led: qcom-lpg: Fix sleeping in atomic
[platform/kernel/linux-starfive.git] / drivers / leds / rgb / leds-qcom-lpg.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2022 Linaro Ltd
4  * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
5  */
6 #include <linux/bits.h>
7 #include <linux/bitfield.h>
8 #include <linux/led-class-multicolor.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16
17 #define LPG_SUBTYPE_REG         0x05
18 #define  LPG_SUBTYPE_LPG        0x2
19 #define  LPG_SUBTYPE_PWM        0xb
20 #define  LPG_SUBTYPE_LPG_LITE   0x11
21 #define LPG_PATTERN_CONFIG_REG  0x40
22 #define LPG_SIZE_CLK_REG        0x41
23 #define  PWM_CLK_SELECT_MASK    GENMASK(1, 0)
24 #define LPG_PREDIV_CLK_REG      0x42
25 #define  PWM_FREQ_PRE_DIV_MASK  GENMASK(6, 5)
26 #define  PWM_FREQ_EXP_MASK      GENMASK(2, 0)
27 #define PWM_TYPE_CONFIG_REG     0x43
28 #define PWM_VALUE_REG           0x44
29 #define PWM_ENABLE_CONTROL_REG  0x46
30 #define PWM_SYNC_REG            0x47
31 #define LPG_RAMP_DURATION_REG   0x50
32 #define LPG_HI_PAUSE_REG        0x52
33 #define LPG_LO_PAUSE_REG        0x54
34 #define LPG_HI_IDX_REG          0x56
35 #define LPG_LO_IDX_REG          0x57
36 #define PWM_SEC_ACCESS_REG      0xd0
37 #define PWM_DTEST_REG(x)        (0xe2 + (x) - 1)
38
39 #define TRI_LED_SRC_SEL         0x45
40 #define TRI_LED_EN_CTL          0x46
41 #define TRI_LED_ATC_CTL         0x47
42
43 #define LPG_LUT_REG(x)          (0x40 + (x) * 2)
44 #define RAMP_CONTROL_REG        0xc8
45
46 #define LPG_RESOLUTION          512
47 #define LPG_MAX_M               7
48
49 struct lpg_channel;
50 struct lpg_data;
51
52 /**
53  * struct lpg - LPG device context
54  * @dev:        pointer to LPG device
55  * @map:        regmap for register access
56  * @lock:       used to synchronize LED and pwm callback requests
57  * @pwm:        PWM-chip object, if operating in PWM mode
58  * @data:       reference to version specific data
59  * @lut_base:   base address of the LUT block (optional)
60  * @lut_size:   number of entries in the LUT block
61  * @lut_bitmap: allocation bitmap for LUT entries
62  * @triled_base: base address of the TRILED block (optional)
63  * @triled_src: power-source for the TRILED
64  * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
65  * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
66  * @channels:   list of PWM channels
67  * @num_channels: number of @channels
68  */
69 struct lpg {
70         struct device *dev;
71         struct regmap *map;
72
73         struct mutex lock;
74
75         struct pwm_chip pwm;
76
77         const struct lpg_data *data;
78
79         u32 lut_base;
80         u32 lut_size;
81         unsigned long *lut_bitmap;
82
83         u32 triled_base;
84         u32 triled_src;
85         bool triled_has_atc_ctl;
86         bool triled_has_src_sel;
87
88         struct lpg_channel *channels;
89         unsigned int num_channels;
90 };
91
92 /**
93  * struct lpg_channel - per channel data
94  * @lpg:        reference to parent lpg
95  * @base:       base address of the PWM channel
96  * @triled_mask: mask in TRILED to enable this channel
97  * @lut_mask:   mask in LUT to start pattern generator for this channel
98  * @subtype:    PMIC hardware block subtype
99  * @in_use:     channel is exposed to LED framework
100  * @color:      color of the LED attached to this channel
101  * @dtest_line: DTEST line for output, or 0 if disabled
102  * @dtest_value: DTEST line configuration
103  * @pwm_value:  duty (in microseconds) of the generated pulses, overridden by LUT
104  * @enabled:    output enabled?
