer_list *t);
106
107 /*
108  * SMU driver low level stuff
109  */
110
111 static void smu_start_cmd(void)
112 {
113         unsigned long faddr, fend;
114         struct smu_cmd *cmd;
115
116         if (list_empty(&smu->cmd_list))
117                 return;
118
119         /* Fetch first command in queue */
120         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
121         smu->cmd_cur = cmd;
122         list_del(&cmd->link);
123
124         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
125                 cmd->data_len);
126         DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
127
128         /* Fill the SMU command buffer */
129         smu->cmd_buf->cmd = cmd->cmd;
130         smu->cmd_buf->length = cmd->data_len;
131         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
132
133         /* Flush command and data to RAM */
134         faddr = (unsigned long)smu->cmd_buf;
135         fend = faddr + smu->cmd_buf->length + 2;
136         flush_dcache_range(faddr, fend);
137
138
139         /* We also disable NAP mode for the duration of the command
140          * on U3 based machines.
141          * This is slightly racy as it can be written back to 1 by a sysctl
142          * but that never happens in practice. There seem to be an issue with
143          * U3 based machines such as the iMac G5 where napping for the
144          * whole duration of the command prevents the SMU from fetching it
145          * from memory. This might be related to the strange i2c based
146          * mechanism the SMU uses to access memory.
147          */
148         if (smu->broken_nap)
149                 powersave_nap = 0;
150
151         /* This isn't exactly a DMA mapping here, I suspect
152          * the SMU is actually communicating with us via i2c to the
153          * northbridge or the CPU to access RAM.
154          */
155         writel(smu->cmd_buf_abs, smu->db_buf);
156
157         /* Ring the SMU doorbell */
158         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
159 }
160
161
162 static irqreturn_t smu_db_intr(int irq, void *arg)
163 {
164         unsigned long flags;
165         struct smu_cmd *cmd;
166         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
167         void *misc = NULL;
168         u8 gpio;
169         int rc = 0;
170
171         /* SMU completed the command, well, we hope, let's make sure
172          * of it
173          */
174         spin_lock_irqsave(&smu->lock, flags);
175
176         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
177         if ((gpio & 7) != 7) {
178                 spin_unlock_irqrestore(&smu->lock, flags);
179                 return IRQ_HANDLED;
180         }
181
182         cmd = smu->cmd_cur;
183         smu->cmd_cur = NULL;
184         if (cmd == NULL)
185                 goto bail;
186
187         if (rc == 0) {
188                 unsigned long faddr;
189                 int reply_len;
190                 u8 ack;
191
192                 /* CPU might have brought back the cache line, so we need
193                  * to flush again before peeking at the SMU response. We
194                  * flush the entire buffer for now as we haven't read the
195                  * reply length (it's only 2 cache lines anyway)
196                  */
197                 faddr = (unsigned long)smu->cmd_buf;
198                 flush_dcache_range(faddr, faddr + 256);
199
200                 /* Now check ack */
201                 ack = (~cmd->cmd) & 0xff;
202                 if (ack != smu->cmd_buf->cmd) {
203                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
204                                 ack, smu->cmd_buf->cmd);
205                         rc = -EIO;
206                 }
207                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
208                 DPRINTK("SMU: reply len: %d\n", reply_len);
209                 if (reply_len > cmd->reply_len) {
210                         printk(KERN_WARNING "SMU: reply buffer too small,"
211                                "got %d bytes for a %d bytes buffer\n",
212                                reply_len, cmd->reply_len);
213                         reply_len = cmd->reply_len;
214                 }
215                 cmd->reply_len = reply_len;
216                 if (cmd->reply_buf && reply_len)
217                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
218         }
219
220         /* Now complete the command. Write status last in order as we lost
221          * ownership of the command structure as soon as it's no longer -1
222          */
223         done = cmd->done;
224         misc = cmd->misc;
225         mb();
226         cmd->status = rc;
227
228         /* Re-enable NAP mode */
229         if (smu->broken_nap)
230                 powersave_nap = 1;
231  bail:
232         /* Start next command if any */
233         smu_start_cmd();
234         spin_unlock_irqrestore(&smu->lock, flags);
235
236         /* Call command completion handler if any */
237         if (done)
238                 done(cmd, misc);
239
240         /* It's an edge interrupt, nothing to do */
241         return IRQ_HANDLED;
242 }
243
244
245 static irqreturn_t smu_msg_intr(int irq, void *arg)
246 {
247         /* I don't quite know what to do with this one, we seem to never
248          * receive it, so I suspect we have to arm it someway in the SMU
249          * to start getting events that way.
