1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #define pr_fmt(fmt) "GICv3: " fmt
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
32 #include "irq-gic-common.h"
34 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
39 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
41 struct redist_region {
42 void __iomem *redist_base;
43 phys_addr_t phys_base;
47 struct gic_chip_data {
48 struct fwnode_handle *fwnode;
49 void __iomem *dist_base;
50 struct redist_region *redist_regions;
52 struct irq_domain *domain;
54 u32 nr_redist_regions;
58 struct partition_desc **ppi_descs;
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
64 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
69 * The behaviours of RPR and PMR registers differ depending on the value of
70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71 * distributor and redistributors depends on whether security is enabled in the
74 * When security is enabled, non-secure priority values from the (re)distributor
75 * are presented to the GIC CPUIF as follow:
76 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
78 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79 * EL1 are subject to a similar operation thus matching the priorities presented
80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81 * these values are unchanged by the GIC.
83 * see GICv3/GICv4 Architecture Specification (IHI0069D):
84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
92 * Global static key controlling whether an update to PMR allowing more
93 * interrupts requires to be propagated to the redistributor (DSB SY).
94 * And this needs to be exported for modules to be able to enable
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
104 * When the Non-secure world has access to group 0 interrupts (as a
105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106 * return the Distributor's view of the interrupt priority.
108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109 * written by software is moved to the Non-secure range by the Distributor.
111 * If both are true (which is when gic_nonsecure_priorities gets enabled),
112 * we need to shift down the priority programmed by software to match it
113 * against the value returned by ICC_RPR_EL1.
115 #define GICD_INT_RPR_PRI(priority) \
117 u32 __priority = (priority); \
118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \
119 __priority = 0x80 | (__priority >> 1); \
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
130 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE 0xf0
138 enum gic_intid_range {
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
161 case 8192 ... GENMASK(23, 0):
164 return __INVALID_RANGE__;
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
170 return __get_intid_range(d->hwirq);
173 static inline unsigned int gic_irq(struct irq_data *d)
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
180 switch (get_intid_range(d)) {
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
192 switch (get_intid_range(d)) {
196 /* SGI+PPI -> SGI_base for this CPU */
197 return gic_data_rdist_sgi_base();
201 /* SPI -> dist_base */
202 return gic_data.dist_base;
209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
211 u32 count = 1000000; /* 1s! */
213 while (readl_relaxed(base + GICD_CTLR) & bit) {
216 pr_err_ratelimited("RWP timeout, gone fishing\n");
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
227 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
233 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
238 static u64 __maybe_unused gic_read_iar(void)
240 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 return gic_read_iar_cavium_thunderx();
243 return gic_read_iar_common();
247 static void gic_enable_redist(bool enable)
250 u32 count = 1000000; /* 1s! */
253 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
256 rbase = gic_data_rdist_rd_base();
258 val = readl_relaxed(rbase + GICR_WAKER);
260 /* Wake up this CPU redistributor */
261 val &= ~GICR_WAKER_ProcessorSleep;
263 val |= GICR_WAKER_ProcessorSleep;
264 writel_relaxed(val, rbase + GICR_WAKER);
266 if (!enable) { /* Check that GICR_WAKER is writeable */
267 val = readl_relaxed(rbase + GICR_WAKER);
268 if (!(val & GICR_WAKER_ProcessorSleep))
269 return; /* No PM support in this redistributor */
273 val = readl_relaxed(rbase + GICR_WAKER);
274 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
280 pr_err_ratelimited("redistributor failed to %s...\n",
281 enable ? "wakeup" : "sleep");
285 * Routines to disable, enable, EOI and route interrupts
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
289 switch (get_intid_range(d)) {
297 * Contrary to the ESPI range, the EPPI range is contiguous
298 * to the PPI range in the registers, so let's adjust the
299 * displacement accordingly. Consistency is overrated.
301 *index = d->hwirq - EPPI_BASE_INTID + 32;
304 *index = d->hwirq - ESPI_BASE_INTID;
307 return GICD_ISENABLERnE;
309 return GICD_ICENABLERnE;
311 return GICD_ISPENDRnE;
313 return GICD_ICPENDRnE;
315 return GICD_ISACTIVERnE;
317 return GICD_ICACTIVERnE;
318 case GICD_IPRIORITYR:
319 return GICD_IPRIORITYRnE;
323 return GICD_IROUTERnE;
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
342 offset = convert_offset_index(d, offset, &index);
343 mask = 1 << (index % 32);
345 if (gic_irq_in_rdist(d))
346 base = gic_data_rdist_sgi_base();
348 base = gic_data.dist_base;
350 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
355 void (*rwp_wait)(void);
359 offset = convert_offset_index(d, offset, &index);
360 mask = 1 << (index % 32);
362 if (gic_irq_in_rdist(d)) {
363 base = gic_data_rdist_sgi_base();
364 rwp_wait = gic_redist_wait_for_rwp;
366 base = gic_data.dist_base;
367 rwp_wait = gic_dist_wait_for_rwp;
370 writel_relaxed(mask, base + offset + (index / 32) * 4);
374 static void gic_mask_irq(struct irq_data *d)
376 gic_poke_irq(d, GICD_ICENABLER);
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
383 * When masking a forwarded interrupt, make sure it is
384 * deactivated as well.
386 * This ensures that an interrupt that is getting
387 * disabled/masked will not get "stuck", because there is
388 * noone to deactivate it (guest is being terminated).
