Merge patch series "riscv: dma-mapping: unify support for cache flushes"
[platform/kernel/linux-rpi.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
46
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE         (1 << 2)
50
51 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
54
55 static u32 lpi_id_bits;
56
57 /*
58  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59  * deal with (one configuration byte per interrupt). PENDBASE has to
60  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61  */
62 #define LPI_NRBITS              lpi_id_bits
63 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65
66 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
67
68 /*
69  * Collection structure - just an ID, and a redistributor address to
70  * ping. We use one per CPU as a bag of interrupts assigned to this
71  * CPU.
72  */
73 struct its_collection {
74         u64                     target_address;
75         u16                     col_id;
76 };
77
78 /*
79  * The ITS_BASER structure - contains memory information, cached
80  * value of BASER register configuration and ITS page size.
81  */
82 struct its_baser {
83         void            *base;
84         u64             val;
85         u32             order;
86         u32             psz;
87 };
88
89 struct its_device;
90
91 /*
92  * The ITS structure - contains most of the infrastructure, with the
93  * top-level MSI domain, the command queue, the collections, and the
94  * list of devices writing to it.
95  *
96  * dev_alloc_lock has to be taken for device allocations, while the
97  * spinlock must be taken to parse data structures such as the device
98  * list.
99  */
100 struct its_node {
101         raw_spinlock_t          lock;
102         struct mutex            dev_alloc_lock;
103         struct list_head        entry;
104         void __iomem            *base;
105         void __iomem            *sgir_base;
106         phys_addr_t             phys_base;
107         struct its_cmd_block    *cmd_base;
108         struct its_cmd_block    *cmd_write;
109         struct its_baser        tables[GITS_BASER_NR_REGS];
110         struct its_collection   *collections;
111         struct fwnode_handle    *fwnode_handle;
112         u64                     (*get_msi_base)(struct its_device *its_dev);
113         u64                     typer;
114         u64                     cbaser_save;
115         u32                     ctlr_save;
116         u32                     mpidr;
117         struct list_head        its_device_list;
118         u64                     flags;
119         unsigned long           list_nr;
120         int                     numa_node;
121         unsigned int            msi_domain_flags;
122         u32                     pre_its_base; /* for Socionext Synquacer */
123         int                     vlpi_redist_offset;
124 };
125
126 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
129
130 #define ITS_ITT_ALIGN           SZ_256
131
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS                                              \
134         ({                                                              \
135                 int nvpeid = 16;                                        \
136                 if (gic_rdists->has_rvpeid &&                           \
137                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
138                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
139                                       GICD_TYPER2_VID);                 \
140                                                                         \
141                 nvpeid;                                                 \
142         })
143 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
144
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
147
148 struct event_lpi_map {
149         unsigned long           *lpi_map;
150         u16                     *col_map;
151         irq_hw_number_t         lpi_base;
152         int                     nr_lpis;
153         raw_spinlock_t          vlpi_lock;
154         struct its_vm           *vm;
155         struct its_vlpi_map     *vlpi_maps;
156         int                     nr_vlpis;
157 };
158
159 /*
160  * The ITS view of a device - belongs to an ITS, owns an interrupt
161  * translation table, and a list of interrupts.  If it some of its
162  * LPIs are injected into a guest (GICv4), the event_map.vm field
163  * indicates which one.
164  */
165 struct its_device {
166         struct list_head        entry;
167         struct its_node         *its;
168         struct event_lpi_map    event_map;
169         void                    *itt;
170         u32                     nr_ites;
171         u32                     device_id;
172         bool                    shared;
173 };
174
175 static struct {
176         raw_spinlock_t          lock;
177         struct its_device       *dev;
178         struct its_vpe          **vpes;
179         int                     next_victim;
180 } vpe_proxy;
181
182 struct cpu_lpi_count {
183         atomic_t        managed;
184         atomic_t        unmanaged;
185 };
186
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
193
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
197
198 static DEFINE_IDA(its_vpeid_ida);
199
200 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
204
205 /*
206  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207  * always have vSGIs mapped.
208  */
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210 {
211         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212 }
213
214 static u16 get_its_list(struct its_vm *vm)
215 {
216         struct its_node *its;
217         unsigned long its_list = 0;
218
219         list_for_each_entry(its, &its_nodes, entry) {
220                 if (!is_v4(its))
221                         continue;
222
223                 if (require_its_list_vmovp(vm, its))
224                         __set_bit(its->list_nr, &its_list);
225         }
226
227         return (u16)its_list;
228 }
229
230 static inline u32 its_get_event_id(struct irq_data *d)
231 {
232         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233         return d->hwirq - its_dev->event_map.lpi_base;
234 }
235
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237                                                u32 event)
238 {
239         struct its_node *its = its_dev->its;
240
241         return its->collections + its_dev->event_map.col_map[event];
242 }
243
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245                                                u32 event)
246 {
247         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248                 return NULL;
249
250         return &its_dev->event_map.vlpi_maps[event];
251 }
252
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254 {
255         if (irqd_is_forwarded_to_vcpu(d)) {
256                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257                 u32 event = its_get_event_id(d);
258
259                 return dev_event_to_vlpi_map(its_dev, event);
260         }
261
262         return NULL;
263 }
264
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266 {
267         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268         return vpe->col_idx;
269 }
270
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272 {
273         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274 }
275
276 static struct irq_chip its_vpe_irq_chip;
277
278 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
279 {
280         struct its_vpe *vpe = NULL;
281         int cpu;
282
283         if (d->chip == &its_vpe_irq_chip) {
284                 vpe = irq_data_get_irq_chip_data(d);
285         } else {
286                 struct its_vlpi_map *map = get_vlpi_map(d);
287                 if (map)
288                         vpe = map->vpe;
289         }
290
291         if (vpe) {
292                 cpu = vpe_to_cpuid_lock(vpe, flags);
293         } else {
294                 /* Physical LPIs are already locked via the irq_desc lock */
295                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
296                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
297                 /* Keep GCC quiet... */
298                 *flags = 0;
299         }
300
301         return cpu;
302 }
303
304 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
305 {
306         struct its_vpe *vpe = NULL;
307
308         if (d->chip == &its_vpe_irq_chip) {
309                 vpe = irq_data_get_irq_chip_data(d);
310         } else {
311                 struct its_vlpi_map *map = get_vlpi_map(d);
312                 if (map)
313                         vpe = map->vpe;
314         }
315
316         if (vpe)
317                 vpe_to_cpuid_unlock(vpe, flags);
318 }
319
320 static struct its_collection *valid_col(struct its_collection *col)
321 {
322         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
323                 return NULL;
324
325         return col;
326 }
327
328 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
329 {
330         if (valid_col(its->collections + vpe->col_idx))
331                 return vpe;
332
333         return NULL;
334 }
335
336 /*
337  * ITS command descriptors - parameters to be encoded in a command
338  * block.
339  */
340 struct its_cmd_desc {
341         union {
342                 struct {
343                         struct its_device *dev;
344                         u32 event_id;
345                 } its_inv_cmd;
346
347                 struct {
348                         struct its_device *dev;
349                         u32 event_id;
350                 } its_clear_cmd;
351
352                 struct {
353                         struct its_device *dev;
354                         u32 event_id;
355                 } its_int_cmd;
356
357                 struct {
358                         struct its_device *dev;
359                         int valid;
360                 } its_mapd_cmd;
361
362                 struct {
363                         struct its_collection *col;
364                         int valid;
365                 } its_mapc_cmd;
366
367                 struct {
368                         struct its_device *dev;
369                         u32 phys_id;
370                         u32 event_id;
371                 } its_mapti_cmd;
372
373                 struct {
374                         struct its_device *dev;
375                         struct its_collection *col;
376                         u32 event_id;
377                 } its_movi_cmd;
378
379                 struct {
380                         struct its_device *dev;
381                         u32 event_id;
382                 } its_discard_cmd;
383
384                 struct {
385                         struct its_collection *col;
386                 } its_invall_cmd;
387
388                 struct {
389                         struct its_vpe *vpe;
390                 } its_vinvall_cmd;
391
392                 struct {
393                         struct its_vpe *vpe;
394                         struct its_collection *col;
395                         bool valid;
396                 } its_vmapp_cmd;
397
398                 struct {
399                         struct its_vpe *vpe;
400                         struct its_device *dev;
401                         u32 virt_id;
402                         u32 event_id;
403                         bool db_enabled;
404                 } its_vmapti_cmd;
405
406                 struct {
407                         struct its_vpe *vpe;
408                         struct its_device *dev;
409                         u32 event_id;
410                         bool db_enabled;
411                 } its_vmovi_cmd;
412
413                 struct {
414                         struct its_vpe *vpe;
415                         struct its_collection *col;
416                         u16 seq_num;
417                         u16 its_list;
418                 } its_vmovp_cmd;
419
420                 struct {
421                         struct its_vpe *vpe;
422                 } its_invdb_cmd;
423
424                 struct {
425                         struct its_vpe *vpe;
426                         u8 sgi;
427                         u8 priority;
428                         bool enable;
429                         bool group;
430                         bool clear;
431                 } its_vsgi_cmd;
432         };
433 };
434
435 /*
436  * The ITS command block, which is what the ITS actually parses.
437  */
438 struct its_cmd_block {
439         union {
440                 u64     raw_cmd[4];
441                 __le64  raw_cmd_le[4];
442         };
443 };
444
445 #define ITS_CMD_QUEUE_SZ                SZ_64K
446 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
447
448 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
449                                                     struct its_cmd_block *,
450                                                     struct its_cmd_desc *);
451
452 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
453                                               struct its_cmd_block *,
454                                               struct its_cmd_desc *);
455
456 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
457 {
458         u64 mask = GENMASK_ULL(h, l);
459         *raw_cmd &= ~mask;
460         *raw_cmd |= (val << l) & mask;
461 }
462
463 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
464 {
465         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
466 }
467
468 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
469 {
470         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
471 }
472
473 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
474 {
475         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
476 }
477
478 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
479 {
480         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
481 }
482
483 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
484 {
485         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
486 }
487
488 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
489 {
490         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
491 }
492
493 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
494 {
495         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
496 }
497
498 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
499 {
500         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
501 }
502
503 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
504 {
505         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
506 }
507
508 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
509 {
510         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
511 }
512
513 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
514 {
515         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
516 }
517
518 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
519 {
520         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
521 }
522
523 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
524 {
525         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
526 }
527
528 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
529 {
530         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
531 }
532
533 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
534 {
535         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
536 }
537
538 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
539 {
540         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
541 }
542
543 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
544 {
545         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
546 }
547
548 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
549 {
550         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
551 }
552
553 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
554 {
555         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
556 }
557
558 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
559 {
560         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
561 }
562
563 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
564                                         u32 vpe_db_lpi)
565 {
566         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
567 }
568
569 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
570                                         u32 vpe_db_lpi)
571 {
572         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
573 }
574
575 static void its_encode_db(struct its_cmd_block *cmd, bool db)
576 {
577         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
578 }
579
580 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
581 {
582         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
583 }
584
585 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
586 {
587         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
588 }
589
590 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
591 {
592         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
593 }
594
595 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
596 {
597         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
598 }
599
600 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
601 {
602         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
603 }
604
605 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
606 {
607         /* Let's fixup BE commands */
608         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
609         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
610         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
611         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
612 }
613
614 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
615                                                  struct its_cmd_block *cmd,
616                                                  struct its_cmd_desc *desc)
617 {
618         unsigned long itt_addr;
619         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
620
621         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
622         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
623
624         its_encode_cmd(cmd, GITS_CMD_MAPD);
625         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
626         its_encode_size(cmd, size - 1);
627         its_encode_itt(cmd, itt_addr);
628         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
629
630         its_fixup_cmd(cmd);
631
632         return NULL;
633 }
634
635 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
636                                                  struct its_cmd_block *cmd,
637                                                  struct its_cmd_desc *desc)
638 {
639         its_encode_cmd(cmd, GITS_CMD_MAPC);
640         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
641         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
642         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
643
644         its_fixup_cmd(cmd);
645
646         return desc->its_mapc_cmd.col;
647 }
648
649 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
650                                                   struct its_cmd_block *cmd,
651                                                   struct its_cmd_desc *desc)
652 {
653         struct its_collection *col;
654
655         col = dev_event_to_col(desc->its_mapti_cmd.dev,
656                                desc->its_mapti_cmd.event_id);
657
658         its_encode_cmd(cmd, GITS_CMD_MAPTI);
659         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
660         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
661         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
662         its_encode_collection(cmd, col->col_id);
663
664         its_fixup_cmd(cmd);
665
666         return valid_col(col);
667 }
668
669 static struct its_collection *its_build_movi_cmd(struct its_node *its,
670                                                  struct its_cmd_block *cmd,
671                                                  struct its_cmd_desc *desc)
672 {
673         struct its_collection *col;
674
675         col = dev_event_to_col(desc->its_movi_cmd.dev,
676                                desc->its_movi_cmd.event_id);
677
678         its_encode_cmd(cmd, GITS_CMD_MOVI);
679         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
680         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
681         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
682
683         its_fixup_cmd(cmd);
684
685         return valid_col(col);
686 }
687
688 static struct its_collection *its_build_discard_cmd(struct its_node *its,
689                                                     struct its_cmd_block *cmd,
690                                                     struct its_cmd_desc *desc)
691 {
692         struct its_collection *col;
693
694         col = dev_event_to_col(desc->its_discard_cmd.dev,
695                                desc->its_discard_cmd.event_id);
696
697         its_encode_cmd(cmd, GITS_CMD_DISCARD);
698         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
699         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
700
701         its_fixup_cmd(cmd);
702
703         return valid_col(col);
704 }
705
706 static struct its_collection *its_build_inv_cmd(struct its_node *its,
707                                                 struct its_cmd_block *cmd,
708                                                 struct its_cmd_desc *desc)
709 {
710         struct its_collection *col;
711
712         col = dev_event_to_col(desc->its_inv_cmd.dev,
713                                desc->its_inv_cmd.event_id);
714
715         its_encode_cmd(cmd, GITS_CMD_INV);
716         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
718
719         its_fixup_cmd(cmd);
720
721         return valid_col(col);
722 }
723
724 static struct its_collection *its_build_int_cmd(struct its_node *its,
725                                                 struct its_cmd_block *cmd,
726                                                 struct its_cmd_desc *desc)
727 {
728         struct its_collection *col;
729
730         col = dev_event_to_col(desc->its_int_cmd.dev,
731                                desc->its_int_cmd.event_id);
732
733         its_encode_cmd(cmd, GITS_CMD_INT);
734         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
736
737         its_fixup_cmd(cmd);
738
739         return valid_col(col);
740 }
741
742 static struct its_collection *its_build_clear_cmd(struct its_node *its,
743                                                   struct its_cmd_block *cmd,
744                                                   struct its_cmd_desc *desc)
745 {
746         struct its_collection *col;
747
748         col = dev_event_to_col(desc->its_clear_cmd.dev,
749                                desc->its_clear_cmd.event_id);
750
751         its_encode_cmd(cmd, GITS_CMD_CLEAR);
752         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
754
755         its_fixup_cmd(cmd);
756
757         return valid_col(col);
758 }
759
760 static struct its_collection *its_build_invall_cmd(struct its_node *its,
761                                                    struct its_cmd_block *cmd,
762                                                    struct its_cmd_desc *desc)
763 {
764         its_encode_cmd(cmd, GITS_CMD_INVALL);
765         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
766
767         its_fixup_cmd(cmd);
768
769         return desc->its_invall_cmd.col;
770 }
771
772 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
773                                              struct its_cmd_block *cmd,
774                                              struct its_cmd_desc *desc)
775 {
776         its_encode_cmd(cmd, GITS_CMD_VINVALL);
777         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
778
779         its_fixup_cmd(cmd);
780
781         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
782 }
783
784 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
785                                            struct its_cmd_block *cmd,
786                                            struct its_cmd_desc *desc)
787 {
788         unsigned long vpt_addr, vconf_addr;
789         u64 target;
790         bool alloc;
791
792         its_encode_cmd(cmd, GITS_CMD_VMAPP);
793         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
794         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
795
796         if (!desc->its_vmapp_cmd.valid) {
797                 if (is_v4_1(its)) {
798                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
799                         its_encode_alloc(cmd, alloc);
800                 }
801
802                 goto out;
803         }
804
805         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
806         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
807
808         its_encode_target(cmd, target);
809         its_encode_vpt_addr(cmd, vpt_addr);
810         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
811
812         if (!is_v4_1(its))
813                 goto out;
814
815         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
816
817         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
818
819         its_encode_alloc(cmd, alloc);
820
821         /*
822          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
823          * to be unmapped first, and in this case, we may remap the vPE
824          * back while the VPT is not empty. So we can't assume that the
825          * VPT is empty on map. This is why we never advertise PTZ.
