1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
23 #include <linux/msi.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE (1 << 2)
51 #define RD_LOCAL_LPI_ENABLED BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
55 static u32 lpi_id_bits;
58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59 * deal with (one configuration byte per interrupt). PENDBASE has to
60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62 #define LPI_NRBITS lpi_id_bits
63 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
69 * Collection structure - just an ID, and a redistributor address to
70 * ping. We use one per CPU as a bag of interrupts assigned to this
73 struct its_collection {
79 * The ITS_BASER structure - contains memory information, cached
80 * value of BASER register configuration and ITS page size.
92 * The ITS structure - contains most of the infrastructure, with the
93 * top-level MSI domain, the command queue, the collections, and the
94 * list of devices writing to it.
96 * dev_alloc_lock has to be taken for device allocations, while the
97 * spinlock must be taken to parse data structures such as the device
102 struct mutex dev_alloc_lock;
103 struct list_head entry;
105 void __iomem *sgir_base;
106 phys_addr_t phys_base;
107 struct its_cmd_block *cmd_base;
108 struct its_cmd_block *cmd_write;
109 struct its_baser tables[GITS_BASER_NR_REGS];
110 struct its_collection *collections;
111 struct fwnode_handle *fwnode_handle;
112 u64 (*get_msi_base)(struct its_device *its_dev);
117 struct list_head its_device_list;
119 unsigned long list_nr;
121 unsigned int msi_domain_flags;
122 u32 pre_its_base; /* for Socionext Synquacer */
123 int vlpi_redist_offset;
126 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
130 #define ITS_ITT_ALIGN SZ_256
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS \
136 if (gic_rdists->has_rvpeid && \
137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
143 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
148 struct event_lpi_map {
149 unsigned long *lpi_map;
151 irq_hw_number_t lpi_base;
153 raw_spinlock_t vlpi_lock;
155 struct its_vlpi_map *vlpi_maps;
160 * The ITS view of a device - belongs to an ITS, owns an interrupt
161 * translation table, and a list of interrupts. If it some of its
162 * LPIs are injected into a guest (GICv4), the event_map.vm field
163 * indicates which one.
166 struct list_head entry;
167 struct its_node *its;
168 struct event_lpi_map event_map;
177 struct its_device *dev;
178 struct its_vpe **vpes;
182 struct cpu_lpi_count {
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
198 static DEFINE_IDA(its_vpeid_ida);
200 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
206 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207 * always have vSGIs mapped.
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
211 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
214 static u16 get_its_list(struct its_vm *vm)
216 struct its_node *its;
217 unsigned long its_list = 0;
219 list_for_each_entry(its, &its_nodes, entry) {
223 if (require_its_list_vmovp(vm, its))
224 __set_bit(its->list_nr, &its_list);
227 return (u16)its_list;
230 static inline u32 its_get_event_id(struct irq_data *d)
232 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233 return d->hwirq - its_dev->event_map.lpi_base;
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
239 struct its_node *its = its_dev->its;
241 return its->collections + its_dev->event_map.col_map[event];
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
247 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
250 return &its_dev->event_map.vlpi_maps[event];
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
255 if (irqd_is_forwarded_to_vcpu(d)) {
256 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257 u32 event = its_get_event_id(d);
259 return dev_event_to_vlpi_map(its_dev, event);
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
267 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
273 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
276 static struct irq_chip its_vpe_irq_chip;
278 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
280 struct its_vpe *vpe = NULL;
283 if (d->chip == &its_vpe_irq_chip) {
284 vpe = irq_data_get_irq_chip_data(d);
286 struct its_vlpi_map *map = get_vlpi_map(d);
292 cpu = vpe_to_cpuid_lock(vpe, flags);
294 /* Physical LPIs are already locked via the irq_desc lock */
295 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
296 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
297 /* Keep GCC quiet... */
304 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
306 struct its_vpe *vpe = NULL;
308 if (d->chip == &its_vpe_irq_chip) {
309 vpe = irq_data_get_irq_chip_data(d);
311 struct its_vlpi_map *map = get_vlpi_map(d);
317 vpe_to_cpuid_unlock(vpe, flags);
320 static struct its_collection *valid_col(struct its_collection *col)
322 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
328 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
330 if (valid_col(its->collections + vpe->col_idx))
337 * ITS command descriptors - parameters to be encoded in a command
340 struct its_cmd_desc {
343 struct its_device *dev;
348 struct its_device *dev;
353 struct its_device *dev;
358 struct its_device *dev;
363 struct its_collection *col;
368 struct its_device *dev;
374 struct its_device *dev;
375 struct its_collection *col;
380 struct its_device *dev;
385 struct its_collection *col;
394 struct its_collection *col;
400 struct its_device *dev;
408 struct its_device *dev;
415 struct its_collection *col;
436 * The ITS command block, which is what the ITS actually parses.
438 struct its_cmd_block {
441 __le64 raw_cmd_le[4];
445 #define ITS_CMD_QUEUE_SZ SZ_64K
446 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
448 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
449 struct its_cmd_block *,
450 struct its_cmd_desc *);
452 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
453 struct its_cmd_block *,
454 struct its_cmd_desc *);
456 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
458 u64 mask = GENMASK_ULL(h, l);
460 *raw_cmd |= (val << l) & mask;
463 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
465 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
468 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
470 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
473 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
475 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
478 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
480 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
483 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
485 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
488 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
490 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
493 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
495 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
498 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
500 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
503 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
505 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
508 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
510 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
513 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
515 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
518 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
520 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
523 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
525 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
528 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
530 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
533 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
535 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
538 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
540 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
543 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
545 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
548 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
550 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
553 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
555 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
558 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
560 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
563 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
566 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
569 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
572 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
575 static void its_encode_db(struct its_cmd_block *cmd, bool db)
577 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
580 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
582 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
585 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
587 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
590 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
592 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
595 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
597 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
600 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
602 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
605 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
607 /* Let's fixup BE commands */
608 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
609 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
610 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
611 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
614 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
615 struct its_cmd_block *cmd,
616 struct its_cmd_desc *desc)
618 unsigned long itt_addr;
619 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
621 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
622 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
624 its_encode_cmd(cmd, GITS_CMD_MAPD);
625 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
626 its_encode_size(cmd, size - 1);
627 its_encode_itt(cmd, itt_addr);
628 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
635 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
636 struct its_cmd_block *cmd,
637 struct its_cmd_desc *desc)
639 its_encode_cmd(cmd, GITS_CMD_MAPC);
640 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
641 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
642 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
646 return desc->its_mapc_cmd.col;
649 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
650 struct its_cmd_block *cmd,
651 struct its_cmd_desc *desc)
653 struct its_collection *col;
655 col = dev_event_to_col(desc->its_mapti_cmd.dev,
656 desc->its_mapti_cmd.event_id);
658 its_encode_cmd(cmd, GITS_CMD_MAPTI);
659 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
660 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
661 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
662 its_encode_collection(cmd, col->col_id);
666 return valid_col(col);
669 static struct its_collection *its_build_movi_cmd(struct its_node *its,
670 struct its_cmd_block *cmd,
671 struct its_cmd_desc *desc)
673 struct its_collection *col;
675 col = dev_event_to_col(desc->its_movi_cmd.dev,
676 desc->its_movi_cmd.event_id);
678 its_encode_cmd(cmd, GITS_CMD_MOVI);
679 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
680 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
681 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
685 return valid_col(col);
688 static struct its_collection *its_build_discard_cmd(struct its_node *its,
689 struct its_cmd_block *cmd,
690 struct its_cmd_desc *desc)
692 struct its_collection *col;
694 col = dev_event_to_col(desc->its_discard_cmd.dev,
695 desc->its_discard_cmd.event_id);
697 its_encode_cmd(cmd, GITS_CMD_DISCARD);
698 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
699 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
703 return valid_col(col);
706 static struct its_collection *its_build_inv_cmd(struct its_node *its,
707 struct its_cmd_block *cmd,
708 struct its_cmd_desc *desc)
710 struct its_collection *col;
712 col = dev_event_to_col(desc->its_inv_cmd.dev,
713 desc->its_inv_cmd.event_id);
715 its_encode_cmd(cmd, GITS_CMD_INV);
716 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
721 return valid_col(col);
724 static struct its_collection *its_build_int_cmd(struct its_node *its,
725 struct its_cmd_block *cmd,
726 struct its_cmd_desc *desc)
728 struct its_collection *col;
730 col = dev_event_to_col(desc->its_int_cmd.dev,
731 desc->its_int_cmd.event_id);
733 its_encode_cmd(cmd, GITS_CMD_INT);
734 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
739 return valid_col(col);
742 static struct its_collection *its_build_clear_cmd(struct its_node *its,
743 struct its_cmd_block *cmd,
744 struct its_cmd_desc *desc)
746 struct its_collection *col;
748 col = dev_event_to_col(desc->its_clear_cmd.dev,
749 desc->its_clear_cmd.event_id);
751 its_encode_cmd(cmd, GITS_CMD_CLEAR);
752 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
757 return valid_col(col);
760 static struct its_collection *its_build_invall_cmd(struct its_node *its,
761 struct its_cmd_block *cmd,
762 struct its_cmd_desc *desc)
764 its_encode_cmd(cmd, GITS_CMD_INVALL);
765 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
769 return desc->its_invall_cmd.col;
772 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
773 struct its_cmd_block *cmd,
774 struct its_cmd_desc *desc)
776 its_encode_cmd(cmd, GITS_CMD_VINVALL);
777 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
781 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
784 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
785 struct its_cmd_block *cmd,
786 struct its_cmd_desc *desc)
788 unsigned long vpt_addr, vconf_addr;
792 its_encode_cmd(cmd, GITS_CMD_VMAPP);
793 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
794 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
796 if (!desc->its_vmapp_cmd.valid) {
798 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
799 its_encode_alloc(cmd, alloc);
805 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
806 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
808 its_encode_target(cmd, target);
809 its_encode_vpt_addr(cmd, vpt_addr);
810 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
815 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
817 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
819 its_encode_alloc(cmd, alloc);
822 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
823 * to be unmapped first, and in this case, we may remap the vPE
824 * back while the VPT is not empty. So we can't assume that the
825 * VPT is empty on map. This is why we never advertise PTZ.
