Merge tag 'for-5.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-starfive.git] / drivers / irqchip / irq-gic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #define pr_fmt(fmt)     "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31
32 #include "irq-gic-common.h"
33
34 #define GICD_INT_NMI_PRI        (GICD_INT_DEF_PRI & ~0x80)
35
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996     (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539   (1ULL << 1)
38
39 #define GIC_IRQ_TYPE_PARTITION  (GIC_IRQ_TYPE_LPI + 1)
40
41 struct redist_region {
42         void __iomem            *redist_base;
43         phys_addr_t             phys_base;
44         bool                    single_redist;
45 };
46
47 struct gic_chip_data {
48         struct fwnode_handle    *fwnode;
49         void __iomem            *dist_base;
50         struct redist_region    *redist_regions;
51         struct rdists           rdists;
52         struct irq_domain       *domain;
53         u64                     redist_stride;
54         u32                     nr_redist_regions;
55         u64                     flags;
56         bool                    has_rss;
57         unsigned int            ppi_nr;
58         struct partition_desc   **ppi_descs;
59 };
60
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63
64 #define GIC_ID_NR       (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR     min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR     GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)                                      \
116         ({                                                              \
117                 u32 __priority = (priority);                            \
118                 if (static_branch_unlikely(&gic_nonsecure_priorities))  \
119                         __priority = 0x80 | (__priority >> 1);          \
120                                                                         \
121                 __priority;                                             \
122         })
123
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129
130 #define MPIDR_RS(mpidr)                 (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()                (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()       (gic_data_rdist_rd_base() + SZ_64K)
134
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE       0xf0
137
138 enum gic_intid_range {
139         SGI_RANGE,
140         PPI_RANGE,
141         SPI_RANGE,
142         EPPI_RANGE,
143         ESPI_RANGE,
144         LPI_RANGE,
145         __INVALID_RANGE__
146 };
147
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150         switch (hwirq) {
151         case 0 ... 15:
152                 return SGI_RANGE;
153         case 16 ... 31:
154                 return PPI_RANGE;
155         case 32 ... 1019:
156                 return SPI_RANGE;
157         case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158                 return EPPI_RANGE;
159         case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160                 return ESPI_RANGE;
161         case 8192 ... GENMASK(23, 0):
162                 return LPI_RANGE;
163         default:
164                 return __INVALID_RANGE__;
165         }
166 }
167
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170         return __get_intid_range(d->hwirq);
171 }
172
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175         return d->hwirq;
176 }
177
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180         switch (get_intid_range(d)) {
181         case SGI_RANGE:
182         case PPI_RANGE:
183         case EPPI_RANGE:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192         switch (get_intid_range(d)) {
193         case SGI_RANGE:
194         case PPI_RANGE:
195         case EPPI_RANGE:
196                 /* SGI+PPI -> SGI_base for this CPU */
197                 return gic_data_rdist_sgi_base();
198
199         case SPI_RANGE:
200         case ESPI_RANGE:
201                 /* SPI -> dist_base */
202                 return gic_data.dist_base;
203
204         default:
205                 return NULL;
206         }
207 }
208
209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
210 {
211         u32 count = 1000000;    /* 1s! */
212
213         while (readl_relaxed(base + GICD_CTLR) & bit) {
214                 count--;
215                 if (!count) {
216                         pr_err_ratelimited("RWP timeout, gone fishing\n");
217                         return;
218                 }
219                 cpu_relax();
220                 udelay(1);
221         }
222 }
223
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
226 {
227         gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
228 }
229
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
232 {
233         gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
234 }
235
236 #ifdef CONFIG_ARM64
237
238 static u64 __maybe_unused gic_read_iar(void)
239 {
240         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241                 return gic_read_iar_cavium_thunderx();
242         else
243                 return gic_read_iar_common();
244 }
245 #endif
246
247 static void gic_enable_redist(bool enable)
248 {
249         void __iomem *rbase;
250         u32 count = 1000000;    /* 1s! */
251         u32 val;
252
253         if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254                 return;
255
256         rbase = gic_data_rdist_rd_base();
257
258         val = readl_relaxed(rbase + GICR_WAKER);
259         if (enable)
260                 /* Wake up this CPU redistributor */
261                 val &= ~GICR_WAKER_ProcessorSleep;
262         else
263                 val |= GICR_WAKER_ProcessorSleep;
264         writel_relaxed(val, rbase + GICR_WAKER);
265
266         if (!enable) {          /* Check that GICR_WAKER is writeable */
267                 val = readl_relaxed(rbase + GICR_WAKER);
268                 if (!(val & GICR_WAKER_ProcessorSleep))
269                         return; /* No PM support in this redistributor */
270         }
271
272         while (--count) {
273                 val = readl_relaxed(rbase + GICR_WAKER);
274                 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275                         break;
276                 cpu_relax();
277                 udelay(1);
278         }
279         if (!count)
280                 pr_err_ratelimited("redistributor failed to %s...\n",
281                                    enable ? "wakeup" : "sleep");
282 }
283
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289         switch (get_intid_range(d)) {
290         case SGI_RANGE:
291         case PPI_RANGE:
292         case SPI_RANGE:
293                 *index = d->hwirq;
294                 return offset;
295         case EPPI_RANGE:
296                 /*
297                  * Contrary to the ESPI range, the EPPI range is contiguous
298                  * to the PPI range in the registers, so let's adjust the
299                  * displacement accordingly. Consistency is overrated.
300                  */
301                 *index = d->hwirq - EPPI_BASE_INTID + 32;
302                 return offset;
303         case ESPI_RANGE:
304                 *index = d->hwirq - ESPI_BASE_INTID;
305                 switch (offset) {
306                 case GICD_ISENABLER:
307                         return GICD_ISENABLERnE;
308                 case GICD_ICENABLER:
309                         return GICD_ICENABLERnE;
310                 case GICD_ISPENDR:
311                         return GICD_ISPENDRnE;
312                 case GICD_ICPENDR:
313                         return GICD_ICPENDRnE;
314                 case GICD_ISACTIVER:
315                         return GICD_ISACTIVERnE;
316                 case GICD_ICACTIVER:
317                         return GICD_ICACTIVERnE;
318                 case GICD_IPRIORITYR:
319                         return GICD_IPRIORITYRnE;
320                 case GICD_ICFGR:
321                         return GICD_ICFGRnE;
322                 case GICD_IROUTER:
323                         return GICD_IROUTERnE;
324                 default:
325                         break;
326                 }
327                 break;
328         default:
329                 break;
330         }
331
332         WARN_ON(1);
333         *index = d->hwirq;
334         return offset;
335 }
336
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339         void __iomem *base;
340         u32 index, mask;
341
342         offset = convert_offset_index(d, offset, &index);
343         mask = 1 << (index % 32);
344
345         if (gic_irq_in_rdist(d))
346                 base = gic_data_rdist_sgi_base();
347         else
348                 base = gic_data.dist_base;
349
350         return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355         void (*rwp_wait)(void);
356         void __iomem *base;
357         u32 index, mask;
358
359         offset = convert_offset_index(d, offset, &index);
360         mask = 1 << (index % 32);
361
362         if (gic_irq_in_rdist(d)) {
363                 base = gic_data_rdist_sgi_base();
364                 rwp_wait = gic_redist_wait_for_rwp;
365         } else {
366                 base = gic_data.dist_base;
367                 rwp_wait = gic_dist_wait_for_rwp;
368         }
369
370         writel_relaxed(mask, base + offset + (index / 32) * 4);
371         rwp_wait();
372 }
373
374 static void gic_mask_irq(struct irq_data *d)
375 {
376         gic_poke_irq(d, GICD_ICENABLER);
377 }
378
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381         gic_mask_irq(d);
382         /*
383          * When masking a forwarded interrupt, make sure it is
384          * deactivated as well.
385          *
386          * This ensures that an interrupt that is getting
387          * disabled/masked will not get "stuck", because there is
388          * noone to deactivate it (guest is being terminated).