250          */
251
252         printk(KERN_INFO "SMU: message interrupt !\n");
253
254         /* It's an edge interrupt, nothing to do */
255         return IRQ_HANDLED;
256 }
257
258
259 /*
260  * Queued command management.
261  *
262  */
263
264 int smu_queue_cmd(struct smu_cmd *cmd)
265 {
266         unsigned long flags;
267
268         if (smu == NULL)
269                 return -ENODEV;
270         if (cmd->data_len > SMU_MAX_DATA ||
271             cmd->reply_len > SMU_MAX_DATA)
272                 return -EINVAL;
273
274         cmd->status = 1;
275         spin_lock_irqsave(&smu->lock, flags);
276         list_add_tail(&cmd->link, &smu->cmd_list);
277         if (smu->cmd_cur == NULL)
278                 smu_start_cmd();
279         spin_unlock_irqrestore(&smu->lock, flags);
280
281         /* Workaround for early calls when irq isn't available */
282         if (!smu_irq_inited || !smu->db_irq)
283                 smu_spinwait_cmd(cmd);
284
285         return 0;
286 }
287 EXPORT_SYMBOL(smu_queue_cmd);
288
289
290 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
291                      unsigned int data_len,
292                      void (*done)(struct smu_cmd *cmd, void *misc),
293                      void *misc, ...)
294 {
295         struct smu_cmd *cmd = &scmd->cmd;
296         va_list list;
297         int i;
298
299         if (data_len > sizeof(scmd->buffer))
300                 return -EINVAL;
301
302         memset(scmd, 0, sizeof(*scmd));
303         cmd->cmd = command;
304         cmd->data_len = data_len;
305         cmd->data_buf = scmd->buffer;
306         cmd->reply_len = sizeof(scmd->buffer);
307         cmd->reply_buf = scmd->buffer;
308         cmd->done = done;
309         cmd->misc = misc;
310
311         va_start(list, misc);
312         for (i = 0; i < data_len; ++i)
313                 scmd->buffer[i] = (u8)va_arg(list, int);
314         va_end(list);
315
316         return smu_queue_cmd(cmd);
317 }
318 EXPORT_SYMBOL(smu_queue_simple);
319
320
321 void smu_poll(void)
322 {
323         u8 gpio;
324
325         if (smu == NULL)
326                 return;
327
328         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
329         if ((gpio & 7) == 7)
330                 smu_db_intr(smu->db_irq, smu);
331 }
332 EXPORT_SYMBOL(smu_poll);
333
334
335 void smu_done_complete(struct smu_cmd *cmd, void *misc)
336 {
337         struct completion *comp = misc;
338
339         complete(comp);
340 }
341 EXPORT_SYMBOL(smu_done_complete);
342
343
344 void smu_spinwait_cmd(struct smu_cmd *cmd)
345 {
346         while(cmd->status == 1)
347                 smu_poll();
348 }
349 EXPORT_SYMBOL(smu_spinwait_cmd);
350
351
352 /* RTC low level commands */
353 static inline int bcd2hex (int n)
354 {
355         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
356 }
357
358
359 static inline int hex2bcd (int n)
360 {
361         return ((n / 10) << 4) + (n % 10);
362 }
363
364
365 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
366                                         struct rtc_time *time)
367 {
368         cmd_buf->cmd = 0x8e;
369         cmd_buf->length = 8;
370         cmd_buf->data[0] = 0x80;
371         cmd_buf->data[1] = hex2bcd(time->tm_sec);
372         cmd_buf->data[2] = hex2bcd(time->tm_min);
373         cmd_buf->data[3] = hex2bcd(time->tm_hour);
374         cmd_buf->data[4] = time->tm_wday;
375         cmd_buf->data[5] = hex2bcd(time->tm_mday);
376         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
377         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
378 }
379
380
381 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
382 {
383         struct smu_simple_cmd cmd;
384         int rc;
385
386         if (smu == NULL)
387                 return -ENODEV;
388
389         memset(time, 0, sizeof(struct rtc_time));
390         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
391                               SMU_CMD_RTC_GET_DATETIME);
392         if (rc)
393                 return rc;
394         smu_spinwait_simple(&cmd);
395
396         time->tm_sec = bcd2hex(cmd.buffer[0]);
397         time->tm_min = bcd2hex(cmd.buffer[1]);
398         time->tm_hour = bcd2hex(cmd.buffer[2]);
399         time->tm_wday = bcd2hex(cmd.buffer[3]);
400         time->tm_mday = bcd2hex(cmd.buffer[4]);
401         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
402         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
403
404         return 0;
405 }
406
407
408 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
409 {
410         struct smu_simple_cmd cmd;
411         int rc;
412
413         if (smu == NULL)
414                 return -ENODEV;
415