827 its_encode_ptz(cmd, false);
828 its_encode_vconf_addr(cmd, vconf_addr);
829 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
834 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
837 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
838 struct its_cmd_block *cmd,
839 struct its_cmd_desc *desc)
843 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
844 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
848 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
849 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
850 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
851 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
852 its_encode_db_phys_id(cmd, db);
853 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
857 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
860 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
861 struct its_cmd_block *cmd,
862 struct its_cmd_desc *desc)
866 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
867 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
871 its_encode_cmd(cmd, GITS_CMD_VMOVI);
872 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
873 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
874 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
875 its_encode_db_phys_id(cmd, db);
876 its_encode_db_valid(cmd, true);
880 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
883 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
884 struct its_cmd_block *cmd,
885 struct its_cmd_desc *desc)
889 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
890 its_encode_cmd(cmd, GITS_CMD_VMOVP);
891 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
892 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
893 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
894 its_encode_target(cmd, target);
897 its_encode_db(cmd, true);
898 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
903 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
906 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
907 struct its_cmd_block *cmd,
908 struct its_cmd_desc *desc)
910 struct its_vlpi_map *map;
912 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
913 desc->its_inv_cmd.event_id);
915 its_encode_cmd(cmd, GITS_CMD_INV);
916 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
917 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
921 return valid_vpe(its, map->vpe);
924 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
925 struct its_cmd_block *cmd,
926 struct its_cmd_desc *desc)
928 struct its_vlpi_map *map;
930 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
931 desc->its_int_cmd.event_id);
933 its_encode_cmd(cmd, GITS_CMD_INT);
934 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
935 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
939 return valid_vpe(its, map->vpe);
942 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
943 struct its_cmd_block *cmd,
944 struct its_cmd_desc *desc)
946 struct its_vlpi_map *map;
948 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
949 desc->its_clear_cmd.event_id);
951 its_encode_cmd(cmd, GITS_CMD_CLEAR);
952 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
953 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
957 return valid_vpe(its, map->vpe);
960 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
961 struct its_cmd_block *cmd,
962 struct its_cmd_desc *desc)
964 if (WARN_ON(!is_v4_1(its)))
967 its_encode_cmd(cmd, GITS_CMD_INVDB);
968 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
972 return valid_vpe(its, desc->its_invdb_cmd.vpe);
975 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
976 struct its_cmd_block *cmd,
977 struct its_cmd_desc *desc)
979 if (WARN_ON(!is_v4_1(its)))
982 its_encode_cmd(cmd, GITS_CMD_VSGI);
983 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
984 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
985 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
986 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
987 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
988 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
992 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
995 static u64 its_cmd_ptr_to_offset(struct its_node *its,
996 struct its_cmd_block *ptr)
998 return (ptr - its->cmd_base) * sizeof(*ptr);
1001 static int its_queue_full(struct its_node *its)
1006 widx = its->cmd_write - its->cmd_base;
1007 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1010 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1016 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018 struct its_cmd_block *cmd;
1019 u32 count = 1000000; /* 1s! */
1021 while (its_queue_full(its)) {
1024 pr_err_ratelimited("ITS queue not draining\n");
1031 cmd = its->cmd_write++;
1033 /* Handle queue wrapping */
1034 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1035 its->cmd_write = its->cmd_base;
1038 cmd->raw_cmd[0] = 0;
1039 cmd->raw_cmd[1] = 0;
1040 cmd->raw_cmd[2] = 0;
1041 cmd->raw_cmd[3] = 0;
1046 static struct its_cmd_block *its_post_commands(struct its_node *its)
1048 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050 writel_relaxed(wr, its->base + GITS_CWRITER);
1052 return its->cmd_write;
1055 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1058 * Make sure the commands written to memory are observable by
1061 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1062 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1067 static int its_wait_for_range_completion(struct its_node *its,
1069 struct its_cmd_block *to)
1071 u64 rd_idx, to_idx, linear_idx;
1072 u32 count = 1000000; /* 1s! */
1074 /* Linearize to_idx if the command set has wrapped around */
1075 to_idx = its_cmd_ptr_to_offset(its, to);
1076 if (to_idx < prev_idx)
1077 to_idx += ITS_CMD_QUEUE_SZ;
1079 linear_idx = prev_idx;
1084 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1087 * Compute the read pointer progress, taking the
1088 * potential wrap-around into account.