390 if (irqd_is_forwarded_to_vcpu(d))
391 gic_poke_irq(d, GICD_ICACTIVER);
394 static void gic_unmask_irq(struct irq_data *d)
396 gic_poke_irq(d, GICD_ISENABLER);
399 static inline bool gic_supports_nmi(void)
401 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 static_branch_likely(&supports_pseudo_nmis);
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 enum irqchip_irq_state which, bool val)
410 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
414 case IRQCHIP_STATE_PENDING:
415 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
418 case IRQCHIP_STATE_ACTIVE:
419 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
422 case IRQCHIP_STATE_MASKED:
423 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
430 gic_poke_irq(d, reg);
434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 enum irqchip_irq_state which, bool *val)
437 if (d->hwirq >= 8192) /* PPI/SPI only */
441 case IRQCHIP_STATE_PENDING:
442 *val = gic_peek_irq(d, GICD_ISPENDR);
445 case IRQCHIP_STATE_ACTIVE:
446 *val = gic_peek_irq(d, GICD_ISACTIVER);
449 case IRQCHIP_STATE_MASKED:
450 *val = !gic_peek_irq(d, GICD_ISENABLER);
460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
462 void __iomem *base = gic_dist_base(d);
465 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
467 writeb_relaxed(prio, base + offset + index);
470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
472 switch (__get_intid_range(hwirq)) {
476 return hwirq - EPPI_BASE_INTID + 16;
482 static u32 gic_get_ppi_index(struct irq_data *d)
484 return __gic_get_ppi_index(d->hwirq);
487 static int gic_irq_nmi_setup(struct irq_data *d)
489 struct irq_desc *desc = irq_to_desc(d->irq);
491 if (!gic_supports_nmi())
494 if (gic_peek_irq(d, GICD_ISENABLER)) {
495 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
500 * A secondary irq_chip should be in charge of LPI request,
501 * it should not be possible to get there
503 if (WARN_ON(gic_irq(d) >= 8192))
506 /* desc lock should already be held */
507 if (gic_irq_in_rdist(d)) {
508 u32 idx = gic_get_ppi_index(d);
510 /* Setting up PPI as NMI, only switch handler for first NMI */
511 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512 refcount_set(&ppi_nmi_refs[idx], 1);
513 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
516 desc->handle_irq = handle_fasteoi_nmi;
519 gic_irq_set_prio(d, GICD_INT_NMI_PRI);
524 static void gic_irq_nmi_teardown(struct irq_data *d)
526 struct irq_desc *desc = irq_to_desc(d->irq);
528 if (WARN_ON(!gic_supports_nmi()))
531 if (gic_peek_irq(d, GICD_ISENABLER)) {
532 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
537 * A secondary irq_chip should be in charge of LPI request,
538 * it should not be possible to get there
540 if (WARN_ON(gic_irq(d) >= 8192))
543 /* desc lock should already be held */
544 if (gic_irq_in_rdist(d)) {
545 u32 idx = gic_get_ppi_index(d);
547 /* Tearing down NMI, only switch handler for last NMI */
548 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549 desc->handle_irq = handle_percpu_devid_irq;
551 desc->handle_irq = handle_fasteoi_irq;
554 gic_irq_set_prio(d, GICD_INT_DEF_PRI);
557 static void gic_eoi_irq(struct irq_data *d)
559 write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
563 static void gic_eoimode1_eoi_irq(struct irq_data *d)
566 * No need to deactivate an LPI, or an interrupt that
567 * is is getting forwarded to a vcpu.
569 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
571 gic_write_dir(gic_irq(d));
574 static int gic_set_type(struct irq_data *d, unsigned int type)
576 enum gic_intid_range range;
577 unsigned int irq = gic_irq(d);
578 void (*rwp_wait)(void);
583 range = get_intid_range(d);
585 /* Interrupt configuration for SGIs can't be changed */
586 if (range == SGI_RANGE)
587 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
589 /* SPIs have restrictions on the supported types */
590 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
591 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
594 if (gic_irq_in_rdist(d)) {
595 base = gic_data_rdist_sgi_base();
596 rwp_wait = gic_redist_wait_for_rwp;
598 base = gic_data.dist_base;
599 rwp_wait = gic_dist_wait_for_rwp;
602 offset = convert_offset_index(d, GICD_ICFGR, &index);
604 ret = gic_configure_irq(index, type, base + offset, rwp_wait);
605 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
606 /* Misconfigured PPIs are usually not fatal */
607 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
614 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
616 if (get_intid_range(d) == SGI_RANGE)
620 irqd_set_forwarded_to_vcpu(d);
622 irqd_clr_forwarded_to_vcpu(d);
626 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
630 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
631 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
632 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
633 MPIDR_AFFINITY_LEVEL(mpidr, 0));
638 static void gic_deactivate_unhandled(u32 irqnr)
640 if (static_branch_likely(&supports_deactivate_key)) {
642 gic_write_dir(irqnr);
644 write_gicreg(irqnr, ICC_EOIR1_EL1);
650 * Follow a read of the IAR with any HW maintenance that needs to happen prior
651 * to invoking the relevant IRQ handler. We must do two things:
653 * (1) Ensure instruction ordering between a read of IAR and subsequent
654 * instructions in the IRQ handler using an ISB.
656 * It is possible for the IAR to report an IRQ which was signalled *after*
657 * the CPU took an IRQ exception as multiple interrupts can race to be
658 * recognized by the GIC, earlier interrupts could be withdrawn, and/or
659 * later interrupts could be prioritized by the GIC.
661 * For devices which are tightly coupled to the CPU, such as PMUs, a
662 * context synchronization event is necessary to ensure that system
663 * register state is not stale, as these may have been indirectly written
664 * *after* exception entry.
666 * (2) Deactivate the interrupt when EOI mode 1 is in use.
668 static inline void gic_complete_ack(u32 irqnr)
670 if (static_branch_likely(&supports_deactivate_key))
671 write_gicreg(irqnr, ICC_EOIR1_EL1);
676 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
678 bool irqs_enabled = interrupts_enabled(regs);
684 gic_complete_ack(irqnr);
687 * Leave the PSR.I bit set to prevent other NMIs to be
688 * received while handling this one.
689 * PSR.I will be restored when we ERET to the
690 * interrupted context.