389          */
390         if (irqd_is_forwarded_to_vcpu(d))
391                 gic_poke_irq(d, GICD_ICACTIVER);
392 }
393
394 static void gic_unmask_irq(struct irq_data *d)
395 {
396         gic_poke_irq(d, GICD_ISENABLER);
397 }
398
399 static inline bool gic_supports_nmi(void)
400 {
401         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402                static_branch_likely(&supports_pseudo_nmis);
403 }
404
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406                                      enum irqchip_irq_state which, bool val)
407 {
408         u32 reg;
409
410         if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411                 return -EINVAL;
412
413         switch (which) {
414         case IRQCHIP_STATE_PENDING:
415                 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416                 break;
417
418         case IRQCHIP_STATE_ACTIVE:
419                 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420                 break;
421
422         case IRQCHIP_STATE_MASKED:
423                 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424                 break;
425
426         default:
427                 return -EINVAL;
428         }
429
430         gic_poke_irq(d, reg);
431         return 0;
432 }
433
434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435                                      enum irqchip_irq_state which, bool *val)
436 {
437         if (d->hwirq >= 8192) /* PPI/SPI only */
438                 return -EINVAL;
439
440         switch (which) {
441         case IRQCHIP_STATE_PENDING:
442                 *val = gic_peek_irq(d, GICD_ISPENDR);
443                 break;
444
445         case IRQCHIP_STATE_ACTIVE:
446                 *val = gic_peek_irq(d, GICD_ISACTIVER);
447                 break;
448
449         case IRQCHIP_STATE_MASKED:
450                 *val = !gic_peek_irq(d, GICD_ISENABLER);
451                 break;
452
453         default:
454                 return -EINVAL;
455         }
456
457         return 0;
458 }
459
460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462         void __iomem *base = gic_dist_base(d);
463         u32 offset, index;
464
465         offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466
467         writeb_relaxed(prio, base + offset + index);
468 }
469
470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
471 {
472         switch (__get_intid_range(hwirq)) {
473         case PPI_RANGE:
474                 return hwirq - 16;
475         case EPPI_RANGE:
476                 return hwirq - EPPI_BASE_INTID + 16;
477         default:
478                 unreachable();
479         }
480 }
481
482 static u32 gic_get_ppi_index(struct irq_data *d)
483 {
484         return __gic_get_ppi_index(d->hwirq);
485 }
486
487 static int gic_irq_nmi_setup(struct irq_data *d)
488 {
489         struct irq_desc *desc = irq_to_desc(d->irq);
490
491         if (!gic_supports_nmi())
492                 return -EINVAL;
493
494         if (gic_peek_irq(d, GICD_ISENABLER)) {
495                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
496                 return -EINVAL;
497         }
498
499         /*
500          * A secondary irq_chip should be in charge of LPI request,
501          * it should not be possible to get there
502          */
503         if (WARN_ON(gic_irq(d) >= 8192))
504                 return -EINVAL;
505
506         /* desc lock should already be held */
507         if (gic_irq_in_rdist(d)) {
508                 u32 idx = gic_get_ppi_index(d);
509
510                 /* Setting up PPI as NMI, only switch handler for first NMI */
511                 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512                         refcount_set(&ppi_nmi_refs[idx], 1);
513                         desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
514                 }
515         } else {
516                 desc->handle_irq = handle_fasteoi_nmi;
517         }
518
519         gic_irq_set_prio(d, GICD_INT_NMI_PRI);
520
521         return 0;
522 }
523
524 static void gic_irq_nmi_teardown(struct irq_data *d)
525 {
526         struct irq_desc *desc = irq_to_desc(d->irq);
527
528         if (WARN_ON(!gic_supports_nmi()))
529                 return;
530
531         if (gic_peek_irq(d, GICD_ISENABLER)) {
532                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533                 return;
534         }
535
536         /*
537          * A secondary irq_chip should be in charge of LPI request,
538          * it should not be possible to get there
539          */
540         if (WARN_ON(gic_irq(d) >= 8192))
541                 return;
542
543         /* desc lock should already be held */
544         if (gic_irq_in_rdist(d)) {
545                 u32 idx = gic_get_ppi_index(d);
546
547                 /* Tearing down NMI, only switch handler for last NMI */
548                 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549                         desc->handle_irq = handle_percpu_devid_irq;
550         } else {
551                 desc->handle_irq = handle_fasteoi_irq;
552         }
553
554         gic_irq_set_prio(d, GICD_INT_DEF_PRI);
555 }
556
557 static void gic_eoi_irq(struct irq_data *d)
558 {
559         gic_write_eoir(gic_irq(d));
560 }
561
562 static void gic_eoimode1_eoi_irq(struct irq_data *d)
563 {
564         /*
565          * No need to deactivate an LPI, or an interrupt that
566          * is is getting forwarded to a vcpu.
567          */
568         if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
569                 return;
570         gic_write_dir(gic_irq(d));
571 }
572
573 static int gic_set_type(struct irq_data *d, unsigned int type)
574 {
575         enum gic_intid_range range;
576         unsigned int irq = gic_irq(d);
577         void (*rwp_wait)(void);
578         void __iomem *base;
579         u32 offset, index;
580         int ret;
581
582         range = get_intid_range(d);
583
584         /* Interrupt configuration for SGIs can't be changed */
585         if (range == SGI_RANGE)
586                 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
587
588         /* SPIs have restrictions on the supported types */
589         if ((range == SPI_RANGE || range == ESPI_RANGE) &&
590             type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
591                 return -EINVAL;
592
593         if (gic_irq_in_rdist(d)) {
594                 base = gic_data_rdist_sgi_base();
595                 rwp_wait = gic_redist_wait_for_rwp;
596         } else {
597                 base = gic_data.dist_base;
598                 rwp_wait = gic_dist_wait_for_rwp;
599         }
600
601         offset = convert_offset_index(d, GICD_ICFGR, &index);
602
603         ret = gic_configure_irq(index, type, base + offset, rwp_wait);
604         if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605                 /* Misconfigured PPIs are usually not fatal */
606                 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607                 ret = 0;
608         }
609
610         return ret;
611 }
612
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615         if (get_intid_range(d) == SGI_RANGE)
616                 return -EINVAL;
617
618         if (vcpu)
619                 irqd_set_forwarded_to_vcpu(d);
620         else
621                 irqd_clr_forwarded_to_vcpu(d);
622         return 0;
623 }
624
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627         u64 aff;
628
629         aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
632                MPIDR_AFFINITY_LEVEL(mpidr, 0));
633
634         return aff;
635 }
636
637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639         if (static_branch_likely(&supports_deactivate_key)) {
640                 if (irqnr < 8192)
641                         gic_write_dir(irqnr);
642         } else {
643                 gic_write_eoir(irqnr);
644         }
645 }
646
647 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
648 {
649         bool irqs_enabled = interrupts_enabled(regs);
650         int err;
651
652         if (irqs_enabled)
653                 nmi_enter();
654
655         if (static_branch_likely(&supports_deactivate_key))
656                 gic_write_eoir(irqnr);
657         /*
658          * Leave the PSR.I bit set to prevent other NMIs to be
659          * received while handling this one.
660          * PSR.I will be restored when we ERET to the
661          * interrupted context.
662          */
663         err = generic_handle_domain_nmi(gic_data.domain, irqnr);
664         if (err)
665                 gic_deactivate_unhandled(irqnr);
666
667         if (irqs_enabled)
668                 nmi_exit();
669 }
670
671 static u32 do_read_iar(struct pt_regs *regs)
672 {
673         u32 iar;
674
675         if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
676                 u64 pmr;
677
678                 /*
679                  * We were in a context with IRQs disabled. However, the
680                  * entry code has set PMR to a value that allows any
681                  * interrupt to be acknowledged, and not just NMIs. This can
682                  * lead to surprising effects if the NMI has been retired in
683                  * the meantime, and that there is an IRQ pending. The IRQ
684                  * would then be taken in NMI context, something that nobody
685                  * wants to debug twice.
686                  *
687                  * Until we sort this, drop PMR again to a level that will
688                  * actually only allow NMIs before reading IAR, and then
689                  * restore it to what it was.