105  * @period:     period (in nanoseconds) of the generated pulses
106  * @clk_sel:    reference clock frequency selector
107  * @pre_div_sel: divider selector of the reference clock
108  * @pre_div_exp: exponential divider of the reference clock
109  * @ramp_enabled: duty cycle is driven by iterating over lookup table
110  * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
111  * @ramp_oneshot: perform only a single pass over the pattern
112  * @ramp_reverse: iterate over pattern backwards
113  * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
114  * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
115  * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
116  * @pattern_lo_idx: start index of associated pattern
117  * @pattern_hi_idx: last index of associated pattern
118  */
119 struct lpg_channel {
120         struct lpg *lpg;
121
122         u32 base;
123         unsigned int triled_mask;
124         unsigned int lut_mask;
125         unsigned int subtype;
126
127         bool in_use;
128
129         int color;
130
131         u32 dtest_line;
132         u32 dtest_value;
133
134         u16 pwm_value;
135         bool enabled;
136
137         u64 period;
138         unsigned int clk_sel;
139         unsigned int pre_div_sel;
140         unsigned int pre_div_exp;
141
142         bool ramp_enabled;
143         bool ramp_ping_pong;
144         bool ramp_oneshot;
145         bool ramp_reverse;
146         unsigned short ramp_tick_ms;
147         unsigned long ramp_lo_pause_ms;
148         unsigned long ramp_hi_pause_ms;
149
150         unsigned int pattern_lo_idx;
151         unsigned int pattern_hi_idx;
152 };
153
154 /**
155  * struct lpg_led - logical LED object
156  * @lpg:                lpg context reference
157  * @cdev:               LED class device
158  * @mcdev:              Multicolor LED class device
159  * @num_channels:       number of @channels
160  * @channels:           list of channels associated with the LED
161  */
162 struct lpg_led {
163         struct lpg *lpg;
164
165         struct led_classdev cdev;
166         struct led_classdev_mc mcdev;
167
168         unsigned int num_channels;
169         struct lpg_channel *channels[];
170 };
171
172 /**
173  * struct lpg_channel_data - per channel initialization data
174  * @base:               base address for PWM channel registers
175  * @triled_mask:        bitmask for controlling this channel in TRILED
176  */
177 struct lpg_channel_data {
178         unsigned int base;
179         u8 triled_mask;
180 };
181
182 /**
183  * struct lpg_data - initialization data
184  * @lut_base:           base address of LUT block
185  * @lut_size:           number of entries in LUT
186  * @triled_base:        base address of TRILED
187  * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register
188  * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register
189  * @num_channels:       number of channels in LPG
190  * @channels:           list of channel initialization data
191  */
192 struct lpg_data {
193         unsigned int lut_base;
194         unsigned int lut_size;
195         unsigned int triled_base;
196         bool triled_has_atc_ctl;
197         bool triled_has_src_sel;
198         int num_channels;
199         const struct lpg_channel_data *channels;
200 };
201
202 static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
203 {
204         /* Skip if we don't have a triled block */
205         if (!lpg->triled_base)
206                 return 0;
207
208         return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
209                                   mask, enable);
210 }
211
212 static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
213                          size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
214 {
215         unsigned int idx;
216         u16 val;
217         int i;
218
219         idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
220                                          0, len, 0);
221         if (idx >= lpg->lut_size)
222                 return -ENOMEM;
223
224         for (i = 0; i < len; i++) {
225                 val = pattern[i].brightness;
226
227                 regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
228                                   &val, sizeof(val));
229         }
230
231         bitmap_set(lpg->lut_bitmap, idx, len);
232
233         *lo_idx = idx;
234         *hi_idx = idx + len - 1;
235
236         return 0;
237 }
238
239 static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
240 {
241         int len;
242
243         len = hi_idx - lo_idx + 1;
244         if (len == 1)
245                 return;
246
247         bitmap_clear(lpg->lut_bitmap, lo_idx, len);
248 }
249
250 static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
251 {
252         return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
253 }
254
255 static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
256 static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
257
258 static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
259 {
260         unsigned int clk_sel, best_clk = 0;
261         unsigned int div, best_div = 0;
262         unsigned int m, best_m = 0;
263         unsigned int error;
264         unsigned int best_err = UINT_MAX;
265         u64 best_period = 0;
266         u64 max_period;
267
268         /*
269          * The PWM period is determined by:
270          *
271          *          resolution * pre_div * 2^M
272          * period = --------------------------
273          *                   refclk
274          *
275          * With resolution fixed at 2^9 bits, pre_div = {1, 3, 5, 6} and
276          * M = [0..7].
277          *
278          * This allows for periods between 27uS and 384s, as the PWM framework
279          * wants a period of equal or lower length than requested, reject
280          * anything below 27uS.
281          */
282         if (period <= (u64)NSEC_PER_SEC * LPG_RESOLUTION / 19200000)
283                 return -EINVAL;
284
285         /* Limit period to largest possible value, to avoid overflows */
286         max_period = (u64)NSEC_PER_SEC * LPG_RESOLUTION * 6 * (1 << LPG_MAX_M) / 1024;
287         if (period > max_period)
288                 period = max_period;
289
290         /*
291          * Search for the pre_div, refclk and M by solving the rewritten formula
292          * for each refclk and pre_div value:
293          *
294          *                     period * refclk
295          * M = log2 -------------------------------------
296          *           NSEC_PER_SEC * pre_div * resolution
297          */
298         for (clk_sel = 1; clk_sel < ARRAY_SIZE(lpg_clk_rates); clk_sel++) {
299                 u64 numerator = period * lpg_clk_rates[clk_sel];
300
301                 for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
302                         u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] * LPG_RESOLUTION;
303                         u64 actual;
304                         u64 ratio;
305
306                         if (numerator < denominator)
307                                 continue;
308
309                         ratio = div64_u64(numerator, denominator);
310                         m = ilog2(ratio);
311                         if (m > LPG_MAX_M)
312                                 m = LPG_MAX_M;