416         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
417                               SMU_CMD_RTC_SET_DATETIME,
418                               hex2bcd(time->tm_sec),
419                               hex2bcd(time->tm_min),
420                               hex2bcd(time->tm_hour),
421                               time->tm_wday,
422                               hex2bcd(time->tm_mday),
423                               hex2bcd(time->tm_mon) + 1,
424                               hex2bcd(time->tm_year - 100));
425         if (rc)
426                 return rc;
427         smu_spinwait_simple(&cmd);
428
429         return 0;
430 }
431
432
433 void smu_shutdown(void)
434 {
435         struct smu_simple_cmd cmd;
436
437         if (smu == NULL)
438                 return;
439
440         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
441                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
442                 return;
443         smu_spinwait_simple(&cmd);
444         for (;;)
445                 ;
446 }
447
448
449 void smu_restart(void)
450 {
451         struct smu_simple_cmd cmd;
452
453         if (smu == NULL)
454                 return;
455
456         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
457                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
458                 return;
459         smu_spinwait_simple(&cmd);
460         for (;;)
461                 ;
462 }
463
464
465 int smu_present(void)
466 {
467         return smu != NULL;
468 }
469 EXPORT_SYMBOL(smu_present);
470
471
472 int __init smu_init (void)
473 {
474         struct device_node *np;
475         u64 data;
476         int ret = 0;
477
478         np = of_find_node_by_type(NULL, "smu");
479         if (np == NULL)
480                 return -ENODEV;
481
482         printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483
484         /*
485          * SMU based G5s need some memory below 2Gb. Thankfully this is
486          * called at a time where memblock is still available.
487          */
488         smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
489         if (smu_cmdbuf_abs == 0) {
490                 printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
491                 ret = -EINVAL;
492                 goto fail_np;
493         }
494
495         smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
496         if (!smu)
497                 panic("%s: Failed to allocate %zu bytes\n", __func__,
498                       sizeof(struct smu_device));
499
500         spin_lock_init(&smu->lock);
501         INIT_LIST_HEAD(&smu->cmd_list);
502         INIT_LIST_HEAD(&smu->cmd_i2c_list);
503         smu->of_node = np;
504         smu->db_irq = 0;
505         smu->msg_irq = 0;
506
507         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
508          * 32 bits value safely
509          */
510         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
511         smu->cmd_buf = __va(smu_cmdbuf_abs);
512
513         smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
514         if (smu->db_node == NULL) {
515                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
516                 ret = -ENXIO;
517                 goto fail_bootmem;
518         }
519         if (of_property_read_reg(smu->db_node, 0, &data, NULL)) {
520                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
521                 ret = -ENXIO;
522                 goto fail_db_node;
523         }
524
525         /* Current setup has one doorbell GPIO that does both doorbell
526          * and ack. GPIOs are at 0x50, best would be to find that out
527          * in the device-tree though.
528          */
529         smu->doorbell = data;
530         if (smu->doorbell < 0x50)
531                 smu->doorbell += 0x50;
532
533         /* Now look for the smu-interrupt GPIO */
534         do {
535                 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
536                 if (smu->msg_node == NULL)
537                         break;
538                 if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) {
539                         of_node_put(smu->msg_node);
540                         smu->msg_node = NULL;
541                         break;
542                 }
543                 smu->msg = data;
544                 if (smu->msg < 0x50)
545                         smu->msg += 0x50;
546         } while(0);
547
548         /* Doorbell buffer is currently hard-coded, I didn't find a proper
549          * device-tree entry giving the address. Best would probably to use
550          * an offset for K2 base though, but let's do it that way for now.