690                  */
691                 pmr = gic_read_pmr();
692                 gic_pmr_mask_irqs();
693                 isb();
694
695                 iar = gic_read_iar();
696
697                 gic_write_pmr(pmr);
698         } else {
699                 iar = gic_read_iar();
700         }
701
702         return iar;
703 }
704
705 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
706 {
707         u32 irqnr;
708
709         irqnr = do_read_iar(regs);
710
711         /* Check for special IDs first */
712         if ((irqnr >= 1020 && irqnr <= 1023))
713                 return;
714
715         if (gic_supports_nmi() &&
716             unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
717                 gic_handle_nmi(irqnr, regs);
718                 return;
719         }
720
721         if (gic_prio_masking_enabled()) {
722                 gic_pmr_mask_irqs();
723                 gic_arch_enable_irqs();
724         }
725
726         if (static_branch_likely(&supports_deactivate_key))
727                 gic_write_eoir(irqnr);
728         else
729                 isb();
730
731         if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
732                 WARN_ONCE(true, "Unexpected interrupt received!\n");
733                 gic_deactivate_unhandled(irqnr);
734         }
735 }
736
737 static u32 gic_get_pribits(void)
738 {
739         u32 pribits;
740
741         pribits = gic_read_ctlr();
742         pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
743         pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
744         pribits++;
745
746         return pribits;
747 }
748
749 static bool gic_has_group0(void)
750 {
751         u32 val;
752         u32 old_pmr;
753
754         old_pmr = gic_read_pmr();
755
756         /*
757          * Let's find out if Group0 is under control of EL3 or not by
758          * setting the highest possible, non-zero priority in PMR.
759          *
760          * If SCR_EL3.FIQ is set, the priority gets shifted down in
761          * order for the CPU interface to set bit 7, and keep the
762          * actual priority in the non-secure range. In the process, it
763          * looses the least significant bit and the actual priority
764          * becomes 0x80. Reading it back returns 0, indicating that
765          * we're don't have access to Group0.
766          */
767         gic_write_pmr(BIT(8 - gic_get_pribits()));
768         val = gic_read_pmr();
769
770         gic_write_pmr(old_pmr);
771
772         return val != 0;
773 }
774
775 static void __init gic_dist_init(void)
776 {
777         unsigned int i;
778         u64 affinity;
779         void __iomem *base = gic_data.dist_base;
780         u32 val;
781
782         /* Disable the distributor */
783         writel_relaxed(0, base + GICD_CTLR);
784         gic_dist_wait_for_rwp();
785
786         /*
787          * Configure SPIs as non-secure Group-1. This will only matter
788          * if the GIC only has a single security state. This will not
789          * do the right thing if the kernel is running in secure mode,
790          * but that's not the intended use case anyway.
791          */
792         for (i = 32; i < GIC_LINE_NR; i += 32)
793                 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
794
795         /* Extended SPI range, not handled by the GICv2/GICv3 common code */
796         for (i = 0; i < GIC_ESPI_NR; i += 32) {
797                 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
798                 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
799         }
800
801         for (i = 0; i < GIC_ESPI_NR; i += 32)
802                 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
803
804         for (i = 0; i < GIC_ESPI_NR; i += 16)
805                 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
806
807         for (i = 0; i < GIC_ESPI_NR; i += 4)
808                 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
809
810         /* Now do the common stuff, and wait for the distributor to drain */
811         gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
812
813         val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
814         if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
815                 pr_info("Enabling SGIs without active state\n");
816                 val |= GICD_CTLR_nASSGIreq;
817         }
818
819         /* Enable distributor with ARE, Group1 */
820         writel_relaxed(val, base + GICD_CTLR);
821
822         /*
823          * Set all global interrupts to the boot CPU only. ARE must be
824          * enabled.
825          */
826         affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
827         for (i = 32; i < GIC_LINE_NR; i++)
828                 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
829
830         for (i = 0; i < GIC_ESPI_NR; i++)
831                 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
832 }
833
834 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
835 {
836         int ret = -ENODEV;
837         int i;
838
839         for (i = 0; i < gic_data.nr_redist_regions; i++) {
840                 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
841                 u64 typer;
842                 u32 reg;
843
844                 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
845                 if (reg != GIC_PIDR2_ARCH_GICv3 &&
846                     reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
847                         pr_warn("No redistributor present @%p\n", ptr);
848                         break;
849                 }
850
851                 do {
852                         typer = gic_read_typer(ptr + GICR_TYPER);
853                         ret = fn(gic_data.redist_regions + i, ptr);
854                         if (!ret)
855                                 return 0;
856
857                         if (gic_data.redist_regions[i].single_redist)
858                                 break;
859
860                         if (gic_data.redist_stride) {
861                                 ptr += gic_data.redist_stride;
862                         } else {
863                                 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
864                                 if (typer & GICR_TYPER_VLPIS)
865                                         ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
866                         }
867                 } while (!(typer & GICR_TYPER_LAST));
868         }
869
870         return ret ? -ENODEV : 0;
871 }
872
873 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
874 {
875         unsigned long mpidr = cpu_logical_map(smp_processor_id());
876         u64 typer;
877         u32 aff;
878
879         /*
880          * Convert affinity to a 32bit value that can be matched to
881          * GICR_TYPER bits [63:32].
882          */
883         aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
884                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
885                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
886                MPIDR_AFFINITY_LEVEL(mpidr, 0));
887
888         typer = gic_read_typer(ptr + GICR_TYPER);
889         if ((typer >> 32) == aff) {
890                 u64 offset = ptr - region->redist_base;
891                 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
892                 gic_data_rdist_rd_base() = ptr;
893                 gic_data_rdist()->phys_base = region->phys_base + offset;
894
895                 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
896                         smp_processor_id(), mpidr,
897                         (int)(region - gic_data.redist_regions),
898                         &gic_data_rdist()->phys_base);
899                 return 0;
900         }
901
902         /* Try next one */
903         return 1;
904 }
905
906 static int gic_populate_rdist(void)
907 {
908         if (gic_iterate_rdists(__gic_populate_rdist) == 0)
909                 return 0;
910
911         /* We couldn't even deal with ourselves... */
912         WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
913              smp_processor_id(),
914              (unsigned long)cpu_logical_map(smp_processor_id()));
915         return -ENODEV;
916 }
917
918 static int __gic_update_rdist_properties(struct redist_region *region,
919                                          void __iomem *ptr)
920 {
921         u64 typer = gic_read_typer(ptr + GICR_TYPER);
922
923         /* Boot-time cleanip */
924         if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
925                 u64 val;
926
927                 /* Deactivate any present vPE */
928                 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
929                 if (val & GICR_VPENDBASER_Valid)
930                         gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
931                                               ptr + SZ_128K + GICR_VPENDBASER);
932
933                 /* Mark the VPE table as invalid */
934                 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
935                 val &= ~GICR_VPROPBASER_4_1_VALID;
936                 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
937         }
938
939         gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
940
941         /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
942         gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
943         gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
944                                            gic_data.rdists.has_rvpeid);
945         gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
946
947         /* Detect non-sensical configurations */
948         if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
949                 gic_data.rdists.has_direct_lpi = false;
950                 gic_data.rdists.has_vlpis = false;
951                 gic_data.rdists.has_rvpeid = false;
952         }
953
954         gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
955
956         return 1;
957 }
958
959 static void gic_update_rdist_properties(void)
960 {
961         gic_data.ppi_nr = UINT_MAX;
962         gic_iterate_rdists(__gic_update_rdist_properties);
963         if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
964                 gic_data.ppi_nr = 0;
965         pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
966         if (gic_data.rdists.has_vlpis)
967                 pr_info("GICv4 features: %s%s%s\n",
968                         gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
969                         gic_data.rdists.has_rvpeid ? "RVPEID " : "",
970                         gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
971 }
972
973 /* Check whether it's single security state view */
974 static inline bool gic_dist_security_disabled(void)
975 {
976         return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
977 }
978
979 static void gic_cpu_sys_reg_init(void)
980 {
981         int i, cpu = smp_processor_id();
982         u64 mpidr = cpu_logical_map(cpu);
983         u64 need_rss = MPIDR_RS(mpidr);
984         bool group0;
985         u32 pribits;
986
987         /*
988          * Need to check that the SRE bit has actually been set. If
989          * not, it means that SRE is disabled at EL2. We're going to
990          * die painfully, and there is nothing we can do about it.
991          *
992          * Kindly inform the luser.