313
314                         actual = DIV_ROUND_UP_ULL(denominator * (1 << m), lpg_clk_rates[clk_sel]);
315
316                         error = period - actual;
317                         if (error < best_err) {
318                                 best_err = error;
319
320                                 best_div = div;
321                                 best_m = m;
322                                 best_clk = clk_sel;
323                                 best_period = actual;
324                         }
325                 }
326         }
327
328         chan->clk_sel = best_clk;
329         chan->pre_div_sel = best_div;
330         chan->pre_div_exp = best_m;
331         chan->period = best_period;
332
333         return 0;
334 }
335
336 static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
337 {
338         unsigned int max = LPG_RESOLUTION - 1;
339         unsigned int val;
340
341         val = div64_u64(duty * lpg_clk_rates[chan->clk_sel],
342                         (u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
343
344         chan->pwm_value = min(val, max);
345 }
346
347 static void lpg_apply_freq(struct lpg_channel *chan)
348 {
349         unsigned long val;
350         struct lpg *lpg = chan->lpg;
351
352         if (!chan->enabled)
353                 return;
354
355         val = chan->clk_sel;
356
357         /* Specify 9bit resolution, based on the subtype of the channel */
358         switch (chan->subtype) {
359         case LPG_SUBTYPE_LPG:
360                 val |= GENMASK(5, 4);
361                 break;
362         case LPG_SUBTYPE_PWM:
363                 val |= BIT(2);
364                 break;
365         case LPG_SUBTYPE_LPG_LITE:
366         default:
367                 val |= BIT(4);
368                 break;
369         }
370
371         regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
372
373         val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
374               FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
375         regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
376 }
377
378 #define LPG_ENABLE_GLITCH_REMOVAL       BIT(5)
379
380 static void lpg_enable_glitch(struct lpg_channel *chan)
381 {
382         struct lpg *lpg = chan->lpg;
383
384         regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
385                            LPG_ENABLE_GLITCH_REMOVAL, 0);
386 }
387
388 static void lpg_disable_glitch(struct lpg_channel *chan)
389 {
390         struct lpg *lpg = chan->lpg;
391
392         regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
393                            LPG_ENABLE_GLITCH_REMOVAL,
394                            LPG_ENABLE_GLITCH_REMOVAL);
395 }
396
397 static void lpg_apply_pwm_value(struct lpg_channel *chan)
398 {
399         struct lpg *lpg = chan->lpg;
400         u16 val = chan->pwm_value;
401
402         if (!chan->enabled)
403                 return;
404
405         regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
406 }
407
408 #define LPG_PATTERN_CONFIG_LO_TO_HI     BIT(4)
409 #define LPG_PATTERN_CONFIG_REPEAT       BIT(3)
410 #define LPG_PATTERN_CONFIG_TOGGLE       BIT(2)
411 #define LPG_PATTERN_CONFIG_PAUSE_HI     BIT(1)
412 #define LPG_PATTERN_CONFIG_PAUSE_LO     BIT(0)
413
414 static void lpg_apply_lut_control(struct lpg_channel *chan)
415 {
416         struct lpg *lpg = chan->lpg;
417         unsigned int hi_pause;
418         unsigned int lo_pause;
419         unsigned int conf = 0;
420         unsigned int lo_idx = chan->pattern_lo_idx;
421         unsigned int hi_idx = chan->pattern_hi_idx;
422         u16 step = chan->ramp_tick_ms;
423
424         if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
425                 return;
426
427         hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
428         lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
429
430         if (!chan->ramp_reverse)
431                 conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
432         if (!chan->ramp_oneshot)
433                 conf |= LPG_PATTERN_CONFIG_REPEAT;
434         if (chan->ramp_ping_pong)
435                 conf |= LPG_PATTERN_CONFIG_TOGGLE;
436         if (chan->ramp_hi_pause_ms)
437                 conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
438         if (chan->ramp_lo_pause_ms)
439                 conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
440
441         regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
442         regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
443         regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
444
445         regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
446         regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
447         regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
448 }
449
450 #define LPG_ENABLE_CONTROL_OUTPUT               BIT(7)
451 #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE      BIT(5)
452 #define LPG_ENABLE_CONTROL_SRC_PWM              BIT(2)
453 #define LPG_ENABLE_CONTROL_RAMP_GEN             BIT(1)
454
455 static void lpg_apply_control(struct lpg_channel *chan)
456 {
457         unsigned int ctrl;
458         struct lpg *lpg = chan->lpg;
459
460         ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
461
462         if (chan->enabled)
463                 ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
464
465         if (chan->pattern_lo_idx != chan->pattern_hi_idx)
466                 ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
467         else
468                 ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
469
470         regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
471
472         /*
473          * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
474          * We have to write PWM values one more time.
475          */
476         if (chan->enabled)
477                 lpg_apply_pwm_value(chan);
478 }
479
480 #define LPG_SYNC_PWM    BIT(0)
481
482 static void lpg_apply_sync(struct lpg_channel *chan)
483 {
484         struct lpg *lpg = chan->lpg;
485
486         regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
487 }
488
489 static int lpg_parse_dtest(struct lpg *lpg)
490 {
491         struct lpg_channel *chan;
492         struct device_node *np = lpg->dev->of_node;
493         int count;
494         int ret;
495         int i;
496
497         count = of_property_count_u32_elems(np, "qcom,dtest");
498         if (count == -EINVAL) {
499                 return 0;
500         } else if (count < 0) {
501                 ret = count;
502                 goto err_malformed;
503         } else if (count != lpg->data->num_channels * 2) {
504                 dev_err(lpg->dev, "qcom,dtest needs to be %d items\n",
505                         lpg->data->num_channels * 2);
506                 return -EINVAL;
507         }
508
509         for (i = 0; i < lpg->data->num_channels; i++) {
510                 chan = &lpg->channels[i];
511
512                 ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
513                                                  &chan->dtest_line);
514                 if (ret)
515                         goto err_malformed;
516
517                 ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
518                                                  &chan->dtest_value);