692 err = handle_domain_nmi(gic_data.domain, irqnr, regs);
694 gic_deactivate_unhandled(irqnr);
700 static u32 do_read_iar(struct pt_regs *regs)
704 if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
708 * We were in a context with IRQs disabled. However, the
709 * entry code has set PMR to a value that allows any
710 * interrupt to be acknowledged, and not just NMIs. This can
711 * lead to surprising effects if the NMI has been retired in
712 * the meantime, and that there is an IRQ pending. The IRQ
713 * would then be taken in NMI context, something that nobody
714 * wants to debug twice.
716 * Until we sort this, drop PMR again to a level that will
717 * actually only allow NMIs before reading IAR, and then
718 * restore it to what it was.
720 pmr = gic_read_pmr();
724 iar = gic_read_iar();
728 iar = gic_read_iar();
734 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
738 irqnr = do_read_iar(regs);
740 /* Check for special IDs first */
741 if ((irqnr >= 1020 && irqnr <= 1023))
744 if (gic_supports_nmi() &&
745 unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
746 gic_handle_nmi(irqnr, regs);
750 if (gic_prio_masking_enabled()) {
752 gic_arch_enable_irqs();
755 gic_complete_ack(irqnr);
757 if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
758 WARN_ONCE(true, "Unexpected interrupt received!\n");
759 gic_deactivate_unhandled(irqnr);
763 static u32 gic_get_pribits(void)
767 pribits = gic_read_ctlr();
768 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
769 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
775 static bool gic_has_group0(void)
780 old_pmr = gic_read_pmr();
783 * Let's find out if Group0 is under control of EL3 or not by
784 * setting the highest possible, non-zero priority in PMR.
786 * If SCR_EL3.FIQ is set, the priority gets shifted down in
787 * order for the CPU interface to set bit 7, and keep the
788 * actual priority in the non-secure range. In the process, it
789 * looses the least significant bit and the actual priority
790 * becomes 0x80. Reading it back returns 0, indicating that
791 * we're don't have access to Group0.
793 gic_write_pmr(BIT(8 - gic_get_pribits()));
794 val = gic_read_pmr();
796 gic_write_pmr(old_pmr);
801 static void __init gic_dist_init(void)
805 void __iomem *base = gic_data.dist_base;
808 /* Disable the distributor */
809 writel_relaxed(0, base + GICD_CTLR);
810 gic_dist_wait_for_rwp();
813 * Configure SPIs as non-secure Group-1. This will only matter
814 * if the GIC only has a single security state. This will not
815 * do the right thing if the kernel is running in secure mode,
816 * but that's not the intended use case anyway.
818 for (i = 32; i < GIC_LINE_NR; i += 32)
819 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
821 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
822 for (i = 0; i < GIC_ESPI_NR; i += 32) {
823 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
824 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
827 for (i = 0; i < GIC_ESPI_NR; i += 32)
828 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
830 for (i = 0; i < GIC_ESPI_NR; i += 16)
831 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
833 for (i = 0; i < GIC_ESPI_NR; i += 4)
834 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
836 /* Now do the common stuff, and wait for the distributor to drain */
837 gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
839 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
840 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
841 pr_info("Enabling SGIs without active state\n");
842 val |= GICD_CTLR_nASSGIreq;
845 /* Enable distributor with ARE, Group1 */
846 writel_relaxed(val, base + GICD_CTLR);
849 * Set all global interrupts to the boot CPU only. ARE must be
852 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
853 for (i = 32; i < GIC_LINE_NR; i++)
854 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
856 for (i = 0; i < GIC_ESPI_NR; i++)
857 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
860 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
865 for (i = 0; i < gic_data.nr_redist_regions; i++) {
866 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
870 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
871 if (reg != GIC_PIDR2_ARCH_GICv3 &&
872 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
873 pr_warn("No redistributor present @%p\n", ptr);
878 typer = gic_read_typer(ptr + GICR_TYPER);
879 ret = fn(gic_data.redist_regions + i, ptr);
883 if (gic_data.redist_regions[i].single_redist)
886 if (gic_data.redist_stride) {
887 ptr += gic_data.redist_stride;
889 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
890 if (typer & GICR_TYPER_VLPIS)
891 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
893 } while (!(typer & GICR_TYPER_LAST));
896 return ret ? -ENODEV : 0;
899 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
901 unsigned long mpidr = cpu_logical_map(smp_processor_id());
906 * Convert affinity to a 32bit value that can be matched to
907 * GICR_TYPER bits [63:32].
909 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
910 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
911 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
912 MPIDR_AFFINITY_LEVEL(mpidr, 0));
914 typer = gic_read_typer(ptr + GICR_TYPER);
915 if ((typer >> 32) == aff) {
916 u64 offset = ptr - region->redist_base;
917 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
918 gic_data_rdist_rd_base() = ptr;
919 gic_data_rdist()->phys_base = region->phys_base + offset;
921 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
922 smp_processor_id(), mpidr,
923 (int)(region - gic_data.redist_regions),
924 &gic_data_rdist()->phys_base);
932 static int gic_populate_rdist(void)
934 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
937 /* We couldn't even deal with ourselves... */
938 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
940 (unsigned long)cpu_logical_map(smp_processor_id()));
944 static int __gic_update_rdist_properties(struct redist_region *region,
947 u64 typer = gic_read_typer(ptr + GICR_TYPER);
949 /* Boot-time cleanip */
950 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
953 /* Deactivate any present vPE */
954 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
955 if (val & GICR_VPENDBASER_Valid)
956 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
957 ptr + SZ_128K + GICR_VPENDBASER);
959 /* Mark the VPE table as invalid */
960 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
961 val &= ~GICR_VPROPBASER_4_1_VALID;
962 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
965 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
967 /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
968 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
969 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
970 gic_data.rdists.has_rvpeid);
971 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
973 /* Detect non-sensical configurations */
974 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
975 gic_data.rdists.has_direct_lpi = false;
976 gic_data.rdists.has_vlpis = false;
977 gic_data.rdists.has_rvpeid = false;
980 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
985 static void gic_update_rdist_properties(void)
987 gic_data.ppi_nr = UINT_MAX;
988 gic_iterate_rdists(__gic_update_rdist_properties);
989 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
991 pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
992 if (gic_data.rdists.has_vlpis)
993 pr_info("GICv4 features: %s%s%s\n",
994 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
995 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
996 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
999 /* Check whether it's single security state view */
1000 static inline bool gic_dist_security_disabled(void)
1002 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1005 static void gic_cpu_sys_reg_init(void)
1007 int i, cpu = smp_processor_id();
1008 u64 mpidr = cpu_logical_map(cpu);
1009 u64 need_rss = MPIDR_RS(mpidr);
1014 * Need to check that the SRE bit has actually been set. If
1015 * not, it means that SRE is disabled at EL2. We're going to
1016 * die painfully, and there is nothing we can do about it.