993          */
994         if (!gic_enable_sre())
995                 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
996
997         pribits = gic_get_pribits();
998
999         group0 = gic_has_group0();
1000
1001         /* Set priority mask register */
1002         if (!gic_prio_masking_enabled()) {
1003                 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1004         } else if (gic_supports_nmi()) {
1005                 /*
1006                  * Mismatch configuration with boot CPU, the system is likely
1007                  * to die as interrupt masking will not work properly on all
1008                  * CPUs
1009                  *
1010                  * The boot CPU calls this function before enabling NMI support,
1011                  * and as a result we'll never see this warning in the boot path
1012                  * for that CPU.
1013                  */
1014                 if (static_branch_unlikely(&gic_nonsecure_priorities))
1015                         WARN_ON(!group0 || gic_dist_security_disabled());
1016                 else
1017                         WARN_ON(group0 && !gic_dist_security_disabled());
1018         }
1019
1020         /*
1021          * Some firmwares hand over to the kernel with the BPR changed from
1022          * its reset value (and with a value large enough to prevent
1023          * any pre-emptive interrupts from working at all). Writing a zero
1024          * to BPR restores is reset value.
1025          */
1026         gic_write_bpr1(0);
1027
1028         if (static_branch_likely(&supports_deactivate_key)) {
1029                 /* EOI drops priority only (mode 1) */
1030                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1031         } else {
1032                 /* EOI deactivates interrupt too (mode 0) */
1033                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1034         }
1035
1036         /* Always whack Group0 before Group1 */
1037         if (group0) {
1038                 switch(pribits) {
1039                 case 8:
1040                 case 7:
1041                         write_gicreg(0, ICC_AP0R3_EL1);
1042                         write_gicreg(0, ICC_AP0R2_EL1);
1043                         fallthrough;
1044                 case 6:
1045                         write_gicreg(0, ICC_AP0R1_EL1);
1046                         fallthrough;
1047                 case 5:
1048                 case 4:
1049                         write_gicreg(0, ICC_AP0R0_EL1);
1050                 }
1051
1052                 isb();
1053         }
1054
1055         switch(pribits) {
1056         case 8:
1057         case 7:
1058                 write_gicreg(0, ICC_AP1R3_EL1);
1059                 write_gicreg(0, ICC_AP1R2_EL1);
1060                 fallthrough;
1061         case 6:
1062                 write_gicreg(0, ICC_AP1R1_EL1);
1063                 fallthrough;
1064         case 5:
1065         case 4:
1066                 write_gicreg(0, ICC_AP1R0_EL1);
1067         }
1068
1069         isb();
1070
1071         /* ... and let's hit the road... */
1072         gic_write_grpen1(1);
1073
1074         /* Keep the RSS capability status in per_cpu variable */
1075         per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1076
1077         /* Check all the CPUs have capable of sending SGIs to other CPUs */
1078         for_each_online_cpu(i) {
1079                 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1080
1081                 need_rss |= MPIDR_RS(cpu_logical_map(i));
1082                 if (need_rss && (!have_rss))
1083                         pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1084                                 cpu, (unsigned long)mpidr,
1085                                 i, (unsigned long)cpu_logical_map(i));
1086         }
1087
1088         /**
1089          * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1090          * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1091          * UNPREDICTABLE choice of :
1092          *   - The write is ignored.
1093          *   - The RS field is treated as 0.
1094          */
1095         if (need_rss && (!gic_data.has_rss))
1096                 pr_crit_once("RSS is required but GICD doesn't support it\n");
1097 }
1098
1099 static bool gicv3_nolpi;
1100
1101 static int __init gicv3_nolpi_cfg(char *buf)
1102 {
1103         return strtobool(buf, &gicv3_nolpi);
1104 }
1105 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1106
1107 static int gic_dist_supports_lpis(void)
1108 {
1109         return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1110                 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1111                 !gicv3_nolpi);
1112 }
1113
1114 static void gic_cpu_init(void)
1115 {
1116         void __iomem *rbase;
1117         int i;
1118
1119         /* Register ourselves with the rest of the world */
1120         if (gic_populate_rdist())
1121                 return;
1122
1123         gic_enable_redist(true);
1124
1125         WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1126              !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1127              "Distributor has extended ranges, but CPU%d doesn't\n",
1128              smp_processor_id());
1129
1130         rbase = gic_data_rdist_sgi_base();
1131
1132         /* Configure SGIs/PPIs as non-secure Group-1 */
1133         for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1134                 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1135
1136         gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1137
1138         /* initialise system registers */
1139         gic_cpu_sys_reg_init();
1140 }
1141
1142 #ifdef CONFIG_SMP
1143
1144 #define MPIDR_TO_SGI_RS(mpidr)  (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1145 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)  ((mpidr) & ~0xFUL)
1146
1147 static int gic_starting_cpu(unsigned int cpu)
1148 {
1149         gic_cpu_init();
1150
1151         if (gic_dist_supports_lpis())
1152                 its_cpu_init();
1153
1154         return 0;
1155 }
1156
1157 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1158                                    unsigned long cluster_id)
1159 {
1160         int next_cpu, cpu = *base_cpu;
1161         unsigned long mpidr = cpu_logical_map(cpu);
1162         u16 tlist = 0;
1163
1164         while (cpu < nr_cpu_ids) {
1165                 tlist |= 1 << (mpidr & 0xf);
1166
1167                 next_cpu = cpumask_next(cpu, mask);
1168                 if (next_cpu >= nr_cpu_ids)
1169                         goto out;
1170                 cpu = next_cpu;
1171
1172                 mpidr = cpu_logical_map(cpu);
1173
1174                 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1175                         cpu--;
1176                         goto out;
1177                 }
1178         }
1179 out:
1180         *base_cpu = cpu;
1181         return tlist;
1182 }
1183
1184 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1185         (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1186                 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1187
1188 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1189 {
1190         u64 val;
1191
1192         val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)     |
1193                MPIDR_TO_SGI_AFFINITY(cluster_id, 2)     |
1194                irq << ICC_SGI1R_SGI_ID_SHIFT            |
1195                MPIDR_TO_SGI_AFFINITY(cluster_id, 1)     |
1196                MPIDR_TO_SGI_RS(cluster_id)              |
1197                tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1198
1199         pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1200         gic_write_sgi1r(val);
1201 }
1202
1203 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1204 {
1205         int cpu;
1206
1207         if (WARN_ON(d->hwirq >= 16))
1208                 return;
1209
1210         /*
1211          * Ensure that stores to Normal memory are visible to the
1212          * other CPUs before issuing the IPI.
1213          */
1214         dsb(ishst);
1215
1216         for_each_cpu(cpu, mask) {
1217                 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1218                 u16 tlist;
1219
1220                 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1221                 gic_send_sgi(cluster_id, tlist, d->hwirq);
1222         }
1223
1224         /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1225         isb();
1226 }
1227
1228 static void __init gic_smp_init(void)
1229 {
1230         struct irq_fwspec sgi_fwspec = {
1231                 .fwnode         = gic_data.fwnode,
1232                 .param_count    = 1,
1233         };
1234         int base_sgi;
1235
1236         cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1237                                   "irqchip/arm/gicv3:starting",
1238                                   gic_starting_cpu, NULL);
1239
1240         /* Register all 8 non-secure SGIs */
1241         base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1242                                            NUMA_NO_NODE, &sgi_fwspec,
1243                                            false, NULL);
1244         if (WARN_ON(base_sgi <= 0))
1245                 return;
1246
1247         set_smp_ipi_range(base_sgi, 8);
1248 }
1249
1250 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1251                             bool force)
1252 {
1253         unsigned int cpu;
1254         u32 offset, index;
1255         void __iomem *reg;
1256         int enabled;
1257         u64 val;
1258
1259         if (force)
1260                 cpu = cpumask_first(mask_val);
1261         else
1262                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1263
1264         if (cpu >= nr_cpu_ids)
1265                 return -EINVAL;
1266
1267         if (gic_irq_in_rdist(d))
1268                 return -EINVAL;
1269
1270         /* If interrupt was enabled, disable it first */
1271         enabled = gic_peek_irq(d, GICD_ISENABLER);
1272         if (enabled)
1273                 gic_mask_irq(d);
1274
1275         offset = convert_offset_index(d, GICD_IROUTER, &index);
1276         reg = gic_dist_base(d) + offset + (index * 8);
1277         val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1278
1279         gic_write_irouter(val, reg);
1280
1281         /*
1282          * If the interrupt was enabled, enabled it again. Otherwise,
1283          * just wait for the distributor to have digested our changes.