1090 delta = rd_idx - prev_idx;
1091 if (rd_idx < prev_idx)
1092 delta += ITS_CMD_QUEUE_SZ;
1094 linear_idx += delta;
1095 if (linear_idx >= to_idx)
1100 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1101 to_idx, linear_idx);
1112 /* Warning, macro hell follows */
1113 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1114 void name(struct its_node *its, \
1115 buildtype builder, \
1116 struct its_cmd_desc *desc) \
1118 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1119 synctype *sync_obj; \
1120 unsigned long flags; \
1123 raw_spin_lock_irqsave(&its->lock, flags); \
1125 cmd = its_allocate_entry(its); \
1126 if (!cmd) { /* We're soooooo screewed... */ \
1127 raw_spin_unlock_irqrestore(&its->lock, flags); \
1130 sync_obj = builder(its, cmd, desc); \
1131 its_flush_cmd(its, cmd); \
1134 sync_cmd = its_allocate_entry(its); \
1138 buildfn(its, sync_cmd, sync_obj); \
1139 its_flush_cmd(its, sync_cmd); \
1143 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1144 next_cmd = its_post_commands(its); \
1145 raw_spin_unlock_irqrestore(&its->lock, flags); \
1147 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1148 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1151 static void its_build_sync_cmd(struct its_node *its,
1152 struct its_cmd_block *sync_cmd,
1153 struct its_collection *sync_col)
1155 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1156 its_encode_target(sync_cmd, sync_col->target_address);
1158 its_fixup_cmd(sync_cmd);
1161 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1162 struct its_collection, its_build_sync_cmd)
1164 static void its_build_vsync_cmd(struct its_node *its,
1165 struct its_cmd_block *sync_cmd,
1166 struct its_vpe *sync_vpe)
1168 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1169 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171 its_fixup_cmd(sync_cmd);
1174 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1175 struct its_vpe, its_build_vsync_cmd)
1177 static void its_send_int(struct its_device *dev, u32 event_id)
1179 struct its_cmd_desc desc;
1181 desc.its_int_cmd.dev = dev;
1182 desc.its_int_cmd.event_id = event_id;
1184 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1187 static void its_send_clear(struct its_device *dev, u32 event_id)
1189 struct its_cmd_desc desc;
1191 desc.its_clear_cmd.dev = dev;
1192 desc.its_clear_cmd.event_id = event_id;
1194 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1197 static void its_send_inv(struct its_device *dev, u32 event_id)
1199 struct its_cmd_desc desc;
1201 desc.its_inv_cmd.dev = dev;
1202 desc.its_inv_cmd.event_id = event_id;
1204 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1207 static void its_send_mapd(struct its_device *dev, int valid)
1209 struct its_cmd_desc desc;
1211 desc.its_mapd_cmd.dev = dev;
1212 desc.its_mapd_cmd.valid = !!valid;
1214 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1217 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1220 struct its_cmd_desc desc;
1222 desc.its_mapc_cmd.col = col;
1223 desc.its_mapc_cmd.valid = !!valid;
1225 its_send_single_command(its, its_build_mapc_cmd, &desc);
1228 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230 struct its_cmd_desc desc;
1232 desc.its_mapti_cmd.dev = dev;
1233 desc.its_mapti_cmd.phys_id = irq_id;
1234 desc.its_mapti_cmd.event_id = id;
1236 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1239 static void its_send_movi(struct its_device *dev,
1240 struct its_collection *col, u32 id)
1242 struct its_cmd_desc desc;
1244 desc.its_movi_cmd.dev = dev;
1245 desc.its_movi_cmd.col = col;
1246 desc.its_movi_cmd.event_id = id;
1248 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1251 static void its_send_discard(struct its_device *dev, u32 id)
1253 struct its_cmd_desc desc;
1255 desc.its_discard_cmd.dev = dev;
1256 desc.its_discard_cmd.event_id = id;
1258 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1261 static void its_send_invall(struct its_node *its, struct its_collection *col)
1263 struct its_cmd_desc desc;
1265 desc.its_invall_cmd.col = col;
1267 its_send_single_command(its, its_build_invall_cmd, &desc);
1270 static void its_send_vmapti(struct its_device *dev, u32 id)
1272 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1273 struct its_cmd_desc desc;
1275 desc.its_vmapti_cmd.vpe = map->vpe;
1276 desc.its_vmapti_cmd.dev = dev;
1277 desc.its_vmapti_cmd.virt_id = map->vintid;
1278 desc.its_vmapti_cmd.event_id = id;
1279 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1284 static void its_send_vmovi(struct its_device *dev, u32 id)
1286 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1287 struct its_cmd_desc desc;
1289 desc.its_vmovi_cmd.vpe = map->vpe;
1290 desc.its_vmovi_cmd.dev = dev;
1291 desc.its_vmovi_cmd.event_id = id;
1292 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1297 static void its_send_vmapp(struct its_node *its,
1298 struct its_vpe *vpe, bool valid)
1300 struct its_cmd_desc desc;
1302 desc.its_vmapp_cmd.vpe = vpe;
1303 desc.its_vmapp_cmd.valid = valid;
1304 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1309 static void its_send_vmovp(struct its_vpe *vpe)
1311 struct its_cmd_desc desc = {};
1312 struct its_node *its;
1313 unsigned long flags;
1314 int col_id = vpe->col_idx;
1316 desc.its_vmovp_cmd.vpe = vpe;
1318 if (!its_list_map) {
1319 its = list_first_entry(&its_nodes, struct its_node, entry);
1320 desc.its_vmovp_cmd.col = &its->collections[col_id];
1321 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1326 * Yet another marvel of the architecture. If using the
1327 * its_list "feature", we need to make sure that all ITSs
1328 * receive all VMOVP commands in the same order. The only way
1329 * to guarantee this is to make vmovp a serialization point.
1333 raw_spin_lock_irqsave(&vmovp_lock, flags);
1335 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1336 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1339 list_for_each_entry(its, &its_nodes, entry) {
1343 if (!require_its_list_vmovp(vpe->its_vm, its))
1346 desc.its_vmovp_cmd.col = &its->collections[col_id];
1347 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1350 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1353 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355 struct its_cmd_desc desc;
1357 desc.its_vinvall_cmd.vpe = vpe;
1358 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1361 static void its_send_vinv(struct its_device *dev, u32 event_id)
1363 struct its_cmd_desc desc;
1366 * There is no real VINV command. This is just a normal INV,
1367 * with a VSYNC instead of a SYNC.
1369 desc.its_inv_cmd.dev = dev;
1370 desc.its_inv_cmd.event_id = event_id;
1372 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1375 static void its_send_vint(struct its_device *dev, u32 event_id)
1377 struct its_cmd_desc desc;
1380 * There is no real VINT command. This is just a normal INT,
1381 * with a VSYNC instead of a SYNC.
1383 desc.its_int_cmd.dev = dev;
1384 desc.its_int_cmd.event_id = event_id;
1386 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1389 static void its_send_vclear(struct its_device *dev, u32 event_id)
1391 struct its_cmd_desc desc;
1394 * There is no real VCLEAR command. This is just a normal CLEAR,
1395 * with a VSYNC instead of a SYNC.
1397 desc.its_clear_cmd.dev = dev;
1398 desc.its_clear_cmd.event_id = event_id;
1400 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1403 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405 struct its_cmd_desc desc;
1407 desc.its_invdb_cmd.vpe = vpe;
1408 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1412 * irqchip functions - assumes MSI, mostly.
1414 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416 struct its_vlpi_map *map = get_vlpi_map(d);
1417 irq_hw_number_t hwirq;
1422 va = page_address(map->vm->vprop_page);
1423 hwirq = map->vintid;
1425 /* Remember the updated property */
1426 map->properties &= ~clr;
1427 map->properties |= set | LPI_PROP_GROUP1;
1429 va = gic_rdists->prop_table_va;
1433 cfg = va + hwirq - 8192;
1435 *cfg |= set | LPI_PROP_GROUP1;
1438 * Make the above write visible to the redistributors.
1439 * And yes, we're flushing exactly: One. Single. Byte.
1442 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1443 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1448 static void wait_for_syncr(void __iomem *rdbase)
1450 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1454 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456 void __iomem *rdbase;
1457 unsigned long flags;
1460 /* Target the redistributor this LPI is currently routed to */
1461 cpu = irq_to_cpuid_lock(d, &flags);
1462 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1465 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1466 wait_for_syncr(rdbase);
1468 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1469 irq_to_cpuid_unlock(d, flags);
1472 static void direct_lpi_inv(struct irq_data *d)
1474 struct its_vlpi_map *map = get_vlpi_map(d);
1478 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480 WARN_ON(!is_v4_1(its_dev->its));
1482 val = GICR_INVLPIR_V;
1483 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1484 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1489 __direct_lpi_inv(d, val);
1492 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496 lpi_write_config(d, clr, set);
1497 if (gic_rdists->has_direct_lpi &&
1498 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500 else if (!irqd_is_forwarded_to_vcpu(d))
1501 its_send_inv(its_dev, its_get_event_id(d));
1503 its_send_vinv(its_dev, its_get_event_id(d));
1506 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1509 u32 event = its_get_event_id(d);
1510 struct its_vlpi_map *map;
1513 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1516 if (is_v4_1(its_dev->its))
1519 map = dev_event_to_vlpi_map(its_dev, event);
1521 if (map->db_enabled == enable)
1524 map->db_enabled = enable;
1527 * More fun with the architecture:
1529 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1530 * value or to 1023, depending on the enable bit. But that
1531 * would be issuing a mapping for an /existing/ DevID+EventID
1532 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1533 * to the /same/ vPE, using this opportunity to adjust the
1534 * doorbell. Mouahahahaha. We loves it, Precious.
1536 its_send_vmovi(its_dev, event);
1539 static void its_mask_irq(struct irq_data *d)
1541 if (irqd_is_forwarded_to_vcpu(d))
1542 its_vlpi_set_doorbell(d, false);
1544 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1547 static void its_unmask_irq(struct irq_data *d)
1549 if (irqd_is_forwarded_to_vcpu(d))
1550 its_vlpi_set_doorbell(d, true);
1552 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1555 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557 if (irqd_affinity_is_managed(d))
1558 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1563 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565 if (irqd_affinity_is_managed(d))
1566 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1571 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573 if (irqd_affinity_is_managed(d))
1574 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1579 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1580 const struct cpumask *cpu_mask)
1582 unsigned int cpu = nr_cpu_ids, tmp;
1583 int count = S32_MAX;
1585 for_each_cpu(tmp, cpu_mask) {
1586 int this_count = its_read_lpi_count(d, tmp);
1587 if (this_count < count) {
1597 * As suggested by Thomas Gleixner in:
1598 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600 static int its_select_cpu(struct irq_data *d,
1601 const struct cpumask *aff_mask)
1603 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1604 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1605 static struct cpumask __tmpmask;
1606 struct cpumask *tmpmask;
1607 unsigned long flags;
1609 node = its_dev->its->numa_node;
1610 tmpmask = &__tmpmask;
1612 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1614 if (!irqd_affinity_is_managed(d)) {
1615 /* First try the NUMA node */
1616 if (node != NUMA_NO_NODE) {
1618 * Try the intersection of the affinity mask and the
1619 * node mask (and the online mask, just to be safe).