551          */
552         smu->db_buf = ioremap(0x8000860c, 0x1000);
553         if (smu->db_buf == NULL) {
554                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
555                 ret = -ENXIO;
556                 goto fail_msg_node;
557         }
558
559         /* U3 has an issue with NAP mode when issuing SMU commands */
560         smu->broken_nap = pmac_get_uninorth_variant() < 4;
561         if (smu->broken_nap)
562                 printk(KERN_INFO "SMU: using NAP mode workaround\n");
563
564         sys_ctrler = SYS_CTRLER_SMU;
565         return 0;
566
567 fail_msg_node:
568         of_node_put(smu->msg_node);
569 fail_db_node:
570         of_node_put(smu->db_node);
571 fail_bootmem:
572         memblock_free(smu, sizeof(struct smu_device));
573         smu = NULL;
574 fail_np:
575         of_node_put(np);
576         return ret;
577 }
578
579
580 static int smu_late_init(void)
581 {
582         if (!smu)
583                 return 0;
584
585         timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
586
587         if (smu->db_node) {
588                 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589                 if (!smu->db_irq)
590                         printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
591                                smu->db_node);
592         }
593         if (smu->msg_node) {
594                 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595                 if (!smu->msg_irq)
596                         printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
597                                smu->msg_node);
598         }
599
600         /*
601          * Try to request the interrupts
602          */
603
604         if (smu->db_irq) {
605                 if (request_irq(smu->db_irq, smu_db_intr,
606                                 IRQF_SHARED, "SMU doorbell", smu) < 0) {
607                         printk(KERN_WARNING "SMU: can't "
608                                "request interrupt %d\n",
609                                smu->db_irq);
610                         smu->db_irq = 0;
611                 }
612         }
613
614         if (smu->msg_irq) {
615                 if (request_irq(smu->msg_irq, smu_msg_intr,
616                                 IRQF_SHARED, "SMU message", smu) < 0) {
617                         printk(KERN_WARNING "SMU: can't "
618                                "request interrupt %d\n",
619                                smu->msg_irq);
620                         smu->msg_irq = 0;
621                 }
622         }
623
624         smu_irq_inited = 1;
625         return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628  * above having been done before we reach arch_initcalls
629  */
630 core_initcall(smu_late_init);
631
632 /*
633  * sysfs visibility
634  */
635
636 static void smu_expose_childs(struct work_struct *unused)
637 {
638         struct device_node *np;
639
640         for_each_child_of_node(smu->of_node, np)
641                 if (of_device_is_compatible(np, "smu-sensors"))
642                         of_platform_device_create(np, "smu-sensors",
643                                                   &smu->of_dev->dev);
644 }
645
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648 static int smu_platform_probe(struct platform_device* dev)
649 {
650         if (!smu)
651                 return -ENODEV;
652         smu->of_dev = dev;
653
654         /*
655          * Ok, we are matched, now expose all i2c busses. We have to defer
656          * that unfortunately or it would deadlock inside the device model
657          */
658         schedule_work(&smu_expose_childs_work);
659
660         return 0;
661 }
662
663 static const struct of_device_id smu_platform_match[] =
664 {
665         {
666                 .type           = "smu",
667         },
668         {},
669 };
670
671 static struct platform_driver smu_of_platform_driver =
672 {
673         .driver = {
674                 .name = "smu",
675                 .of_match_table = smu_platform_match,
676         },
677         .probe          = smu_platform_probe,
678 };
679
680 static int __init smu_init_sysfs(void)
681 {
682         /*
683          * For now, we don't power manage machines with an SMU chip,
684          * I'm a bit too far from figuring out how that works with those
685          * new chipsets, but that will come back and bite us
686          */
687         platform_driver_register(&smu_of_platform_driver);
688         return 0;
689 }
690
691 device_initcall(smu_init_sysfs);
692
693 struct platform_device *smu_get_ofdev(void)
694 {
695         if (!smu)
696                 return NULL;
697         return smu->of_dev;
698 }
699
700 EXPORT_SYMBOL_GPL(smu_get_ofdev);
701
702 /*
703  * i2c interface
704  */
705
706 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
707 {
708         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
709         void *misc = cmd->misc;
710         unsigned long flags;
711
712         /* Check for read case */
713         if (!fail && cmd->read) {
714                 if (cmd->pdata[0] < 1)
715                         fail = 1;
716                 else
717                         memcpy(cmd->info.data, &cmd->pdata[1],
718                                cmd->info.datalen);
719         }
720
721         DPRINTK("SMU: completing, success: %d\n", !fail);
722
723         /* Update status and mark no pending i2c command with lock