1018 * Kindly inform the luser.
1020 if (!gic_enable_sre())
1021 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1023 pribits = gic_get_pribits();
1025 group0 = gic_has_group0();
1027 /* Set priority mask register */
1028 if (!gic_prio_masking_enabled()) {
1029 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1030 } else if (gic_supports_nmi()) {
1032 * Mismatch configuration with boot CPU, the system is likely
1033 * to die as interrupt masking will not work properly on all
1036 * The boot CPU calls this function before enabling NMI support,
1037 * and as a result we'll never see this warning in the boot path
1040 if (static_branch_unlikely(&gic_nonsecure_priorities))
1041 WARN_ON(!group0 || gic_dist_security_disabled());
1043 WARN_ON(group0 && !gic_dist_security_disabled());
1047 * Some firmwares hand over to the kernel with the BPR changed from
1048 * its reset value (and with a value large enough to prevent
1049 * any pre-emptive interrupts from working at all). Writing a zero
1050 * to BPR restores is reset value.
1054 if (static_branch_likely(&supports_deactivate_key)) {
1055 /* EOI drops priority only (mode 1) */
1056 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1058 /* EOI deactivates interrupt too (mode 0) */
1059 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1062 /* Always whack Group0 before Group1 */
1067 write_gicreg(0, ICC_AP0R3_EL1);
1068 write_gicreg(0, ICC_AP0R2_EL1);
1071 write_gicreg(0, ICC_AP0R1_EL1);
1075 write_gicreg(0, ICC_AP0R0_EL1);
1084 write_gicreg(0, ICC_AP1R3_EL1);
1085 write_gicreg(0, ICC_AP1R2_EL1);
1088 write_gicreg(0, ICC_AP1R1_EL1);
1092 write_gicreg(0, ICC_AP1R0_EL1);
1097 /* ... and let's hit the road... */
1098 gic_write_grpen1(1);
1100 /* Keep the RSS capability status in per_cpu variable */
1101 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1103 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1104 for_each_online_cpu(i) {
1105 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1107 need_rss |= MPIDR_RS(cpu_logical_map(i));
1108 if (need_rss && (!have_rss))
1109 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1110 cpu, (unsigned long)mpidr,
1111 i, (unsigned long)cpu_logical_map(i));
1115 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1116 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1117 * UNPREDICTABLE choice of :
1118 * - The write is ignored.
1119 * - The RS field is treated as 0.
1121 if (need_rss && (!gic_data.has_rss))
1122 pr_crit_once("RSS is required but GICD doesn't support it\n");
1125 static bool gicv3_nolpi;
1127 static int __init gicv3_nolpi_cfg(char *buf)
1129 return strtobool(buf, &gicv3_nolpi);
1131 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1133 static int gic_dist_supports_lpis(void)
1135 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1136 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1140 static void gic_cpu_init(void)
1142 void __iomem *rbase;
1145 /* Register ourselves with the rest of the world */
1146 if (gic_populate_rdist())
1149 gic_enable_redist(true);
1151 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1152 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1153 "Distributor has extended ranges, but CPU%d doesn't\n",
1154 smp_processor_id());
1156 rbase = gic_data_rdist_sgi_base();
1158 /* Configure SGIs/PPIs as non-secure Group-1 */
1159 for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1160 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1162 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1164 /* initialise system registers */
1165 gic_cpu_sys_reg_init();
1170 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1171 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1173 static int gic_starting_cpu(unsigned int cpu)
1177 if (gic_dist_supports_lpis())
1183 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1184 unsigned long cluster_id)
1186 int next_cpu, cpu = *base_cpu;
1187 unsigned long mpidr = cpu_logical_map(cpu);
1190 while (cpu < nr_cpu_ids) {
1191 tlist |= 1 << (mpidr & 0xf);
1193 next_cpu = cpumask_next(cpu, mask);
1194 if (next_cpu >= nr_cpu_ids)
1198 mpidr = cpu_logical_map(cpu);
1200 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1210 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1211 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1212 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1214 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1218 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1219 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1220 irq << ICC_SGI1R_SGI_ID_SHIFT |
1221 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1222 MPIDR_TO_SGI_RS(cluster_id) |
1223 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1225 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1226 gic_write_sgi1r(val);
1229 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1233 if (WARN_ON(d->hwirq >= 16))
1237 * Ensure that stores to Normal memory are visible to the
1238 * other CPUs before issuing the IPI.