826          */
827         its_encode_ptz(cmd, false);
828         its_encode_vconf_addr(cmd, vconf_addr);
829         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
830
831 out:
832         its_fixup_cmd(cmd);
833
834         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
835 }
836
837 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
838                                             struct its_cmd_block *cmd,
839                                             struct its_cmd_desc *desc)
840 {
841         u32 db;
842
843         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
844                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
845         else
846                 db = 1023;
847
848         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
849         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
850         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
851         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
852         its_encode_db_phys_id(cmd, db);
853         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
854
855         its_fixup_cmd(cmd);
856
857         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
858 }
859
860 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
861                                            struct its_cmd_block *cmd,
862                                            struct its_cmd_desc *desc)
863 {
864         u32 db;
865
866         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
867                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
868         else
869                 db = 1023;
870
871         its_encode_cmd(cmd, GITS_CMD_VMOVI);
872         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
873         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
874         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
875         its_encode_db_phys_id(cmd, db);
876         its_encode_db_valid(cmd, true);
877
878         its_fixup_cmd(cmd);
879
880         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
881 }
882
883 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
884                                            struct its_cmd_block *cmd,
885                                            struct its_cmd_desc *desc)
886 {
887         u64 target;
888
889         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
890         its_encode_cmd(cmd, GITS_CMD_VMOVP);
891         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
892         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
893         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
894         its_encode_target(cmd, target);
895
896         if (is_v4_1(its)) {
897                 its_encode_db(cmd, true);
898                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
899         }
900
901         its_fixup_cmd(cmd);
902
903         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
904 }
905
906 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
907                                           struct its_cmd_block *cmd,
908                                           struct its_cmd_desc *desc)
909 {
910         struct its_vlpi_map *map;
911
912         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
913                                     desc->its_inv_cmd.event_id);
914
915         its_encode_cmd(cmd, GITS_CMD_INV);
916         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
917         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
918
919         its_fixup_cmd(cmd);
920
921         return valid_vpe(its, map->vpe);
922 }
923
924 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
925                                           struct its_cmd_block *cmd,
926                                           struct its_cmd_desc *desc)
927 {
928         struct its_vlpi_map *map;
929
930         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
931                                     desc->its_int_cmd.event_id);
932
933         its_encode_cmd(cmd, GITS_CMD_INT);
934         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
935         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
936
937         its_fixup_cmd(cmd);
938
939         return valid_vpe(its, map->vpe);
940 }
941
942 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
943                                             struct its_cmd_block *cmd,
944                                             struct its_cmd_desc *desc)
945 {
946         struct its_vlpi_map *map;
947
948         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
949                                     desc->its_clear_cmd.event_id);
950
951         its_encode_cmd(cmd, GITS_CMD_CLEAR);
952         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
953         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
954
955         its_fixup_cmd(cmd);
956
957         return valid_vpe(its, map->vpe);
958 }
959
960 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
961                                            struct its_cmd_block *cmd,
962                                            struct its_cmd_desc *desc)
963 {
964         if (WARN_ON(!is_v4_1(its)))
965                 return NULL;
966
967         its_encode_cmd(cmd, GITS_CMD_INVDB);
968         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
969
970         its_fixup_cmd(cmd);
971
972         return valid_vpe(its, desc->its_invdb_cmd.vpe);
973 }
974
975 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
976                                           struct its_cmd_block *cmd,
977                                           struct its_cmd_desc *desc)
978 {
979         if (WARN_ON(!is_v4_1(its)))
980                 return NULL;
981
982         its_encode_cmd(cmd, GITS_CMD_VSGI);
983         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
984         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
985         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
986         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
987         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
988         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
989
990         its_fixup_cmd(cmd);
991
992         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
993 }
994
995 static u64 its_cmd_ptr_to_offset(struct its_node *its,
996                                  struct its_cmd_block *ptr)
997 {
998         return (ptr - its->cmd_base) * sizeof(*ptr);
999 }
1000
1001 static int its_queue_full(struct its_node *its)
1002 {
1003         int widx;
1004         int ridx;
1005
1006         widx = its->cmd_write - its->cmd_base;
1007         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1008
1009         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1010         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1011                 return 1;
1012
1013         return 0;
1014 }
1015
1016 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1017 {
1018         struct its_cmd_block *cmd;
1019         u32 count = 1000000;    /* 1s! */
1020
1021         while (its_queue_full(its)) {
1022                 count--;
1023                 if (!count) {
1024                         pr_err_ratelimited("ITS queue not draining\n");
1025                         return NULL;
1026                 }
1027                 cpu_relax();
1028                 udelay(1);
1029         }
1030
1031         cmd = its->cmd_write++;
1032
1033         /* Handle queue wrapping */
1034         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1035                 its->cmd_write = its->cmd_base;
1036
1037         /* Clear command  */
1038         cmd->raw_cmd[0] = 0;
1039         cmd->raw_cmd[1] = 0;
1040         cmd->raw_cmd[2] = 0;
1041         cmd->raw_cmd[3] = 0;
1042
1043         return cmd;
1044 }
1045
1046 static struct its_cmd_block *its_post_commands(struct its_node *its)
1047 {
1048         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1049
1050         writel_relaxed(wr, its->base + GITS_CWRITER);
1051
1052         return its->cmd_write;
1053 }
1054
1055 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1056 {
1057         /*
1058          * Make sure the commands written to memory are observable by
1059          * the ITS.
1060          */
1061         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1062                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1063         else
1064                 dsb(ishst);
1065 }
1066
1067 static int its_wait_for_range_completion(struct its_node *its,
1068                                          u64    prev_idx,
1069                                          struct its_cmd_block *to)
1070 {
1071         u64 rd_idx, to_idx, linear_idx;
1072         u32 count = 1000000;    /* 1s! */
1073
1074         /* Linearize to_idx if the command set has wrapped around */
1075         to_idx = its_cmd_ptr_to_offset(its, to);
1076         if (to_idx < prev_idx)
1077                 to_idx += ITS_CMD_QUEUE_SZ;
1078
1079         linear_idx = prev_idx;
1080
1081         while (1) {
1082                 s64 delta;
1083
1084                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1085
1086                 /*
1087                  * Compute the read pointer progress, taking the
1088                  * potential wrap-around into account.
1089                  */
1090                 delta = rd_idx - prev_idx;
1091                 if (rd_idx < prev_idx)
1092                         delta += ITS_CMD_QUEUE_SZ;
1093
1094                 linear_idx += delta;
1095                 if (linear_idx >= to_idx)
1096                         break;
1097
1098                 count--;
1099                 if (!count) {
1100                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1101                                            to_idx, linear_idx);
1102                         return -1;
1103                 }
1104                 prev_idx = rd_idx;
1105                 cpu_relax();
1106                 udelay(1);
1107         }
1108
1109         return 0;
1110 }
1111
1112 /* Warning, macro hell follows */
1113 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1114 void name(struct its_node *its,                                         \
1115           buildtype builder,                                            \
1116           struct its_cmd_desc *desc)                                    \
1117 {                                                                       \
1118         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1119         synctype *sync_obj;                                             \
1120         unsigned long flags;                                            \
1121         u64 rd_idx;                                                     \
1122                                                                         \
1123         raw_spin_lock_irqsave(&its->lock, flags);                       \
1124                                                                         \
1125         cmd = its_allocate_entry(its);                                  \
1126         if (!cmd) {             /* We're soooooo screewed... */         \
1127                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1128                 return;                                                 \
1129         }                                                               \
1130         sync_obj = builder(its, cmd, desc);                             \
1131         its_flush_cmd(its, cmd);                                        \
1132                                                                         \
1133         if (sync_obj) {                                                 \
1134                 sync_cmd = its_allocate_entry(its);                     \
1135                 if (!sync_cmd)                                          \
1136                         goto post;                                      \
1137                                                                         \
1138                 buildfn(its, sync_cmd, sync_obj);                       \
1139                 its_flush_cmd(its, sync_cmd);                           \
1140         }                                                               \
1141                                                                         \
1142 post:                                                                   \
1143         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1144         next_cmd = its_post_commands(its);                              \
1145         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1146                                                                         \
1147         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1148                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1149 }
1150
1151 static void its_build_sync_cmd(struct its_node *its,
1152                                struct its_cmd_block *sync_cmd,
1153                                struct its_collection *sync_col)
1154 {
1155         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1156         its_encode_target(sync_cmd, sync_col->target_address);
1157
1158         its_fixup_cmd(sync_cmd);
1159 }
1160
1161 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1162                              struct its_collection, its_build_sync_cmd)
1163
1164 static void its_build_vsync_cmd(struct its_node *its,
1165                                 struct its_cmd_block *sync_cmd,
1166                                 struct its_vpe *sync_vpe)
1167 {
1168         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1169         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1170
1171         its_fixup_cmd(sync_cmd);
1172 }
1173
1174 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1175                              struct its_vpe, its_build_vsync_cmd)
1176
1177 static void its_send_int(struct its_device *dev, u32 event_id)
1178 {
1179         struct its_cmd_desc desc;
1180
1181         desc.its_int_cmd.dev = dev;
1182         desc.its_int_cmd.event_id = event_id;
1183
1184         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1185 }
1186
1187 static void its_send_clear(struct its_device *dev, u32 event_id)
1188 {
1189         struct its_cmd_desc desc;
1190
1191         desc.its_clear_cmd.dev = dev;
1192         desc.its_clear_cmd.event_id = event_id;
1193
1194         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1195 }
1196
1197 static void its_send_inv(struct its_device *dev, u32 event_id)
1198 {
1199         struct its_cmd_desc desc;
1200
1201         desc.its_inv_cmd.dev = dev;
1202         desc.its_inv_cmd.event_id = event_id;
1203
1204         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1205 }
1206
1207 static void its_send_mapd(struct its_device *dev, int valid)
1208 {
1209         struct its_cmd_desc desc;
1210
1211         desc.its_mapd_cmd.dev = dev;
1212         desc.its_mapd_cmd.valid = !!valid;
1213
1214         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1215 }
1216
1217 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1218                           int valid)
1219 {
1220         struct its_cmd_desc desc;
1221
1222         desc.its_mapc_cmd.col = col;
1223         desc.its_mapc_cmd.valid = !!valid;
1224
1225         its_send_single_command(its, its_build_mapc_cmd, &desc);
1226 }
1227
1228 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1229 {
1230         struct its_cmd_desc desc;
1231
1232         desc.its_mapti_cmd.dev = dev;
1233         desc.its_mapti_cmd.phys_id = irq_id;
1234         desc.its_mapti_cmd.event_id = id;
1235
1236         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1237 }
1238
1239 static void its_send_movi(struct its_device *dev,
1240                           struct its_collection *col, u32 id)
1241 {
1242         struct its_cmd_desc desc;
1243
1244         desc.its_movi_cmd.dev = dev;
1245         desc.its_movi_cmd.col = col;
1246         desc.its_movi_cmd.event_id = id;
1247
1248         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1249 }
1250
1251 static void its_send_discard(struct its_device *dev, u32 id)
1252 {
1253         struct its_cmd_desc desc;
1254
1255         desc.its_discard_cmd.dev = dev;
1256         desc.its_discard_cmd.event_id = id;
1257
1258         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1259 }
1260
1261 static void its_send_invall(struct its_node *its, struct its_collection *col)
1262 {
1263         struct its_cmd_desc desc;
1264
1265         desc.its_invall_cmd.col = col;
1266
1267         its_send_single_command(its, its_build_invall_cmd, &desc);
1268 }
1269
1270 static void its_send_vmapti(struct its_device *dev, u32 id)
1271 {
1272         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1273         struct its_cmd_desc desc;
1274
1275         desc.its_vmapti_cmd.vpe = map->vpe;
1276         desc.its_vmapti_cmd.dev = dev;
1277         desc.its_vmapti_cmd.virt_id = map->vintid;
1278         desc.its_vmapti_cmd.event_id = id;
1279         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1280
1281         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1282 }
1283
1284 static void its_send_vmovi(struct its_device *dev, u32 id)
1285 {
1286         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1287         struct its_cmd_desc desc;
1288
1289         desc.its_vmovi_cmd.vpe = map->vpe;
1290         desc.its_vmovi_cmd.dev = dev;
1291         desc.its_vmovi_cmd.event_id = id;
1292         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1293
1294         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1295 }
1296
1297 static void its_send_vmapp(struct its_node *its,
1298                            struct its_vpe *vpe, bool valid)
1299 {
1300         struct its_cmd_desc desc;
1301
1302         desc.its_vmapp_cmd.vpe = vpe;
1303         desc.its_vmapp_cmd.valid = valid;
1304         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1305
1306         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1307 }
1308
1309 static void its_send_vmovp(struct its_vpe *vpe)
1310 {
1311         struct its_cmd_desc desc = {};
1312         struct its_node *its;
1313         unsigned long flags;
1314         int col_id = vpe->col_idx;
1315
1316         desc.its_vmovp_cmd.vpe = vpe;
1317
1318         if (!its_list_map) {
1319                 its = list_first_entry(&its_nodes, struct its_node, entry);
1320                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1321                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1322                 return;
1323         }
1324
1325         /*
1326          * Yet another marvel of the architecture. If using the
1327          * its_list "feature", we need to make sure that all ITSs
1328          * receive all VMOVP commands in the same order. The only way
1329          * to guarantee this is to make vmovp a serialization point.
1330          *
1331          * Wall <-- Head.
1332          */
1333         raw_spin_lock_irqsave(&vmovp_lock, flags);
1334
1335         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1336         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1337
1338         /* Emit VMOVPs */
1339         list_for_each_entry(its, &its_nodes, entry) {
1340                 if (!is_v4(its))
1341                         continue;
1342
1343                 if (!require_its_list_vmovp(vpe->its_vm, its))
1344                         continue;
1345
1346                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1347                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1348         }
1349
1350         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1351 }
1352
1353 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1354 {
1355         struct its_cmd_desc desc;
1356
1357         desc.its_vinvall_cmd.vpe = vpe;
1358         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1359 }
1360
1361 static void its_send_vinv(struct its_device *dev, u32 event_id)
1362 {
1363         struct its_cmd_desc desc;
1364
1365         /*
1366          * There is no real VINV command. This is just a normal INV,
1367          * with a VSYNC instead of a SYNC.
1368          */
1369         desc.its_inv_cmd.dev = dev;
1370         desc.its_inv_cmd.event_id = event_id;
1371
1372         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1373 }
1374
1375 static void its_send_vint(struct its_device *dev, u32 event_id)
1376 {
1377         struct its_cmd_desc desc;
1378
1379         /*
1380          * There is no real VINT command. This is just a normal INT,
1381          * with a VSYNC instead of a SYNC.
1382          */
1383         desc.its_int_cmd.dev = dev;
1384         desc.its_int_cmd.event_id = event_id;
1385
1386         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1387 }
1388
1389 static void its_send_vclear(struct its_device *dev, u32 event_id)
1390 {
1391         struct its_cmd_desc desc;
1392
1393         /*
1394          * There is no real VCLEAR command. This is just a normal CLEAR,
1395          * with a VSYNC instead of a SYNC.
1396          */
1397         desc.its_clear_cmd.dev = dev;
1398         desc.its_clear_cmd.event_id = event_id;
1399
1400         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1401 }
1402
1403 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1404 {
1405         struct its_cmd_desc desc;
1406
1407         desc.its_invdb_cmd.vpe = vpe;
1408         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1409 }
1410
1411 /*
1412  * irqchip functions - assumes MSI, mostly.
1413  */
1414 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1415 {
1416         struct its_vlpi_map *map = get_vlpi_map(d);
1417         irq_hw_number_t hwirq;
1418         void *va;
1419         u8 *cfg;
1420
1421         if (map) {
1422                 va = page_address(map->vm->vprop_page);
1423                 hwirq = map->vintid;
1424
1425                 /* Remember the updated property */
1426                 map->properties &= ~clr;
1427                 map->properties |= set | LPI_PROP_GROUP1;
1428         } else {
1429                 va = gic_rdists->prop_table_va;
1430                 hwirq = d->hwirq;
1431         }
1432
1433         cfg = va + hwirq - 8192;
1434         *cfg &= ~clr;
1435         *cfg |= set | LPI_PROP_GROUP1;
1436
1437         /*
1438          * Make the above write visible to the redistributors.
1439          * And yes, we're flushing exactly: One. Single. Byte.
1440          * Humpf...
1441          */
1442         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1443                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1444         else
1445                 dsb(ishst);
1446 }
1447
1448 static void wait_for_syncr(void __iomem *rdbase)
1449 {
1450         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1451                 cpu_relax();
1452 }
1453
1454 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1455 {
1456         void __iomem *rdbase;
1457         unsigned long flags;
1458         int cpu;
1459
1460         /* Target the redistributor this LPI is currently routed to */
1461         cpu = irq_to_cpuid_lock(d, &flags);
1462         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1463
1464         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1465         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1466         wait_for_syncr(rdbase);
1467
1468         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1469         irq_to_cpuid_unlock(d, flags);
1470 }
1471
1472 static void direct_lpi_inv(struct irq_data *d)
1473 {
1474         struct its_vlpi_map *map = get_vlpi_map(d);
1475         u64 val;
1476
1477         if (map) {
1478                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1479
1480                 WARN_ON(!is_v4_1(its_dev->its));
1481
1482                 val  = GICR_INVLPIR_V;
1483                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1484                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1485         } else {
1486                 val = d->hwirq;
1487         }
1488
1489         __direct_lpi_inv(d, val);
1490 }
1491
1492 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1493 {
1494         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1495
1496         lpi_write_config(d, clr, set);
1497         if (gic_rdists->has_direct_lpi &&
1498             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1499                 direct_lpi_inv(d);
1500         else if (!irqd_is_forwarded_to_vcpu(d))
1501                 its_send_inv(its_dev, its_get_event_id(d));
1502         else
1503                 its_send_vinv(its_dev, its_get_event_id(d));
1504 }
1505
1506 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1507 {
1508         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1509         u32 event = its_get_event_id(d);
1510         struct its_vlpi_map *map;
1511
1512         /*
1513          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1514          * here.
1515          */
1516         if (is_v4_1(its_dev->its))
1517                 return;
1518
1519         map = dev_event_to_vlpi_map(its_dev, event);
1520
1521         if (map->db_enabled == enable)
1522                 return;
1523
1524         map->db_enabled = enable;
1525
1526         /*
1527          * More fun with the architecture:
1528          *
1529          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1530          * value or to 1023, depending on the enable bit. But that
1531          * would be issuing a mapping for an /existing/ DevID+EventID
1532          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1533          * to the /same/ vPE, using this opportunity to adjust the
1534          * doorbell. Mouahahahaha. We loves it, Precious.
1535          */
1536         its_send_vmovi(its_dev, event);
1537 }
1538
1539 static void its_mask_irq(struct irq_data *d)
1540 {
1541         if (irqd_is_forwarded_to_vcpu(d))
1542                 its_vlpi_set_doorbell(d, false);
1543
1544         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1545 }
1546
1547 static void its_unmask_irq(struct irq_data *d)
1548 {
1549         if (irqd_is_forwarded_to_vcpu(d))
1550                 its_vlpi_set_doorbell(d, true);
1551
1552         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1553 }
1554
1555 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1556 {
1557         if (irqd_affinity_is_managed(d))
1558                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1559
1560         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1561 }
1562
1563 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1564 {
1565         if (irqd_affinity_is_managed(d))
1566                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1567         else
1568                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1569 }
1570
1571 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1572 {
1573         if (irqd_affinity_is_managed(d))
1574                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1575         else
1576                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1577 }
1578
1579 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1580                                               const struct cpumask *cpu_mask)
1581 {
1582         unsigned int cpu = nr_cpu_ids, tmp;
1583         int count = S32_MAX;
1584
1585         for_each_cpu(tmp, cpu_mask) {
1586                 int this_count = its_read_lpi_count(d, tmp);
1587                 if (this_count < count) {
1588                         cpu = tmp;
1589                         count = this_count;
1590                 }
1591         }
1592
1593         return cpu;
1594 }
1595
1596 /*
1597  * As suggested by Thomas Gleixner in:
1598  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1599  */
1600 static int its_select_cpu(struct irq_data *d,
1601                           const struct cpumask *aff_mask)
1602 {
1603         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1604         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1605         static struct cpumask __tmpmask;
1606         struct cpumask *tmpmask;
1607         unsigned long flags;
1608         int cpu, node;
1609         node = its_dev->its->numa_node;
1610         tmpmask = &__tmpmask;
1611
1612         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1613
1614         if (!irqd_affinity_is_managed(d)) {
1615                 /* First try the NUMA node */
1616                 if (node != NUMA_NO_NODE) {
1617                         /*
1618                          * Try the intersection of the affinity mask and the
1619                          * node mask (and the online mask, just to be safe).