1284          */
1285         if (enabled)
1286                 gic_unmask_irq(d);
1287         else
1288                 gic_dist_wait_for_rwp();
1289
1290         irq_data_update_effective_affinity(d, cpumask_of(cpu));
1291
1292         return IRQ_SET_MASK_OK_DONE;
1293 }
1294 #else
1295 #define gic_set_affinity        NULL
1296 #define gic_ipi_send_mask       NULL
1297 #define gic_smp_init()          do { } while(0)
1298 #endif
1299
1300 static int gic_retrigger(struct irq_data *data)
1301 {
1302         return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1303 }
1304
1305 #ifdef CONFIG_CPU_PM
1306 static int gic_cpu_pm_notifier(struct notifier_block *self,
1307                                unsigned long cmd, void *v)
1308 {
1309         if (cmd == CPU_PM_EXIT) {
1310                 if (gic_dist_security_disabled())
1311                         gic_enable_redist(true);
1312                 gic_cpu_sys_reg_init();
1313         } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1314                 gic_write_grpen1(0);
1315                 gic_enable_redist(false);
1316         }
1317         return NOTIFY_OK;
1318 }
1319
1320 static struct notifier_block gic_cpu_pm_notifier_block = {
1321         .notifier_call = gic_cpu_pm_notifier,
1322 };
1323
1324 static void gic_cpu_pm_init(void)
1325 {
1326         cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1327 }
1328
1329 #else
1330 static inline void gic_cpu_pm_init(void) { }
1331 #endif /* CONFIG_CPU_PM */
1332
1333 static struct irq_chip gic_chip = {
1334         .name                   = "GICv3",
1335         .irq_mask               = gic_mask_irq,
1336         .irq_unmask             = gic_unmask_irq,
1337         .irq_eoi                = gic_eoi_irq,
1338         .irq_set_type           = gic_set_type,
1339         .irq_set_affinity       = gic_set_affinity,
1340         .irq_retrigger          = gic_retrigger,
1341         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1342         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1343         .irq_nmi_setup          = gic_irq_nmi_setup,
1344         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1345         .ipi_send_mask          = gic_ipi_send_mask,
1346         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1347                                   IRQCHIP_SKIP_SET_WAKE |
1348                                   IRQCHIP_MASK_ON_SUSPEND,
1349 };
1350
1351 static struct irq_chip gic_eoimode1_chip = {
1352         .name                   = "GICv3",
1353         .irq_mask               = gic_eoimode1_mask_irq,
1354         .irq_unmask             = gic_unmask_irq,
1355         .irq_eoi                = gic_eoimode1_eoi_irq,
1356         .irq_set_type           = gic_set_type,
1357         .irq_set_affinity       = gic_set_affinity,
1358         .irq_retrigger          = gic_retrigger,
1359         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1360         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1361         .irq_set_vcpu_affinity  = gic_irq_set_vcpu_affinity,
1362         .irq_nmi_setup          = gic_irq_nmi_setup,
1363         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1364         .ipi_send_mask          = gic_ipi_send_mask,
1365         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1366                                   IRQCHIP_SKIP_SET_WAKE |
1367                                   IRQCHIP_MASK_ON_SUSPEND,
1368 };
1369
1370 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1371                               irq_hw_number_t hw)
1372 {
1373         struct irq_chip *chip = &gic_chip;
1374         struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1375
1376         if (static_branch_likely(&supports_deactivate_key))
1377                 chip = &gic_eoimode1_chip;
1378
1379         switch (__get_intid_range(hw)) {
1380         case SGI_RANGE:
1381         case PPI_RANGE:
1382         case EPPI_RANGE:
1383                 irq_set_percpu_devid(irq);
1384                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1385                                     handle_percpu_devid_irq, NULL, NULL);
1386                 break;
1387
1388         case SPI_RANGE:
1389         case ESPI_RANGE:
1390                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1391                                     handle_fasteoi_irq, NULL, NULL);
1392                 irq_set_probe(irq);
1393                 irqd_set_single_target(irqd);
1394                 break;
1395
1396         case LPI_RANGE:
1397                 if (!gic_dist_supports_lpis())
1398                         return -EPERM;
1399                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1400                                     handle_fasteoi_irq, NULL, NULL);
1401                 break;
1402
1403         default:
1404                 return -EPERM;
1405         }
1406
1407         /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1408         irqd_set_handle_enforce_irqctx(irqd);
1409         return 0;
1410 }
1411
1412 static int gic_irq_domain_translate(struct irq_domain *d,
1413                                     struct irq_fwspec *fwspec,
1414                                     unsigned long *hwirq,
1415                                     unsigned int *type)
1416 {
1417         if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1418                 *hwirq = fwspec->param[0];
1419                 *type = IRQ_TYPE_EDGE_RISING;
1420                 return 0;
1421         }
1422
1423         if (is_of_node(fwspec->fwnode)) {
1424                 if (fwspec->param_count < 3)
1425                         return -EINVAL;
1426
1427                 switch (fwspec->param[0]) {
1428                 case 0:                 /* SPI */
1429                         *hwirq = fwspec->param[1] + 32;
1430                         break;
1431                 case 1:                 /* PPI */
1432                         *hwirq = fwspec->param[1] + 16;
1433                         break;
1434                 case 2:                 /* ESPI */
1435                         *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1436                         break;
1437                 case 3:                 /* EPPI */
1438                         *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1439                         break;
1440                 case GIC_IRQ_TYPE_LPI:  /* LPI */
1441                         *hwirq = fwspec->param[1];
1442                         break;
1443                 case GIC_IRQ_TYPE_PARTITION:
1444                         *hwirq = fwspec->param[1];
1445                         if (fwspec->param[1] >= 16)
1446                                 *hwirq += EPPI_BASE_INTID - 16;
1447                         else
1448                                 *hwirq += 16;
1449                         break;
1450                 default:
1451                         return -EINVAL;
1452                 }
1453
1454                 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1455
1456                 /*
1457                  * Make it clear that broken DTs are... broken.
1458                  * Partitioned PPIs are an unfortunate exception.
1459                  */
1460                 WARN_ON(*type == IRQ_TYPE_NONE &&
1461                         fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1462                 return 0;
1463         }
1464
1465         if (is_fwnode_irqchip(fwspec->fwnode)) {
1466                 if(fwspec->param_count != 2)
1467                         return -EINVAL;
1468
1469                 if (fwspec->param[0] < 16) {
1470                         pr_err(FW_BUG "Illegal GSI%d translation request\n",
1471                                fwspec->param[0]);
1472                         return -EINVAL;
1473                 }
1474
1475                 *hwirq = fwspec->param[0];
1476                 *type = fwspec->param[1];
1477
1478                 WARN_ON(*type == IRQ_TYPE_NONE);
1479                 return 0;
1480         }
1481
1482         return -EINVAL;
1483 }
1484
1485 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1486                                 unsigned int nr_irqs, void *arg)
1487 {
1488         int i, ret;
1489         irq_hw_number_t hwirq;
1490         unsigned int type = IRQ_TYPE_NONE;
1491         struct irq_fwspec *fwspec = arg;
1492
1493         ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1494         if (ret)
1495                 return ret;
1496
1497         for (i = 0; i < nr_irqs; i++) {
1498                 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1499                 if (ret)
1500                         return ret;
1501         }
1502
1503         return 0;
1504 }
1505
1506 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1507                                 unsigned int nr_irqs)
1508 {
1509         int i;
1510
1511         for (i = 0; i < nr_irqs; i++) {
1512                 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1513                 irq_set_handler(virq + i, NULL);
1514                 irq_domain_reset_irq_data(d);
1515         }
1516 }
1517
1518 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1519                                       irq_hw_number_t hwirq)
1520 {
1521         enum gic_intid_range range;
1522
1523         if (!gic_data.ppi_descs)
1524                 return false;
1525
1526         if (!is_of_node(fwspec->fwnode))
1527                 return false;
1528
1529         if (fwspec->param_count < 4 || !fwspec->param[3])
1530                 return false;
1531
1532         range = __get_intid_range(hwirq);
1533         if (range != PPI_RANGE && range != EPPI_RANGE)
1534                 return false;
1535
1536         return true;
1537 }
1538
1539 static int gic_irq_domain_select(struct irq_domain *d,
1540                                  struct irq_fwspec *fwspec,
1541                                  enum irq_domain_bus_token bus_token)
1542 {
1543         unsigned int type, ret, ppi_idx;
1544         irq_hw_number_t hwirq;
1545
1546         /* Not for us */
1547         if (fwspec->fwnode != d->fwnode)
1548                 return 0;
1549
1550         /* If this is not DT, then we have a single domain */
1551         if (!is_of_node(fwspec->fwnode))
1552                 return 1;
1553
1554         ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1555         if (WARN_ON_ONCE(ret))
1556                 return 0;
1557
1558         if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1559                 return d == gic_data.domain;
1560
1561         /*
1562          * If this is a PPI and we have a 4th (non-null) parameter,
1563          * then we need to match the partition domain.