1242 for_each_cpu(cpu, mask) {
1243 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1246 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1247 gic_send_sgi(cluster_id, tlist, d->hwirq);
1250 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1254 static void __init gic_smp_init(void)
1256 struct irq_fwspec sgi_fwspec = {
1257 .fwnode = gic_data.fwnode,
1262 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1263 "irqchip/arm/gicv3:starting",
1264 gic_starting_cpu, NULL);
1266 /* Register all 8 non-secure SGIs */
1267 base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1268 NUMA_NO_NODE, &sgi_fwspec,
1270 if (WARN_ON(base_sgi <= 0))
1273 set_smp_ipi_range(base_sgi, 8);
1276 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1286 cpu = cpumask_first(mask_val);
1288 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1290 if (cpu >= nr_cpu_ids)
1293 if (gic_irq_in_rdist(d))
1296 /* If interrupt was enabled, disable it first */
1297 enabled = gic_peek_irq(d, GICD_ISENABLER);
1301 offset = convert_offset_index(d, GICD_IROUTER, &index);
1302 reg = gic_dist_base(d) + offset + (index * 8);
1303 val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1305 gic_write_irouter(val, reg);
1308 * If the interrupt was enabled, enabled it again. Otherwise,
1309 * just wait for the distributor to have digested our changes.
1314 gic_dist_wait_for_rwp();
1316 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1318 return IRQ_SET_MASK_OK_DONE;
1321 #define gic_set_affinity NULL
1322 #define gic_ipi_send_mask NULL
1323 #define gic_smp_init() do { } while(0)
1326 static int gic_retrigger(struct irq_data *data)
1328 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1331 #ifdef CONFIG_CPU_PM
1332 static int gic_cpu_pm_notifier(struct notifier_block *self,
1333 unsigned long cmd, void *v)
1335 if (cmd == CPU_PM_EXIT) {
1336 if (gic_dist_security_disabled())
1337 gic_enable_redist(true);
1338 gic_cpu_sys_reg_init();
1339 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1340 gic_write_grpen1(0);
1341 gic_enable_redist(false);
1346 static struct notifier_block gic_cpu_pm_notifier_block = {
1347 .notifier_call = gic_cpu_pm_notifier,
1350 static void gic_cpu_pm_init(void)
1352 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1356 static inline void gic_cpu_pm_init(void) { }
1357 #endif /* CONFIG_CPU_PM */
1359 static struct irq_chip gic_chip = {
1361 .irq_mask = gic_mask_irq,
1362 .irq_unmask = gic_unmask_irq,
1363 .irq_eoi = gic_eoi_irq,
1364 .irq_set_type = gic_set_type,
1365 .irq_set_affinity = gic_set_affinity,
1366 .irq_retrigger = gic_retrigger,
1367 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1368 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1369 .irq_nmi_setup = gic_irq_nmi_setup,
1370 .irq_nmi_teardown = gic_irq_nmi_teardown,
1371 .ipi_send_mask = gic_ipi_send_mask,
1372 .flags = IRQCHIP_SET_TYPE_MASKED |
1373 IRQCHIP_SKIP_SET_WAKE |
1374 IRQCHIP_MASK_ON_SUSPEND,
1377 static struct irq_chip gic_eoimode1_chip = {
1379 .irq_mask = gic_eoimode1_mask_irq,
1380 .irq_unmask = gic_unmask_irq,
1381 .irq_eoi = gic_eoimode1_eoi_irq,
1382 .irq_set_type = gic_set_type,
1383 .irq_set_affinity = gic_set_affinity,
1384 .irq_retrigger = gic_retrigger,
1385 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1386 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1387 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1388 .irq_nmi_setup = gic_irq_nmi_setup,
1389 .irq_nmi_teardown = gic_irq_nmi_teardown,
1390 .ipi_send_mask = gic_ipi_send_mask,
1391 .flags = IRQCHIP_SET_TYPE_MASKED |
1392 IRQCHIP_SKIP_SET_WAKE |
1393 IRQCHIP_MASK_ON_SUSPEND,
1396 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1399 struct irq_chip *chip = &gic_chip;
1400 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1402 if (static_branch_likely(&supports_deactivate_key))
1403 chip = &gic_eoimode1_chip;
1405 switch (__get_intid_range(hw)) {
1409 irq_set_percpu_devid(irq);
1410 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1411 handle_percpu_devid_irq, NULL, NULL);
1416 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1417 handle_fasteoi_irq, NULL, NULL);
1419 irqd_set_single_target(irqd);
1423 if (!gic_dist_supports_lpis())
1425 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1426 handle_fasteoi_irq, NULL, NULL);
1433 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1434 irqd_set_handle_enforce_irqctx(irqd);
1438 static int gic_irq_domain_translate(struct irq_domain *d,
1439 struct irq_fwspec *fwspec,
1440 unsigned long *hwirq,
1443 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1444 *hwirq = fwspec->param[0];
1445 *type = IRQ_TYPE_EDGE_RISING;
1449 if (is_of_node(fwspec->fwnode)) {
1450 if (fwspec->param_count < 3)
1453 switch (fwspec->param[0]) {
1455 *hwirq = fwspec->param[1] + 32;
1458 *hwirq = fwspec->param[1] + 16;
1461 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1464 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1466 case GIC_IRQ_TYPE_LPI: /* LPI */
1467 *hwirq = fwspec->param[1];
1469 case GIC_IRQ_TYPE_PARTITION:
1470 *hwirq = fwspec->param[1];
1471 if (fwspec->param[1] >= 16)
1472 *hwirq += EPPI_BASE_INTID - 16;
1480 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1483 * Make it clear that broken DTs are... broken.
1484 * Partitioned PPIs are an unfortunate exception.