1621 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1622 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1625 * Ideally, we would check if the mask is empty, and
1626 * try again on the full node here.
1628 * But it turns out that the way ACPI describes the
1629 * affinity for ITSs only deals about memory, and
1630 * not target CPUs, so it cannot describe a single
1631 * ITS placed next to two NUMA nodes.
1633 * Instead, just fallback on the online mask. This
1634 * diverges from Thomas' suggestion above.
1636 cpu = cpumask_pick_least_loaded(d, tmpmask);
1637 if (cpu < nr_cpu_ids)
1640 /* If we can't cross sockets, give up */
1641 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1644 /* If the above failed, expand the search */
1647 /* Try the intersection of the affinity and online masks */
1648 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650 /* If that doesn't fly, the online mask is the last resort */
1651 if (cpumask_empty(tmpmask))
1652 cpumask_copy(tmpmask, cpu_online_mask);
1654 cpu = cpumask_pick_least_loaded(d, tmpmask);
1656 cpumask_copy(tmpmask, aff_mask);
1658 /* If we cannot cross sockets, limit the search to that node */
1659 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1660 node != NUMA_NO_NODE)
1661 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663 cpu = cpumask_pick_least_loaded(d, tmpmask);
1666 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1672 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1675 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1676 struct its_collection *target_col;
1677 u32 id = its_get_event_id(d);
1680 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1681 if (irqd_is_forwarded_to_vcpu(d))
1684 prev_cpu = its_dev->event_map.col_map[id];
1685 its_dec_lpi_count(d, prev_cpu);
1688 cpu = its_select_cpu(d, mask_val);
1690 cpu = cpumask_pick_least_loaded(d, mask_val);
1692 if (cpu < 0 || cpu >= nr_cpu_ids)
1695 /* don't set the affinity when the target cpu is same as current one */
1696 if (cpu != prev_cpu) {
1697 target_col = &its_dev->its->collections[cpu];
1698 its_send_movi(its_dev, target_col, id);
1699 its_dev->event_map.col_map[id] = cpu;
1700 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1703 its_inc_lpi_count(d, cpu);
1705 return IRQ_SET_MASK_OK_DONE;
1708 its_inc_lpi_count(d, prev_cpu);
1712 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714 struct its_node *its = its_dev->its;
1716 return its->phys_base + GITS_TRANSLATER;
1719 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1722 struct its_node *its;
1726 addr = its->get_msi_base(its_dev);
1728 msg->address_lo = lower_32_bits(addr);
1729 msg->address_hi = upper_32_bits(addr);
1730 msg->data = its_get_event_id(d);
1732 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1735 static int its_irq_set_irqchip_state(struct irq_data *d,
1736 enum irqchip_irq_state which,
1739 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1740 u32 event = its_get_event_id(d);
1742 if (which != IRQCHIP_STATE_PENDING)
1745 if (irqd_is_forwarded_to_vcpu(d)) {
1747 its_send_vint(its_dev, event);
1749 its_send_vclear(its_dev, event);
1752 its_send_int(its_dev, event);
1754 its_send_clear(its_dev, event);
1760 static int its_irq_retrigger(struct irq_data *d)
1762 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1766 * Two favourable cases:
1768 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1771 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1772 * and we're better off mapping all VPEs always
1774 * If neither (a) nor (b) is true, then we map vPEs on demand.
1777 static bool gic_requires_eager_mapping(void)
1779 if (!its_list_map || gic_rdists->has_rvpeid)
1785 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787 unsigned long flags;
1789 if (gic_requires_eager_mapping())
1792 raw_spin_lock_irqsave(&vmovp_lock, flags);
1795 * If the VM wasn't mapped yet, iterate over the vpes and get
1798 vm->vlpi_count[its->list_nr]++;
1800 if (vm->vlpi_count[its->list_nr] == 1) {
1803 for (i = 0; i < vm->nr_vpes; i++) {
1804 struct its_vpe *vpe = vm->vpes[i];
1805 struct irq_data *d = irq_get_irq_data(vpe->irq);
1807 /* Map the VPE to the first possible CPU */
1808 vpe->col_idx = cpumask_first(cpu_online_mask);
1809 its_send_vmapp(its, vpe, true);
1810 its_send_vinvall(its, vpe);
1811 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1815 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1818 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820 unsigned long flags;
1822 /* Not using the ITS list? Everything is always mapped. */
1823 if (gic_requires_eager_mapping())
1826 raw_spin_lock_irqsave(&vmovp_lock, flags);
1828 if (!--vm->vlpi_count[its->list_nr]) {
1831 for (i = 0; i < vm->nr_vpes; i++)
1832 its_send_vmapp(its, vm->vpes[i], false);
1835 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1838 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1841 u32 event = its_get_event_id(d);
1847 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849 if (!its_dev->event_map.vm) {
1850 struct its_vlpi_map *maps;
1852 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1859 its_dev->event_map.vm = info->map->vm;
1860 its_dev->event_map.vlpi_maps = maps;
1861 } else if (its_dev->event_map.vm != info->map->vm) {
1866 /* Get our private copy of the mapping information */
1867 its_dev->event_map.vlpi_maps[event] = *info->map;
1869 if (irqd_is_forwarded_to_vcpu(d)) {
1870 /* Already mapped, move it around */
1871 its_send_vmovi(its_dev, event);
1873 /* Ensure all the VPEs are mapped on this ITS */
1874 its_map_vm(its_dev->its, info->map->vm);
1877 * Flag the interrupt as forwarded so that we can
1878 * start poking the virtual property table.
1880 irqd_set_forwarded_to_vcpu(d);
1882 /* Write out the property to the prop table */
1883 lpi_write_config(d, 0xff, info->map->properties);
1885 /* Drop the physical mapping */
1886 its_send_discard(its_dev, event);
1888 /* and install the virtual one */
1889 its_send_vmapti(its_dev, event);
1891 /* Increment the number of VLPIs */
1892 its_dev->event_map.nr_vlpis++;
1896 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1900 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1903 struct its_vlpi_map *map;
1906 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908 map = get_vlpi_map(d);
1910 if (!its_dev->event_map.vm || !map) {
1915 /* Copy our mapping information to the incoming request */
1919 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1923 static int its_vlpi_unmap(struct irq_data *d)
1925 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1926 u32 event = its_get_event_id(d);
1929 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1936 /* Drop the virtual mapping */
1937 its_send_discard(its_dev, event);
1939 /* and restore the physical one */
1940 irqd_clr_forwarded_to_vcpu(d);
1941 its_send_mapti(its_dev, d->hwirq, event);
1942 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1946 /* Potentially unmap the VM from this ITS */
1947 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1950 * Drop the refcount and make the device available again if
1951 * this was the last VLPI.
1953 if (!--its_dev->event_map.nr_vlpis) {
1954 its_dev->event_map.vm = NULL;
1955 kfree(its_dev->event_map.vlpi_maps);
1959 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1963 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1970 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1971 lpi_update_config(d, 0xff, info->config);
1973 lpi_write_config(d, 0xff, info->config);
1974 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1979 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1982 struct its_cmd_info *info = vcpu_info;
1985 if (!is_v4(its_dev->its))
1988 /* Unmap request? */
1990 return its_vlpi_unmap(d);
1992 switch (info->cmd_type) {
1994 return its_vlpi_map(d, info);
1997 return its_vlpi_get(d, info);
1999 case PROP_UPDATE_VLPI:
2000 case PROP_UPDATE_AND_INV_VLPI:
2001 return its_vlpi_prop_update(d, info);
2008 static struct irq_chip its_irq_chip = {
2010 .irq_mask = its_mask_irq,
2011 .irq_unmask = its_unmask_irq,
2012 .irq_eoi = irq_chip_eoi_parent,
2013 .irq_set_affinity = its_set_affinity,
2014 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2015 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2016 .irq_retrigger = its_irq_retrigger,
2017 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2022 * How we allocate LPIs:
2024 * lpi_range_list contains ranges of LPIs that are to available to
2025 * allocate from. To allocate LPIs, just pick the first range that
2026 * fits the required allocation, and reduce it by the required
2027 * amount. Once empty, remove the range from the list.