1620                          */
1621                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1622                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1623
1624                         /*
1625                          * Ideally, we would check if the mask is empty, and
1626                          * try again on the full node here.
1627                          *
1628                          * But it turns out that the way ACPI describes the
1629                          * affinity for ITSs only deals about memory, and
1630                          * not target CPUs, so it cannot describe a single
1631                          * ITS placed next to two NUMA nodes.
1632                          *
1633                          * Instead, just fallback on the online mask. This
1634                          * diverges from Thomas' suggestion above.
1635                          */
1636                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1637                         if (cpu < nr_cpu_ids)
1638                                 goto out;
1639
1640                         /* If we can't cross sockets, give up */
1641                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1642                                 goto out;
1643
1644                         /* If the above failed, expand the search */
1645                 }
1646
1647                 /* Try the intersection of the affinity and online masks */
1648                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1649
1650                 /* If that doesn't fly, the online mask is the last resort */
1651                 if (cpumask_empty(tmpmask))
1652                         cpumask_copy(tmpmask, cpu_online_mask);
1653
1654                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1655         } else {
1656                 cpumask_copy(tmpmask, aff_mask);
1657
1658                 /* If we cannot cross sockets, limit the search to that node */
1659                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1660                     node != NUMA_NO_NODE)
1661                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1662
1663                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1664         }
1665 out:
1666         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1667
1668         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1669         return cpu;
1670 }
1671
1672 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1673                             bool force)
1674 {
1675         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1676         struct its_collection *target_col;
1677         u32 id = its_get_event_id(d);
1678         int cpu, prev_cpu;
1679
1680         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1681         if (irqd_is_forwarded_to_vcpu(d))
1682                 return -EINVAL;
1683
1684         prev_cpu = its_dev->event_map.col_map[id];
1685         its_dec_lpi_count(d, prev_cpu);
1686
1687         if (!force)
1688                 cpu = its_select_cpu(d, mask_val);
1689         else
1690                 cpu = cpumask_pick_least_loaded(d, mask_val);
1691
1692         if (cpu < 0 || cpu >= nr_cpu_ids)
1693                 goto err;
1694
1695         /* don't set the affinity when the target cpu is same as current one */
1696         if (cpu != prev_cpu) {
1697                 target_col = &its_dev->its->collections[cpu];
1698                 its_send_movi(its_dev, target_col, id);
1699                 its_dev->event_map.col_map[id] = cpu;
1700                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1701         }
1702
1703         its_inc_lpi_count(d, cpu);
1704
1705         return IRQ_SET_MASK_OK_DONE;
1706
1707 err:
1708         its_inc_lpi_count(d, prev_cpu);
1709         return -EINVAL;
1710 }
1711
1712 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1713 {
1714         struct its_node *its = its_dev->its;
1715
1716         return its->phys_base + GITS_TRANSLATER;
1717 }
1718
1719 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1720 {
1721         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1722         struct its_node *its;
1723         u64 addr;
1724
1725         its = its_dev->its;
1726         addr = its->get_msi_base(its_dev);
1727
1728         msg->address_lo         = lower_32_bits(addr);
1729         msg->address_hi         = upper_32_bits(addr);
1730         msg->data               = its_get_event_id(d);
1731
1732         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1733 }
1734
1735 static int its_irq_set_irqchip_state(struct irq_data *d,
1736                                      enum irqchip_irq_state which,
1737                                      bool state)
1738 {
1739         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1740         u32 event = its_get_event_id(d);
1741
1742         if (which != IRQCHIP_STATE_PENDING)
1743                 return -EINVAL;
1744
1745         if (irqd_is_forwarded_to_vcpu(d)) {
1746                 if (state)
1747                         its_send_vint(its_dev, event);
1748                 else
1749                         its_send_vclear(its_dev, event);
1750         } else {
1751                 if (state)
1752                         its_send_int(its_dev, event);
1753                 else
1754                         its_send_clear(its_dev, event);
1755         }
1756
1757         return 0;
1758 }
1759
1760 static int its_irq_retrigger(struct irq_data *d)
1761 {
1762         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1763 }
1764
1765 /*
1766  * Two favourable cases:
1767  *
1768  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1769  *     for vSGI delivery
1770  *
1771  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1772  *     and we're better off mapping all VPEs always
1773  *
1774  * If neither (a) nor (b) is true, then we map vPEs on demand.
1775  *
1776  */
1777 static bool gic_requires_eager_mapping(void)
1778 {
1779         if (!its_list_map || gic_rdists->has_rvpeid)
1780                 return true;
1781
1782         return false;
1783 }
1784
1785 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1786 {
1787         unsigned long flags;
1788
1789         if (gic_requires_eager_mapping())
1790                 return;
1791
1792         raw_spin_lock_irqsave(&vmovp_lock, flags);
1793
1794         /*
1795          * If the VM wasn't mapped yet, iterate over the vpes and get
1796          * them mapped now.
1797          */
1798         vm->vlpi_count[its->list_nr]++;
1799
1800         if (vm->vlpi_count[its->list_nr] == 1) {
1801                 int i;
1802
1803                 for (i = 0; i < vm->nr_vpes; i++) {
1804                         struct its_vpe *vpe = vm->vpes[i];
1805                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1806
1807                         /* Map the VPE to the first possible CPU */
1808                         vpe->col_idx = cpumask_first(cpu_online_mask);
1809                         its_send_vmapp(its, vpe, true);
1810                         its_send_vinvall(its, vpe);
1811                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1812                 }
1813         }
1814
1815         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1816 }
1817
1818 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1819 {
1820         unsigned long flags;
1821
1822         /* Not using the ITS list? Everything is always mapped. */
1823         if (gic_requires_eager_mapping())
1824                 return;
1825
1826         raw_spin_lock_irqsave(&vmovp_lock, flags);
1827
1828         if (!--vm->vlpi_count[its->list_nr]) {
1829                 int i;
1830
1831                 for (i = 0; i < vm->nr_vpes; i++)
1832                         its_send_vmapp(its, vm->vpes[i], false);
1833         }
1834
1835         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1836 }
1837
1838 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1839 {
1840         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1841         u32 event = its_get_event_id(d);
1842         int ret = 0;
1843
1844         if (!info->map)
1845                 return -EINVAL;
1846
1847         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1848
1849         if (!its_dev->event_map.vm) {
1850                 struct its_vlpi_map *maps;
1851
1852                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1853                                GFP_ATOMIC);
1854                 if (!maps) {
1855                         ret = -ENOMEM;
1856                         goto out;
1857                 }
1858
1859                 its_dev->event_map.vm = info->map->vm;
1860                 its_dev->event_map.vlpi_maps = maps;
1861         } else if (its_dev->event_map.vm != info->map->vm) {
1862                 ret = -EINVAL;
1863                 goto out;
1864         }
1865
1866         /* Get our private copy of the mapping information */
1867         its_dev->event_map.vlpi_maps[event] = *info->map;
1868
1869         if (irqd_is_forwarded_to_vcpu(d)) {
1870                 /* Already mapped, move it around */
1871                 its_send_vmovi(its_dev, event);
1872         } else {
1873                 /* Ensure all the VPEs are mapped on this ITS */
1874                 its_map_vm(its_dev->its, info->map->vm);
1875
1876                 /*
1877                  * Flag the interrupt as forwarded so that we can
1878                  * start poking the virtual property table.
1879                  */
1880                 irqd_set_forwarded_to_vcpu(d);
1881
1882                 /* Write out the property to the prop table */
1883                 lpi_write_config(d, 0xff, info->map->properties);
1884
1885                 /* Drop the physical mapping */
1886                 its_send_discard(its_dev, event);
1887
1888                 /* and install the virtual one */
1889                 its_send_vmapti(its_dev, event);
1890
1891                 /* Increment the number of VLPIs */
1892                 its_dev->event_map.nr_vlpis++;
1893         }
1894
1895 out:
1896         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1897         return ret;
1898 }
1899
1900 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1901 {
1902         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1903         struct its_vlpi_map *map;
1904         int ret = 0;
1905
1906         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1907
1908         map = get_vlpi_map(d);
1909
1910         if (!its_dev->event_map.vm || !map) {
1911                 ret = -EINVAL;
1912                 goto out;
1913         }
1914
1915         /* Copy our mapping information to the incoming request */
1916         *info->map = *map;
1917
1918 out:
1919         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1920         return ret;
1921 }
1922
1923 static int its_vlpi_unmap(struct irq_data *d)
1924 {
1925         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1926         u32 event = its_get_event_id(d);
1927         int ret = 0;
1928
1929         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1930
1931         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1932                 ret = -EINVAL;
1933                 goto out;
1934         }
1935
1936         /* Drop the virtual mapping */
1937         its_send_discard(its_dev, event);
1938
1939         /* and restore the physical one */
1940         irqd_clr_forwarded_to_vcpu(d);
1941         its_send_mapti(its_dev, d->hwirq, event);
1942         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1943                                     LPI_PROP_ENABLED |
1944                                     LPI_PROP_GROUP1));
1945
1946         /* Potentially unmap the VM from this ITS */
1947         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1948
1949         /*
1950          * Drop the refcount and make the device available again if
1951          * this was the last VLPI.
1952          */
1953         if (!--its_dev->event_map.nr_vlpis) {
1954                 its_dev->event_map.vm = NULL;
1955                 kfree(its_dev->event_map.vlpi_maps);
1956         }
1957
1958 out:
1959         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1960         return ret;
1961 }
1962
1963 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1964 {
1965         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1966
1967         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1968                 return -EINVAL;
1969
1970         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1971                 lpi_update_config(d, 0xff, info->config);
1972         else
1973                 lpi_write_config(d, 0xff, info->config);
1974         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1975
1976         return 0;
1977 }
1978
1979 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1980 {
1981         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1982         struct its_cmd_info *info = vcpu_info;
1983
1984         /* Need a v4 ITS */
1985         if (!is_v4(its_dev->its))
1986                 return -EINVAL;
1987
1988         /* Unmap request? */
1989         if (!info)
1990                 return its_vlpi_unmap(d);
1991
1992         switch (info->cmd_type) {
1993         case MAP_VLPI:
1994                 return its_vlpi_map(d, info);
1995
1996         case GET_VLPI:
1997                 return its_vlpi_get(d, info);
1998
1999         case PROP_UPDATE_VLPI:
2000         case PROP_UPDATE_AND_INV_VLPI:
2001                 return its_vlpi_prop_update(d, info);
2002
2003         default:
2004                 return -EINVAL;
2005         }
2006 }
2007
2008 static struct irq_chip its_irq_chip = {
2009         .name                   = "ITS",
2010         .irq_mask               = its_mask_irq,
2011         .irq_unmask             = its_unmask_irq,
2012         .irq_eoi                = irq_chip_eoi_parent,
2013         .irq_set_affinity       = its_set_affinity,
2014         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
2015         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
2016         .irq_retrigger          = its_irq_retrigger,
2017         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
2018 };
2019
2020
2021 /*
2022  * How we allocate LPIs:
2023  *
2024  * lpi_range_list contains ranges of LPIs that are to available to
2025  * allocate from. To allocate LPIs, just pick the first range that
2026  * fits the required allocation, and reduce it by the required
2027  * amount. Once empty, remove the range from the list.
2028  *
2029  * To free a range of LPIs, add a free range to the list, sort it and
2030  * merge the result if the new range happens to be adjacent to an
2031  * already free block.
2032  *
2033  * The consequence of the above is that allocation is cost is low, but
2034  * freeing is expensive. We assumes that freeing rarely occurs.
2035  */
2036 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2037
2038 static DEFINE_MUTEX(lpi_range_lock);
2039 static LIST_HEAD(lpi_range_list);
2040
2041 struct lpi_range {
2042         struct list_head        entry;
2043         u32                     base_id;
2044         u32                     span;
2045 };
2046
2047 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2048 {
2049         struct lpi_range *range;
2050
2051         range = kmalloc(sizeof(*range), GFP_KERNEL);
2052         if (range) {
2053                 range->base_id = base;
2054                 range->span = span;
2055         }
2056
2057         return range;
2058 }
2059
2060 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2061 {
2062         struct lpi_range *range, *tmp;
2063         int err = -ENOSPC;
2064
2065         mutex_lock(&lpi_range_lock);
2066
2067         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2068                 if (range->span >= nr_lpis) {
2069                         *base = range->base_id;
2070                         range->base_id += nr_lpis;
2071                         range->span -= nr_lpis;
2072
2073                         if (range->span == 0) {
2074                                 list_del(&range->entry);
2075                                 kfree(range);
2076                         }
2077
2078                         err = 0;
2079                         break;
2080                 }
2081         }
2082
2083         mutex_unlock(&lpi_range_lock);
2084
2085         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2086         return err;
2087 }
2088
2089 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2090 {
2091         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2092                 return;
2093         if (a->base_id + a->span != b->base_id)
2094                 return;
2095         b->base_id = a->base_id;
2096         b->span += a->span;
2097         list_del(&a->entry);
2098         kfree(a);
2099 }
2100
2101 static int free_lpi_range(u32 base, u32 nr_lpis)
2102 {
2103         struct lpi_range *new, *old;
2104
2105         new = mk_lpi_range(base, nr_lpis);
2106         if (!new)
2107                 return -ENOMEM;
2108
2109         mutex_lock(&lpi_range_lock);
2110
2111         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2112                 if (old->base_id < base)
2113                         break;
2114         }
2115         /*
2116          * old is the last element with ->base_id smaller than base,
2117          * so new goes right after it. If there are no elements with
2118          * ->base_id smaller than base, &old->entry ends up pointing
2119          * at the head of the list, and inserting new it the start of
2120          * the list is the right thing to do in that case as well.
2121          */
2122         list_add(&new->entry, &old->entry);
2123         /*
2124          * Now check if we can merge with the preceding and/or
2125          * following ranges.
2126          */
2127         merge_lpi_ranges(old, new);
2128         merge_lpi_ranges(new, list_next_entry(new, entry));
2129
2130         mutex_unlock(&lpi_range_lock);
2131         return 0;
2132 }
2133
2134 static int __init its_lpi_init(u32 id_bits)
2135 {
2136         u32 lpis = (1UL << id_bits) - 8192;
2137         u32 numlpis;
2138         int err;
2139
2140         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2141
2142         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2143                 lpis = numlpis;
2144                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2145                         lpis);
2146         }
2147
2148         /*
2149          * Initializing the allocator is just the same as freeing the
2150          * full range of LPIs.
2151          */
2152         err = free_lpi_range(8192, lpis);
2153         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2154         return err;
2155 }
2156
2157 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2158 {
2159         unsigned long *bitmap = NULL;
2160         int err = 0;
2161
2162         do {
2163                 err = alloc_lpi_range(nr_irqs, base);
2164                 if (!err)
2165                         break;
2166
2167                 nr_irqs /= 2;
2168         } while (nr_irqs > 0);
2169
2170         if (!nr_irqs)
2171                 err = -ENOSPC;
2172
2173         if (err)
2174                 goto out;
2175
2176         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2177         if (!bitmap)
2178                 goto out;
2179
2180         *nr_ids = nr_irqs;
2181
2182 out:
2183         if (!bitmap)
2184                 *base = *nr_ids = 0;
2185
2186         return bitmap;
2187 }
2188
2189 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2190 {
2191         WARN_ON(free_lpi_range(base, nr_ids));
2192         bitmap_free(bitmap);
2193 }
2194
2195 static void gic_reset_prop_table(void *va)
2196 {
2197         /* Priority 0xa0, Group-1, disabled */
2198         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2199
2200         /* Make sure the GIC will observe the written configuration */
2201         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2202 }
2203
2204 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2205 {
2206         struct page *prop_page;
2207
2208         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2209         if (!prop_page)
2210                 return NULL;
2211
2212         gic_reset_prop_table(page_address(prop_page));
2213
2214         return prop_page;
2215 }
2216
2217 static void its_free_prop_table(struct page *prop_page)
2218 {
2219         free_pages((unsigned long)page_address(prop_page),
2220                    get_order(LPI_PROPBASE_SZ));
2221 }
2222
2223 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2224 {
2225         phys_addr_t start, end, addr_end;
2226         u64 i;
2227
2228         /*
2229          * We don't bother checking for a kdump kernel as by
2230          * construction, the LPI tables are out of this kernel's
2231          * memory map.