1486 WARN_ON(*type == IRQ_TYPE_NONE &&
1487 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1491 if (is_fwnode_irqchip(fwspec->fwnode)) {
1492 if(fwspec->param_count != 2)
1495 if (fwspec->param[0] < 16) {
1496 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1501 *hwirq = fwspec->param[0];
1502 *type = fwspec->param[1];
1504 WARN_ON(*type == IRQ_TYPE_NONE);
1511 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1512 unsigned int nr_irqs, void *arg)
1515 irq_hw_number_t hwirq;
1516 unsigned int type = IRQ_TYPE_NONE;
1517 struct irq_fwspec *fwspec = arg;
1519 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1523 for (i = 0; i < nr_irqs; i++) {
1524 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1532 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1533 unsigned int nr_irqs)
1537 for (i = 0; i < nr_irqs; i++) {
1538 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1539 irq_set_handler(virq + i, NULL);
1540 irq_domain_reset_irq_data(d);
1544 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1545 irq_hw_number_t hwirq)
1547 enum gic_intid_range range;
1549 if (!gic_data.ppi_descs)
1552 if (!is_of_node(fwspec->fwnode))
1555 if (fwspec->param_count < 4 || !fwspec->param[3])
1558 range = __get_intid_range(hwirq);
1559 if (range != PPI_RANGE && range != EPPI_RANGE)
1565 static int gic_irq_domain_select(struct irq_domain *d,
1566 struct irq_fwspec *fwspec,
1567 enum irq_domain_bus_token bus_token)
1569 unsigned int type, ret, ppi_idx;
1570 irq_hw_number_t hwirq;
1573 if (fwspec->fwnode != d->fwnode)
1576 /* If this is not DT, then we have a single domain */
1577 if (!is_of_node(fwspec->fwnode))
1580 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1581 if (WARN_ON_ONCE(ret))
1584 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1585 return d == gic_data.domain;
1588 * If this is a PPI and we have a 4th (non-null) parameter,
1589 * then we need to match the partition domain.
1591 ppi_idx = __gic_get_ppi_index(hwirq);
1592 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1595 static const struct irq_domain_ops gic_irq_domain_ops = {
1596 .translate = gic_irq_domain_translate,
1597 .alloc = gic_irq_domain_alloc,
1598 .free = gic_irq_domain_free,
1599 .select = gic_irq_domain_select,
1602 static int partition_domain_translate(struct irq_domain *d,
1603 struct irq_fwspec *fwspec,
1604 unsigned long *hwirq,
1607 unsigned long ppi_intid;
1608 struct device_node *np;
1609 unsigned int ppi_idx;
1612 if (!gic_data.ppi_descs)
1615 np = of_find_node_by_phandle(fwspec->param[3]);
1619 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1620 if (WARN_ON_ONCE(ret))
1623 ppi_idx = __gic_get_ppi_index(ppi_intid);
1624 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1625 of_node_to_fwnode(np));
1630 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1635 static const struct irq_domain_ops partition_domain_ops = {
1636 .translate = partition_domain_translate,
1637 .select = gic_irq_domain_select,
1640 static bool gic_enable_quirk_msm8996(void *data)
1642 struct gic_chip_data *d = data;
1644 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1649 static bool gic_enable_quirk_cavium_38539(void *data)
1651 struct gic_chip_data *d = data;
1653 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1658 static bool gic_enable_quirk_hip06_07(void *data)
1660 struct gic_chip_data *d = data;
1663 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1664 * not being an actual ARM implementation). The saving grace is
1665 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1666 * HIP07 doesn't even have a proper IIDR, and still pretends to
1667 * have ESPI. In both cases, put them right.
1669 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1670 /* Zero both ESPI and the RES0 field next to it... */
1671 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1678 static const struct gic_quirk gic_quirks[] = {
1680 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1681 .compatible = "qcom,msm8996-gic-v3",
1682 .init = gic_enable_quirk_msm8996,
1685 .desc = "GICv3: HIP06 erratum 161010803",
1688 .init = gic_enable_quirk_hip06_07,
1691 .desc = "GICv3: HIP07 erratum 161010803",
1694 .init = gic_enable_quirk_hip06_07,
1698 * Reserved register accesses generate a Synchronous
1699 * External Abort. This erratum applies to:
1700 * - ThunderX: CN88xx
1701 * - OCTEON TX: CN83xx, CN81xx
1702 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1704 .desc = "GICv3: Cavium erratum 38539",
1707 .init = gic_enable_quirk_cavium_38539,
1713 static void gic_enable_nmi_support(void)
1717 if (!gic_prio_masking_enabled())
1720 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1724 for (i = 0; i < gic_data.ppi_nr; i++)
1725 refcount_set(&ppi_nmi_refs[i], 0);
1728 * Linux itself doesn't use 1:N distribution, so has no need to
1729 * set PMHE. The only reason to have it set is if EL3 requires it
1730 * (and we can't change it).
1732 if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1733 static_branch_enable(&gic_pmr_sync);
1735 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1736 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1739 * How priority values are used by the GIC depends on two things:
1740 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1741 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1742 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1743 * the ICC_PMR_EL1 register and the priority that software assigns to
1746 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1747 * -----------------------------------------------------------
1748 * 1 | - | unchanged | unchanged
1749 * -----------------------------------------------------------
1750 * 0 | 1 | non-secure | non-secure
1751 * -----------------------------------------------------------
1752 * 0 | 0 | unchanged | non-secure
1754 * where non-secure means that the value is right-shifted by one and the
1755 * MSB bit set, to make it fit in the non-secure priority range.
1757 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1758 * are both either modified or unchanged, we can use the same set of
1761 * In the last case, where only the interrupt priorities are modified to
1762 * be in the non-secure range, we use a different PMR value to mask IRQs
1763 * and the rest of the values that we use remain unchanged.
1765 if (gic_has_group0() && !gic_dist_security_disabled())
1766 static_branch_enable(&gic_nonsecure_priorities);
1768 static_branch_enable(&supports_pseudo_nmis);
1770 if (static_branch_likely(&supports_deactivate_key))
1771 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1773 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1776 static int __init gic_init_bases(void __iomem *dist_base,
1777 struct redist_region *rdist_regs,
1778 u32 nr_redist_regions,
1780 struct fwnode_handle *handle)
1785 if (!is_hyp_mode_available())
1786 static_branch_disable(&supports_deactivate_key);
1788 if (static_branch_likely(&supports_deactivate_key))
1789 pr_info("GIC: Using split EOI/Deactivate mode\n");
1791 gic_data.fwnode = handle;
1792 gic_data.dist_base = dist_base;
1793 gic_data.redist_regions = rdist_regs;
1794 gic_data.nr_redist_regions = nr_redist_regions;
1795 gic_data.redist_stride = redist_stride;
1798 * Find out how many interrupts are supported.