2029 * To free a range of LPIs, add a free range to the list, sort it and
2030 * merge the result if the new range happens to be adjacent to an
2031 * already free block.
2033 * The consequence of the above is that allocation is cost is low, but
2034 * freeing is expensive. We assumes that freeing rarely occurs.
2036 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2038 static DEFINE_MUTEX(lpi_range_lock);
2039 static LIST_HEAD(lpi_range_list);
2042 struct list_head entry;
2047 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049 struct lpi_range *range;
2051 range = kmalloc(sizeof(*range), GFP_KERNEL);
2053 range->base_id = base;
2060 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062 struct lpi_range *range, *tmp;
2065 mutex_lock(&lpi_range_lock);
2067 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2068 if (range->span >= nr_lpis) {
2069 *base = range->base_id;
2070 range->base_id += nr_lpis;
2071 range->span -= nr_lpis;
2073 if (range->span == 0) {
2074 list_del(&range->entry);
2083 mutex_unlock(&lpi_range_lock);
2085 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2089 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093 if (a->base_id + a->span != b->base_id)
2095 b->base_id = a->base_id;
2097 list_del(&a->entry);
2101 static int free_lpi_range(u32 base, u32 nr_lpis)
2103 struct lpi_range *new, *old;
2105 new = mk_lpi_range(base, nr_lpis);
2109 mutex_lock(&lpi_range_lock);
2111 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2112 if (old->base_id < base)
2116 * old is the last element with ->base_id smaller than base,
2117 * so new goes right after it. If there are no elements with
2118 * ->base_id smaller than base, &old->entry ends up pointing
2119 * at the head of the list, and inserting new it the start of
2120 * the list is the right thing to do in that case as well.
2122 list_add(&new->entry, &old->entry);
2124 * Now check if we can merge with the preceding and/or
2127 merge_lpi_ranges(old, new);
2128 merge_lpi_ranges(new, list_next_entry(new, entry));
2130 mutex_unlock(&lpi_range_lock);
2134 static int __init its_lpi_init(u32 id_bits)
2136 u32 lpis = (1UL << id_bits) - 8192;
2140 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2149 * Initializing the allocator is just the same as freeing the
2150 * full range of LPIs.
2152 err = free_lpi_range(8192, lpis);
2153 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2157 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159 unsigned long *bitmap = NULL;
2163 err = alloc_lpi_range(nr_irqs, base);
2168 } while (nr_irqs > 0);
2176 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2184 *base = *nr_ids = 0;
2189 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191 WARN_ON(free_lpi_range(base, nr_ids));
2192 bitmap_free(bitmap);
2195 static void gic_reset_prop_table(void *va)
2197 /* Priority 0xa0, Group-1, disabled */
2198 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200 /* Make sure the GIC will observe the written configuration */
2201 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2204 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206 struct page *prop_page;
2208 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2212 gic_reset_prop_table(page_address(prop_page));
2217 static void its_free_prop_table(struct page *prop_page)
2219 free_pages((unsigned long)page_address(prop_page),
2220 get_order(LPI_PROPBASE_SZ));
2223 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225 phys_addr_t start, end, addr_end;
2229 * We don't bother checking for a kdump kernel as by
2230 * construction, the LPI tables are out of this kernel's
2233 if (is_kdump_kernel())
2236 addr_end = addr + size - 1;
2238 for_each_reserved_mem_range(i, &start, &end) {
2239 if (addr >= start && addr_end <= end)
2243 /* Not found, not a good sign... */
2244 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2250 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252 if (efi_enabled(EFI_CONFIG_TABLES))
2253 return efi_mem_reserve_persistent(addr, size);
2258 static int __init its_setup_lpi_prop_table(void)
2260 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2263 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2264 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2267 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2270 gic_reset_prop_table(gic_rdists->prop_table_va);
2274 lpi_id_bits = min_t(u32,
2275 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2276 ITS_MAX_LPI_NRBITS);
2277 page = its_allocate_prop_table(GFP_NOWAIT);
2279 pr_err("Failed to allocate PROPBASE\n");
2283 gic_rdists->prop_table_pa = page_to_phys(page);
2284 gic_rdists->prop_table_va = page_address(page);
2285 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2289 pr_info("GICv3: using LPI property table @%pa\n",
2290 &gic_rdists->prop_table_pa);
2292 return its_lpi_init(lpi_id_bits);
2295 static const char *its_base_type_string[] = {
2296 [GITS_BASER_TYPE_DEVICE] = "Devices",
2297 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2298 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2299 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2300 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2301 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2302 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2305 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307 u32 idx = baser - its->tables;
2309 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2312 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2315 u32 idx = baser - its->tables;
2317 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2318 baser->val = its_read_baser(its, baser);
2321 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2322 u64 cache, u64 shr, u32 order, bool indirect)
2324 u64 val = its_read_baser(its, baser);
2325 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2326 u64 type = GITS_BASER_TYPE(val);
2327 u64 baser_phys, tmp;
2328 u32 alloc_pages, psz;
2333 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2334 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2335 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2336 &its->phys_base, its_base_type_string[type],
2337 alloc_pages, GITS_BASER_PAGES_MAX);
2338 alloc_pages = GITS_BASER_PAGES_MAX;
2339 order = get_order(GITS_BASER_PAGES_MAX * psz);
2342 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2346 base = (void *)page_address(page);
2347 baser_phys = virt_to_phys(base);
2349 /* Check if the physical address of the memory is above 48bits */
2350 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352 /* 52bit PA is supported only when PageSize=64K */
2353 if (psz != SZ_64K) {
2354 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2355 free_pages((unsigned long)base, order);
2359 /* Convert 52bit PA to 48bit field */
2360 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2365 (type << GITS_BASER_TYPE_SHIFT) |
2366 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2367 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2372 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2376 val |= GITS_BASER_PAGE_SIZE_4K;
2379 val |= GITS_BASER_PAGE_SIZE_16K;
2382 val |= GITS_BASER_PAGE_SIZE_64K;
2386 its_write_baser(its, baser, val);
2389 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2390 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2392 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394 * Shareability didn't stick. Just use
2395 * whatever the read reported, which is likely
2396 * to be the only thing this redistributor
2397 * supports. If that's zero, make it
2398 * non-cacheable as well.
2400 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402 cache = GITS_BASER_nC;
2403 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2409 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410 &its->phys_base, its_base_type_string[type],
2412 free_pages((unsigned long)base, order);
2416 baser->order = order;
2419 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2421 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423 its_base_type_string[type],
2424 (unsigned long)virt_to_phys(base),
2425 indirect ? "indirect" : "flat", (int)esz,
2426 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2431 static bool its_parse_indirect_baser(struct its_node *its,
2432 struct its_baser *baser,
2433 u32 *order, u32 ids)
2435 u64 tmp = its_read_baser(its, baser);
2436 u64 type = GITS_BASER_TYPE(tmp);
2437 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439 u32 new_order = *order;
2440 u32 psz = baser->psz;
2441 bool indirect = false;
2443 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444 if ((esz << ids) > (psz * 2)) {
2446 * Find out whether hw supports a single or two-level table by
2447 * table by reading bit at offset '62' after writing '1' to it.
2449 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2454 * The size of the lvl2 table is equal to ITS page size
2455 * which is 'psz'. For computing lvl1 table size,
2456 * subtract ID bits that sparse lvl2 table from 'ids'
2457 * which is reported by ITS hardware times lvl1 table
2460 ids -= ilog2(psz / (int)esz);
2461 esz = GITS_LVL1_ENTRY_SIZE;
2466 * Allocate as many entries as required to fit the
2467 * range of device IDs that the ITS can grok... The ID
2468 * space being incredibly sparse, this results in a
2469 * massive waste of memory if two-level device table
2470 * feature is not supported by hardware.