519                 if (ret)
520                         goto err_malformed;
521         }
522
523         return 0;
524
525 err_malformed:
526         dev_err(lpg->dev, "malformed qcom,dtest\n");
527         return ret;
528 }
529
530 static void lpg_apply_dtest(struct lpg_channel *chan)
531 {
532         struct lpg *lpg = chan->lpg;
533
534         if (!chan->dtest_line)
535                 return;
536
537         regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
538         regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
539                      chan->dtest_value);
540 }
541
542 static void lpg_apply(struct lpg_channel *chan)
543 {
544         lpg_disable_glitch(chan);
545         lpg_apply_freq(chan);
546         lpg_apply_pwm_value(chan);
547         lpg_apply_control(chan);
548         lpg_apply_sync(chan);
549         lpg_apply_lut_control(chan);
550         lpg_enable_glitch(chan);
551 }
552
553 static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
554                                struct mc_subled *subleds)
555 {
556         enum led_brightness brightness;
557         struct lpg_channel *chan;
558         unsigned int triled_enabled = 0;
559         unsigned int triled_mask = 0;
560         unsigned int lut_mask = 0;
561         unsigned int duty;
562         struct lpg *lpg = led->lpg;
563         int i;
564
565         for (i = 0; i < led->num_channels; i++) {
566                 chan = led->channels[i];
567                 brightness = subleds[i].brightness;
568
569                 if (brightness == LED_OFF) {
570                         chan->enabled = false;
571                         chan->ramp_enabled = false;
572                 } else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
573                         lpg_calc_freq(chan, NSEC_PER_MSEC);
574
575                         chan->enabled = true;
576                         chan->ramp_enabled = true;
577
578                         lut_mask |= chan->lut_mask;
579                         triled_enabled |= chan->triled_mask;
580                 } else {
581                         lpg_calc_freq(chan, NSEC_PER_MSEC);
582
583                         duty = div_u64(brightness * chan->period, cdev->max_brightness);
584                         lpg_calc_duty(chan, duty);
585                         chan->enabled = true;
586                         chan->ramp_enabled = false;
587
588                         triled_enabled |= chan->triled_mask;
589                 }
590
591                 triled_mask |= chan->triled_mask;
592
593                 lpg_apply(chan);
594         }
595
596         /* Toggle triled lines */
597         if (triled_mask)
598                 triled_set(lpg, triled_mask, triled_enabled);
599
600         /* Trigger start of ramp generator(s) */
601         if (lut_mask)
602                 lpg_lut_sync(lpg, lut_mask);
603 }
604
605 static int lpg_brightness_single_set(struct led_classdev *cdev,
606                                      enum led_brightness value)
607 {
608         struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
609         struct mc_subled info;
610
611         mutex_lock(&led->lpg->lock);
612
613         info.brightness = value;
614         lpg_brightness_set(led, cdev, &info);
615
616         mutex_unlock(&led->lpg->lock);
617
618         return 0;
619 }
620
621 static int lpg_brightness_mc_set(struct led_classdev *cdev,
622                                  enum led_brightness value)
623 {
624         struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
625         struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
626
627         mutex_lock(&led->lpg->lock);
628
629         led_mc_calc_color_components(mc, value);
630         lpg_brightness_set(led, cdev, mc->subled_info);
631
632         mutex_unlock(&led->lpg->lock);
633
634         return 0;
635 }
636
637 static int lpg_blink_set(struct lpg_led *led,
638                          unsigned long *delay_on, unsigned long *delay_off)
639 {
640         struct lpg_channel *chan;
641         unsigned int period;
642         unsigned int triled_mask = 0;
643         struct lpg *lpg = led->lpg;
644         u64 duty;
645         int i;
646
647         if (!*delay_on && !*delay_off) {
648                 *delay_on = 500;
649                 *delay_off = 500;
650         }
651
652         duty = *delay_on * NSEC_PER_MSEC;
653         period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
654
655         for (i = 0; i < led->num_channels; i++) {
656                 chan = led->channels[i];
657
658                 lpg_calc_freq(chan, period);
659                 lpg_calc_duty(chan, duty);
660
661                 chan->enabled = true;
662                 chan->ramp_enabled = false;
663
664                 triled_mask |= chan->triled_mask;
665
666                 lpg_apply(chan);
667         }
668
669         /* Enable triled lines */
670         triled_set(lpg, triled_mask, triled_mask);
671
672         chan = led->channels[0];
673         duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION);
674         *delay_on = div_u64(duty, NSEC_PER_MSEC);
675         *delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
676
677         return 0;
678 }
679
680 static int lpg_blink_single_set(struct led_classdev *cdev,
681                                 unsigned long *delay_on, unsigned long *delay_off)
682 {
683         struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
684         int ret;
685
686         mutex_lock(&led->lpg->lock);
687
688         ret = lpg_blink_set(led, delay_on, delay_off);
689
690         mutex_unlock(&led->lpg->lock);
691
692         return ret;
693 }
694
695 static int lpg_blink_mc_set(struct led_classdev *cdev,
696                             unsigned long *delay_on, unsigned long *delay_off)
697 {
698         struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
699         struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
700         int ret;
701
702         mutex_lock(&led->lpg->lock);
703
704         ret = lpg_blink_set(led, delay_on, delay_off);
705
706         mutex_unlock(&led->lpg->lock);
707
708         return ret;
709 }
710
711 static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
712                            u32 len, int repeat)
713 {
714         struct lpg_channel *chan;
715         struct lpg *lpg = led->lpg;
716         struct led_pattern *pattern;
717         unsigned int brightness_a;
718         unsigned int brightness_b;
719         unsigned int actual_len;
720         unsigned int hi_pause;
721         unsigned int lo_pause;
722         unsigned int delta_t;
723         unsigned int lo_idx;
724         unsigned int hi_idx;
725         unsigned int i;
726         bool ping_pong = true;
727         int ret = -EINVAL;
728
729         /* Hardware only support oneshot or indefinite loops */
730         if (repeat != -1 && repeat != 1)
731                 return -EINVAL;
732
733         /*
734          * The standardized leds-trigger-pattern format defines that the
735          * brightness of the LED follows a linear transition from one entry
736          * in the pattern to the next, over the given delta_t time. It
737          * describes that the way to perform instant transitions a zero-length
738          * entry should be added following a pattern entry.