1800 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1801 gic_data.rdists.gicd_typer = typer;
1803 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1804 gic_quirks, &gic_data);
1806 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1807 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1810 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1811 * architecture spec (which says that reserved registers are RES0).
1813 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1814 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1816 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1818 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1819 gic_data.rdists.has_rvpeid = true;
1820 gic_data.rdists.has_vlpis = true;
1821 gic_data.rdists.has_direct_lpi = true;
1822 gic_data.rdists.has_vpend_valid_dirty = true;
1824 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1829 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1831 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1832 pr_info("Distributor has %sRange Selector support\n",
1833 gic_data.has_rss ? "" : "no ");
1835 if (typer & GICD_TYPER_MBIS) {
1836 err = mbi_init(handle, gic_data.domain);
1838 pr_err("Failed to initialize MBIs\n");
1841 set_handle_irq(gic_handle_irq);
1843 gic_update_rdist_properties();
1850 if (gic_dist_supports_lpis()) {
1851 its_init(handle, &gic_data.rdists, gic_data.domain);
1854 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1855 gicv2m_init(handle, gic_data.domain);
1858 gic_enable_nmi_support();
1863 if (gic_data.domain)
1864 irq_domain_remove(gic_data.domain);
1865 free_percpu(gic_data.rdists.rdist);
1869 static int __init gic_validate_dist_version(void __iomem *dist_base)
1871 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1873 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1879 /* Create all possible partitions at boot time */
1880 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1882 struct device_node *parts_node, *child_part;
1883 int part_idx = 0, i;
1885 struct partition_affinity *parts;
1887 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1891 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1892 if (!gic_data.ppi_descs)
1895 nr_parts = of_get_child_count(parts_node);
1900 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1901 if (WARN_ON(!parts))
1904 for_each_child_of_node(parts_node, child_part) {
1905 struct partition_affinity *part;
1908 part = &parts[part_idx];
1910 part->partition_id = of_node_to_fwnode(child_part);
1912 pr_info("GIC: PPI partition %pOFn[%d] { ",
1913 child_part, part_idx);
1915 n = of_property_count_elems_of_size(child_part, "affinity",
1919 for (i = 0; i < n; i++) {
1922 struct device_node *cpu_node;
1924 err = of_property_read_u32_index(child_part, "affinity",
1929 cpu_node = of_find_node_by_phandle(cpu_phandle);
1930 if (WARN_ON(!cpu_node))
1933 cpu = of_cpu_node_to_id(cpu_node);
1934 if (WARN_ON(cpu < 0)) {
1935 of_node_put(cpu_node);
1939 pr_cont("%pOF[%d] ", cpu_node, cpu);
1941 cpumask_set_cpu(cpu, &part->mask);
1942 of_node_put(cpu_node);
1949 for (i = 0; i < gic_data.ppi_nr; i++) {
1951 struct partition_desc *desc;
1952 struct irq_fwspec ppi_fwspec = {
1953 .fwnode = gic_data.fwnode,
1956 [0] = GIC_IRQ_TYPE_PARTITION,
1958 [2] = IRQ_TYPE_NONE,
1962 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1965 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1966 irq, &partition_domain_ops);
1970 gic_data.ppi_descs[i] = desc;
1974 of_node_put(parts_node);
1977 static void __init gic_of_setup_kvm_info(struct device_node *node)
1983 gic_v3_kvm_info.type = GIC_V3;
1985 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1986 if (!gic_v3_kvm_info.maint_irq)
1989 if (of_property_read_u32(node, "#redistributor-regions",
1993 gicv_idx += 3; /* Also skip GICD, GICC, GICH */
1994 ret = of_address_to_resource(node, gicv_idx, &r);
1996 gic_v3_kvm_info.vcpu = r;
1998 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1999 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2000 vgic_set_kvm_info(&gic_v3_kvm_info);
2003 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2005 void __iomem *dist_base;
2006 struct redist_region *rdist_regs;
2008 u32 nr_redist_regions;
2011 dist_base = of_iomap(node, 0);
2013 pr_err("%pOF: unable to map gic dist registers\n", node);
2017 err = gic_validate_dist_version(dist_base);
2019 pr_err("%pOF: no distributor detected, giving up\n", node);
2020 goto out_unmap_dist;
2023 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2024 nr_redist_regions = 1;
2026 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2030 goto out_unmap_dist;
2033 for (i = 0; i < nr_redist_regions; i++) {
2034 struct resource res;
2037 ret = of_address_to_resource(node, 1 + i, &res);
2038 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
2039 if (ret || !rdist_regs[i].redist_base) {
2040 pr_err("%pOF: couldn't map region %d\n", node, i);
2042 goto out_unmap_rdist;
2044 rdist_regs[i].phys_base = res.start;
2047 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2050 gic_enable_of_quirks(node, gic_quirks, &gic_data);
2052 err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2053 redist_stride, &node->fwnode);
2055 goto out_unmap_rdist;
2057 gic_populate_ppi_partitions(node);
2059 if (static_branch_likely(&supports_deactivate_key))
2060 gic_of_setup_kvm_info(node);
2064 for (i = 0; i < nr_redist_regions; i++)
2065 if (rdist_regs[i].redist_base)
2066 iounmap(rdist_regs[i].redist_base);
2073 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2078 void __iomem *dist_base;
2079 struct redist_region *redist_regs;
2080 u32 nr_redist_regions;
2085 phys_addr_t vcpu_base;
2086 } acpi_data __initdata;
2089 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2091 static int count = 0;
2093 acpi_data.redist_regs[count].phys_base = phys_base;
2094 acpi_data.redist_regs[count].redist_base = redist_base;
2095 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2100 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2101 const unsigned long end)
2103 struct acpi_madt_generic_redistributor *redist =
2104 (struct acpi_madt_generic_redistributor *)header;
2105 void __iomem *redist_base;
2107 redist_base = ioremap(redist->base_address, redist->length);
2109 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2113 gic_acpi_register_redist(redist->base_address, redist_base);
2118 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2119 const unsigned long end)