1564          */
1565         ppi_idx = __gic_get_ppi_index(hwirq);
1566         return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1567 }
1568
1569 static const struct irq_domain_ops gic_irq_domain_ops = {
1570         .translate = gic_irq_domain_translate,
1571         .alloc = gic_irq_domain_alloc,
1572         .free = gic_irq_domain_free,
1573         .select = gic_irq_domain_select,
1574 };
1575
1576 static int partition_domain_translate(struct irq_domain *d,
1577                                       struct irq_fwspec *fwspec,
1578                                       unsigned long *hwirq,
1579                                       unsigned int *type)
1580 {
1581         unsigned long ppi_intid;
1582         struct device_node *np;
1583         unsigned int ppi_idx;
1584         int ret;
1585
1586         if (!gic_data.ppi_descs)
1587                 return -ENOMEM;
1588
1589         np = of_find_node_by_phandle(fwspec->param[3]);
1590         if (WARN_ON(!np))
1591                 return -EINVAL;
1592
1593         ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1594         if (WARN_ON_ONCE(ret))
1595                 return 0;
1596
1597         ppi_idx = __gic_get_ppi_index(ppi_intid);
1598         ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1599                                      of_node_to_fwnode(np));
1600         if (ret < 0)
1601                 return ret;
1602
1603         *hwirq = ret;
1604         *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1605
1606         return 0;
1607 }
1608
1609 static const struct irq_domain_ops partition_domain_ops = {
1610         .translate = partition_domain_translate,
1611         .select = gic_irq_domain_select,
1612 };
1613
1614 static bool gic_enable_quirk_msm8996(void *data)
1615 {
1616         struct gic_chip_data *d = data;
1617
1618         d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1619
1620         return true;
1621 }
1622
1623 static bool gic_enable_quirk_cavium_38539(void *data)
1624 {
1625         struct gic_chip_data *d = data;
1626
1627         d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1628
1629         return true;
1630 }
1631
1632 static bool gic_enable_quirk_hip06_07(void *data)
1633 {
1634         struct gic_chip_data *d = data;
1635
1636         /*
1637          * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1638          * not being an actual ARM implementation). The saving grace is
1639          * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1640          * HIP07 doesn't even have a proper IIDR, and still pretends to
1641          * have ESPI. In both cases, put them right.
1642          */
1643         if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1644                 /* Zero both ESPI and the RES0 field next to it... */
1645                 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1646                 return true;
1647         }
1648
1649         return false;
1650 }
1651
1652 static const struct gic_quirk gic_quirks[] = {
1653         {
1654                 .desc   = "GICv3: Qualcomm MSM8996 broken firmware",
1655                 .compatible = "qcom,msm8996-gic-v3",
1656                 .init   = gic_enable_quirk_msm8996,
1657         },
1658         {
1659                 .desc   = "GICv3: HIP06 erratum 161010803",
1660                 .iidr   = 0x0204043b,
1661                 .mask   = 0xffffffff,
1662                 .init   = gic_enable_quirk_hip06_07,
1663         },
1664         {
1665                 .desc   = "GICv3: HIP07 erratum 161010803",
1666                 .iidr   = 0x00000000,
1667                 .mask   = 0xffffffff,
1668                 .init   = gic_enable_quirk_hip06_07,
1669         },
1670         {
1671                 /*
1672                  * Reserved register accesses generate a Synchronous
1673                  * External Abort. This erratum applies to:
1674                  * - ThunderX: CN88xx
1675                  * - OCTEON TX: CN83xx, CN81xx
1676                  * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1677                  */
1678                 .desc   = "GICv3: Cavium erratum 38539",
1679                 .iidr   = 0xa000034c,
1680                 .mask   = 0xe8f00fff,
1681                 .init   = gic_enable_quirk_cavium_38539,
1682         },
1683         {
1684         }
1685 };
1686
1687 static void gic_enable_nmi_support(void)
1688 {
1689         int i;
1690
1691         if (!gic_prio_masking_enabled())
1692                 return;
1693
1694         ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1695         if (!ppi_nmi_refs)
1696                 return;
1697
1698         for (i = 0; i < gic_data.ppi_nr; i++)
1699                 refcount_set(&ppi_nmi_refs[i], 0);
1700
1701         /*
1702          * Linux itself doesn't use 1:N distribution, so has no need to
1703          * set PMHE. The only reason to have it set is if EL3 requires it
1704          * (and we can't change it).
1705          */
1706         if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1707                 static_branch_enable(&gic_pmr_sync);
1708
1709         pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1710                 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1711
1712         /*
1713          * How priority values are used by the GIC depends on two things:
1714          * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1715          * and if Group 0 interrupts can be delivered to Linux in the non-secure
1716          * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1717          * the ICC_PMR_EL1 register and the priority that software assigns to
1718          * interrupts:
1719          *
1720          * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1721          * -----------------------------------------------------------
1722          *      1       |      -      |  unchanged  |    unchanged
1723          * -----------------------------------------------------------
1724          *      0       |      1      |  non-secure |    non-secure
1725          * -----------------------------------------------------------
1726          *      0       |      0      |  unchanged  |    non-secure
1727          *
1728          * where non-secure means that the value is right-shifted by one and the
1729          * MSB bit set, to make it fit in the non-secure priority range.
1730          *
1731          * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1732          * are both either modified or unchanged, we can use the same set of
1733          * priorities.
1734          *
1735          * In the last case, where only the interrupt priorities are modified to
1736          * be in the non-secure range, we use a different PMR value to mask IRQs
1737          * and the rest of the values that we use remain unchanged.
1738          */
1739         if (gic_has_group0() && !gic_dist_security_disabled())
1740                 static_branch_enable(&gic_nonsecure_priorities);
1741
1742         static_branch_enable(&supports_pseudo_nmis);
1743
1744         if (static_branch_likely(&supports_deactivate_key))
1745                 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1746         else
1747                 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1748 }
1749
1750 static int __init gic_init_bases(void __iomem *dist_base,
1751                                  struct redist_region *rdist_regs,
1752                                  u32 nr_redist_regions,
1753                                  u64 redist_stride,
1754                                  struct fwnode_handle *handle)
1755 {
1756         u32 typer;
1757         int err;
1758
1759         if (!is_hyp_mode_available())
1760                 static_branch_disable(&supports_deactivate_key);
1761
1762         if (static_branch_likely(&supports_deactivate_key))
1763                 pr_info("GIC: Using split EOI/Deactivate mode\n");
1764
1765         gic_data.fwnode = handle;
1766         gic_data.dist_base = dist_base;
1767         gic_data.redist_regions = rdist_regs;
1768         gic_data.nr_redist_regions = nr_redist_regions;
1769         gic_data.redist_stride = redist_stride;
1770
1771         /*
1772          * Find out how many interrupts are supported.
1773          */
1774         typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1775         gic_data.rdists.gicd_typer = typer;
1776
1777         gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1778                           gic_quirks, &gic_data);
1779
1780         pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1781         pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1782
1783         /*
1784          * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1785          * architecture spec (which says that reserved registers are RES0).