739          *
740          * The LPG hardware is only able to perform the latter (no linear
741          * transitions), so require each entry in the pattern to be followed by
742          * a zero-length transition.
743          */
744         if (len % 2)
745                 return -EINVAL;
746
747         pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
748         if (!pattern)
749                 return -ENOMEM;
750
751         for (i = 0; i < len; i += 2) {
752                 if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
753                         goto out_free_pattern;
754                 if (led_pattern[i + 1].delta_t != 0)
755                         goto out_free_pattern;
756
757                 pattern[i / 2].brightness = led_pattern[i].brightness;
758                 pattern[i / 2].delta_t = led_pattern[i].delta_t;
759         }
760
761         len /= 2;
762
763         /*
764          * Specifying a pattern of length 1 causes the hardware to iterate
765          * through the entire LUT, so prohibit this.
766          */
767         if (len < 2)
768                 goto out_free_pattern;
769
770         /*
771          * The LPG plays patterns with at a fixed pace, a "low pause" can be
772          * used to stretch the first delay of the pattern and a "high pause"
773          * the last one.
774          *
775          * In order to save space the pattern can be played in "ping pong"
776          * mode, in which the pattern is first played forward, then "high
777          * pause" is applied, then the pattern is played backwards and finally
778          * the "low pause" is applied.
779          *
780          * The middle elements of the pattern are used to determine delta_t and
781          * the "low pause" and "high pause" multipliers are derrived from this.
782          *
783          * The first element in the pattern is used to determine "low pause".
784          *
785          * If the specified pattern is a palindrome the ping pong mode is
786          * enabled. In this scenario the delta_t of the middle entry (i.e. the
787          * last in the programmed pattern) determines the "high pause".
788          */
789
790         /* Detect palindromes and use "ping pong" to reduce LUT usage */
791         for (i = 0; i < len / 2; i++) {
792                 brightness_a = pattern[i].brightness;
793                 brightness_b = pattern[len - i - 1].brightness;
794
795                 if (brightness_a != brightness_b) {
796                         ping_pong = false;
797                         break;
798                 }
799         }
800
801         /* The pattern length to be written to the LUT */
802         if (ping_pong)
803                 actual_len = (len + 1) / 2;
804         else
805                 actual_len = len;
806
807         /*
808          * Validate that all delta_t in the pattern are the same, with the
809          * exception of the middle element in case of ping_pong.
810          */
811         delta_t = pattern[1].delta_t;
812         for (i = 2; i < len; i++) {
813                 if (pattern[i].delta_t != delta_t) {
814                         /*
815                          * Allow last entry in the full or shortened pattern to
816                          * specify hi pause. Reject other variations.
817                          */
818                         if (i != actual_len - 1)
819                                 goto out_free_pattern;
820                 }
821         }
822
823         /* LPG_RAMP_DURATION_REG is a 9bit */
824         if (delta_t >= BIT(9))
825                 goto out_free_pattern;
826
827         /* Find "low pause" and "high pause" in the pattern */
828         lo_pause = pattern[0].delta_t;
829         hi_pause = pattern[actual_len - 1].delta_t;
830
831         mutex_lock(&lpg->lock);
832         ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
833         if (ret < 0)
834                 goto out_unlock;
835
836         for (i = 0; i < led->num_channels; i++) {
837                 chan = led->channels[i];
838
839                 chan->ramp_tick_ms = delta_t;
840                 chan->ramp_ping_pong = ping_pong;
841                 chan->ramp_oneshot = repeat != -1;
842
843                 chan->ramp_lo_pause_ms = lo_pause;
844                 chan->ramp_hi_pause_ms = hi_pause;
845
846                 chan->pattern_lo_idx = lo_idx;
847                 chan->pattern_hi_idx = hi_idx;
848         }
849
850 out_unlock:
851         mutex_unlock(&lpg->lock);
852 out_free_pattern:
853         kfree(pattern);
854
855         return ret;
856 }
857
858 static int lpg_pattern_single_set(struct led_classdev *cdev,
859                                   struct led_pattern *pattern, u32 len,
860                                   int repeat)
861 {
862         struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
863         int ret;
864
865         ret = lpg_pattern_set(led, pattern, len, repeat);
866         if (ret < 0)
867                 return ret;
868
869         lpg_brightness_single_set(cdev, LED_FULL);
870
871         return 0;
872 }
873
874 static int lpg_pattern_mc_set(struct led_classdev *cdev,
875                               struct led_pattern *pattern, u32 len,
876                               int repeat)
877 {
878         struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
879         struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
880         int ret;
881
882         ret = lpg_pattern_set(led, pattern, len, repeat);
883         if (ret < 0)
884                 return ret;
885
886         led_mc_calc_color_components(mc, LED_FULL);
887         lpg_brightness_set(led, cdev, mc->subled_info);
888
889         return 0;
890 }
891
892 static int lpg_pattern_clear(struct lpg_led *led)
893 {
894         struct lpg_channel *chan;
895         struct lpg *lpg = led->lpg;
896         int i;
897
898         mutex_lock(&lpg->lock);
899
900         chan = led->channels[0];
901         lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
902
903         for (i = 0; i < led->num_channels; i++) {
904                 chan = led->channels[i];
905                 chan->pattern_lo_idx = 0;
906                 chan->pattern_hi_idx = 0;
907         }
908
909         mutex_unlock(&lpg->lock);
910
911         return 0;
912 }
913
914 static int lpg_pattern_single_clear(struct led_classdev *cdev)
915 {
916         struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
917
918         return lpg_pattern_clear(led);
919 }
920
921 static int lpg_pattern_mc_clear(struct led_classdev *cdev)
922 {
923         struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
924         struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
925
926         return lpg_pattern_clear(led);
927 }
928
929 static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
930 {
931         struct lpg *lpg = container_of(chip, struct lpg, pwm);
932         struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
933
934         return chan->in_use ? -EBUSY : 0;
935 }
936
937 /*
938  * Limitations:
939  * - Updating both duty and period is not done atomically, so the output signal
940  *   will momentarily be a mix of the settings.