724          * held so nobody comes in while we dequeue an eventual
725          * pending next i2c command
726          */
727         spin_lock_irqsave(&smu->lock, flags);
728         smu->cmd_i2c_cur = NULL;
729         wmb();
730         cmd->status = fail ? -EIO : 0;
731
732         /* Is there another i2c command waiting ? */
733         if (!list_empty(&smu->cmd_i2c_list)) {
734                 struct smu_i2c_cmd *newcmd;
735
736                 /* Fetch it, new current, remove from list */
737                 newcmd = list_entry(smu->cmd_i2c_list.next,
738                                     struct smu_i2c_cmd, link);
739                 smu->cmd_i2c_cur = newcmd;
740                 list_del(&cmd->link);
741
742                 /* Queue with low level smu */
743                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
744                 if (smu->cmd_cur == NULL)
745                         smu_start_cmd();
746         }
747         spin_unlock_irqrestore(&smu->lock, flags);
748
749         /* Call command completion handler if any */
750         if (done)
751                 done(cmd, misc);
752
753 }
754
755
756 static void smu_i2c_retry(struct timer_list *unused)
757 {
758         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
759
760         DPRINTK("SMU: i2c failure, requeuing...\n");
761
762         /* requeue command simply by resetting reply_len */
763         cmd->pdata[0] = 0xff;
764         cmd->scmd.reply_len = sizeof(cmd->pdata);
765         smu_queue_cmd(&cmd->scmd);
766 }
767
768
769 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
770 {
771         struct smu_i2c_cmd      *cmd = misc;
772         int                     fail = 0;
773
774         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
775                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
776
777         /* Check for possible status */
778         if (scmd->status < 0)
779                 fail = 1;
780         else if (cmd->read) {
781                 if (cmd->stage == 0)
782                         fail = cmd->pdata[0] != 0;
783                 else
784                         fail = cmd->pdata[0] >= 0x80;
785         } else {
786                 fail = cmd->pdata[0] != 0;
787         }
788
789         /* Handle failures by requeuing command, after 5ms interval
790          */
791         if (fail && --cmd->retries > 0) {
792                 DPRINTK("SMU: i2c failure, starting timer...\n");
793                 BUG_ON(cmd != smu->cmd_i2c_cur);
794                 if (!smu_irq_inited) {
795                         mdelay(5);
796                         smu_i2c_retry(NULL);
797                         return;
798                 }
799                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
800                 return;
801         }
802
803         /* If failure or stage 1, command is complete */
804         if (fail || cmd->stage != 0) {
805                 smu_i2c_complete_command(cmd, fail);
806                 return;
807         }
808
809         DPRINTK("SMU: going to stage 1\n");
810
811         /* Ok, initial command complete, now poll status */
812         scmd->reply_buf = cmd->pdata;
813         scmd->reply_len = sizeof(cmd->pdata);
814         scmd->data_buf = cmd->pdata;
815         scmd->data_len = 1;
816         cmd->pdata[0] = 0;
817         cmd->stage = 1;
818         cmd->retries = 20;
819         smu_queue_cmd(scmd);
820 }
821
822
823 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
824 {
825         unsigned long flags;
826
827         if (smu == NULL)
828                 return -ENODEV;
829
830         /* Fill most fields of scmd */
831         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
832         cmd->scmd.done = smu_i2c_low_completion;
833         cmd->scmd.misc = cmd;
834         cmd->scmd.reply_buf = cmd->pdata;
835         cmd->scmd.reply_len = sizeof(cmd->pdata);
836         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
837         cmd->scmd.status = 1;
838         cmd->stage = 0;
839         cmd->pdata[0] = 0xff;
840         cmd->retries = 20;
841         cmd->status = 1;
842
843         /* Check transfer type, sanitize some "info" fields
844          * based on transfer type and do more checking
845          */
846         cmd->info.caddr = cmd->info.devaddr;
847         cmd->read = cmd->info.devaddr & 0x01;
848         switch(cmd->info.type) {
849         case SMU_I2C_TRANSFER_SIMPLE:
850                 cmd->info.sublen = 0;
851                 memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr));
852                 break;
853         case SMU_I2C_TRANSFER_COMBINED:
854                 cmd->info.devaddr &= 0xfe;
855                 fallthrough;
856         case SMU_I2C_TRANSFER_STDSUB:
857                 if (cmd->info.sublen > 3)
858                         return -EINVAL;
859                 break;
860         default:
861                 return -EINVAL;
862         }
863
864         /* Finish setting up command based on transfer direction
865          */
866         if (cmd->read) {
867                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
868                         return -EINVAL;
869                 memset(cmd->info.data, 0xff, cmd->info.datalen);
870                 cmd->scmd.data_len = 9;
871         } else {
872                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
873                         return -EINVAL;