2232          */
2233         if (is_kdump_kernel())
2234                 return true;
2235
2236         addr_end = addr + size - 1;
2237
2238         for_each_reserved_mem_range(i, &start, &end) {
2239                 if (addr >= start && addr_end <= end)
2240                         return true;
2241         }
2242
2243         /* Not found, not a good sign... */
2244         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2245                 &addr, &addr_end);
2246         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2247         return false;
2248 }
2249
2250 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2251 {
2252         if (efi_enabled(EFI_CONFIG_TABLES))
2253                 return efi_mem_reserve_persistent(addr, size);
2254
2255         return 0;
2256 }
2257
2258 static int __init its_setup_lpi_prop_table(void)
2259 {
2260         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2261                 u64 val;
2262
2263                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2264                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2265
2266                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2267                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2268                                                      LPI_PROPBASE_SZ,
2269                                                      MEMREMAP_WB);
2270                 gic_reset_prop_table(gic_rdists->prop_table_va);
2271         } else {
2272                 struct page *page;
2273
2274                 lpi_id_bits = min_t(u32,
2275                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2276                                     ITS_MAX_LPI_NRBITS);
2277                 page = its_allocate_prop_table(GFP_NOWAIT);
2278                 if (!page) {
2279                         pr_err("Failed to allocate PROPBASE\n");
2280                         return -ENOMEM;
2281                 }
2282
2283                 gic_rdists->prop_table_pa = page_to_phys(page);
2284                 gic_rdists->prop_table_va = page_address(page);
2285                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2286                                           LPI_PROPBASE_SZ));
2287         }
2288
2289         pr_info("GICv3: using LPI property table @%pa\n",
2290                 &gic_rdists->prop_table_pa);
2291
2292         return its_lpi_init(lpi_id_bits);
2293 }
2294
2295 static const char *its_base_type_string[] = {
2296         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2297         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2298         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2299         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2300         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2301         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2302         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2303 };
2304
2305 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2306 {
2307         u32 idx = baser - its->tables;
2308
2309         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2310 }
2311
2312 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2313                             u64 val)
2314 {
2315         u32 idx = baser - its->tables;
2316
2317         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2318         baser->val = its_read_baser(its, baser);
2319 }
2320
2321 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2322                            u64 cache, u64 shr, u32 order, bool indirect)
2323 {
2324         u64 val = its_read_baser(its, baser);
2325         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2326         u64 type = GITS_BASER_TYPE(val);
2327         u64 baser_phys, tmp;
2328         u32 alloc_pages, psz;
2329         struct page *page;
2330         void *base;
2331
2332         psz = baser->psz;
2333         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2334         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2335                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2336                         &its->phys_base, its_base_type_string[type],
2337                         alloc_pages, GITS_BASER_PAGES_MAX);
2338                 alloc_pages = GITS_BASER_PAGES_MAX;
2339                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2340         }
2341
2342         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2343         if (!page)
2344                 return -ENOMEM;
2345
2346         base = (void *)page_address(page);
2347         baser_phys = virt_to_phys(base);
2348
2349         /* Check if the physical address of the memory is above 48bits */
2350         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2351
2352                 /* 52bit PA is supported only when PageSize=64K */
2353                 if (psz != SZ_64K) {
2354                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2355                         free_pages((unsigned long)base, order);
2356                         return -ENXIO;
2357                 }
2358
2359                 /* Convert 52bit PA to 48bit field */
2360                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2361         }
2362
2363 retry_baser:
2364         val = (baser_phys                                        |
2365                 (type << GITS_BASER_TYPE_SHIFT)                  |
2366                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2367                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2368                 cache                                            |
2369                 shr                                              |
2370                 GITS_BASER_VALID);
2371
2372         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2373
2374         switch (psz) {
2375         case SZ_4K:
2376                 val |= GITS_BASER_PAGE_SIZE_4K;
2377                 break;
2378         case SZ_16K:
2379                 val |= GITS_BASER_PAGE_SIZE_16K;
2380                 break;
2381         case SZ_64K:
2382                 val |= GITS_BASER_PAGE_SIZE_64K;
2383                 break;
2384         }
2385
2386         its_write_baser(its, baser, val);
2387         tmp = baser->val;
2388
2389         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2390                 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2391
2392         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2393                 /*
2394                  * Shareability didn't stick. Just use
2395                  * whatever the read reported, which is likely
2396                  * to be the only thing this redistributor
2397                  * supports. If that's zero, make it
2398                  * non-cacheable as well.
2399                  */
2400                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2401                 if (!shr) {
2402                         cache = GITS_BASER_nC;
2403                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2404                 }
2405                 goto retry_baser;
2406         }
2407
2408         if (val != tmp) {
2409                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410                        &its->phys_base, its_base_type_string[type],
2411                        val, tmp);
2412                 free_pages((unsigned long)base, order);
2413                 return -ENXIO;
2414         }
2415
2416         baser->order = order;
2417         baser->base = base;
2418         baser->psz = psz;
2419         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420
2421         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423                 its_base_type_string[type],
2424                 (unsigned long)virt_to_phys(base),
2425                 indirect ? "indirect" : "flat", (int)esz,
2426                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428         return 0;
2429 }
2430
2431 static bool its_parse_indirect_baser(struct its_node *its,
2432                                      struct its_baser *baser,
2433                                      u32 *order, u32 ids)
2434 {
2435         u64 tmp = its_read_baser(its, baser);
2436         u64 type = GITS_BASER_TYPE(tmp);
2437         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439         u32 new_order = *order;
2440         u32 psz = baser->psz;
2441         bool indirect = false;
2442
2443         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444         if ((esz << ids) > (psz * 2)) {
2445                 /*
2446                  * Find out whether hw supports a single or two-level table by
2447                  * table by reading bit at offset '62' after writing '1' to it.
2448                  */
2449                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452                 if (indirect) {
2453                         /*
2454                          * The size of the lvl2 table is equal to ITS page size
2455                          * which is 'psz'. For computing lvl1 table size,
2456                          * subtract ID bits that sparse lvl2 table from 'ids'
2457                          * which is reported by ITS hardware times lvl1 table
2458                          * entry size.
2459                          */
2460                         ids -= ilog2(psz / (int)esz);
2461                         esz = GITS_LVL1_ENTRY_SIZE;
2462                 }
2463         }
2464
2465         /*
2466          * Allocate as many entries as required to fit the
2467          * range of device IDs that the ITS can grok... The ID
2468          * space being incredibly sparse, this results in a
2469          * massive waste of memory if two-level device table
2470          * feature is not supported by hardware.
2471          */
2472         new_order = max_t(u32, get_order(esz << ids), new_order);
2473         if (new_order > MAX_ORDER) {
2474                 new_order = MAX_ORDER;
2475                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477                         &its->phys_base, its_base_type_string[type],
2478                         device_ids(its), ids);
2479         }
2480
2481         *order = new_order;
2482
2483         return indirect;
2484 }
2485
2486 static u32 compute_common_aff(u64 val)
2487 {
2488         u32 aff, clpiaff;
2489
2490         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494 }
2495
2496 static u32 compute_its_aff(struct its_node *its)
2497 {
2498         u64 val;
2499         u32 svpet;
2500
2501         /*
2502          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503          * the resulting affinity. We then use that to see if this match
2504          * our own affinity.
2505          */
2506         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509         return compute_common_aff(val);
2510 }
2511
2512 static struct its_node *find_sibling_its(struct its_node *cur_its)
2513 {
2514         struct its_node *its;
2515         u32 aff;
2516
2517         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518                 return NULL;
2519
2520         aff = compute_its_aff(cur_its);
2521
2522         list_for_each_entry(its, &its_nodes, entry) {
2523                 u64 baser;
2524
2525                 if (!is_v4_1(its) || its == cur_its)
2526                         continue;
2527
2528                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529                         continue;
2530
2531                 if (aff != compute_its_aff(its))
2532                         continue;
2533
2534                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535                 baser = its->tables[2].val;
2536                 if (!(baser & GITS_BASER_VALID))
2537                         continue;
2538
2539                 return its;
2540         }
2541
2542         return NULL;
2543 }
2544
2545 static void its_free_tables(struct its_node *its)
2546 {
2547         int i;
2548
2549         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550                 if (its->tables[i].base) {
2551                         free_pages((unsigned long)its->tables[i].base,
2552                                    its->tables[i].order);
2553                         its->tables[i].base = NULL;
2554                 }
2555         }
2556 }
2557
2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559 {
2560         u64 psz = SZ_64K;
2561
2562         while (psz) {
2563                 u64 val, gpsz;
2564
2565                 val = its_read_baser(its, baser);
2566                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568                 switch (psz) {
2569                 case SZ_64K:
2570                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2571                         break;
2572                 case SZ_16K:
2573                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2574                         break;
2575                 case SZ_4K:
2576                 default:
2577                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2578                         break;
2579                 }
2580
2581                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584                 its_write_baser(its, baser, val);
2585
2586                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587                         break;
2588
2589                 switch (psz) {
2590                 case SZ_64K:
2591                         psz = SZ_16K;
2592                         break;
2593                 case SZ_16K:
2594                         psz = SZ_4K;
2595                         break;
2596                 case SZ_4K:
2597                 default:
2598                         return -1;
2599                 }
2600         }
2601
2602         baser->psz = psz;
2603         return 0;
2604 }
2605
2606 static int its_alloc_tables(struct its_node *its)
2607 {
2608         u64 shr = GITS_BASER_InnerShareable;
2609         u64 cache = GITS_BASER_RaWaWb;
2610         int err, i;
2611
2612         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613                 /* erratum 24313: ignore memory access type */
2614                 cache = GITS_BASER_nCnB;
2615
2616         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617                 struct its_baser *baser = its->tables + i;
2618                 u64 val = its_read_baser(its, baser);
2619                 u64 type = GITS_BASER_TYPE(val);
2620                 bool indirect = false;
2621                 u32 order;
2622
2623                 if (type == GITS_BASER_TYPE_NONE)
2624                         continue;
2625
2626                 if (its_probe_baser_psz(its, baser)) {
2627                         its_free_tables(its);
2628                         return -ENXIO;
2629                 }
2630
2631                 order = get_order(baser->psz);
2632
2633                 switch (type) {
2634                 case GITS_BASER_TYPE_DEVICE:
2635                         indirect = its_parse_indirect_baser(its, baser, &order,
2636                                                             device_ids(its));
2637                         break;
2638
2639                 case GITS_BASER_TYPE_VCPU:
2640                         if (is_v4_1(its)) {
2641                                 struct its_node *sibling;
2642
2643                                 WARN_ON(i != 2);
2644                                 if ((sibling = find_sibling_its(its))) {
2645                                         *baser = sibling->tables[2];
2646                                         its_write_baser(its, baser, baser->val);
2647                                         continue;
2648                                 }
2649                         }
2650
2651                         indirect = its_parse_indirect_baser(its, baser, &order,
2652                                                             ITS_MAX_VPEID_BITS);
2653                         break;
2654                 }
2655
2656                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2657                 if (err < 0) {
2658                         its_free_tables(its);
2659                         return err;
2660                 }
2661
2662                 /* Update settings which will be used for next BASERn */
2663                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2665         }
2666
2667         return 0;
2668 }
2669
2670 static u64 inherit_vpe_l1_table_from_its(void)
2671 {
2672         struct its_node *its;
2673         u64 val;
2674         u32 aff;
2675
2676         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677         aff = compute_common_aff(val);
2678
2679         list_for_each_entry(its, &its_nodes, entry) {
2680                 u64 baser, addr;
2681
2682                 if (!is_v4_1(its))
2683                         continue;
2684
2685                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2686                         continue;
2687
2688                 if (aff != compute_its_aff(its))
2689                         continue;
2690
2691                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692                 baser = its->tables[2].val;
2693                 if (!(baser & GITS_BASER_VALID))
2694                         continue;
2695
2696                 /* We have a winner! */
2697                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2698
2699                 val  = GICR_VPROPBASER_4_1_VALID;
2700                 if (baser & GITS_BASER_INDIRECT)
2701                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2702                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705                 case GIC_PAGE_SIZE_64K:
2706                         addr = GITS_BASER_ADDR_48_to_52(baser);
2707                         break;
2708                 default:
2709                         addr = baser & GENMASK_ULL(47, 12);
2710                         break;
2711                 }
2712                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2718
2719                 return val;
2720         }
2721
2722         return 0;
2723 }
2724
2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2726 {
2727         u32 aff;
2728         u64 val;
2729         int cpu;
2730
2731         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732         aff = compute_common_aff(val);
2733
2734         for_each_possible_cpu(cpu) {
2735                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2736
2737                 if (!base || cpu == smp_processor_id())
2738                         continue;
2739
2740                 val = gic_read_typer(base + GICR_TYPER);
2741                 if (aff != compute_common_aff(val))
2742                         continue;
2743
2744                 /*
2745                  * At this point, we have a victim. This particular CPU
2746                  * has already booted, and has an affinity that matches
2747                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748                  * Make sure we don't write the Z bit in that case.
2749                  */
2750                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751                 val &= ~GICR_VPROPBASER_4_1_Z;
2752
2753                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2755
2756                 return val;
2757         }
2758
2759         return 0;
2760 }
2761
2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2763 {
2764         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765         unsigned int psz, esz, idx, npg, gpsz;
2766         u64 val;
2767         struct page *page;
2768         __le64 *table;
2769
2770         if (!gic_rdists->has_rvpeid)
2771                 return true;
2772
2773         /* Skip non-present CPUs */
2774         if (!base)
2775                 return true;
2776
2777         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2778
2779         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2782
2783         switch (gpsz) {
2784         default:
2785                 WARN_ON(1);
2786                 fallthrough;
2787         case GIC_PAGE_SIZE_4K:
2788                 psz = SZ_4K;
2789                 break;
2790         case GIC_PAGE_SIZE_16K:
2791                 psz = SZ_16K;
2792                 break;
2793         case GIC_PAGE_SIZE_64K:
2794                 psz = SZ_64K;
2795                 break;
2796         }
2797
2798         /* Don't allow vpe_id that exceeds single, flat table limit */
2799         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800                 return (id < (npg * psz / (esz * SZ_8)));
2801
2802         /* Compute 1st level table index & check if that exceeds table limit */
2803         idx = id >> ilog2(psz / (esz * SZ_8));
2804         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2805                 return false;
2806
2807         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2808
2809         /* Allocate memory for 2nd level table */
2810         if (!table[idx]) {
2811                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2812                 if (!page)
2813                         return false;
2814
2815                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817                         gic_flush_dcache_to_poc(page_address(page), psz);
2818
2819                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2820
2821                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2824
2825                 /* Ensure updated table contents are visible to RD hardware */
2826                 dsb(sy);
2827         }
2828
2829         return true;
2830 }
2831
2832 static int allocate_vpe_l1_table(void)
2833 {
2834         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835         u64 val, gpsz, npg, pa;
2836         unsigned int psz = SZ_64K;
2837         unsigned int np, epp, esz;
2838         struct page *page;
2839
2840         if (!gic_rdists->has_rvpeid)
2841                 return 0;
2842
2843         /*
2844          * if VPENDBASER.Valid is set, disable any previously programmed
2845          * VPE by setting PendingLast while clearing Valid. This has the
2846          * effect of making sure no doorbell will be generated and we can
2847          * then safely clear VPROPBASER.Valid.
2848          */
2849         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851                                       vlpi_base + GICR_VPENDBASER);
2852
2853         /*
2854          * If we can inherit the configuration from another RD, let's do
2855          * so. Otherwise, we have to go through the allocation process. We
2856          * assume that all RDs have the exact same requirements, as
2857          * nothing will work otherwise.
2858          */
2859         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860         if (val & GICR_VPROPBASER_4_1_VALID)
2861                 goto out;
2862
2863         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864         if (!gic_data_rdist()->vpe_table_mask)
2865                 return -ENOMEM;
2866
2867         val = inherit_vpe_l1_table_from_its();
2868         if (val & GICR_VPROPBASER_4_1_VALID)
2869                 goto out;
2870
2871         /* First probe the page size */
2872         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2877
2878         switch (gpsz) {
2879         default:
2880                 gpsz = GIC_PAGE_SIZE_4K;
2881                 fallthrough;
2882         case GIC_PAGE_SIZE_4K:
2883                 psz = SZ_4K;
2884                 break;
2885         case GIC_PAGE_SIZE_16K:
2886                 psz = SZ_16K;
2887                 break;
2888         case GIC_PAGE_SIZE_64K:
2889                 psz = SZ_64K;
2890                 break;
2891         }
2892
2893         /*
2894          * Start populating the register from scratch, including RO fields
2895          * (which we want to print in debug cases...)
2896          */
2897         val = 0;
2898         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2900
2901         /* How many entries per GIC page? */
2902         esz++;
2903         epp = psz / (esz * SZ_8);
2904
2905         /*
2906          * If we need more than just a single L1 page, flag the table
2907          * as indirect and compute the number of required L1 pages.
2908          */
2909         if (epp < ITS_MAX_VPEID) {
2910                 int nl2;
2911
2912                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2913
2914                 /* Number of L2 pages required to cover the VPEID space */
2915                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2916
2917                 /* Number of L1 pages to point to the L2 pages */
2918                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2919         } else {
2920                 npg = 1;
2921         }
2922
2923         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2924
2925         /* Right, that's the number of CPU pages we need for L1 */
2926         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2927
2928         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929                  np, npg, psz, epp, esz);
2930         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2931         if (!page)
2932                 return -ENOMEM;
2933
2934         gic_data_rdist()->vpe_l1_base = page_address(page);
2935         pa = virt_to_phys(page_address(page));
2936         WARN_ON(!IS_ALIGNED(pa, psz));
2937
2938         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939         val |= GICR_VPROPBASER_RaWb;
2940         val |= GICR_VPROPBASER_InnerShareable;
2941         val |= GICR_VPROPBASER_4_1_Z;
2942         val |= GICR_VPROPBASER_4_1_VALID;
2943
2944 out:
2945         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2947
2948         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949                  smp_processor_id(), val,
2950                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2951
2952         return 0;
2953 }
2954
2955 static int its_alloc_collections(struct its_node *its)
2956 {
2957         int i;
2958
2959         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2960                                    GFP_KERNEL);
2961         if (!its->collections)
2962                 return -ENOMEM;
2963
2964         for (i = 0; i < nr_cpu_ids; i++)
2965                 its->collections[i].target_address = ~0ULL;
2966
2967         return 0;
2968 }
2969
2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2971 {
2972         struct page *pend_page;
2973
2974         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2975                                 get_order(LPI_PENDBASE_SZ));
2976         if (!pend_page)
2977                 return NULL;
2978
2979         /* Make sure the GIC will observe the zero-ed page */
2980         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2981
2982         return pend_page;
2983 }
2984
2985 static void its_free_pending_table(struct page *pt)
2986 {
2987         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2988 }
2989
2990 /*
2991  * Booting with kdump and LPIs enabled is generally fine. Any other
2992  * case is wrong in the absence of firmware/EFI support.