941  * - Changed parameters takes effect immediately.
942  * - A disabled channel outputs a logical 0.
943  */
944 static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
945                          const struct pwm_state *state)
946 {
947         struct lpg *lpg = container_of(chip, struct lpg, pwm);
948         struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
949         int ret = 0;
950
951         if (state->polarity != PWM_POLARITY_NORMAL)
952                 return -EINVAL;
953
954         mutex_lock(&lpg->lock);
955
956         if (state->enabled) {
957                 ret = lpg_calc_freq(chan, state->period);
958                 if (ret < 0)
959                         goto out_unlock;
960
961                 lpg_calc_duty(chan, state->duty_cycle);
962         }
963         chan->enabled = state->enabled;
964
965         lpg_apply(chan);
966
967         triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
968
969 out_unlock:
970         mutex_unlock(&lpg->lock);
971
972         return ret;
973 }
974
975 static void lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
976                               struct pwm_state *state)
977 {
978         struct lpg *lpg = container_of(chip, struct lpg, pwm);
979         struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
980         unsigned int pre_div;
981         unsigned int refclk;
982         unsigned int val;
983         unsigned int m;
984         u16 pwm_value;
985         int ret;
986
987         ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
988         if (ret)
989                 return;
990
991         refclk = lpg_clk_rates[val & PWM_CLK_SELECT_MASK];
992         if (refclk) {
993                 ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
994                 if (ret)
995                         return;
996
997                 pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
998                 m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
999
1000                 ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
1001                 if (ret)
1002                         return;
1003
1004                 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * LPG_RESOLUTION * pre_div * (1 << m), refclk);
1005                 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
1006         } else {
1007                 state->period = 0;
1008                 state->duty_cycle = 0;
1009         }
1010
1011         ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
1012         if (ret)
1013                 return;
1014
1015         state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
1016         state->polarity = PWM_POLARITY_NORMAL;
1017
1018         if (state->duty_cycle > state->period)
1019                 state->duty_cycle = state->period;
1020 }
1021
1022 static const struct pwm_ops lpg_pwm_ops = {
1023         .request = lpg_pwm_request,
1024         .apply = lpg_pwm_apply,
1025         .get_state = lpg_pwm_get_state,
1026         .owner = THIS_MODULE,
1027 };
1028
1029 static int lpg_add_pwm(struct lpg *lpg)
1030 {
1031         int ret;
1032
1033         lpg->pwm.base = -1;
1034         lpg->pwm.dev = lpg->dev;
1035         lpg->pwm.npwm = lpg->num_channels;
1036         lpg->pwm.ops = &lpg_pwm_ops;
1037
1038         ret = pwmchip_add(&lpg->pwm);
1039         if (ret)
1040                 dev_err(lpg->dev, "failed to add PWM chip: ret %d\n", ret);
1041
1042         return ret;
1043 }
1044
1045 static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
1046                              struct lpg_channel **channel)
1047 {
1048         struct lpg_channel *chan;
1049         u32 color = LED_COLOR_ID_GREEN;
1050         u32 reg;
1051         int ret;
1052
1053         ret = of_property_read_u32(np, "reg", &reg);
1054         if (ret || !reg || reg > lpg->num_channels) {
1055                 dev_err(lpg->dev, "invalid \"reg\" of %pOFn\n", np);
1056                 return -EINVAL;
1057         }
1058
1059         chan = &lpg->channels[reg - 1];
1060         chan->in_use = true;
1061
1062         ret = of_property_read_u32(np, "color", &color);
1063         if (ret < 0 && ret != -EINVAL) {
1064                 dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
1065                 return ret;
1066         }
1067
1068         chan->color = color;
1069
1070         *channel = chan;
1071
1072         return 0;
1073 }
1074
1075 static int lpg_add_led(struct lpg *lpg, struct device_node *np)
1076 {
1077         struct led_init_data init_data = {};
1078         struct led_classdev *cdev;
1079         struct device_node *child;
1080         struct mc_subled *info;
1081         struct lpg_led *led;
1082         const char *state;
1083         int num_channels;
1084         u32 color = 0;
1085         int ret;
1086         int i;
1087
1088         ret = of_property_read_u32(np, "color", &color);
1089         if (ret < 0 && ret != -EINVAL) {
1090                 dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
1091                 return ret;
1092         }
1093
1094         if (color == LED_COLOR_ID_RGB)
1095                 num_channels = of_get_available_child_count(np);
1096         else
1097                 num_channels = 1;
1098
1099         led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
1100         if (!led)
1101                 return -ENOMEM;
1102
1103         led->lpg = lpg;
1104         led->num_channels = num_channels;
1105
1106         if (color == LED_COLOR_ID_RGB) {
1107                 info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
1108                 if (!info)
1109                         return -ENOMEM;
1110                 i = 0;
1111                 for_each_available_child_of_node(np, child) {
1112                         ret = lpg_parse_channel(lpg, child, &led->channels[i]);
1113                         if (ret < 0)
1114                                 return ret;
1115
1116                         info[i].color_index = led->channels[i]->color;