874                 cmd->scmd.data_len = 9 + cmd->info.datalen;
875         }
876
877         DPRINTK("SMU: i2c enqueuing command\n");
878         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
879                 cmd->read ? "read" : "write", cmd->info.datalen,
880                 cmd->info.bus, cmd->info.caddr,
881                 cmd->info.subaddr[0], cmd->info.type);
882
883
884         /* Enqueue command in i2c list, and if empty, enqueue also in
885          * main command list
886          */
887         spin_lock_irqsave(&smu->lock, flags);
888         if (smu->cmd_i2c_cur == NULL) {
889                 smu->cmd_i2c_cur = cmd;
890                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
891                 if (smu->cmd_cur == NULL)
892                         smu_start_cmd();
893         } else
894                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
895         spin_unlock_irqrestore(&smu->lock, flags);
896
897         return 0;
898 }
899
900 /*
901  * Handling of "partitions"
902  */
903
904 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
905 {
906         DECLARE_COMPLETION_ONSTACK(comp);
907         unsigned int chunk;
908         struct smu_cmd cmd;
909         int rc;
910         u8 params[8];
911
912         /* We currently use a chunk size of 0xe. We could check the
913          * SMU firmware version and use bigger sizes though
914          */
915         chunk = 0xe;
916
917         while (len) {
918                 unsigned int clen = min(len, chunk);
919
920                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
921                 cmd.data_len = 7;
922                 cmd.data_buf = params;
923                 cmd.reply_len = chunk;
924                 cmd.reply_buf = dest;
925                 cmd.done = smu_done_complete;
926                 cmd.misc = &comp;
927                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
928                 params[1] = 0x4;
929                 *((u32 *)&params[2]) = addr;
930                 params[6] = clen;
931
932                 rc = smu_queue_cmd(&cmd);
933                 if (rc)
934                         return rc;
935                 wait_for_completion(&comp);
936                 if (cmd.status != 0)
937                         return rc;
938                 if (cmd.reply_len != clen) {
939                         printk(KERN_DEBUG "SMU: short read in "
940                                "smu_read_datablock, got: %d, want: %d\n",
941                                cmd.reply_len, clen);
942                         return -EIO;
943                 }
944                 len -= clen;
945                 addr += clen;
946                 dest += clen;
947         }
948         return 0;
949 }
950
951 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
952 {
953         DECLARE_COMPLETION_ONSTACK(comp);
954         struct smu_simple_cmd cmd;
955         unsigned int addr, len, tlen;
956         struct smu_sdbp_header *hdr;
957         struct property *prop;
958
959         /* First query the partition info */
960         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
961         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
962                          smu_done_complete, &comp,
963                          SMU_CMD_PARTITION_LATEST, id);
964         wait_for_completion(&comp);
965         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
966                 cmd.cmd.status, cmd.cmd.reply_len);
967
968         /* Partition doesn't exist (or other error) */
969         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
970                 return NULL;
971
972         /* Fetch address and length from reply */
973         addr = *((u16 *)cmd.buffer);
974         len = cmd.buffer[3] << 2;
975         /* Calucluate total length to allocate, including the 17 bytes
976          * for "sdb-partition-XX" that we append at the end of the buffer
977          */
978         tlen = sizeof(struct property) + len + 18;
979
980         prop = kzalloc(tlen, GFP_KERNEL);
981         if (prop == NULL)
982                 return NULL;
983         hdr = (struct smu_sdbp_header *)(prop + 1);
984         prop->name = ((char *)prop) + tlen - 18;
985         sprintf(prop->name, "sdb-partition-%02x", id);
986         prop->length = len;
987         prop->value = hdr;
988         prop->next = NULL;
989
990         /* Read the datablock */
991         if (smu_read_datablock((u8 *)hdr, addr, len)) {
992                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
993                        "partition %02x !\n", id);
994                 goto failure;
995         }
996
997         /* Got it, check a few things and create the property */
998         if (hdr->id != id) {
999                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000                        "%02x !\n", id, hdr->id);
1001                 goto failure;
1002         }
1003         if (of_add_property(smu->of_node, prop)) {
1004                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005                        "property !\n", id);
1006                 goto failure;
1007         }
1008
1009         return hdr;
1010  failure:
1011         kfree(prop);
1012         return NULL;
1013 }
1014
1015 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016  * when interruptible is 1
1017  */
1018 static const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019                 unsigned int *size, int interruptible)