2472 new_order = max_t(u32, get_order(esz << ids), new_order);
2473 if (new_order > MAX_ORDER) {
2474 new_order = MAX_ORDER;
2475 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477 &its->phys_base, its_base_type_string[type],
2478 device_ids(its), ids);
2486 static u32 compute_common_aff(u64 val)
2490 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2493 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2496 static u32 compute_its_aff(struct its_node *its)
2502 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503 * the resulting affinity. We then use that to see if this match
2506 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509 return compute_common_aff(val);
2512 static struct its_node *find_sibling_its(struct its_node *cur_its)
2514 struct its_node *its;
2517 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2520 aff = compute_its_aff(cur_its);
2522 list_for_each_entry(its, &its_nodes, entry) {
2525 if (!is_v4_1(its) || its == cur_its)
2528 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2531 if (aff != compute_its_aff(its))
2534 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535 baser = its->tables[2].val;
2536 if (!(baser & GITS_BASER_VALID))
2545 static void its_free_tables(struct its_node *its)
2549 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550 if (its->tables[i].base) {
2551 free_pages((unsigned long)its->tables[i].base,
2552 its->tables[i].order);
2553 its->tables[i].base = NULL;
2558 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2565 val = its_read_baser(its, baser);
2566 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2570 gpsz = GITS_BASER_PAGE_SIZE_64K;
2573 gpsz = GITS_BASER_PAGE_SIZE_16K;
2577 gpsz = GITS_BASER_PAGE_SIZE_4K;
2581 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2583 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584 its_write_baser(its, baser, val);
2586 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2606 static int its_alloc_tables(struct its_node *its)
2608 u64 shr = GITS_BASER_InnerShareable;
2609 u64 cache = GITS_BASER_RaWaWb;
2612 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613 /* erratum 24313: ignore memory access type */
2614 cache = GITS_BASER_nCnB;
2616 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2617 struct its_baser *baser = its->tables + i;
2618 u64 val = its_read_baser(its, baser);
2619 u64 type = GITS_BASER_TYPE(val);
2620 bool indirect = false;
2623 if (type == GITS_BASER_TYPE_NONE)
2626 if (its_probe_baser_psz(its, baser)) {
2627 its_free_tables(its);
2631 order = get_order(baser->psz);
2634 case GITS_BASER_TYPE_DEVICE:
2635 indirect = its_parse_indirect_baser(its, baser, &order,
2639 case GITS_BASER_TYPE_VCPU:
2641 struct its_node *sibling;
2644 if ((sibling = find_sibling_its(its))) {
2645 *baser = sibling->tables[2];
2646 its_write_baser(its, baser, baser->val);
2651 indirect = its_parse_indirect_baser(its, baser, &order,
2652 ITS_MAX_VPEID_BITS);
2656 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2658 its_free_tables(its);
2662 /* Update settings which will be used for next BASERn */
2663 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2664 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670 static u64 inherit_vpe_l1_table_from_its(void)
2672 struct its_node *its;
2676 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2677 aff = compute_common_aff(val);
2679 list_for_each_entry(its, &its_nodes, entry) {
2685 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2688 if (aff != compute_its_aff(its))
2691 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2692 baser = its->tables[2].val;
2693 if (!(baser & GITS_BASER_VALID))
2696 /* We have a winner! */
2697 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2699 val = GICR_VPROPBASER_4_1_VALID;
2700 if (baser & GITS_BASER_INDIRECT)
2701 val |= GICR_VPROPBASER_4_1_INDIRECT;
2702 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2703 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2704 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2705 case GIC_PAGE_SIZE_64K:
2706 addr = GITS_BASER_ADDR_48_to_52(baser);
2709 addr = baser & GENMASK_ULL(47, 12);
2712 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2713 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2714 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2715 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2716 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2717 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2731 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2732 aff = compute_common_aff(val);
2734 for_each_possible_cpu(cpu) {
2735 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2737 if (!base || cpu == smp_processor_id())
2740 val = gic_read_typer(base + GICR_TYPER);
2741 if (aff != compute_common_aff(val))
2745 * At this point, we have a victim. This particular CPU
2746 * has already booted, and has an affinity that matches
2747 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2748 * Make sure we don't write the Z bit in that case.
2750 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2751 val &= ~GICR_VPROPBASER_4_1_Z;
2753 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2754 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762 static bool allocate_vpe_l2_table(int cpu, u32 id)
2764 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2765 unsigned int psz, esz, idx, npg, gpsz;
2770 if (!gic_rdists->has_rvpeid)
2773 /* Skip non-present CPUs */
2777 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2779 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2780 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2781 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2787 case GIC_PAGE_SIZE_4K:
2790 case GIC_PAGE_SIZE_16K:
2793 case GIC_PAGE_SIZE_64K:
2798 /* Don't allow vpe_id that exceeds single, flat table limit */
2799 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2800 return (id < (npg * psz / (esz * SZ_8)));
2802 /* Compute 1st level table index & check if that exceeds table limit */
2803 idx = id >> ilog2(psz / (esz * SZ_8));
2804 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2807 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2809 /* Allocate memory for 2nd level table */
2811 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2815 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2816 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2817 gic_flush_dcache_to_poc(page_address(page), psz);
2819 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2821 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2822 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2823 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2825 /* Ensure updated table contents are visible to RD hardware */
2832 static int allocate_vpe_l1_table(void)
2834 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2835 u64 val, gpsz, npg, pa;
2836 unsigned int psz = SZ_64K;
2837 unsigned int np, epp, esz;
2840 if (!gic_rdists->has_rvpeid)
2844 * if VPENDBASER.Valid is set, disable any previously programmed
2845 * VPE by setting PendingLast while clearing Valid. This has the
2846 * effect of making sure no doorbell will be generated and we can
2847 * then safely clear VPROPBASER.Valid.
2849 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2850 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2851 vlpi_base + GICR_VPENDBASER);
2854 * If we can inherit the configuration from another RD, let's do
2855 * so. Otherwise, we have to go through the allocation process. We
2856 * assume that all RDs have the exact same requirements, as
2857 * nothing will work otherwise.
2859 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2860 if (val & GICR_VPROPBASER_4_1_VALID)
2863 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2864 if (!gic_data_rdist()->vpe_table_mask)
2867 val = inherit_vpe_l1_table_from_its();
2868 if (val & GICR_VPROPBASER_4_1_VALID)
2871 /* First probe the page size */
2872 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2873 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2874 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2875 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2876 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2880 gpsz = GIC_PAGE_SIZE_4K;
2882 case GIC_PAGE_SIZE_4K:
2885 case GIC_PAGE_SIZE_16K:
2888 case GIC_PAGE_SIZE_64K:
2894 * Start populating the register from scratch, including RO fields
2895 * (which we want to print in debug cases...)
2898 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2901 /* How many entries per GIC page? */
2903 epp = psz / (esz * SZ_8);
2906 * If we need more than just a single L1 page, flag the table
2907 * as indirect and compute the number of required L1 pages.
2909 if (epp < ITS_MAX_VPEID) {
2912 val |= GICR_VPROPBASER_4_1_INDIRECT;
2914 /* Number of L2 pages required to cover the VPEID space */
2915 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2917 /* Number of L1 pages to point to the L2 pages */
2918 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2923 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2925 /* Right, that's the number of CPU pages we need for L1 */
2926 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2928 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2929 np, npg, psz, epp, esz);
2930 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2934 gic_data_rdist()->vpe_l1_base = page_address(page);
2935 pa = virt_to_phys(page_address(page));
2936 WARN_ON(!IS_ALIGNED(pa, psz));
2938 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2939 val |= GICR_VPROPBASER_RaWb;
2940 val |= GICR_VPROPBASER_InnerShareable;
2941 val |= GICR_VPROPBASER_4_1_Z;
2942 val |= GICR_VPROPBASER_4_1_VALID;
2945 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2946 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2948 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2949 smp_processor_id(), val,
2950 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2955 static int its_alloc_collections(struct its_node *its)
2959 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2961 if (!its->collections)
2964 for (i = 0; i < nr_cpu_ids; i++)
2965 its->collections[i].target_address = ~0ULL;
2970 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2972 struct page *pend_page;
2974 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2975 get_order(LPI_PENDBASE_SZ));
2979 /* Make sure the GIC will observe the zero-ed page */
2980 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2985 static void its_free_pending_table(struct page *pt)
2987 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2991 * Booting with kdump and LPIs enabled is generally fine. Any other
2992 * case is wrong in the absence of firmware/EFI support.
2994 static bool enabled_lpis_allowed(void)
2999 /* Check whether the property table is in a reserved region */
3000 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3001 addr = val & GENMASK_ULL(51, 12);
3003 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3006 static int __init allocate_lpi_tables(void)
3012 * If LPIs are enabled while we run this from the boot CPU,
3013 * flag the RD tables as pre-allocated if the stars do align.