1117                         info[i].intensity = 0;
1118                         i++;
1119                 }
1120
1121                 led->mcdev.subled_info = info;
1122                 led->mcdev.num_colors = num_channels;
1123
1124                 cdev = &led->mcdev.led_cdev;
1125                 cdev->brightness_set_blocking = lpg_brightness_mc_set;
1126                 cdev->blink_set = lpg_blink_mc_set;
1127
1128                 /* Register pattern accessors only if we have a LUT block */
1129                 if (lpg->lut_base) {
1130                         cdev->pattern_set = lpg_pattern_mc_set;
1131                         cdev->pattern_clear = lpg_pattern_mc_clear;
1132                 }
1133         } else {
1134                 ret = lpg_parse_channel(lpg, np, &led->channels[0]);
1135                 if (ret < 0)
1136                         return ret;
1137
1138                 cdev = &led->cdev;
1139                 cdev->brightness_set_blocking = lpg_brightness_single_set;
1140                 cdev->blink_set = lpg_blink_single_set;
1141
1142                 /* Register pattern accessors only if we have a LUT block */
1143                 if (lpg->lut_base) {
1144                         cdev->pattern_set = lpg_pattern_single_set;
1145                         cdev->pattern_clear = lpg_pattern_single_clear;
1146                 }
1147         }
1148
1149         cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
1150         cdev->max_brightness = LPG_RESOLUTION - 1;
1151
1152         if (!of_property_read_string(np, "default-state", &state) &&
1153             !strcmp(state, "on"))
1154                 cdev->brightness = cdev->max_brightness;
1155         else
1156                 cdev->brightness = LED_OFF;
1157
1158         cdev->brightness_set_blocking(cdev, cdev->brightness);
1159
1160         init_data.fwnode = of_fwnode_handle(np);
1161
1162         if (color == LED_COLOR_ID_RGB)
1163                 ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
1164         else
1165                 ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
1166         if (ret)
1167                 dev_err(lpg->dev, "unable to register %s\n", cdev->name);
1168
1169         return ret;
1170 }
1171
1172 static int lpg_init_channels(struct lpg *lpg)
1173 {
1174         const struct lpg_data *data = lpg->data;
1175         struct lpg_channel *chan;
1176         int i;
1177
1178         lpg->num_channels = data->num_channels;
1179         lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
1180                                      sizeof(struct lpg_channel), GFP_KERNEL);
1181         if (!lpg->channels)
1182                 return -ENOMEM;
1183
1184         for (i = 0; i < data->num_channels; i++) {
1185                 chan = &lpg->channels[i];
1186
1187                 chan->lpg = lpg;
1188                 chan->base = data->channels[i].base;
1189                 chan->triled_mask = data->channels[i].triled_mask;
1190                 chan->lut_mask = BIT(i);
1191
1192                 regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
1193         }
1194
1195         return 0;
1196 }
1197
1198 static int lpg_init_triled(struct lpg *lpg)
1199 {
1200         struct device_node *np = lpg->dev->of_node;
1201         int ret;
1202
1203         /* Skip initialization if we don't have a triled block */
1204         if (!lpg->data->triled_base)
1205                 return 0;
1206
1207         lpg->triled_base = lpg->data->triled_base;
1208         lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
1209         lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
1210
1211         if (lpg->triled_has_src_sel) {
1212                 ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
1213                 if (ret || lpg->triled_src == 2 || lpg->triled_src > 3) {
1214                         dev_err(lpg->dev, "invalid power source\n");
1215                         return -EINVAL;
1216                 }
1217         }
1218
1219         /* Disable automatic trickle charge LED */
1220         if (lpg->triled_has_atc_ctl)
1221                 regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
1222
1223         /* Configure power source */
1224         if (lpg->triled_has_src_sel)
1225                 regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
1226
1227         /* Default all outputs to off */
1228         regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
1229
1230         return 0;
1231 }
1232
1233 static int lpg_init_lut(struct lpg *lpg)
1234 {
1235         const struct lpg_data *data = lpg->data;
1236
1237         if (!data->lut_base)
1238                 return 0;
1239
1240         lpg->lut_base = data->lut_base;
1241         lpg->lut_size = data->lut_size;
1242
1243         lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
1244         if (!lpg->lut_bitmap)
1245                 return -ENOMEM;
1246
1247         return 0;
1248 }
1249
1250 static int lpg_probe(struct platform_device *pdev)
1251 {
1252         struct device_node *np;
1253         struct lpg *lpg;
1254         int ret;
1255         int i;
1256
1257         lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
1258         if (!lpg)
1259                 return -ENOMEM;
1260
1261         lpg->data = of_device_get_match_data(&pdev->dev);
1262         if (!lpg->data)
1263                 return -EINVAL;
1264
1265         platform_set_drvdata(pdev, lpg);
1266
1267         lpg->dev = &pdev->dev;
1268         mutex_init(&lpg->lock);
1269
1270         lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
1271         if (!lpg->map)
1272                 return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
1273
1274         ret = lpg_init_channels(lpg);
1275         if (ret < 0)
1276                 return ret;
1277
1278         ret = lpg_parse_dtest(lpg);
1279         if (ret < 0)
1280                 return ret;
1281
1282         ret = lpg_init_triled(lpg);