2993  */
2994 static bool enabled_lpis_allowed(void)
2995 {
2996         phys_addr_t addr;
2997         u64 val;
2998
2999         /* Check whether the property table is in a reserved region */
3000         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001         addr = val & GENMASK_ULL(51, 12);
3002
3003         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3004 }
3005
3006 static int __init allocate_lpi_tables(void)
3007 {
3008         u64 val;
3009         int err, cpu;
3010
3011         /*
3012          * If LPIs are enabled while we run this from the boot CPU,
3013          * flag the RD tables as pre-allocated if the stars do align.
3014          */
3015         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019                 pr_info("GICv3: Using preallocated redistributor tables\n");
3020         }
3021
3022         err = its_setup_lpi_prop_table();
3023         if (err)
3024                 return err;
3025
3026         /*
3027          * We allocate all the pending tables anyway, as we may have a
3028          * mix of RDs that have had LPIs enabled, and some that
3029          * don't. We'll free the unused ones as each CPU comes online.
3030          */
3031         for_each_possible_cpu(cpu) {
3032                 struct page *pend_page;
3033
3034                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3035                 if (!pend_page) {
3036                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3037                         return -ENOMEM;
3038                 }
3039
3040                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3041         }
3042
3043         return 0;
3044 }
3045
3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3047 {
3048         u32 count = 1000000;    /* 1s! */
3049         bool clean;
3050         u64 val;
3051
3052         do {
3053                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3054                 clean = !(val & GICR_VPENDBASER_Dirty);
3055                 if (!clean) {
3056                         count--;
3057                         cpu_relax();
3058                         udelay(1);
3059                 }
3060         } while (!clean && count);
3061
3062         if (unlikely(!clean))
3063                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3064
3065         return val;
3066 }
3067
3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3069 {
3070         u64 val;
3071
3072         /* Make sure we wait until the RD is done with the initial scan */
3073         val = read_vpend_dirty_clear(vlpi_base);
3074         val &= ~GICR_VPENDBASER_Valid;
3075         val &= ~clr;
3076         val |= set;
3077         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3078
3079         val = read_vpend_dirty_clear(vlpi_base);
3080         if (unlikely(val & GICR_VPENDBASER_Dirty))
3081                 val |= GICR_VPENDBASER_PendingLast;
3082
3083         return val;
3084 }
3085
3086 static void its_cpu_init_lpis(void)
3087 {
3088         void __iomem *rbase = gic_data_rdist_rd_base();
3089         struct page *pend_page;
3090         phys_addr_t paddr;
3091         u64 val, tmp;
3092
3093         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3094                 return;
3095
3096         val = readl_relaxed(rbase + GICR_CTLR);
3097         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098             (val & GICR_CTLR_ENABLE_LPIS)) {
3099                 /*
3100                  * Check that we get the same property table on all
3101                  * RDs. If we don't, this is hopeless.
3102                  */
3103                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104                 paddr &= GENMASK_ULL(51, 12);
3105                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3107
3108                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109                 paddr &= GENMASK_ULL(51, 16);
3110
3111                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3112                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3113
3114                 goto out;
3115         }
3116
3117         pend_page = gic_data_rdist()->pend_page;
3118         paddr = page_to_phys(pend_page);
3119
3120         /* set PROPBASE */
3121         val = (gic_rdists->prop_table_pa |
3122                GICR_PROPBASER_InnerShareable |
3123                GICR_PROPBASER_RaWaWb |
3124                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3125
3126         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3128
3129         if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3131
3132         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3133                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3134                         /*
3135                          * The HW reports non-shareable, we must
3136                          * remove the cacheability attributes as
3137                          * well.
3138                          */
3139                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140                                  GICR_PROPBASER_CACHEABILITY_MASK);
3141                         val |= GICR_PROPBASER_nC;
3142                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3143                 }
3144                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3145                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3146         }
3147
3148         /* set PENDBASE */
3149         val = (page_to_phys(pend_page) |
3150                GICR_PENDBASER_InnerShareable |
3151                GICR_PENDBASER_RaWaWb);
3152
3153         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3155
3156         if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3158
3159         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3160                 /*
3161                  * The HW reports non-shareable, we must remove the
3162                  * cacheability attributes as well.
3163                  */
3164                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165                          GICR_PENDBASER_CACHEABILITY_MASK);
3166                 val |= GICR_PENDBASER_nC;
3167                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3168         }
3169
3170         /* Enable LPIs */
3171         val = readl_relaxed(rbase + GICR_CTLR);
3172         val |= GICR_CTLR_ENABLE_LPIS;
3173         writel_relaxed(val, rbase + GICR_CTLR);
3174
3175         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3176                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3177
3178                 /*
3179                  * It's possible for CPU to receive VLPIs before it is
3180                  * scheduled as a vPE, especially for the first CPU, and the
3181                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182                  * as out of range and dropped by GIC.
3183                  * So we initialize IDbits to known value to avoid VLPI drop.
3184                  */
3185                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187                         smp_processor_id(), val);
3188                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3189
3190                 /*
3191                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3192                  * ancient programming gets left in and has possibility of
3193                  * corrupting memory.
3194                  */
3195                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3196         }
3197
3198         if (allocate_vpe_l1_table()) {
3199                 /*
3200                  * If the allocation has failed, we're in massive trouble.
3201                  * Disable direct injection, and pray that no VM was
3202                  * already running...
3203                  */
3204                 gic_rdists->has_rvpeid = false;
3205                 gic_rdists->has_vlpis = false;
3206         }
3207
3208         /* Make sure the GIC has seen the above */
3209         dsb(sy);
3210 out:
3211         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3212         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3213                 smp_processor_id(),
3214                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215                 "reserved" : "allocated",
3216                 &paddr);
3217 }
3218
3219 static void its_cpu_init_collection(struct its_node *its)
3220 {
3221         int cpu = smp_processor_id();
3222         u64 target;
3223
3224         /* avoid cross node collections and its mapping */
3225         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226                 struct device_node *cpu_node;
3227
3228                 cpu_node = of_get_cpu_node(cpu, NULL);
3229                 if (its->numa_node != NUMA_NO_NODE &&
3230                         its->numa_node != of_node_to_nid(cpu_node))
3231                         return;
3232         }
3233
3234         /*
3235          * We now have to bind each collection to its target
3236          * redistributor.
3237          */
3238         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3239                 /*
3240                  * This ITS wants the physical address of the
3241                  * redistributor.
3242                  */
3243                 target = gic_data_rdist()->phys_base;
3244         } else {
3245                 /* This ITS wants a linear CPU number. */
3246                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3248         }
3249
3250         /* Perform collection mapping */
3251         its->collections[cpu].target_address = target;
3252         its->collections[cpu].col_id = cpu;
3253
3254         its_send_mapc(its, &its->collections[cpu], 1);
3255         its_send_invall(its, &its->collections[cpu]);
3256 }
3257
3258 static void its_cpu_init_collections(void)
3259 {
3260         struct its_node *its;
3261
3262         raw_spin_lock(&its_lock);
3263
3264         list_for_each_entry(its, &its_nodes, entry)
3265                 its_cpu_init_collection(its);
3266
3267         raw_spin_unlock(&its_lock);
3268 }
3269
3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3271 {
3272         struct its_device *its_dev = NULL, *tmp;
3273         unsigned long flags;
3274
3275         raw_spin_lock_irqsave(&its->lock, flags);
3276
3277         list_for_each_entry(tmp, &its->its_device_list, entry) {
3278                 if (tmp->device_id == dev_id) {
3279                         its_dev = tmp;
3280                         break;
3281                 }
3282         }
3283
3284         raw_spin_unlock_irqrestore(&its->lock, flags);
3285
3286         return its_dev;
3287 }
3288
3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3290 {
3291         int i;
3292
3293         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295                         return &its->tables[i];
3296         }
3297
3298         return NULL;
3299 }
3300
3301 static bool its_alloc_table_entry(struct its_node *its,
3302                                   struct its_baser *baser, u32 id)
3303 {
3304         struct page *page;
3305         u32 esz, idx;
3306         __le64 *table;
3307
3308         /* Don't allow device id that exceeds single, flat table limit */
3309         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310         if (!(baser->val & GITS_BASER_INDIRECT))
3311                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3312
3313         /* Compute 1st level table index & check if that exceeds table limit */
3314         idx = id >> ilog2(baser->psz / esz);
3315         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3316                 return false;
3317
3318         table = baser->base;
3319
3320         /* Allocate memory for 2nd level table */
3321         if (!table[idx]) {
3322                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323                                         get_order(baser->psz));
3324                 if (!page)
3325                         return false;
3326
3327                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3329                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3330
3331                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3332
3333                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3335                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3336
3337                 /* Ensure updated table contents are visible to ITS hardware */
3338                 dsb(sy);
3339         }
3340
3341         return true;
3342 }
3343
3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3345 {
3346         struct its_baser *baser;
3347
3348         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3349
3350         /* Don't allow device id that exceeds ITS hardware limit */
3351         if (!baser)
3352                 return (ilog2(dev_id) < device_ids(its));
3353
3354         return its_alloc_table_entry(its, baser, dev_id);
3355 }
3356
3357 static bool its_alloc_vpe_table(u32 vpe_id)
3358 {
3359         struct its_node *its;
3360         int cpu;
3361
3362         /*
3363          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364          * could try and only do it on ITSs corresponding to devices
3365          * that have interrupts targeted at this VPE, but the
3366          * complexity becomes crazy (and you have tons of memory
3367          * anyway, right?).
3368          */
3369         list_for_each_entry(its, &its_nodes, entry) {
3370                 struct its_baser *baser;
3371
3372                 if (!is_v4(its))
3373                         continue;
3374
3375                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3376                 if (!baser)
3377                         return false;
3378
3379                 if (!its_alloc_table_entry(its, baser, vpe_id))
3380                         return false;
3381         }
3382
3383         /* Non v4.1? No need to iterate RDs and go back early. */
3384         if (!gic_rdists->has_rvpeid)
3385                 return true;
3386
3387         /*
3388          * Make sure the L2 tables are allocated for all copies of
3389          * the L1 table on *all* v4.1 RDs.
3390          */
3391         for_each_possible_cpu(cpu) {
3392                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3393                         return false;
3394         }
3395
3396         return true;
3397 }
3398
3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3400                                             int nvecs, bool alloc_lpis)
3401 {
3402         struct its_device *dev;
3403         unsigned long *lpi_map = NULL;
3404         unsigned long flags;
3405         u16 *col_map = NULL;
3406         void *itt;
3407         int lpi_base;
3408         int nr_lpis;
3409         int nr_ites;
3410         int sz;
3411
3412         if (!its_alloc_device_table(its, dev_id))
3413                 return NULL;
3414
3415         if (WARN_ON(!is_power_of_2(nvecs)))
3416                 nvecs = roundup_pow_of_two(nvecs);
3417
3418         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3419         /*
3420          * Even if the device wants a single LPI, the ITT must be
3421          * sized as a power of two (and you need at least one bit...).
3422          */
3423         nr_ites = max(2, nvecs);
3424         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3425         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3426         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3427         if (alloc_lpis) {
3428                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3429                 if (lpi_map)
3430                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3431                                           GFP_KERNEL);
3432         } else {
3433                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3434                 nr_lpis = 0;
3435                 lpi_base = 0;
3436         }
3437
3438         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3439                 kfree(dev);
3440                 kfree(itt);
3441                 bitmap_free(lpi_map);
3442                 kfree(col_map);
3443                 return NULL;
3444         }
3445
3446         gic_flush_dcache_to_poc(itt, sz);
3447
3448         dev->its = its;
3449         dev->itt = itt;
3450         dev->nr_ites = nr_ites;
3451         dev->event_map.lpi_map = lpi_map;
3452         dev->event_map.col_map = col_map;
3453         dev->event_map.lpi_base = lpi_base;
3454         dev->event_map.nr_lpis = nr_lpis;
3455         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3456         dev->device_id = dev_id;
3457         INIT_LIST_HEAD(&dev->entry);
3458
3459         raw_spin_lock_irqsave(&its->lock, flags);
3460         list_add(&dev->entry, &its->its_device_list);
3461         raw_spin_unlock_irqrestore(&its->lock, flags);
3462
3463         /* Map device to its ITT */
3464         its_send_mapd(dev, 1);
3465
3466         return dev;
3467 }
3468
3469 static void its_free_device(struct its_device *its_dev)
3470 {
3471         unsigned long flags;
3472
3473         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3474         list_del(&its_dev->entry);
3475         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3476         kfree(its_dev->event_map.col_map);
3477         kfree(its_dev->itt);
3478         kfree(its_dev);
3479 }
3480
3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3482 {
3483         int idx;
3484
3485         /* Find a free LPI region in lpi_map and allocate them. */
3486         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487                                       dev->event_map.nr_lpis,
3488                                       get_count_order(nvecs));
3489         if (idx < 0)
3490                 return -ENOSPC;
3491
3492         *hwirq = dev->event_map.lpi_base + idx;
3493
3494         return 0;
3495 }
3496
3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498                            int nvec, msi_alloc_info_t *info)
3499 {
3500         struct its_node *its;
3501         struct its_device *its_dev;
3502         struct msi_domain_info *msi_info;
3503         u32 dev_id;
3504         int err = 0;
3505
3506         /*
3507          * We ignore "dev" entirely, and rely on the dev_id that has
3508          * been passed via the scratchpad. This limits this domain's
3509          * usefulness to upper layers that definitely know that they
3510          * are built on top of the ITS.
3511          */
3512         dev_id = info->scratchpad[0].ul;
3513
3514         msi_info = msi_get_domain_info(domain);
3515         its = msi_info->data;
3516
3517         if (!gic_rdists->has_direct_lpi &&
3518             vpe_proxy.dev &&
3519             vpe_proxy.dev->its == its &&
3520             dev_id == vpe_proxy.dev->device_id) {
3521                 /* Bad luck. Get yourself a better implementation */
3522                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3523                           dev_id);
3524                 return -EINVAL;
3525         }
3526
3527         mutex_lock(&its->dev_alloc_lock);
3528         its_dev = its_find_device(its, dev_id);
3529         if (its_dev) {
3530                 /*
3531                  * We already have seen this ID, probably through
3532                  * another alias (PCI bridge of some sort). No need to
3533                  * create the device.
3534                  */
3535                 its_dev->shared = true;
3536                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3537                 goto out;
3538         }
3539
3540         its_dev = its_create_device(its, dev_id, nvec, true);
3541         if (!its_dev) {
3542                 err = -ENOMEM;
3543                 goto out;
3544         }
3545
3546         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547                 its_dev->shared = true;
3548
3549         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3550 out:
3551         mutex_unlock(&its->dev_alloc_lock);
3552         info->scratchpad[0].ptr = its_dev;
3553         return err;
3554 }
3555
3556 static struct msi_domain_ops its_msi_domain_ops = {
3557         .msi_prepare    = its_msi_prepare,
3558 };
3559
3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3561                                     unsigned int virq,
3562                                     irq_hw_number_t hwirq)
3563 {
3564         struct irq_fwspec fwspec;
3565
3566         if (irq_domain_get_of_node(domain->parent)) {
3567                 fwspec.fwnode = domain->parent->fwnode;
3568                 fwspec.param_count = 3;
3569                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570                 fwspec.param[1] = hwirq;
3571                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3572         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573                 fwspec.fwnode = domain->parent->fwnode;
3574                 fwspec.param_count = 2;
3575                 fwspec.param[0] = hwirq;
3576                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3577         } else {
3578                 return -EINVAL;
3579         }
3580
3581         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3582 }
3583
3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585                                 unsigned int nr_irqs, void *args)
3586 {
3587         msi_alloc_info_t *info = args;
3588         struct its_device *its_dev = info->scratchpad[0].ptr;
3589         struct its_node *its = its_dev->its;
3590         struct irq_data *irqd;
3591         irq_hw_number_t hwirq;
3592         int err;
3593         int i;
3594
3595         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3596         if (err)
3597                 return err;
3598
3599         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3600         if (err)
3601                 return err;
3602
3603         for (i = 0; i < nr_irqs; i++) {
3604                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3605                 if (err)
3606                         return err;
3607
3608                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3609                                               hwirq + i, &its_irq_chip, its_dev);
3610                 irqd = irq_get_irq_data(virq + i);
3611                 irqd_set_single_target(irqd);
3612                 irqd_set_affinity_on_activate(irqd);
3613                 irqd_set_resend_when_in_progress(irqd);
3614                 pr_debug("ID:%d pID:%d vID:%d\n",
3615                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3616                          (int)(hwirq + i), virq + i);
3617         }
3618
3619         return 0;
3620 }
3621
3622 static int its_irq_domain_activate(struct irq_domain *domain,
3623                                    struct irq_data *d, bool reserve)
3624 {
3625         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626         u32 event = its_get_event_id(d);
3627         int cpu;
3628
3629         cpu = its_select_cpu(d, cpu_online_mask);
3630         if (cpu < 0 || cpu >= nr_cpu_ids)
3631                 return -EINVAL;
3632
3633         its_inc_lpi_count(d, cpu);
3634         its_dev->event_map.col_map[event] = cpu;
3635         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3636
3637         /* Map the GIC IRQ and event to the device */
3638         its_send_mapti(its_dev, d->hwirq, event);
3639         return 0;
3640 }
3641
3642 static void its_irq_domain_deactivate(struct irq_domain *domain,
3643                                       struct irq_data *d)
3644 {
3645         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646         u32 event = its_get_event_id(d);
3647
3648         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3649         /* Stop the delivery of interrupts */
3650         its_send_discard(its_dev, event);
3651 }
3652
3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654                                 unsigned int nr_irqs)
3655 {
3656         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3658         struct its_node *its = its_dev->its;
3659         int i;
3660
3661         bitmap_release_region(its_dev->event_map.lpi_map,
3662                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663                               get_count_order(nr_irqs));
3664
3665         for (i = 0; i < nr_irqs; i++) {
3666                 struct irq_data *data = irq_domain_get_irq_data(domain,
3667                                                                 virq + i);
3668                 /* Nuke the entry in the domain */
3669                 irq_domain_reset_irq_data(data);
3670         }
3671
3672         mutex_lock(&its->dev_alloc_lock);
3673
3674         /*
3675          * If all interrupts have been freed, start mopping the
3676          * floor. This is conditioned on the device not being shared.