2121 struct acpi_madt_generic_interrupt *gicc =
2122 (struct acpi_madt_generic_interrupt *)header;
2123 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2124 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2125 void __iomem *redist_base;
2127 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2128 if (!(gicc->flags & ACPI_MADT_ENABLED))
2131 redist_base = ioremap(gicc->gicr_base_address, size);
2135 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2139 static int __init gic_acpi_collect_gicr_base(void)
2141 acpi_tbl_entry_handler redist_parser;
2142 enum acpi_madt_type type;
2144 if (acpi_data.single_redist) {
2145 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2146 redist_parser = gic_acpi_parse_madt_gicc;
2148 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2149 redist_parser = gic_acpi_parse_madt_redist;
2152 /* Collect redistributor base addresses in GICR entries */
2153 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2156 pr_info("No valid GICR entries exist\n");
2160 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2161 const unsigned long end)
2163 /* Subtable presence means that redist exists, that's it */
2167 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2168 const unsigned long end)
2170 struct acpi_madt_generic_interrupt *gicc =
2171 (struct acpi_madt_generic_interrupt *)header;
2174 * If GICC is enabled and has valid gicr base address, then it means
2175 * GICR base is presented via GICC
2177 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2178 acpi_data.enabled_rdists++;
2183 * It's perfectly valid firmware can pass disabled GICC entry, driver
2184 * should not treat as errors, skip the entry instead of probe fail.
2186 if (!(gicc->flags & ACPI_MADT_ENABLED))
2192 static int __init gic_acpi_count_gicr_regions(void)
2197 * Count how many redistributor regions we have. It is not allowed
2198 * to mix redistributor description, GICR and GICC subtables have to be
2199 * mutually exclusive.
2201 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2202 gic_acpi_match_gicr, 0);
2204 acpi_data.single_redist = false;
2208 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2209 gic_acpi_match_gicc, 0);
2211 acpi_data.single_redist = true;
2212 count = acpi_data.enabled_rdists;
2218 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2219 struct acpi_probe_entry *ape)
2221 struct acpi_madt_generic_distributor *dist;
2224 dist = (struct acpi_madt_generic_distributor *)header;
2225 if (dist->version != ape->driver_data)
2228 /* We need to do that exercise anyway, the sooner the better */
2229 count = gic_acpi_count_gicr_regions();
2233 acpi_data.nr_redist_regions = count;
2237 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2238 const unsigned long end)
2240 struct acpi_madt_generic_interrupt *gicc =
2241 (struct acpi_madt_generic_interrupt *)header;
2243 static int first_madt = true;
2245 /* Skip unusable CPUs */
2246 if (!(gicc->flags & ACPI_MADT_ENABLED))
2249 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2250 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2255 acpi_data.maint_irq = gicc->vgic_interrupt;
2256 acpi_data.maint_irq_mode = maint_irq_mode;
2257 acpi_data.vcpu_base = gicc->gicv_base_address;
2263 * The maintenance interrupt and GICV should be the same for every CPU
2265 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2266 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2267 (acpi_data.vcpu_base != gicc->gicv_base_address))
2273 static bool __init gic_acpi_collect_virt_info(void)
2277 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2278 gic_acpi_parse_virt_madt_gicc, 0);
2283 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2284 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2285 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2287 static void __init gic_acpi_setup_kvm_info(void)
2291 if (!gic_acpi_collect_virt_info()) {
2292 pr_warn("Unable to get hardware information used for virtualization\n");
2296 gic_v3_kvm_info.type = GIC_V3;
2298 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2299 acpi_data.maint_irq_mode,
2304 gic_v3_kvm_info.maint_irq = irq;
2306 if (acpi_data.vcpu_base) {
2307 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2309 vcpu->flags = IORESOURCE_MEM;
2310 vcpu->start = acpi_data.vcpu_base;
2311 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2314 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2315 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2316 vgic_set_kvm_info(&gic_v3_kvm_info);
2320 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2322 struct acpi_madt_generic_distributor *dist;
2323 struct fwnode_handle *domain_handle;
2327 /* Get distributor base address */
2328 dist = (struct acpi_madt_generic_distributor *)header;
2329 acpi_data.dist_base = ioremap(dist->base_address,
2330 ACPI_GICV3_DIST_MEM_SIZE);
2331 if (!acpi_data.dist_base) {
2332 pr_err("Unable to map GICD registers\n");
2336 err = gic_validate_dist_version(acpi_data.dist_base);
2338 pr_err("No distributor detected at @%p, giving up\n",
2339 acpi_data.dist_base);
2340 goto out_dist_unmap;
2343 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2344 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2345 if (!acpi_data.redist_regs) {
2347 goto out_dist_unmap;
2350 err = gic_acpi_collect_gicr_base();
2352 goto out_redist_unmap;
2354 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2355 if (!domain_handle) {
2357 goto out_redist_unmap;
2360 err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2361 acpi_data.nr_redist_regions, 0, domain_handle);
2363 goto out_fwhandle_free;
2365 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2367 if (static_branch_likely(&supports_deactivate_key))
2368 gic_acpi_setup_kvm_info();
2373 irq_domain_free_fwnode(domain_handle);
2375 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2376 if (acpi_data.redist_regs[i].redist_base)
2377 iounmap(acpi_data.redist_regs[i].redist_base);
2378 kfree(acpi_data.redist_regs);
2380 iounmap(acpi_data.dist_base);
2383 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2384 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2386 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2387 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2389 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2390 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,