3015 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3016 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3017 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3018 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3019 pr_info("GICv3: Using preallocated redistributor tables\n");
3022 err = its_setup_lpi_prop_table();
3027 * We allocate all the pending tables anyway, as we may have a
3028 * mix of RDs that have had LPIs enabled, and some that
3029 * don't. We'll free the unused ones as each CPU comes online.
3031 for_each_possible_cpu(cpu) {
3032 struct page *pend_page;
3034 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3036 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3040 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3046 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3048 u32 count = 1000000; /* 1s! */
3053 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3054 clean = !(val & GICR_VPENDBASER_Dirty);
3060 } while (!clean && count);
3062 if (unlikely(!clean))
3063 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3068 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3072 /* Make sure we wait until the RD is done with the initial scan */
3073 val = read_vpend_dirty_clear(vlpi_base);
3074 val &= ~GICR_VPENDBASER_Valid;
3077 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3079 val = read_vpend_dirty_clear(vlpi_base);
3080 if (unlikely(val & GICR_VPENDBASER_Dirty))
3081 val |= GICR_VPENDBASER_PendingLast;
3086 static void its_cpu_init_lpis(void)
3088 void __iomem *rbase = gic_data_rdist_rd_base();
3089 struct page *pend_page;
3093 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3096 val = readl_relaxed(rbase + GICR_CTLR);
3097 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3098 (val & GICR_CTLR_ENABLE_LPIS)) {
3100 * Check that we get the same property table on all
3101 * RDs. If we don't, this is hopeless.
3103 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 paddr &= GENMASK_ULL(51, 12);
3105 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3106 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3108 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3109 paddr &= GENMASK_ULL(51, 16);
3111 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3112 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3117 pend_page = gic_data_rdist()->pend_page;
3118 paddr = page_to_phys(pend_page);
3121 val = (gic_rdists->prop_table_pa |
3122 GICR_PROPBASER_InnerShareable |
3123 GICR_PROPBASER_RaWaWb |
3124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3126 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3127 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3129 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3130 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3135 * The HW reports non-shareable, we must
3136 * remove the cacheability attributes as
3139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3140 GICR_PROPBASER_CACHEABILITY_MASK);
3141 val |= GICR_PROPBASER_nC;
3142 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3144 pr_info_once("GIC: using cache flushing for LPI property table\n");
3145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3149 val = (page_to_phys(pend_page) |
3150 GICR_PENDBASER_InnerShareable |
3151 GICR_PENDBASER_RaWaWb);
3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3156 if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3157 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3159 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3161 * The HW reports non-shareable, we must remove the
3162 * cacheability attributes as well.
3164 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3165 GICR_PENDBASER_CACHEABILITY_MASK);
3166 val |= GICR_PENDBASER_nC;
3167 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3171 val = readl_relaxed(rbase + GICR_CTLR);
3172 val |= GICR_CTLR_ENABLE_LPIS;
3173 writel_relaxed(val, rbase + GICR_CTLR);
3175 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3176 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3179 * It's possible for CPU to receive VLPIs before it is
3180 * scheduled as a vPE, especially for the first CPU, and the
3181 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3182 * as out of range and dropped by GIC.
3183 * So we initialize IDbits to known value to avoid VLPI drop.
3185 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3186 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3187 smp_processor_id(), val);
3188 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3191 * Also clear Valid bit of GICR_VPENDBASER, in case some
3192 * ancient programming gets left in and has possibility of
3193 * corrupting memory.
3195 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3198 if (allocate_vpe_l1_table()) {
3200 * If the allocation has failed, we're in massive trouble.
3201 * Disable direct injection, and pray that no VM was
3202 * already running...
3204 gic_rdists->has_rvpeid = false;
3205 gic_rdists->has_vlpis = false;
3208 /* Make sure the GIC has seen the above */
3211 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3212 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3214 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3215 "reserved" : "allocated",
3219 static void its_cpu_init_collection(struct its_node *its)
3221 int cpu = smp_processor_id();
3224 /* avoid cross node collections and its mapping */
3225 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3226 struct device_node *cpu_node;
3228 cpu_node = of_get_cpu_node(cpu, NULL);
3229 if (its->numa_node != NUMA_NO_NODE &&
3230 its->numa_node != of_node_to_nid(cpu_node))
3235 * We now have to bind each collection to its target
3238 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3240 * This ITS wants the physical address of the
3243 target = gic_data_rdist()->phys_base;
3245 /* This ITS wants a linear CPU number. */
3246 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3247 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3250 /* Perform collection mapping */
3251 its->collections[cpu].target_address = target;
3252 its->collections[cpu].col_id = cpu;
3254 its_send_mapc(its, &its->collections[cpu], 1);
3255 its_send_invall(its, &its->collections[cpu]);
3258 static void its_cpu_init_collections(void)
3260 struct its_node *its;
3262 raw_spin_lock(&its_lock);
3264 list_for_each_entry(its, &its_nodes, entry)
3265 its_cpu_init_collection(its);
3267 raw_spin_unlock(&its_lock);
3270 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3272 struct its_device *its_dev = NULL, *tmp;
3273 unsigned long flags;
3275 raw_spin_lock_irqsave(&its->lock, flags);
3277 list_for_each_entry(tmp, &its->its_device_list, entry) {
3278 if (tmp->device_id == dev_id) {
3284 raw_spin_unlock_irqrestore(&its->lock, flags);
3289 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3293 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3294 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3295 return &its->tables[i];
3301 static bool its_alloc_table_entry(struct its_node *its,
3302 struct its_baser *baser, u32 id)
3308 /* Don't allow device id that exceeds single, flat table limit */
3309 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3310 if (!(baser->val & GITS_BASER_INDIRECT))
3311 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3313 /* Compute 1st level table index & check if that exceeds table limit */
3314 idx = id >> ilog2(baser->psz / esz);
3315 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3318 table = baser->base;
3320 /* Allocate memory for 2nd level table */
3322 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3323 get_order(baser->psz));
3327 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3328 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3329 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3331 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3333 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3334 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3335 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3337 /* Ensure updated table contents are visible to ITS hardware */
3344 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3346 struct its_baser *baser;
3348 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3350 /* Don't allow device id that exceeds ITS hardware limit */
3352 return (ilog2(dev_id) < device_ids(its));
3354 return its_alloc_table_entry(its, baser, dev_id);
3357 static bool its_alloc_vpe_table(u32 vpe_id)
3359 struct its_node *its;
3363 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3364 * could try and only do it on ITSs corresponding to devices
3365 * that have interrupts targeted at this VPE, but the
3366 * complexity becomes crazy (and you have tons of memory
3369 list_for_each_entry(its, &its_nodes, entry) {
3370 struct its_baser *baser;
3375 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3379 if (!its_alloc_table_entry(its, baser, vpe_id))
3383 /* Non v4.1? No need to iterate RDs and go back early. */
3384 if (!gic_rdists->has_rvpeid)
3388 * Make sure the L2 tables are allocated for all copies of
3389 * the L1 table on *all* v4.1 RDs.
3391 for_each_possible_cpu(cpu) {
3392 if (!allocate_vpe_l2_table(cpu, vpe_id))
3399 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3400 int nvecs, bool alloc_lpis)
3402 struct its_device *dev;
3403 unsigned long *lpi_map = NULL;
3404 unsigned long flags;
3405 u16 *col_map = NULL;
3412 if (!its_alloc_device_table(its, dev_id))
3415 if (WARN_ON(!is_power_of_2(nvecs)))
3416 nvecs = roundup_pow_of_two(nvecs);
3418 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3420 * Even if the device wants a single LPI, the ITT must be
3421 * sized as a power of two (and you need at least one bit...).