1786          */
1787         if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1788                 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1789
1790         gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1791                                                  &gic_data);
1792         gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1793         gic_data.rdists.has_rvpeid = true;
1794         gic_data.rdists.has_vlpis = true;
1795         gic_data.rdists.has_direct_lpi = true;
1796         gic_data.rdists.has_vpend_valid_dirty = true;
1797
1798         if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1799                 err = -ENOMEM;
1800                 goto out_free;
1801         }
1802
1803         irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1804
1805         gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1806         pr_info("Distributor has %sRange Selector support\n",
1807                 gic_data.has_rss ? "" : "no ");
1808
1809         if (typer & GICD_TYPER_MBIS) {
1810                 err = mbi_init(handle, gic_data.domain);
1811                 if (err)
1812                         pr_err("Failed to initialize MBIs\n");
1813         }
1814
1815         set_handle_irq(gic_handle_irq);
1816
1817         gic_update_rdist_properties();
1818
1819         gic_dist_init();
1820         gic_cpu_init();
1821         gic_smp_init();
1822         gic_cpu_pm_init();
1823
1824         if (gic_dist_supports_lpis()) {
1825                 its_init(handle, &gic_data.rdists, gic_data.domain);
1826                 its_cpu_init();
1827                 its_lpi_memreserve_init();
1828         } else {
1829                 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1830                         gicv2m_init(handle, gic_data.domain);
1831         }
1832
1833         gic_enable_nmi_support();
1834
1835         return 0;
1836
1837 out_free:
1838         if (gic_data.domain)
1839                 irq_domain_remove(gic_data.domain);
1840         free_percpu(gic_data.rdists.rdist);
1841         return err;
1842 }
1843
1844 static int __init gic_validate_dist_version(void __iomem *dist_base)
1845 {
1846         u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1847
1848         if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1849                 return -ENODEV;
1850
1851         return 0;
1852 }
1853
1854 /* Create all possible partitions at boot time */
1855 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1856 {
1857         struct device_node *parts_node, *child_part;
1858         int part_idx = 0, i;
1859         int nr_parts;
1860         struct partition_affinity *parts;
1861
1862         parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1863         if (!parts_node)
1864                 return;
1865
1866         gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1867         if (!gic_data.ppi_descs)
1868                 return;
1869
1870         nr_parts = of_get_child_count(parts_node);
1871
1872         if (!nr_parts)
1873                 goto out_put_node;
1874
1875         parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1876         if (WARN_ON(!parts))
1877                 goto out_put_node;
1878
1879         for_each_child_of_node(parts_node, child_part) {
1880                 struct partition_affinity *part;
1881                 int n;
1882
1883                 part = &parts[part_idx];
1884
1885                 part->partition_id = of_node_to_fwnode(child_part);
1886
1887                 pr_info("GIC: PPI partition %pOFn[%d] { ",
1888                         child_part, part_idx);
1889
1890                 n = of_property_count_elems_of_size(child_part, "affinity",
1891                                                     sizeof(u32));
1892                 WARN_ON(n <= 0);
1893
1894                 for (i = 0; i < n; i++) {
1895                         int err, cpu;
1896                         u32 cpu_phandle;
1897                         struct device_node *cpu_node;
1898
1899                         err = of_property_read_u32_index(child_part, "affinity",
1900                                                          i, &cpu_phandle);
1901                         if (WARN_ON(err))
1902                                 continue;
1903
1904                         cpu_node = of_find_node_by_phandle(cpu_phandle);
1905                         if (WARN_ON(!cpu_node))
1906                                 continue;
1907
1908                         cpu = of_cpu_node_to_id(cpu_node);
1909                         if (WARN_ON(cpu < 0))
1910                                 continue;
1911
1912                         pr_cont("%pOF[%d] ", cpu_node, cpu);
1913
1914                         cpumask_set_cpu(cpu, &part->mask);
1915                 }
1916
1917                 pr_cont("}\n");
1918                 part_idx++;
1919         }
1920
1921         for (i = 0; i < gic_data.ppi_nr; i++) {
1922                 unsigned int irq;
1923                 struct partition_desc *desc;
1924                 struct irq_fwspec ppi_fwspec = {
1925                         .fwnode         = gic_data.fwnode,
1926                         .param_count    = 3,
1927                         .param          = {
1928                                 [0]     = GIC_IRQ_TYPE_PARTITION,
1929                                 [1]     = i,
1930                                 [2]     = IRQ_TYPE_NONE,
1931                         },
1932                 };
1933
1934                 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1935                 if (WARN_ON(!irq))
1936                         continue;
1937                 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1938                                              irq, &partition_domain_ops);
1939                 if (WARN_ON(!desc))
1940                         continue;
1941
1942                 gic_data.ppi_descs[i] = desc;
1943         }
1944
1945 out_put_node:
1946         of_node_put(parts_node);
1947 }
1948
1949 static void __init gic_of_setup_kvm_info(struct device_node *node)
1950 {
1951         int ret;
1952         struct resource r;
1953         u32 gicv_idx;
1954
1955         gic_v3_kvm_info.type = GIC_V3;
1956
1957         gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1958         if (!gic_v3_kvm_info.maint_irq)
1959                 return;
1960
1961         if (of_property_read_u32(node, "#redistributor-regions",
1962                                  &gicv_idx))
1963                 gicv_idx = 1;
1964
1965         gicv_idx += 3;  /* Also skip GICD, GICC, GICH */
1966         ret = of_address_to_resource(node, gicv_idx, &r);
1967         if (!ret)
1968                 gic_v3_kvm_info.vcpu = r;
1969
1970         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1971         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1972         vgic_set_kvm_info(&gic_v3_kvm_info);
1973 }
1974
1975 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1976 {
1977         void __iomem *dist_base;
1978         struct redist_region *rdist_regs;
1979         u64 redist_stride;
1980         u32 nr_redist_regions;
1981         int err, i;
1982
1983         dist_base = of_iomap(node, 0);
1984         if (!dist_base) {
1985                 pr_err("%pOF: unable to map gic dist registers\n", node);
1986                 return -ENXIO;
1987         }
1988
1989         err = gic_validate_dist_version(dist_base);
1990         if (err) {
1991                 pr_err("%pOF: no distributor detected, giving up\n", node);
1992                 goto out_unmap_dist;
1993         }
1994
1995         if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1996                 nr_redist_regions = 1;
1997
1998         rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1999                              GFP_KERNEL);
2000         if (!rdist_regs) {
2001                 err = -ENOMEM;
2002                 goto out_unmap_dist;
2003         }
2004
2005         for (i = 0; i < nr_redist_regions; i++) {
2006                 struct resource res;
2007                 int ret;
2008
2009                 ret = of_address_to_resource(node, 1 + i, &res);
2010                 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
2011                 if (ret || !rdist_regs[i].redist_base) {
2012                         pr_err("%pOF: couldn't map region %d\n", node, i);
2013                         err = -ENODEV;
2014                         goto out_unmap_rdist;
2015                 }
2016                 rdist_regs[i].phys_base = res.start;
2017         }
2018
2019         if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2020                 redist_stride = 0;
2021
2022         gic_enable_of_quirks(node, gic_quirks, &gic_data);
2023
2024         err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2025                              redist_stride, &node->fwnode);
2026         if (err)
2027                 goto out_unmap_rdist;
2028
2029         gic_populate_ppi_partitions(node);
2030
2031         if (static_branch_likely(&supports_deactivate_key))
2032                 gic_of_setup_kvm_info(node);
2033         return 0;
2034
2035 out_unmap_rdist:
2036         for (i = 0; i < nr_redist_regions; i++)
2037                 if (rdist_regs[i].redist_base)
2038                         iounmap(rdist_regs[i].redist_base);
2039         kfree(rdist_regs);
2040 out_unmap_dist:
2041         iounmap(dist_base);
2042         return err;
2043 }
2044
2045 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2046
2047 #ifdef CONFIG_ACPI
2048 static struct
2049 {
2050         void __iomem *dist_base;
2051         struct redist_region *redist_regs;
2052         u32 nr_redist_regions;
2053         bool single_redist;
2054         int enabled_rdists;
2055         u32 maint_irq;
2056         int maint_irq_mode;
2057         phys_addr_t vcpu_base;
2058 } acpi_data __initdata;
2059
2060 static void __init
2061 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2062 {
2063         static int count = 0;
2064
2065         acpi_data.redist_regs[count].phys_base = phys_base;
2066         acpi_data.redist_regs[count].redist_base = redist_base;
2067         acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2068         count++;
2069 }
2070
2071 static int __init
2072 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2073                            const unsigned long end)
2074 {
2075         struct acpi_madt_generic_redistributor *redist =
2076                         (struct acpi_madt_generic_redistributor *)header;
2077         void __iomem *redist_base;
2078
2079         redist_base = ioremap(redist->base_address, redist->length);
2080         if (!redist_base) {
2081                 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2082                 return -ENOMEM;
2083         }
2084
2085         gic_acpi_register_redist(redist->base_address, redist_base);
2086         return 0;
2087 }
2088
2089 static int __init
2090 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2091                          const unsigned long end)
2092 {
2093         struct acpi_madt_generic_interrupt *gicc =
2094                                 (struct acpi_madt_generic_interrupt *)header;
2095         u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2096         u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2097         void __iomem *redist_base;
2098
2099         /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2100         if (!(gicc->flags & ACPI_MADT_ENABLED))
2101                 return 0;
2102
2103         redist_base = ioremap(gicc->gicr_base_address, size);
2104         if (!redist_base)
2105                 return -ENOMEM;
2106
2107         gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2108         return 0;
2109 }
2110
2111 static int __init gic_acpi_collect_gicr_base(void)
2112 {
2113         acpi_tbl_entry_handler redist_parser;
2114         enum acpi_madt_type type;
2115
2116         if (acpi_data.single_redist) {
2117                 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2118                 redist_parser = gic_acpi_parse_madt_gicc;
2119         } else {
2120                 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2121                 redist_parser = gic_acpi_parse_madt_redist;
2122         }
2123
2124         /* Collect redistributor base addresses in GICR entries */
2125         if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2126                 return 0;
2127
2128         pr_info("No valid GICR entries exist\n");
2129         return -ENODEV;
2130 }
2131
2132 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2133                                   const unsigned long end)
2134 {
2135         /* Subtable presence means that redist exists, that's it */
2136         return 0;
2137 }
2138
2139 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2140                                       const unsigned long end)
2141 {
2142         struct acpi_madt_generic_interrupt *gicc =
2143                                 (struct acpi_madt_generic_interrupt *)header;
2144
2145         /*
2146          * If GICC is enabled and has valid gicr base address, then it means
2147          * GICR base is presented via GICC
2148          */
2149         if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2150                 acpi_data.enabled_rdists++;
2151                 return 0;
2152         }
2153
2154         /*
2155          * It's perfectly valid firmware can pass disabled GICC entry, driver
2156          * should not treat as errors, skip the entry instead of probe fail.