3677          */
3678         if (!its_dev->shared &&
3679             bitmap_empty(its_dev->event_map.lpi_map,
3680                          its_dev->event_map.nr_lpis)) {
3681                 its_lpi_free(its_dev->event_map.lpi_map,
3682                              its_dev->event_map.lpi_base,
3683                              its_dev->event_map.nr_lpis);
3684
3685                 /* Unmap device/itt */
3686                 its_send_mapd(its_dev, 0);
3687                 its_free_device(its_dev);
3688         }
3689
3690         mutex_unlock(&its->dev_alloc_lock);
3691
3692         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3693 }
3694
3695 static const struct irq_domain_ops its_domain_ops = {
3696         .alloc                  = its_irq_domain_alloc,
3697         .free                   = its_irq_domain_free,
3698         .activate               = its_irq_domain_activate,
3699         .deactivate             = its_irq_domain_deactivate,
3700 };
3701
3702 /*
3703  * This is insane.
3704  *
3705  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3706  * likely), the only way to perform an invalidate is to use a fake
3707  * device to issue an INV command, implying that the LPI has first
3708  * been mapped to some event on that device. Since this is not exactly
3709  * cheap, we try to keep that mapping around as long as possible, and
3710  * only issue an UNMAP if we're short on available slots.
3711  *
3712  * Broken by design(tm).
3713  *
3714  * GICv4.1, on the other hand, mandates that we're able to invalidate
3715  * by writing to a MMIO register. It doesn't implement the whole of
3716  * DirectLPI, but that's good enough. And most of the time, we don't
3717  * even have to invalidate anything, as the redistributor can be told
3718  * whether to generate a doorbell or not (we thus leave it enabled,
3719  * always).
3720  */
3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3722 {
3723         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3724         if (gic_rdists->has_rvpeid)
3725                 return;
3726
3727         /* Already unmapped? */
3728         if (vpe->vpe_proxy_event == -1)
3729                 return;
3730
3731         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3733
3734         /*
3735          * We don't track empty slots at all, so let's move the
3736          * next_victim pointer if we can quickly reuse that slot
3737          * instead of nuking an existing entry. Not clear that this is
3738          * always a win though, and this might just generate a ripple
3739          * effect... Let's just hope VPEs don't migrate too often.
3740          */
3741         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3743
3744         vpe->vpe_proxy_event = -1;
3745 }
3746
3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3748 {
3749         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750         if (gic_rdists->has_rvpeid)
3751                 return;
3752
3753         if (!gic_rdists->has_direct_lpi) {
3754                 unsigned long flags;
3755
3756                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757                 its_vpe_db_proxy_unmap_locked(vpe);
3758                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3759         }
3760 }
3761
3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3763 {
3764         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765         if (gic_rdists->has_rvpeid)
3766                 return;
3767
3768         /* Already mapped? */
3769         if (vpe->vpe_proxy_event != -1)
3770                 return;
3771
3772         /* This slot was already allocated. Kick the other VPE out. */
3773         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3775
3776         /* Map the new VPE instead */
3777         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3780
3781         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3783 }
3784
3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3786 {
3787         unsigned long flags;
3788         struct its_collection *target_col;
3789
3790         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3791         if (gic_rdists->has_rvpeid)
3792                 return;
3793
3794         if (gic_rdists->has_direct_lpi) {
3795                 void __iomem *rdbase;
3796
3797                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3799                 wait_for_syncr(rdbase);
3800
3801                 return;
3802         }
3803
3804         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3805
3806         its_vpe_db_proxy_map_locked(vpe);
3807
3808         target_col = &vpe_proxy.dev->its->collections[to];
3809         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3811
3812         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3813 }
3814
3815 static int its_vpe_set_affinity(struct irq_data *d,
3816                                 const struct cpumask *mask_val,
3817                                 bool force)
3818 {
3819         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3820         int from, cpu = cpumask_first(mask_val);
3821         unsigned long flags;
3822
3823         /*
3824          * Changing affinity is mega expensive, so let's be as lazy as
3825          * we can and only do it if we really have to. Also, if mapped
3826          * into the proxy device, we need to move the doorbell
3827          * interrupt to its new location.
3828          *
3829          * Another thing is that changing the affinity of a vPE affects
3830          * *other interrupts* such as all the vLPIs that are routed to
3831          * this vPE. This means that the irq_desc lock is not enough to
3832          * protect us, and that we must ensure nobody samples vpe->col_idx
3833          * during the update, hence the lock below which must also be
3834          * taken on any vLPI handling path that evaluates vpe->col_idx.
3835          */
3836         from = vpe_to_cpuid_lock(vpe, &flags);
3837         if (from == cpu)
3838                 goto out;
3839
3840         vpe->col_idx = cpu;
3841
3842         /*
3843          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844          * is sharing its VPE table with the current one.
3845          */
3846         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3848                 goto out;
3849
3850         its_send_vmovp(vpe);
3851         its_vpe_db_proxy_move(vpe, from, cpu);
3852
3853 out:
3854         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855         vpe_to_cpuid_unlock(vpe, flags);
3856
3857         return IRQ_SET_MASK_OK_DONE;
3858 }
3859
3860 static void its_wait_vpt_parse_complete(void)
3861 {
3862         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863         u64 val;
3864
3865         if (!gic_rdists->has_vpend_valid_dirty)
3866                 return;
3867
3868         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3869                                                        val,
3870                                                        !(val & GICR_VPENDBASER_Dirty),
3871                                                        1, 500));
3872 }
3873
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3875 {
3876         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3877         u64 val;
3878
3879         /* Schedule the VPE */
3880         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881                 GENMASK_ULL(51, 12);
3882         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883         val |= GICR_VPROPBASER_RaWb;
3884         val |= GICR_VPROPBASER_InnerShareable;
3885         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3886
3887         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3888                 GENMASK_ULL(51, 16);
3889         val |= GICR_VPENDBASER_RaWaWb;
3890         val |= GICR_VPENDBASER_InnerShareable;
3891         /*
3892          * There is no good way of finding out if the pending table is
3893          * empty as we can race against the doorbell interrupt very
3894          * easily. So in the end, vpe->pending_last is only an
3895          * indication that the vcpu has something pending, not one
3896          * that the pending table is empty. A good implementation
3897          * would be able to read its coarse map pretty quickly anyway,
3898          * making this a tolerable issue.
3899          */
3900         val |= GICR_VPENDBASER_PendingLast;
3901         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902         val |= GICR_VPENDBASER_Valid;
3903         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3904 }
3905
3906 static void its_vpe_deschedule(struct its_vpe *vpe)
3907 {
3908         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3909         u64 val;
3910
3911         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3912
3913         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3915 }
3916
3917 static void its_vpe_invall(struct its_vpe *vpe)
3918 {
3919         struct its_node *its;
3920
3921         list_for_each_entry(its, &its_nodes, entry) {
3922                 if (!is_v4(its))
3923                         continue;
3924
3925                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3926                         continue;
3927
3928                 /*
3929                  * Sending a VINVALL to a single ITS is enough, as all
3930                  * we need is to reach the redistributors.
3931                  */
3932                 its_send_vinvall(its, vpe);
3933                 return;
3934         }
3935 }
3936
3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3938 {
3939         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940         struct its_cmd_info *info = vcpu_info;
3941
3942         switch (info->cmd_type) {
3943         case SCHEDULE_VPE:
3944                 its_vpe_schedule(vpe);
3945                 return 0;
3946
3947         case DESCHEDULE_VPE:
3948                 its_vpe_deschedule(vpe);
3949                 return 0;
3950
3951         case COMMIT_VPE:
3952                 its_wait_vpt_parse_complete();
3953                 return 0;
3954
3955         case INVALL_VPE:
3956                 its_vpe_invall(vpe);
3957                 return 0;
3958
3959         default:
3960                 return -EINVAL;
3961         }
3962 }
3963
3964 static void its_vpe_send_cmd(struct its_vpe *vpe,
3965                              void (*cmd)(struct its_device *, u32))
3966 {
3967         unsigned long flags;
3968
3969         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3970
3971         its_vpe_db_proxy_map_locked(vpe);
3972         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3973
3974         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3975 }
3976
3977 static void its_vpe_send_inv(struct irq_data *d)
3978 {
3979         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3980
3981         if (gic_rdists->has_direct_lpi)
3982                 __direct_lpi_inv(d, d->parent_data->hwirq);
3983         else
3984                 its_vpe_send_cmd(vpe, its_send_inv);
3985 }
3986
3987 static void its_vpe_mask_irq(struct irq_data *d)
3988 {
3989         /*
3990          * We need to unmask the LPI, which is described by the parent
3991          * irq_data. Instead of calling into the parent (which won't
3992          * exactly do the right thing, let's simply use the
3993          * parent_data pointer. Yes, I'm naughty.
3994          */
3995         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996         its_vpe_send_inv(d);
3997 }
3998
3999 static void its_vpe_unmask_irq(struct irq_data *d)
4000 {
4001         /* Same hack as above... */
4002         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003         its_vpe_send_inv(d);
4004 }
4005
4006 static int its_vpe_set_irqchip_state(struct irq_data *d,
4007                                      enum irqchip_irq_state which,
4008                                      bool state)
4009 {
4010         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4011
4012         if (which != IRQCHIP_STATE_PENDING)
4013                 return -EINVAL;
4014
4015         if (gic_rdists->has_direct_lpi) {
4016                 void __iomem *rdbase;
4017
4018                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4019                 if (state) {
4020                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4021                 } else {
4022                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4023                         wait_for_syncr(rdbase);
4024                 }
4025         } else {
4026                 if (state)
4027                         its_vpe_send_cmd(vpe, its_send_int);
4028                 else
4029                         its_vpe_send_cmd(vpe, its_send_clear);
4030         }
4031
4032         return 0;
4033 }
4034
4035 static int its_vpe_retrigger(struct irq_data *d)
4036 {
4037         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4038 }
4039
4040 static struct irq_chip its_vpe_irq_chip = {
4041         .name                   = "GICv4-vpe",
4042         .irq_mask               = its_vpe_mask_irq,
4043         .irq_unmask             = its_vpe_unmask_irq,
4044         .irq_eoi                = irq_chip_eoi_parent,
4045         .irq_set_affinity       = its_vpe_set_affinity,
4046         .irq_retrigger          = its_vpe_retrigger,
4047         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4048         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4049 };
4050
4051 static struct its_node *find_4_1_its(void)
4052 {
4053         static struct its_node *its = NULL;
4054
4055         if (!its) {
4056                 list_for_each_entry(its, &its_nodes, entry) {
4057                         if (is_v4_1(its))
4058                                 return its;
4059                 }
4060
4061                 /* Oops? */
4062                 its = NULL;
4063         }
4064
4065         return its;
4066 }
4067
4068 static void its_vpe_4_1_send_inv(struct irq_data *d)
4069 {
4070         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071         struct its_node *its;
4072
4073         /*
4074          * GICv4.1 wants doorbells to be invalidated using the
4075          * INVDB command in order to be broadcast to all RDs. Send
4076          * it to the first valid ITS, and let the HW do its magic.
4077          */
4078         its = find_4_1_its();
4079         if (its)
4080                 its_send_invdb(its, vpe);
4081 }
4082
4083 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4084 {
4085         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086         its_vpe_4_1_send_inv(d);
4087 }
4088
4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4090 {
4091         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092         its_vpe_4_1_send_inv(d);
4093 }
4094
4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096                                  struct its_cmd_info *info)
4097 {
4098         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4099         u64 val = 0;
4100
4101         /* Schedule the VPE */
4102         val |= GICR_VPENDBASER_Valid;
4103         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4106
4107         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4108 }
4109
4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111                                    struct its_cmd_info *info)
4112 {
4113         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4114         u64 val;
4115
4116         if (info->req_db) {
4117                 unsigned long flags;
4118
4119                 /*
4120                  * vPE is going to block: make the vPE non-resident with
4121                  * PendingLast clear and DB set. The GIC guarantees that if
4122                  * we read-back PendingLast clear, then a doorbell will be
4123                  * delivered when an interrupt comes.
4124                  *
4125                  * Note the locking to deal with the concurrent update of
4126                  * pending_last from the doorbell interrupt handler that can
4127                  * run concurrently.
4128                  */
4129                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4130                 val = its_clear_vpend_valid(vlpi_base,
4131                                             GICR_VPENDBASER_PendingLast,
4132                                             GICR_VPENDBASER_4_1_DB);
4133                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4134                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4135         } else {
4136                 /*
4137                  * We're not blocking, so just make the vPE non-resident
4138                  * with PendingLast set, indicating that we'll be back.
4139                  */
4140                 val = its_clear_vpend_valid(vlpi_base,
4141                                             0,
4142                                             GICR_VPENDBASER_PendingLast);
4143                 vpe->pending_last = true;
4144         }
4145 }
4146
4147 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4148 {
4149         void __iomem *rdbase;
4150         unsigned long flags;
4151         u64 val;
4152         int cpu;
4153
4154         val  = GICR_INVALLR_V;
4155         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4156
4157         /* Target the redistributor this vPE is currently known on */
4158         cpu = vpe_to_cpuid_lock(vpe, &flags);
4159         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4161         gic_write_lpir(val, rdbase + GICR_INVALLR);
4162
4163         wait_for_syncr(rdbase);
4164         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165         vpe_to_cpuid_unlock(vpe, flags);
4166 }
4167
4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4169 {
4170         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171         struct its_cmd_info *info = vcpu_info;
4172
4173         switch (info->cmd_type) {
4174         case SCHEDULE_VPE:
4175                 its_vpe_4_1_schedule(vpe, info);
4176                 return 0;
4177
4178         case DESCHEDULE_VPE:
4179                 its_vpe_4_1_deschedule(vpe, info);
4180                 return 0;
4181
4182         case COMMIT_VPE:
4183                 its_wait_vpt_parse_complete();
4184                 return 0;
4185
4186         case INVALL_VPE:
4187                 its_vpe_4_1_invall(vpe);
4188                 return 0;
4189
4190         default:
4191                 return -EINVAL;
4192         }
4193 }
4194
4195 static struct irq_chip its_vpe_4_1_irq_chip = {
4196         .name                   = "GICv4.1-vpe",
4197         .irq_mask               = its_vpe_4_1_mask_irq,
4198         .irq_unmask             = its_vpe_4_1_unmask_irq,
4199         .irq_eoi                = irq_chip_eoi_parent,
4200         .irq_set_affinity       = its_vpe_set_affinity,
4201         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4202 };
4203
4204 static void its_configure_sgi(struct irq_data *d, bool clear)
4205 {
4206         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207         struct its_cmd_desc desc;
4208
4209         desc.its_vsgi_cmd.vpe = vpe;
4210         desc.its_vsgi_cmd.sgi = d->hwirq;
4211         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214         desc.its_vsgi_cmd.clear = clear;
4215
4216         /*
4217          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218          * destination VPE is mapped there. Since we map them eagerly at
4219          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4220          */
4221         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4222 }
4223
4224 static void its_sgi_mask_irq(struct irq_data *d)
4225 {
4226         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4227
4228         vpe->sgi_config[d->hwirq].enabled = false;
4229         its_configure_sgi(d, false);
4230 }
4231
4232 static void its_sgi_unmask_irq(struct irq_data *d)
4233 {
4234         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235
4236         vpe->sgi_config[d->hwirq].enabled = true;
4237         its_configure_sgi(d, false);
4238 }
4239
4240 static int its_sgi_set_affinity(struct irq_data *d,
4241                                 const struct cpumask *mask_val,
4242                                 bool force)
4243 {
4244         /*
4245          * There is no notion of affinity for virtual SGIs, at least
4246          * not on the host (since they can only be targeting a vPE).
4247          * Tell the kernel we've done whatever it asked for.
4248          */
4249         irq_data_update_effective_affinity(d, mask_val);
4250         return IRQ_SET_MASK_OK;
4251 }
4252
4253 static int its_sgi_set_irqchip_state(struct irq_data *d,
4254                                      enum irqchip_irq_state which,
4255                                      bool state)
4256 {
4257         if (which != IRQCHIP_STATE_PENDING)
4258                 return -EINVAL;
4259
4260         if (state) {
4261                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262                 struct its_node *its = find_4_1_its();
4263                 u64 val;
4264
4265                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4268         } else {
4269                 its_configure_sgi(d, true);
4270         }
4271
4272         return 0;
4273 }
4274
4275 static int its_sgi_get_irqchip_state(struct irq_data *d,
4276                                      enum irqchip_irq_state which, bool *val)
4277 {
4278         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279         void __iomem *base;
4280         unsigned long flags;
4281         u32 count = 1000000;    /* 1s! */
4282         u32 status;
4283         int cpu;
4284
4285         if (which != IRQCHIP_STATE_PENDING)
4286                 return -EINVAL;
4287
4288         /*
4289          * Locking galore! We can race against two different events:
4290          *
4291          * - Concurrent vPE affinity change: we must make sure it cannot
4292          *   happen, or we'll talk to the wrong redistributor. This is
4293          *   identical to what happens with vLPIs.
4294          *
4295          * - Concurrent VSGIPENDR access: As it involves accessing two
4296          *   MMIO registers, this must be made atomic one way or another.