1020 {
1021         char pname[32];
1022         const struct smu_sdbp_header *part;
1023
1024         if (!smu)
1025                 return NULL;
1026
1027         sprintf(pname, "sdb-partition-%02x", id);
1028
1029         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031         if (interruptible) {
1032                 int rc;
1033                 rc = mutex_lock_interruptible(&smu_part_access);
1034                 if (rc)
1035                         return ERR_PTR(rc);
1036         } else
1037                 mutex_lock(&smu_part_access);
1038
1039         part = of_get_property(smu->of_node, pname, size);
1040         if (part == NULL) {
1041                 DPRINTK("trying to extract from SMU ...\n");
1042                 part = smu_create_sdb_partition(id);
1043                 if (part != NULL && size)
1044                         *size = part->len << 2;
1045         }
1046         mutex_unlock(&smu_part_access);
1047         return part;
1048 }
1049
1050 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051 {
1052         return __smu_get_sdb_partition(id, size, 0);
1053 }
1054 EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057 /*
1058  * Userland driver interface
1059  */
1060
1061
1062 static LIST_HEAD(smu_clist);
1063 static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065 enum smu_file_mode {
1066         smu_file_commands,
1067         smu_file_events,
1068         smu_file_closing
1069 };
1070
1071 struct smu_private
1072 {
1073         struct list_head        list;
1074         enum smu_file_mode      mode;
1075         int                     busy;
1076         struct smu_cmd          cmd;
1077         spinlock_t              lock;
1078         wait_queue_head_t       wait;
1079         u8                      buffer[SMU_MAX_DATA];
1080 };
1081
1082
1083 static int smu_open(struct inode *inode, struct file *file)
1084 {
1085         struct smu_private *pp;
1086         unsigned long flags;
1087
1088         pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089         if (!pp)
1090                 return -ENOMEM;
1091         spin_lock_init(&pp->lock);
1092         pp->mode = smu_file_commands;
1093         init_waitqueue_head(&pp->wait);
1094
1095         mutex_lock(&smu_mutex);
1096         spin_lock_irqsave(&smu_clist_lock, flags);
1097         list_add(&pp->list, &smu_clist);
1098         spin_unlock_irqrestore(&smu_clist_lock, flags);
1099         file->private_data = pp;
1100         mutex_unlock(&smu_mutex);
1101
1102         return 0;
1103 }
1104
1105
1106 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107 {
1108         struct smu_private *pp = misc;
1109
1110         wake_up_all(&pp->wait);
1111 }
1112
1113
1114 static ssize_t smu_write(struct file *file, const char __user *buf,
1115                          size_t count, loff_t *ppos)
1116 {
1117         struct smu_private *pp = file->private_data;
1118         unsigned long flags;
1119         struct smu_user_cmd_hdr hdr;
1120         int rc = 0;
1121
1122         if (pp->busy)
1123                 return -EBUSY;
1124         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125                 return -EFAULT;
1126         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127                 pp->mode = smu_file_events;
1128                 return 0;
1129         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130                 const struct smu_sdbp_header *part;
1131                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132                 if (part == NULL)
1133                         return -EINVAL;
1134                 else if (IS_ERR(part))
1135                         return PTR_ERR(part);
1136                 return 0;
1137         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138                 return -EINVAL;
1139         else if (pp->mode != smu_file_commands)
1140                 return -EBADFD;
1141         else if (hdr.data_len > SMU_MAX_DATA)
1142                 return -EINVAL;
1143
1144         spin_lock_irqsave(&pp->lock, flags);
1145         if (pp->busy) {
1146                 spin_unlock_irqrestore(&pp->lock, flags);
1147                 return -EBUSY;
1148         }
1149         pp->busy = 1;
1150         pp->cmd.status = 1;
1151         spin_unlock_irqrestore(&pp->lock, flags);
1152
1153         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154                 pp->busy = 0;
1155                 return -EFAULT;
1156         }
1157
1158         pp->cmd.cmd = hdr.cmd;
1159         pp->cmd.data_len = hdr.data_len;
1160         pp->cmd.reply_len = SMU_MAX_DATA;
1161         pp->cmd.data_buf = pp->buffer;
1162         pp->cmd.reply_buf = pp->buffer;
1163         pp->cmd.done = smu_user_cmd_done;
1164         pp->cmd.misc = pp;
1165         rc = smu_queue_cmd(&pp->cmd);
1166         if (rc < 0)
1167                 return rc;
1168         return count;
1169 }
1170
1171
1172 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173                                 char __user *buf, size_t count)
1174 {
1175         DECLARE_WAITQUEUE(wait, current);
1176         struct smu_user_reply_hdr hdr;
1177         unsigned long flags;
1178         int size, rc = 0;
1179
1180         if (!pp->busy)
1181                 return 0;
1182         if (count < sizeof(struct smu_user_reply_hdr))
1183                 return -EOVERFLOW;
1184         spin_lock_irqsave(&pp->lock, flags);