1283         if (ret < 0)
1284                 return ret;
1285
1286         ret = lpg_init_lut(lpg);
1287         if (ret < 0)
1288                 return ret;
1289
1290         for_each_available_child_of_node(pdev->dev.of_node, np) {
1291                 ret = lpg_add_led(lpg, np);
1292                 if (ret)
1293                         return ret;
1294         }
1295
1296         for (i = 0; i < lpg->num_channels; i++)
1297                 lpg_apply_dtest(&lpg->channels[i]);
1298
1299         return lpg_add_pwm(lpg);
1300 }
1301
1302 static int lpg_remove(struct platform_device *pdev)
1303 {
1304         struct lpg *lpg = platform_get_drvdata(pdev);
1305
1306         pwmchip_remove(&lpg->pwm);
1307
1308         return 0;
1309 }
1310
1311 static const struct lpg_data pm8916_pwm_data = {
1312         .num_channels = 1,
1313         .channels = (const struct lpg_channel_data[]) {
1314                 { .base = 0xbc00 },
1315         },
1316 };
1317
1318 static const struct lpg_data pm8941_lpg_data = {
1319         .lut_base = 0xb000,
1320         .lut_size = 64,
1321
1322         .triled_base = 0xd000,
1323         .triled_has_atc_ctl = true,
1324         .triled_has_src_sel = true,
1325
1326         .num_channels = 8,
1327         .channels = (const struct lpg_channel_data[]) {
1328                 { .base = 0xb100 },
1329                 { .base = 0xb200 },
1330                 { .base = 0xb300 },
1331                 { .base = 0xb400 },
1332                 { .base = 0xb500, .triled_mask = BIT(5) },
1333                 { .base = 0xb600, .triled_mask = BIT(6) },
1334                 { .base = 0xb700, .triled_mask = BIT(7) },
1335                 { .base = 0xb800 },
1336         },
1337 };
1338
1339 static const struct lpg_data pm8994_lpg_data = {
1340         .lut_base = 0xb000,
1341         .lut_size = 64,
1342
1343         .num_channels = 6,
1344         .channels = (const struct lpg_channel_data[]) {
1345                 { .base = 0xb100 },
1346                 { .base = 0xb200 },
1347                 { .base = 0xb300 },
1348                 { .base = 0xb400 },
1349                 { .base = 0xb500 },
1350                 { .base = 0xb600 },
1351         },
1352 };
1353
1354 static const struct lpg_data pmi8994_lpg_data = {
1355         .lut_base = 0xb000,
1356         .lut_size = 24,
1357
1358         .triled_base = 0xd000,
1359         .triled_has_atc_ctl = true,
1360         .triled_has_src_sel = true,
1361
1362         .num_channels = 4,
1363         .channels = (const struct lpg_channel_data[]) {
1364                 { .base = 0xb100, .triled_mask = BIT(5) },
1365                 { .base = 0xb200, .triled_mask = BIT(6) },
1366                 { .base = 0xb300, .triled_mask = BIT(7) },
1367                 { .base = 0xb400 },
1368         },
1369 };
1370
1371 static const struct lpg_data pmi8998_lpg_data = {
1372         .lut_base = 0xb000,
1373         .lut_size = 49,
1374
1375         .triled_base = 0xd000,
1376
1377         .num_channels = 6,
1378         .channels = (const struct lpg_channel_data[]) {
1379                 { .base = 0xb100 },
1380                 { .base = 0xb200 },
1381                 { .base = 0xb300, .triled_mask = BIT(5) },
1382                 { .base = 0xb400, .triled_mask = BIT(6) },
1383                 { .base = 0xb500, .triled_mask = BIT(7) },
1384                 { .base = 0xb600 },
1385         },
1386 };
1387
1388 static const struct lpg_data pm8150b_lpg_data = {
1389         .lut_base = 0xb000,
1390         .lut_size = 24,
1391
1392         .triled_base = 0xd000,
1393
1394         .num_channels = 2,
1395         .channels = (const struct lpg_channel_data[]) {
1396                 { .base = 0xb100, .triled_mask = BIT(7) },
1397                 { .base = 0xb200, .triled_mask = BIT(6) },
1398         },
1399 };
1400
1401 static const struct lpg_data pm8150l_lpg_data = {
1402         .lut_base = 0xb000,
1403         .lut_size = 48,
1404
1405         .triled_base = 0xd000,
1406
1407         .num_channels = 5,
1408         .channels = (const struct lpg_channel_data[]) {
1409                 { .base = 0xb100, .triled_mask = BIT(7) },
1410                 { .base = 0xb200, .triled_mask = BIT(6) },
1411                 { .base = 0xb300, .triled_mask = BIT(5) },
1412                 { .base = 0xbc00 },
1413                 { .base = 0xbd00 },
1414
1415         },
1416 };
1417
1418 static const struct lpg_data pm8350c_pwm_data = {
1419         .triled_base = 0xef00,
1420
1421         .num_channels = 4,
1422         .channels = (const struct lpg_channel_data[]) {
1423                 { .base = 0xe800, .triled_mask = BIT(7) },
1424                 { .base = 0xe900, .triled_mask = BIT(6) },
1425                 { .base = 0xea00, .triled_mask = BIT(5) },
1426                 { .base = 0xeb00 },
1427         },
1428 };
1429
1430 static const struct of_device_id lpg_of_table[] = {
1431         { .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
1432         { .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
1433         { .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
1434         { .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
1435         { .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
1436         { .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
1437         { .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
1438         { .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
1439         { .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
1440         {}
1441 };
1442 MODULE_DEVICE_TABLE(of, lpg_of_table);
1443
1444 static struct platform_driver lpg_driver = {
1445         .probe = lpg_probe,
1446         .remove = lpg_remove,
1447         .driver = {
1448                 .name = "qcom-spmi-lpg",
1449                 .of_match_table = lpg_of_table,
1450         },
1451 };
1452 module_platform_driver(lpg_driver);
1453
1454 MODULE_DESCRIPTION("Qualcomm LPG LED driver");
1455 MODULE_LICENSE("GPL v2");