4297          */
4298         cpu = vpe_to_cpuid_lock(vpe, &flags);
4299         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4302         do {
4303                 status = readl_relaxed(base + GICR_VSGIPENDR);
4304                 if (!(status & GICR_VSGIPENDR_BUSY))
4305                         goto out;
4306
4307                 count--;
4308                 if (!count) {
4309                         pr_err_ratelimited("Unable to get SGI status\n");
4310                         goto out;
4311                 }
4312                 cpu_relax();
4313                 udelay(1);
4314         } while (count);
4315
4316 out:
4317         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318         vpe_to_cpuid_unlock(vpe, flags);
4319
4320         if (!count)
4321                 return -ENXIO;
4322
4323         *val = !!(status & (1 << d->hwirq));
4324
4325         return 0;
4326 }
4327
4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4329 {
4330         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331         struct its_cmd_info *info = vcpu_info;
4332
4333         switch (info->cmd_type) {
4334         case PROP_UPDATE_VSGI:
4335                 vpe->sgi_config[d->hwirq].priority = info->priority;
4336                 vpe->sgi_config[d->hwirq].group = info->group;
4337                 its_configure_sgi(d, false);
4338                 return 0;
4339
4340         default:
4341                 return -EINVAL;
4342         }
4343 }
4344
4345 static struct irq_chip its_sgi_irq_chip = {
4346         .name                   = "GICv4.1-sgi",
4347         .irq_mask               = its_sgi_mask_irq,
4348         .irq_unmask             = its_sgi_unmask_irq,
4349         .irq_set_affinity       = its_sgi_set_affinity,
4350         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4351         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4352         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4353 };
4354
4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356                                     unsigned int virq, unsigned int nr_irqs,
4357                                     void *args)
4358 {
4359         struct its_vpe *vpe = args;
4360         int i;
4361
4362         /* Yes, we do want 16 SGIs */
4363         WARN_ON(nr_irqs != 16);
4364
4365         for (i = 0; i < 16; i++) {
4366                 vpe->sgi_config[i].priority = 0;
4367                 vpe->sgi_config[i].enabled = false;
4368                 vpe->sgi_config[i].group = false;
4369
4370                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371                                               &its_sgi_irq_chip, vpe);
4372                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4373         }
4374
4375         return 0;
4376 }
4377
4378 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4379                                     unsigned int virq,
4380                                     unsigned int nr_irqs)
4381 {
4382         /* Nothing to do */
4383 }
4384
4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386                                        struct irq_data *d, bool reserve)
4387 {
4388         /* Write out the initial SGI configuration */
4389         its_configure_sgi(d, false);
4390         return 0;
4391 }
4392
4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4394                                           struct irq_data *d)
4395 {
4396         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4397
4398         /*
4399          * The VSGI command is awkward:
4400          *
4401          * - To change the configuration, CLEAR must be set to false,
4402          *   leaving the pending bit unchanged.
4403          * - To clear the pending bit, CLEAR must be set to true, leaving
4404          *   the configuration unchanged.
4405          *
4406          * You just can't do both at once, hence the two commands below.
4407          */
4408         vpe->sgi_config[d->hwirq].enabled = false;
4409         its_configure_sgi(d, false);
4410         its_configure_sgi(d, true);
4411 }
4412
4413 static const struct irq_domain_ops its_sgi_domain_ops = {
4414         .alloc          = its_sgi_irq_domain_alloc,
4415         .free           = its_sgi_irq_domain_free,
4416         .activate       = its_sgi_irq_domain_activate,
4417         .deactivate     = its_sgi_irq_domain_deactivate,
4418 };
4419
4420 static int its_vpe_id_alloc(void)
4421 {
4422         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4423 }
4424
4425 static void its_vpe_id_free(u16 id)
4426 {
4427         ida_simple_remove(&its_vpeid_ida, id);
4428 }
4429
4430 static int its_vpe_init(struct its_vpe *vpe)
4431 {
4432         struct page *vpt_page;
4433         int vpe_id;
4434
4435         /* Allocate vpe_id */
4436         vpe_id = its_vpe_id_alloc();
4437         if (vpe_id < 0)
4438                 return vpe_id;
4439
4440         /* Allocate VPT */
4441         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4442         if (!vpt_page) {
4443                 its_vpe_id_free(vpe_id);
4444                 return -ENOMEM;
4445         }
4446
4447         if (!its_alloc_vpe_table(vpe_id)) {
4448                 its_vpe_id_free(vpe_id);
4449                 its_free_pending_table(vpt_page);
4450                 return -ENOMEM;
4451         }
4452
4453         raw_spin_lock_init(&vpe->vpe_lock);
4454         vpe->vpe_id = vpe_id;
4455         vpe->vpt_page = vpt_page;
4456         if (gic_rdists->has_rvpeid)
4457                 atomic_set(&vpe->vmapp_count, 0);
4458         else
4459                 vpe->vpe_proxy_event = -1;
4460
4461         return 0;
4462 }
4463
4464 static void its_vpe_teardown(struct its_vpe *vpe)
4465 {
4466         its_vpe_db_proxy_unmap(vpe);
4467         its_vpe_id_free(vpe->vpe_id);
4468         its_free_pending_table(vpe->vpt_page);
4469 }
4470
4471 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4472                                     unsigned int virq,
4473                                     unsigned int nr_irqs)
4474 {
4475         struct its_vm *vm = domain->host_data;
4476         int i;
4477
4478         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4479
4480         for (i = 0; i < nr_irqs; i++) {
4481                 struct irq_data *data = irq_domain_get_irq_data(domain,
4482                                                                 virq + i);
4483                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4484
4485                 BUG_ON(vm != vpe->its_vm);
4486
4487                 clear_bit(data->hwirq, vm->db_bitmap);
4488                 its_vpe_teardown(vpe);
4489                 irq_domain_reset_irq_data(data);
4490         }
4491
4492         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4493                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4494                 its_free_prop_table(vm->vprop_page);
4495         }
4496 }
4497
4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499                                     unsigned int nr_irqs, void *args)
4500 {
4501         struct irq_chip *irqchip = &its_vpe_irq_chip;
4502         struct its_vm *vm = args;
4503         unsigned long *bitmap;
4504         struct page *vprop_page;
4505         int base, nr_ids, i, err = 0;
4506
4507         BUG_ON(!vm);
4508
4509         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4510         if (!bitmap)
4511                 return -ENOMEM;
4512
4513         if (nr_ids < nr_irqs) {
4514                 its_lpi_free(bitmap, base, nr_ids);
4515                 return -ENOMEM;
4516         }
4517
4518         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4519         if (!vprop_page) {
4520                 its_lpi_free(bitmap, base, nr_ids);
4521                 return -ENOMEM;
4522         }
4523
4524         vm->db_bitmap = bitmap;
4525         vm->db_lpi_base = base;
4526         vm->nr_db_lpis = nr_ids;
4527         vm->vprop_page = vprop_page;
4528
4529         if (gic_rdists->has_rvpeid)
4530                 irqchip = &its_vpe_4_1_irq_chip;
4531
4532         for (i = 0; i < nr_irqs; i++) {
4533                 vm->vpes[i]->vpe_db_lpi = base + i;
4534                 err = its_vpe_init(vm->vpes[i]);
4535                 if (err)
4536                         break;
4537                 err = its_irq_gic_domain_alloc(domain, virq + i,
4538                                                vm->vpes[i]->vpe_db_lpi);
4539                 if (err)
4540                         break;
4541                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4542                                               irqchip, vm->vpes[i]);
4543                 set_bit(i, bitmap);
4544                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4545         }
4546
4547         if (err) {
4548                 if (i > 0)
4549                         its_vpe_irq_domain_free(domain, virq, i);
4550
4551                 its_lpi_free(bitmap, base, nr_ids);
4552                 its_free_prop_table(vprop_page);
4553         }
4554
4555         return err;
4556 }
4557
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559                                        struct irq_data *d, bool reserve)
4560 {
4561         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562         struct its_node *its;
4563
4564         /*
4565          * If we use the list map, we issue VMAPP on demand... Unless
4566          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567          * so that VSGIs can work.
4568          */
4569         if (!gic_requires_eager_mapping())
4570                 return 0;
4571
4572         /* Map the VPE to the first possible CPU */
4573         vpe->col_idx = cpumask_first(cpu_online_mask);
4574
4575         list_for_each_entry(its, &its_nodes, entry) {
4576                 if (!is_v4(its))
4577                         continue;
4578
4579                 its_send_vmapp(its, vpe, true);
4580                 its_send_vinvall(its, vpe);
4581         }
4582
4583         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4584
4585         return 0;
4586 }
4587
4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4589                                           struct irq_data *d)
4590 {
4591         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4592         struct its_node *its;
4593
4594         /*
4595          * If we use the list map on GICv4.0, we unmap the VPE once no
4596          * VLPIs are associated with the VM.
4597          */
4598         if (!gic_requires_eager_mapping())
4599                 return;
4600
4601         list_for_each_entry(its, &its_nodes, entry) {
4602                 if (!is_v4(its))
4603                         continue;
4604
4605                 its_send_vmapp(its, vpe, false);
4606         }
4607
4608         /*
4609          * There may be a direct read to the VPT after unmapping the
4610          * vPE, to guarantee the validity of this, we make the VPT
4611          * memory coherent with the CPU caches here.
4612          */
4613         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4615                                         LPI_PENDBASE_SZ);
4616 }
4617
4618 static const struct irq_domain_ops its_vpe_domain_ops = {
4619         .alloc                  = its_vpe_irq_domain_alloc,
4620         .free                   = its_vpe_irq_domain_free,
4621         .activate               = its_vpe_irq_domain_activate,
4622         .deactivate             = its_vpe_irq_domain_deactivate,
4623 };
4624
4625 static int its_force_quiescent(void __iomem *base)
4626 {
4627         u32 count = 1000000;    /* 1s */
4628         u32 val;
4629
4630         val = readl_relaxed(base + GITS_CTLR);
4631         /*
4632          * GIC architecture specification requires the ITS to be both
4633          * disabled and quiescent for writes to GITS_BASER<n> or
4634          * GITS_CBASER to not have UNPREDICTABLE results.
4635          */
4636         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4637                 return 0;
4638
4639         /* Disable the generation of all interrupts to this ITS */
4640         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4641         writel_relaxed(val, base + GITS_CTLR);
4642
4643         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4644         while (1) {
4645                 val = readl_relaxed(base + GITS_CTLR);
4646                 if (val & GITS_CTLR_QUIESCENT)
4647                         return 0;
4648
4649                 count--;
4650                 if (!count)
4651                         return -EBUSY;
4652
4653                 cpu_relax();
4654                 udelay(1);
4655         }
4656 }
4657
4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4659 {
4660         struct its_node *its = data;
4661
4662         /* erratum 22375: only alloc 8MB table size (20 bits) */
4663         its->typer &= ~GITS_TYPER_DEVBITS;
4664         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4665         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4666
4667         return true;
4668 }
4669
4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4671 {
4672         struct its_node *its = data;
4673
4674         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4675
4676         return true;
4677 }
4678
4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4680 {
4681         struct its_node *its = data;
4682
4683         /* On QDF2400, the size of the ITE is 16Bytes */
4684         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4686
4687         return true;
4688 }
4689
4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4691 {
4692         struct its_node *its = its_dev->its;
4693
4694         /*
4695          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696          * which maps 32-bit writes targeted at a separate window of
4697          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698          * with device ID taken from bits [device_id_bits + 1:2] of
4699          * the window offset.
4700          */
4701         return its->pre_its_base + (its_dev->device_id << 2);
4702 }
4703
4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4705 {
4706         struct its_node *its = data;
4707         u32 pre_its_window[2];
4708         u32 ids;
4709
4710         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711                                            "socionext,synquacer-pre-its",
4712                                            pre_its_window,
4713                                            ARRAY_SIZE(pre_its_window))) {
4714
4715                 its->pre_its_base = pre_its_window[0];
4716                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4717
4718                 ids = ilog2(pre_its_window[1]) - 2;
4719                 if (device_ids(its) > ids) {
4720                         its->typer &= ~GITS_TYPER_DEVBITS;
4721                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4722                 }
4723
4724                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4725                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4726                 return true;
4727         }
4728         return false;
4729 }
4730
4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4732 {
4733         struct its_node *its = data;
4734
4735         /*
4736          * Hip07 insists on using the wrong address for the VLPI
4737          * page. Trick it into doing the right thing...
4738          */
4739         its->vlpi_redist_offset = SZ_128K;
4740         return true;
4741 }
4742
4743 static bool __maybe_unused its_enable_rk3588001(void *data)
4744 {
4745         struct its_node *its = data;
4746
4747         if (!of_machine_is_compatible("rockchip,rk3588") &&
4748             !of_machine_is_compatible("rockchip,rk3588s"))
4749                 return false;
4750
4751         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4753
4754         return true;
4755 }
4756
4757 static const struct gic_quirk its_quirks[] = {
4758 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4759         {
4760                 .desc   = "ITS: Cavium errata 22375, 24313",
4761                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4762                 .mask   = 0xffff0fff,
4763                 .init   = its_enable_quirk_cavium_22375,
4764         },
4765 #endif
4766 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4767         {
4768                 .desc   = "ITS: Cavium erratum 23144",
4769                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4770                 .mask   = 0xffff0fff,
4771                 .init   = its_enable_quirk_cavium_23144,
4772         },
4773 #endif
4774 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4775         {
4776                 .desc   = "ITS: QDF2400 erratum 0065",
4777                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4778                 .mask   = 0xffffffff,
4779                 .init   = its_enable_quirk_qdf2400_e0065,
4780         },
4781 #endif
4782 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4783         {
4784                 /*
4785                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4786                  * implementation, but with a 'pre-ITS' added that requires
4787                  * special handling in software.
4788                  */
4789                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4790                 .iidr   = 0x0001143b,
4791                 .mask   = 0xffffffff,
4792                 .init   = its_enable_quirk_socionext_synquacer,
4793         },
4794 #endif
4795 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4796         {
4797                 .desc   = "ITS: Hip07 erratum 161600802",
4798                 .iidr   = 0x00000004,
4799                 .mask   = 0xffffffff,
4800                 .init   = its_enable_quirk_hip07_161600802,
4801         },
4802 #endif
4803 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4804         {
4805                 .desc   = "ITS: Rockchip erratum RK3588001",
4806                 .iidr   = 0x0201743b,
4807                 .mask   = 0xffffffff,
4808                 .init   = its_enable_rk3588001,
4809         },
4810 #endif
4811         {
4812         }
4813 };
4814
4815 static void its_enable_quirks(struct its_node *its)
4816 {
4817         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4818
4819         gic_enable_quirks(iidr, its_quirks, its);
4820 }
4821
4822 static int its_save_disable(void)
4823 {
4824         struct its_node *its;
4825         int err = 0;
4826
4827         raw_spin_lock(&its_lock);
4828         list_for_each_entry(its, &its_nodes, entry) {
4829                 void __iomem *base;
4830
4831                 base = its->base;
4832                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4833                 err = its_force_quiescent(base);
4834                 if (err) {
4835                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4836                                &its->phys_base, err);
4837                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838                         goto err;
4839                 }
4840
4841                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4842         }
4843
4844 err:
4845         if (err) {
4846                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4847                         void __iomem *base;
4848
4849                         base = its->base;
4850                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4851                 }
4852         }
4853         raw_spin_unlock(&its_lock);
4854
4855         return err;
4856 }
4857
4858 static void its_restore_enable(void)
4859 {
4860         struct its_node *its;
4861         int ret;
4862
4863         raw_spin_lock(&its_lock);
4864         list_for_each_entry(its, &its_nodes, entry) {
4865                 void __iomem *base;
4866                 int i;
4867
4868                 base = its->base;
4869
4870                 /*
4871                  * Make sure that the ITS is disabled. If it fails to quiesce,
4872                  * don't restore it since writing to CBASER or BASER<n>
4873                  * registers is undefined according to the GIC v3 ITS
4874                  * Specification.
4875                  *
4876                  * Firmware resuming with the ITS enabled is terminally broken.
4877                  */
4878                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4879                 ret = its_force_quiescent(base);
4880                 if (ret) {
4881                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4882                                &its->phys_base, ret);
4883                         continue;
4884                 }
4885
4886                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4887
4888                 /*
4889                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4890                  * cmd_write line up with it.
4891                  */
4892                 its->cmd_write = its->cmd_base;
4893                 gits_write_cwriter(0, base + GITS_CWRITER);
4894
4895                 /* Restore GITS_BASER from the value cache. */
4896                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4897                         struct its_baser *baser = &its->tables[i];
4898
4899                         if (!(baser->val & GITS_BASER_VALID))
4900                                 continue;
4901
4902                         its_write_baser(its, baser, baser->val);
4903                 }
4904                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4905
4906                 /*
4907                  * Reinit the collection if it's stored in the ITS. This is
4908                  * indicated by the col_id being less than the HCC field.
4909                  * CID < HCC as specified in the GIC v3 Documentation.
4910                  */
4911                 if (its->collections[smp_processor_id()].col_id <
4912                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4913                         its_cpu_init_collection(its);
4914         }
4915         raw_spin_unlock(&its_lock);
4916 }
4917
4918 static struct syscore_ops its_syscore_ops = {
4919         .suspend = its_save_disable,
4920         .resume = its_restore_enable,
4921 };
4922
4923 static void __init __iomem *its_map_one(struct resource *res, int *err)
4924 {
4925         void __iomem *its_base;
4926         u32 val;
4927
4928         its_base = ioremap(res->start, SZ_64K);
4929         if (!its_base) {
4930                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4931                 *err = -ENOMEM;
4932                 return NULL;
4933         }
4934
4935         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4936         if (val != 0x30 && val != 0x40) {
4937                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4938                 *err = -ENODEV;
4939                 goto out_unmap;
4940         }
4941
4942         *err = its_force_quiescent(its_base);
4943         if (*err) {
4944                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4945                 goto out_unmap;
4946         }
4947
4948         return its_base;
4949
4950 out_unmap:
4951         iounmap(its_base);
4952         return NULL;
4953 }
4954
4955 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4956 {
4957         struct irq_domain *inner_domain;
4958         struct msi_domain_info *info;
4959
4960         info = kzalloc(sizeof(*info), GFP_KERNEL);
4961         if (!info)
4962                 return -ENOMEM;
4963
4964         info->ops = &its_msi_domain_ops;
4965         info->data = its;
4966
4967         inner_domain = irq_domain_create_hierarchy(its_parent,
4968                                                    its->msi_domain_flags, 0,
4969                                                    handle, &its_domain_ops,
4970                                                    info);
4971         if (!inner_domain) {
4972                 kfree(info);
4973                 return -ENOMEM;
4974         }
4975
4976         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4977
4978         return 0;
4979 }
4980
4981 static int its_init_vpe_domain(void)
4982 {
4983         struct its_node *its;
4984         u32 devid;
4985         int entries;
4986
4987         if (gic_rdists->has_direct_lpi) {
4988                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4989                 return 0;
4990         }
4991
4992         /* Any ITS will do, even if not v4 */
4993         its = list_first_entry(&its_nodes, struct its_node, entry);
4994
4995         entries = roundup_pow_of_two(nr_cpu_ids);
4996         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4997                                  GFP_KERNEL);
4998         if (!vpe_proxy.vpes)
4999                 return -ENOMEM;
5000
5001         /* Use the last possible DevID */
5002         devid = GENMASK(device_ids(its) - 1, 0);
5003         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5004         if (!vpe_proxy.dev) {
5005                 kfree(vpe_proxy.vpes);
5006                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5007                 return -ENOMEM;
5008         }
5009
5010         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5011
5012         raw_spin_lock_init(&vpe_proxy.lock);
5013         vpe_proxy.next_victim = 0;
5014         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5015                 devid, vpe_proxy.dev->nr_ites);
5016
5017         return 0;
5018 }
5019
5020 static int __init its_compute_its_list_map(struct resource *res,
5021                                            void __iomem *its_base)
5022 {
5023         int its_number;
5024         u32 ctlr;
5025
5026         /*
5027          * This is assumed to be done early enough that we're
5028          * guaranteed to be single-threaded, hence no
5029          * locking. Should this change, we should address
5030          * this.