2157          */
2158         if (!(gicc->flags & ACPI_MADT_ENABLED))
2159                 return 0;
2160
2161         return -ENODEV;
2162 }
2163
2164 static int __init gic_acpi_count_gicr_regions(void)
2165 {
2166         int count;
2167
2168         /*
2169          * Count how many redistributor regions we have. It is not allowed
2170          * to mix redistributor description, GICR and GICC subtables have to be
2171          * mutually exclusive.
2172          */
2173         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2174                                       gic_acpi_match_gicr, 0);
2175         if (count > 0) {
2176                 acpi_data.single_redist = false;
2177                 return count;
2178         }
2179
2180         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2181                                       gic_acpi_match_gicc, 0);
2182         if (count > 0) {
2183                 acpi_data.single_redist = true;
2184                 count = acpi_data.enabled_rdists;
2185         }
2186
2187         return count;
2188 }
2189
2190 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2191                                            struct acpi_probe_entry *ape)
2192 {
2193         struct acpi_madt_generic_distributor *dist;
2194         int count;
2195
2196         dist = (struct acpi_madt_generic_distributor *)header;
2197         if (dist->version != ape->driver_data)
2198                 return false;
2199
2200         /* We need to do that exercise anyway, the sooner the better */
2201         count = gic_acpi_count_gicr_regions();
2202         if (count <= 0)
2203                 return false;
2204
2205         acpi_data.nr_redist_regions = count;
2206         return true;
2207 }
2208
2209 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2210                                                 const unsigned long end)
2211 {
2212         struct acpi_madt_generic_interrupt *gicc =
2213                 (struct acpi_madt_generic_interrupt *)header;
2214         int maint_irq_mode;
2215         static int first_madt = true;
2216
2217         /* Skip unusable CPUs */
2218         if (!(gicc->flags & ACPI_MADT_ENABLED))
2219                 return 0;
2220
2221         maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2222                 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2223
2224         if (first_madt) {
2225                 first_madt = false;
2226
2227                 acpi_data.maint_irq = gicc->vgic_interrupt;
2228                 acpi_data.maint_irq_mode = maint_irq_mode;
2229                 acpi_data.vcpu_base = gicc->gicv_base_address;
2230
2231                 return 0;
2232         }
2233
2234         /*
2235          * The maintenance interrupt and GICV should be the same for every CPU
2236          */
2237         if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2238             (acpi_data.maint_irq_mode != maint_irq_mode) ||
2239             (acpi_data.vcpu_base != gicc->gicv_base_address))
2240                 return -EINVAL;
2241
2242         return 0;
2243 }
2244
2245 static bool __init gic_acpi_collect_virt_info(void)
2246 {
2247         int count;
2248
2249         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2250                                       gic_acpi_parse_virt_madt_gicc, 0);
2251
2252         return (count > 0);
2253 }
2254
2255 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2256 #define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
2257 #define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
2258
2259 static void __init gic_acpi_setup_kvm_info(void)
2260 {
2261         int irq;
2262
2263         if (!gic_acpi_collect_virt_info()) {
2264                 pr_warn("Unable to get hardware information used for virtualization\n");
2265                 return;
2266         }
2267
2268         gic_v3_kvm_info.type = GIC_V3;
2269
2270         irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2271                                 acpi_data.maint_irq_mode,
2272                                 ACPI_ACTIVE_HIGH);
2273         if (irq <= 0)
2274                 return;
2275
2276         gic_v3_kvm_info.maint_irq = irq;
2277
2278         if (acpi_data.vcpu_base) {
2279                 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2280
2281                 vcpu->flags = IORESOURCE_MEM;
2282                 vcpu->start = acpi_data.vcpu_base;
2283                 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2284         }
2285
2286         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2287         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2288         vgic_set_kvm_info(&gic_v3_kvm_info);
2289 }
2290
2291 static int __init
2292 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2293 {
2294         struct acpi_madt_generic_distributor *dist;
2295         struct fwnode_handle *domain_handle;
2296         size_t size;
2297         int i, err;
2298
2299         /* Get distributor base address */
2300         dist = (struct acpi_madt_generic_distributor *)header;
2301         acpi_data.dist_base = ioremap(dist->base_address,
2302                                       ACPI_GICV3_DIST_MEM_SIZE);
2303         if (!acpi_data.dist_base) {
2304                 pr_err("Unable to map GICD registers\n");
2305                 return -ENOMEM;
2306         }
2307
2308         err = gic_validate_dist_version(acpi_data.dist_base);
2309         if (err) {
2310                 pr_err("No distributor detected at @%p, giving up\n",
2311                        acpi_data.dist_base);
2312                 goto out_dist_unmap;
2313         }
2314
2315         size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2316         acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2317         if (!acpi_data.redist_regs) {
2318                 err = -ENOMEM;
2319                 goto out_dist_unmap;
2320         }
2321
2322         err = gic_acpi_collect_gicr_base();
2323         if (err)
2324                 goto out_redist_unmap;
2325
2326         domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2327         if (!domain_handle) {
2328                 err = -ENOMEM;
2329                 goto out_redist_unmap;
2330         }
2331
2332         err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2333                              acpi_data.nr_redist_regions, 0, domain_handle);
2334         if (err)
2335                 goto out_fwhandle_free;
2336
2337         acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2338
2339         if (static_branch_likely(&supports_deactivate_key))
2340                 gic_acpi_setup_kvm_info();
2341
2342         return 0;
2343
2344 out_fwhandle_free:
2345         irq_domain_free_fwnode(domain_handle);
2346 out_redist_unmap:
2347         for (i = 0; i < acpi_data.nr_redist_regions; i++)
2348                 if (acpi_data.redist_regs[i].redist_base)
2349                         iounmap(acpi_data.redist_regs[i].redist_base);
2350         kfree(acpi_data.redist_regs);
2351 out_dist_unmap:
2352         iounmap(acpi_data.dist_base);
2353         return err;
2354 }
2355 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2356                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2357                      gic_acpi_init);
2358 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2359                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2360                      gic_acpi_init);
2361 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2362                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2363                      gic_acpi_init);
2364 #endif