1185         if (pp->cmd.status == 1) {
1186                 if (file->f_flags & O_NONBLOCK) {
1187                         spin_unlock_irqrestore(&pp->lock, flags);
1188                         return -EAGAIN;
1189                 }
1190                 add_wait_queue(&pp->wait, &wait);
1191                 for (;;) {
1192                         set_current_state(TASK_INTERRUPTIBLE);
1193                         rc = 0;
1194                         if (pp->cmd.status != 1)
1195                                 break;
1196                         rc = -ERESTARTSYS;
1197                         if (signal_pending(current))
1198                                 break;
1199                         spin_unlock_irqrestore(&pp->lock, flags);
1200                         schedule();
1201                         spin_lock_irqsave(&pp->lock, flags);
1202                 }
1203                 set_current_state(TASK_RUNNING);
1204                 remove_wait_queue(&pp->wait, &wait);
1205         }
1206         spin_unlock_irqrestore(&pp->lock, flags);
1207         if (rc)
1208                 return rc;
1209         if (pp->cmd.status != 0)
1210                 pp->cmd.reply_len = 0;
1211         size = sizeof(hdr) + pp->cmd.reply_len;
1212         if (count < size)
1213                 size = count;
1214         rc = size;
1215         hdr.status = pp->cmd.status;
1216         hdr.reply_len = pp->cmd.reply_len;
1217         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1218                 return -EFAULT;
1219         size -= sizeof(hdr);
1220         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1221                 return -EFAULT;
1222         pp->busy = 0;
1223
1224         return rc;
1225 }
1226
1227
1228 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229                                char __user *buf, size_t count)
1230 {
1231         /* Not implemented */
1232         msleep_interruptible(1000);
1233         return 0;
1234 }
1235
1236
1237 static ssize_t smu_read(struct file *file, char __user *buf,
1238                         size_t count, loff_t *ppos)
1239 {
1240         struct smu_private *pp = file->private_data;
1241
1242         if (pp->mode == smu_file_commands)
1243                 return smu_read_command(file, pp, buf, count);
1244         if (pp->mode == smu_file_events)
1245                 return smu_read_events(file, pp, buf, count);
1246
1247         return -EBADFD;
1248 }
1249
1250 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1251 {
1252         struct smu_private *pp = file->private_data;
1253         __poll_t mask = 0;
1254         unsigned long flags;
1255
1256         if (!pp)
1257                 return 0;
1258
1259         if (pp->mode == smu_file_commands) {
1260                 poll_wait(file, &pp->wait, wait);
1261
1262                 spin_lock_irqsave(&pp->lock, flags);
1263                 if (pp->busy && pp->cmd.status != 1)
1264                         mask |= EPOLLIN;
1265                 spin_unlock_irqrestore(&pp->lock, flags);
1266         }
1267         if (pp->mode == smu_file_events) {
1268                 /* Not yet implemented */
1269         }
1270         return mask;
1271 }
1272
1273 static int smu_release(struct inode *inode, struct file *file)
1274 {
1275         struct smu_private *pp = file->private_data;
1276         unsigned long flags;
1277         unsigned int busy;
1278
1279         if (!pp)
1280                 return 0;
1281
1282         file->private_data = NULL;
1283
1284         /* Mark file as closing to avoid races with new request */
1285         spin_lock_irqsave(&pp->lock, flags);
1286         pp->mode = smu_file_closing;
1287         busy = pp->busy;
1288
1289         /* Wait for any pending request to complete */
1290         if (busy && pp->cmd.status == 1) {
1291                 DECLARE_WAITQUEUE(wait, current);
1292
1293                 add_wait_queue(&pp->wait, &wait);
1294                 for (;;) {
1295                         set_current_state(TASK_UNINTERRUPTIBLE);
1296                         if (pp->cmd.status != 1)
1297                                 break;
1298                         spin_unlock_irqrestore(&pp->lock, flags);
1299                         schedule();
1300                         spin_lock_irqsave(&pp->lock, flags);
1301                 }
1302                 set_current_state(TASK_RUNNING);
1303                 remove_wait_queue(&pp->wait, &wait);
1304         }
1305         spin_unlock_irqrestore(&pp->lock, flags);
1306
1307         spin_lock_irqsave(&smu_clist_lock, flags);
1308         list_del(&pp->list);
1309         spin_unlock_irqrestore(&smu_clist_lock, flags);
1310         kfree(pp);
1311
1312         return 0;
1313 }
1314
1315
1316 static const struct file_operations smu_device_fops = {
1317         .llseek         = no_llseek,
1318         .read           = smu_read,
1319         .write          = smu_write,
1320         .poll           = smu_fpoll,
1321         .open           = smu_open,
1322         .release        = smu_release,
1323 };
1324
1325 static struct miscdevice pmu_device = {
1326         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1327 };
1328
1329 static int smu_device_init(void)
1330 {
1331         if (!smu)
1332                 return -ENODEV;
1333         if (misc_register(&pmu_device) < 0)
1334                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1335         return 0;
1336 }
1337 device_initcall(smu_device_init);