5031          */
5032         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5033         if (its_number >= GICv4_ITS_LIST_MAX) {
5034                 pr_err("ITS@%pa: No ITSList entry available!\n",
5035                        &res->start);
5036                 return -EINVAL;
5037         }
5038
5039         ctlr = readl_relaxed(its_base + GITS_CTLR);
5040         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5041         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5042         writel_relaxed(ctlr, its_base + GITS_CTLR);
5043         ctlr = readl_relaxed(its_base + GITS_CTLR);
5044         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5045                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5046                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5047         }
5048
5049         if (test_and_set_bit(its_number, &its_list_map)) {
5050                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5051                        &res->start, its_number);
5052                 return -EINVAL;
5053         }
5054
5055         return its_number;
5056 }
5057
5058 static int __init its_probe_one(struct resource *res,
5059                                 struct fwnode_handle *handle, int numa_node)
5060 {
5061         struct its_node *its;
5062         void __iomem *its_base;
5063         u64 baser, tmp, typer;
5064         struct page *page;
5065         u32 ctlr;
5066         int err;
5067
5068         its_base = its_map_one(res, &err);
5069         if (!its_base)
5070                 return err;
5071
5072         pr_info("ITS %pR\n", res);
5073
5074         its = kzalloc(sizeof(*its), GFP_KERNEL);
5075         if (!its) {
5076                 err = -ENOMEM;
5077                 goto out_unmap;
5078         }
5079
5080         raw_spin_lock_init(&its->lock);
5081         mutex_init(&its->dev_alloc_lock);
5082         INIT_LIST_HEAD(&its->entry);
5083         INIT_LIST_HEAD(&its->its_device_list);
5084         typer = gic_read_typer(its_base + GITS_TYPER);
5085         its->typer = typer;
5086         its->base = its_base;
5087         its->phys_base = res->start;
5088         if (is_v4(its)) {
5089                 if (!(typer & GITS_TYPER_VMOVP)) {
5090                         err = its_compute_its_list_map(res, its_base);
5091                         if (err < 0)
5092                                 goto out_free_its;
5093
5094                         its->list_nr = err;
5095
5096                         pr_info("ITS@%pa: Using ITS number %d\n",
5097                                 &res->start, err);
5098                 } else {
5099                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5100                 }
5101
5102                 if (is_v4_1(its)) {
5103                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5104
5105                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5106                         if (!its->sgir_base) {
5107                                 err = -ENOMEM;
5108                                 goto out_free_its;
5109                         }
5110
5111                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5112
5113                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5114                                 &res->start, its->mpidr, svpet);
5115                 }
5116         }
5117
5118         its->numa_node = numa_node;
5119
5120         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5121                                 get_order(ITS_CMD_QUEUE_SZ));
5122         if (!page) {
5123                 err = -ENOMEM;
5124                 goto out_unmap_sgir;
5125         }
5126         its->cmd_base = (void *)page_address(page);
5127         its->cmd_write = its->cmd_base;
5128         its->fwnode_handle = handle;
5129         its->get_msi_base = its_irq_get_msi_base;
5130         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5131
5132         its_enable_quirks(its);
5133
5134         err = its_alloc_tables(its);
5135         if (err)
5136                 goto out_free_cmd;
5137
5138         err = its_alloc_collections(its);
5139         if (err)
5140                 goto out_free_tables;
5141
5142         baser = (virt_to_phys(its->cmd_base)    |
5143                  GITS_CBASER_RaWaWb             |
5144                  GITS_CBASER_InnerShareable     |
5145                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5146                  GITS_CBASER_VALID);
5147
5148         gits_write_cbaser(baser, its->base + GITS_CBASER);
5149         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5150
5151         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5152                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5153
5154         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5155                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5156                         /*
5157                          * The HW reports non-shareable, we must
5158                          * remove the cacheability attributes as
5159                          * well.
5160                          */
5161                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5162                                    GITS_CBASER_CACHEABILITY_MASK);
5163                         baser |= GITS_CBASER_nC;
5164                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5165                 }
5166                 pr_info("ITS: using cache flushing for cmd queue\n");
5167                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5168         }
5169
5170         gits_write_cwriter(0, its->base + GITS_CWRITER);
5171         ctlr = readl_relaxed(its->base + GITS_CTLR);
5172         ctlr |= GITS_CTLR_ENABLE;
5173         if (is_v4(its))
5174                 ctlr |= GITS_CTLR_ImDe;
5175         writel_relaxed(ctlr, its->base + GITS_CTLR);
5176
5177         err = its_init_domain(handle, its);
5178         if (err)
5179                 goto out_free_tables;
5180
5181         raw_spin_lock(&its_lock);
5182         list_add(&its->entry, &its_nodes);
5183         raw_spin_unlock(&its_lock);
5184
5185         return 0;
5186
5187 out_free_tables:
5188         its_free_tables(its);
5189 out_free_cmd:
5190         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5191 out_unmap_sgir:
5192         if (its->sgir_base)
5193                 iounmap(its->sgir_base);
5194 out_free_its:
5195         kfree(its);
5196 out_unmap:
5197         iounmap(its_base);
5198         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5199         return err;
5200 }
5201
5202 static bool gic_rdists_supports_plpis(void)
5203 {
5204         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5205 }
5206
5207 static int redist_disable_lpis(void)
5208 {
5209         void __iomem *rbase = gic_data_rdist_rd_base();
5210         u64 timeout = USEC_PER_SEC;
5211         u64 val;
5212
5213         if (!gic_rdists_supports_plpis()) {
5214                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5215                 return -ENXIO;
5216         }
5217
5218         val = readl_relaxed(rbase + GICR_CTLR);
5219         if (!(val & GICR_CTLR_ENABLE_LPIS))
5220                 return 0;
5221
5222         /*
5223          * If coming via a CPU hotplug event, we don't need to disable
5224          * LPIs before trying to re-enable them. They are already
5225          * configured and all is well in the world.
5226          *
5227          * If running with preallocated tables, there is nothing to do.
5228          */
5229         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5230             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5231                 return 0;
5232
5233         /*
5234          * From that point on, we only try to do some damage control.
5235          */
5236         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5237                 smp_processor_id());
5238         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5239
5240         /* Disable LPIs */
5241         val &= ~GICR_CTLR_ENABLE_LPIS;
5242         writel_relaxed(val, rbase + GICR_CTLR);
5243
5244         /* Make sure any change to GICR_CTLR is observable by the GIC */
5245         dsb(sy);
5246
5247         /*
5248          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5249          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5250          * Error out if we time out waiting for RWP to clear.
5251          */
5252         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5253                 if (!timeout) {
5254                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5255                                smp_processor_id());
5256                         return -ETIMEDOUT;
5257                 }
5258                 udelay(1);
5259                 timeout--;
5260         }
5261
5262         /*
5263          * After it has been written to 1, it is IMPLEMENTATION
5264          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5265          * cleared to 0. Error out if clearing the bit failed.
5266          */
5267         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5268                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5269                 return -EBUSY;
5270         }
5271
5272         return 0;
5273 }
5274
5275 int its_cpu_init(void)
5276 {
5277         if (!list_empty(&its_nodes)) {
5278                 int ret;
5279
5280                 ret = redist_disable_lpis();
5281                 if (ret)
5282                         return ret;
5283
5284                 its_cpu_init_lpis();
5285                 its_cpu_init_collections();
5286         }
5287
5288         return 0;
5289 }
5290
5291 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5292 {
5293         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5294         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5295 }
5296
5297 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5298                     rdist_memreserve_cpuhp_cleanup_workfn);
5299
5300 static int its_cpu_memreserve_lpi(unsigned int cpu)
5301 {
5302         struct page *pend_page;
5303         int ret = 0;
5304
5305         /* This gets to run exactly once per CPU */
5306         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5307                 return 0;
5308
5309         pend_page = gic_data_rdist()->pend_page;
5310         if (WARN_ON(!pend_page)) {
5311                 ret = -ENOMEM;
5312                 goto out;
5313         }
5314         /*
5315          * If the pending table was pre-programmed, free the memory we
5316          * preemptively allocated. Otherwise, reserve that memory for
5317          * later kexecs.
5318          */
5319         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5320                 its_free_pending_table(pend_page);
5321                 gic_data_rdist()->pend_page = NULL;
5322         } else {
5323                 phys_addr_t paddr = page_to_phys(pend_page);
5324                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5325         }
5326
5327 out:
5328         /* Last CPU being brought up gets to issue the cleanup */
5329         if (!IS_ENABLED(CONFIG_SMP) ||
5330             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5331                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5332
5333         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5334         return ret;
5335 }
5336
5337 /* Mark all the BASER registers as invalid before they get reprogrammed */
5338 static int __init its_reset_one(struct resource *res)
5339 {
5340         void __iomem *its_base;
5341         int err, i;
5342
5343         its_base = its_map_one(res, &err);
5344         if (!its_base)
5345                 return err;
5346
5347         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5348                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5349
5350         iounmap(its_base);
5351         return 0;
5352 }
5353
5354 static const struct of_device_id its_device_id[] = {
5355         {       .compatible     = "arm,gic-v3-its",     },
5356         {},
5357 };
5358
5359 static int __init its_of_probe(struct device_node *node)
5360 {
5361         struct device_node *np;
5362         struct resource res;
5363
5364         /*
5365          * Make sure *all* the ITS are reset before we probe any, as
5366          * they may be sharing memory. If any of the ITS fails to
5367          * reset, don't even try to go any further, as this could
5368          * result in something even worse.
5369          */
5370         for (np = of_find_matching_node(node, its_device_id); np;
5371              np = of_find_matching_node(np, its_device_id)) {
5372                 int err;
5373
5374                 if (!of_device_is_available(np) ||
5375                     !of_property_read_bool(np, "msi-controller") ||
5376                     of_address_to_resource(np, 0, &res))
5377                         continue;
5378
5379                 err = its_reset_one(&res);
5380                 if (err)
5381                         return err;
5382         }
5383
5384         for (np = of_find_matching_node(node, its_device_id); np;
5385              np = of_find_matching_node(np, its_device_id)) {
5386                 if (!of_device_is_available(np))
5387                         continue;
5388                 if (!of_property_read_bool(np, "msi-controller")) {
5389                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5390                                 np);
5391                         continue;
5392                 }
5393
5394                 if (of_address_to_resource(np, 0, &res)) {
5395                         pr_warn("%pOF: no regs?\n", np);
5396                         continue;
5397                 }
5398
5399                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5400         }
5401         return 0;
5402 }
5403
5404 #ifdef CONFIG_ACPI
5405
5406 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5407
5408 #ifdef CONFIG_ACPI_NUMA
5409 struct its_srat_map {
5410         /* numa node id */
5411         u32     numa_node;
5412         /* GIC ITS ID */
5413         u32     its_id;
5414 };
5415
5416 static struct its_srat_map *its_srat_maps __initdata;
5417 static int its_in_srat __initdata;
5418
5419 static int __init acpi_get_its_numa_node(u32 its_id)
5420 {
5421         int i;
5422
5423         for (i = 0; i < its_in_srat; i++) {
5424                 if (its_id == its_srat_maps[i].its_id)
5425                         return its_srat_maps[i].numa_node;
5426         }
5427         return NUMA_NO_NODE;
5428 }
5429
5430 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5431                                           const unsigned long end)
5432 {
5433         return 0;
5434 }
5435
5436 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5437                          const unsigned long end)
5438 {
5439         int node;
5440         struct acpi_srat_gic_its_affinity *its_affinity;
5441
5442         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5443         if (!its_affinity)
5444                 return -EINVAL;
5445
5446         if (its_affinity->header.length < sizeof(*its_affinity)) {
5447                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5448                         its_affinity->header.length);
5449                 return -EINVAL;
5450         }
5451
5452         /*
5453          * Note that in theory a new proximity node could be created by this
5454          * entry as it is an SRAT resource allocation structure.
5455          * We do not currently support doing so.
5456          */
5457         node = pxm_to_node(its_affinity->proximity_domain);
5458
5459         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5460                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5461                 return 0;
5462         }
5463
5464         its_srat_maps[its_in_srat].numa_node = node;
5465         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5466         its_in_srat++;
5467         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5468                 its_affinity->proximity_domain, its_affinity->its_id, node);
5469
5470         return 0;
5471 }
5472
5473 static void __init acpi_table_parse_srat_its(void)
5474 {
5475         int count;
5476
5477         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5478                         sizeof(struct acpi_table_srat),
5479                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5480                         gic_acpi_match_srat_its, 0);
5481         if (count <= 0)
5482                 return;
5483
5484         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5485                                       GFP_KERNEL);
5486         if (!its_srat_maps)
5487                 return;
5488
5489         acpi_table_parse_entries(ACPI_SIG_SRAT,
5490                         sizeof(struct acpi_table_srat),
5491                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5492                         gic_acpi_parse_srat_its, 0);
5493 }
5494
5495 /* free the its_srat_maps after ITS probing */
5496 static void __init acpi_its_srat_maps_free(void)
5497 {
5498         kfree(its_srat_maps);
5499 }
5500 #else
5501 static void __init acpi_table_parse_srat_its(void)      { }
5502 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5503 static void __init acpi_its_srat_maps_free(void) { }
5504 #endif
5505
5506 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5507                                           const unsigned long end)
5508 {
5509         struct acpi_madt_generic_translator *its_entry;
5510         struct fwnode_handle *dom_handle;
5511         struct resource res;
5512         int err;
5513
5514         its_entry = (struct acpi_madt_generic_translator *)header;
5515         memset(&res, 0, sizeof(res));
5516         res.start = its_entry->base_address;
5517         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5518         res.flags = IORESOURCE_MEM;
5519
5520         dom_handle = irq_domain_alloc_fwnode(&res.start);
5521         if (!dom_handle) {
5522                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5523                        &res.start);
5524                 return -ENOMEM;
5525         }
5526
5527         err = iort_register_domain_token(its_entry->translation_id, res.start,
5528                                          dom_handle);
5529         if (err) {
5530                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5531                        &res.start, its_entry->translation_id);
5532                 goto dom_err;
5533         }
5534
5535         err = its_probe_one(&res, dom_handle,
5536                         acpi_get_its_numa_node(its_entry->translation_id));
5537         if (!err)
5538                 return 0;
5539
5540         iort_deregister_domain_token(its_entry->translation_id);
5541 dom_err:
5542         irq_domain_free_fwnode(dom_handle);
5543         return err;
5544 }
5545
5546 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5547                                  const unsigned long end)
5548 {
5549         struct acpi_madt_generic_translator *its_entry;
5550         struct resource res;
5551
5552         its_entry = (struct acpi_madt_generic_translator *)header;
5553         res = (struct resource) {
5554                 .start  = its_entry->base_address,
5555                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5556                 .flags  = IORESOURCE_MEM,
5557         };
5558
5559         return its_reset_one(&res);
5560 }
5561
5562 static void __init its_acpi_probe(void)
5563 {
5564         acpi_table_parse_srat_its();
5565         /*
5566          * Make sure *all* the ITS are reset before we probe any, as
5567          * they may be sharing memory. If any of the ITS fails to
5568          * reset, don't even try to go any further, as this could
5569          * result in something even worse.
5570          */
5571         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5572                                   its_acpi_reset, 0) > 0)
5573                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5574                                       gic_acpi_parse_madt_its, 0);
5575         acpi_its_srat_maps_free();
5576 }
5577 #else
5578 static void __init its_acpi_probe(void) { }
5579 #endif
5580
5581 int __init its_lpi_memreserve_init(void)
5582 {
5583         int state;
5584
5585         if (!efi_enabled(EFI_CONFIG_TABLES))
5586                 return 0;
5587
5588         if (list_empty(&its_nodes))
5589                 return 0;
5590
5591         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5592         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5593                                   "irqchip/arm/gicv3/memreserve:online",
5594                                   its_cpu_memreserve_lpi,
5595                                   NULL);
5596         if (state < 0)
5597                 return state;
5598
5599         gic_rdists->cpuhp_memreserve_state = state;
5600
5601         return 0;
5602 }
5603
5604 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5605                     struct irq_domain *parent_domain)
5606 {
5607         struct device_node *of_node;
5608         struct its_node *its;
5609         bool has_v4 = false;
5610         bool has_v4_1 = false;
5611         int err;
5612
5613         gic_rdists = rdists;
5614
5615         its_parent = parent_domain;
5616         of_node = to_of_node(handle);
5617         if (of_node)
5618                 its_of_probe(of_node);
5619         else
5620                 its_acpi_probe();
5621
5622         if (list_empty(&its_nodes)) {
5623                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5624                 return -ENXIO;
5625         }
5626
5627         err = allocate_lpi_tables();
5628         if (err)
5629                 return err;
5630
5631         list_for_each_entry(its, &its_nodes, entry) {
5632                 has_v4 |= is_v4(its);
5633                 has_v4_1 |= is_v4_1(its);
5634         }
5635
5636         /* Don't bother with inconsistent systems */
5637         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5638                 rdists->has_rvpeid = false;
5639
5640         if (has_v4 & rdists->has_vlpis) {
5641                 const struct irq_domain_ops *sgi_ops;
5642
5643                 if (has_v4_1)
5644                         sgi_ops = &its_sgi_domain_ops;
5645                 else
5646                         sgi_ops = NULL;
5647
5648                 if (its_init_vpe_domain() ||
5649                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5650                         rdists->has_vlpis = false;
5651                         pr_err("ITS: Disabling GICv4 support\n");
5652                 }
5653         }
5654
5655         register_syscore_ops(&its_syscore_ops);
5656
5657         return 0;
5658 }