3423 nr_ites = max(2, nvecs);
3424 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3425 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3426 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3428 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3430 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3433 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3438 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3441 bitmap_free(lpi_map);
3446 gic_flush_dcache_to_poc(itt, sz);
3450 dev->nr_ites = nr_ites;
3451 dev->event_map.lpi_map = lpi_map;
3452 dev->event_map.col_map = col_map;
3453 dev->event_map.lpi_base = lpi_base;
3454 dev->event_map.nr_lpis = nr_lpis;
3455 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3456 dev->device_id = dev_id;
3457 INIT_LIST_HEAD(&dev->entry);
3459 raw_spin_lock_irqsave(&its->lock, flags);
3460 list_add(&dev->entry, &its->its_device_list);
3461 raw_spin_unlock_irqrestore(&its->lock, flags);
3463 /* Map device to its ITT */
3464 its_send_mapd(dev, 1);
3469 static void its_free_device(struct its_device *its_dev)
3471 unsigned long flags;
3473 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3474 list_del(&its_dev->entry);
3475 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3476 kfree(its_dev->event_map.col_map);
3477 kfree(its_dev->itt);
3481 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3485 /* Find a free LPI region in lpi_map and allocate them. */
3486 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3487 dev->event_map.nr_lpis,
3488 get_count_order(nvecs));
3492 *hwirq = dev->event_map.lpi_base + idx;
3497 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3498 int nvec, msi_alloc_info_t *info)
3500 struct its_node *its;
3501 struct its_device *its_dev;
3502 struct msi_domain_info *msi_info;
3507 * We ignore "dev" entirely, and rely on the dev_id that has
3508 * been passed via the scratchpad. This limits this domain's
3509 * usefulness to upper layers that definitely know that they
3510 * are built on top of the ITS.
3512 dev_id = info->scratchpad[0].ul;
3514 msi_info = msi_get_domain_info(domain);
3515 its = msi_info->data;
3517 if (!gic_rdists->has_direct_lpi &&
3519 vpe_proxy.dev->its == its &&
3520 dev_id == vpe_proxy.dev->device_id) {
3521 /* Bad luck. Get yourself a better implementation */
3522 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3527 mutex_lock(&its->dev_alloc_lock);
3528 its_dev = its_find_device(its, dev_id);
3531 * We already have seen this ID, probably through
3532 * another alias (PCI bridge of some sort). No need to
3533 * create the device.
3535 its_dev->shared = true;
3536 pr_debug("Reusing ITT for devID %x\n", dev_id);
3540 its_dev = its_create_device(its, dev_id, nvec, true);
3546 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3547 its_dev->shared = true;
3549 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3551 mutex_unlock(&its->dev_alloc_lock);
3552 info->scratchpad[0].ptr = its_dev;
3556 static struct msi_domain_ops its_msi_domain_ops = {
3557 .msi_prepare = its_msi_prepare,
3560 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3562 irq_hw_number_t hwirq)
3564 struct irq_fwspec fwspec;
3566 if (irq_domain_get_of_node(domain->parent)) {
3567 fwspec.fwnode = domain->parent->fwnode;
3568 fwspec.param_count = 3;
3569 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3570 fwspec.param[1] = hwirq;
3571 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3572 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3573 fwspec.fwnode = domain->parent->fwnode;
3574 fwspec.param_count = 2;
3575 fwspec.param[0] = hwirq;
3576 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3581 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3584 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3585 unsigned int nr_irqs, void *args)
3587 msi_alloc_info_t *info = args;
3588 struct its_device *its_dev = info->scratchpad[0].ptr;
3589 struct its_node *its = its_dev->its;
3590 struct irq_data *irqd;
3591 irq_hw_number_t hwirq;
3595 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3599 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3603 for (i = 0; i < nr_irqs; i++) {
3604 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3608 irq_domain_set_hwirq_and_chip(domain, virq + i,
3609 hwirq + i, &its_irq_chip, its_dev);
3610 irqd = irq_get_irq_data(virq + i);
3611 irqd_set_single_target(irqd);
3612 irqd_set_affinity_on_activate(irqd);
3613 irqd_set_resend_when_in_progress(irqd);
3614 pr_debug("ID:%d pID:%d vID:%d\n",
3615 (int)(hwirq + i - its_dev->event_map.lpi_base),
3616 (int)(hwirq + i), virq + i);
3622 static int its_irq_domain_activate(struct irq_domain *domain,
3623 struct irq_data *d, bool reserve)
3625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3626 u32 event = its_get_event_id(d);
3629 cpu = its_select_cpu(d, cpu_online_mask);
3630 if (cpu < 0 || cpu >= nr_cpu_ids)
3633 its_inc_lpi_count(d, cpu);
3634 its_dev->event_map.col_map[event] = cpu;
3635 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3637 /* Map the GIC IRQ and event to the device */
3638 its_send_mapti(its_dev, d->hwirq, event);
3642 static void its_irq_domain_deactivate(struct irq_domain *domain,
3645 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3646 u32 event = its_get_event_id(d);
3648 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3649 /* Stop the delivery of interrupts */
3650 its_send_discard(its_dev, event);
3653 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3654 unsigned int nr_irqs)
3656 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3657 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3658 struct its_node *its = its_dev->its;
3661 bitmap_release_region(its_dev->event_map.lpi_map,
3662 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3663 get_count_order(nr_irqs));
3665 for (i = 0; i < nr_irqs; i++) {
3666 struct irq_data *data = irq_domain_get_irq_data(domain,
3668 /* Nuke the entry in the domain */
3669 irq_domain_reset_irq_data(data);
3672 mutex_lock(&its->dev_alloc_lock);
3675 * If all interrupts have been freed, start mopping the
3676 * floor. This is conditioned on the device not being shared.
3678 if (!its_dev->shared &&
3679 bitmap_empty(its_dev->event_map.lpi_map,
3680 its_dev->event_map.nr_lpis)) {
3681 its_lpi_free(its_dev->event_map.lpi_map,
3682 its_dev->event_map.lpi_base,
3683 its_dev->event_map.nr_lpis);
3685 /* Unmap device/itt */
3686 its_send_mapd(its_dev, 0);
3687 its_free_device(its_dev);
3690 mutex_unlock(&its->dev_alloc_lock);
3692 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3695 static const struct irq_domain_ops its_domain_ops = {
3696 .alloc = its_irq_domain_alloc,
3697 .free = its_irq_domain_free,
3698 .activate = its_irq_domain_activate,
3699 .deactivate = its_irq_domain_deactivate,
3705 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3706 * likely), the only way to perform an invalidate is to use a fake
3707 * device to issue an INV command, implying that the LPI has first
3708 * been mapped to some event on that device. Since this is not exactly
3709 * cheap, we try to keep that mapping around as long as possible, and
3710 * only issue an UNMAP if we're short on available slots.
3712 * Broken by design(tm).
3714 * GICv4.1, on the other hand, mandates that we're able to invalidate
3715 * by writing to a MMIO register. It doesn't implement the whole of
3716 * DirectLPI, but that's good enough. And most of the time, we don't
3717 * even have to invalidate anything, as the redistributor can be told
3718 * whether to generate a doorbell or not (we thus leave it enabled,
3721 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3723 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3724 if (gic_rdists->has_rvpeid)
3727 /* Already unmapped? */
3728 if (vpe->vpe_proxy_event == -1)
3731 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3732 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3735 * We don't track empty slots at all, so let's move the
3736 * next_victim pointer if we can quickly reuse that slot
3737 * instead of nuking an existing entry. Not clear that this is
3738 * always a win though, and this might just generate a ripple
3739 * effect... Let's just hope VPEs don't migrate too often.
3741 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3742 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3744 vpe->vpe_proxy_event = -1;
3747 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3749 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3750 if (gic_rdists->has_rvpeid)
3753 if (!gic_rdists->has_direct_lpi) {
3754 unsigned long flags;
3756 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3757 its_vpe_db_proxy_unmap_locked(vpe);
3758 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3762 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3764 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3765 if (gic_rdists->has_rvpeid)
3768 /* Already mapped? */
3769 if (vpe->vpe_proxy_event != -1)
3772 /* This slot was already allocated. Kick the other VPE out. */
3773 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3774 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3776 /* Map the new VPE instead */
3777 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3778 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3779 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3781 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3782 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3785 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3787 unsigned long flags;
3788 struct its_collection *target_col;
3790 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3791 if (gic_rdists->has_rvpeid)
3794 if (gic_rdists->has_direct_lpi) {
3795 void __iomem *rdbase;
3797 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3798 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3799 wait_for_syncr(rdbase);
3804 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3806 its_vpe_db_proxy_map_locked(vpe);
3808 target_col = &vpe_proxy.dev->its->collections[to];
3809 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3810 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3812 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3815 static int its_vpe_set_affinity(struct irq_data *d,
3816 const struct cpumask *mask_val,
3819 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3820 int from, cpu = cpumask_first(mask_val);
3821 unsigned long flags;
3824 * Changing affinity is mega expensive, so let's be as lazy as
3825 * we can and only do it if we really have to. Also, if mapped
3826 * into the proxy device, we need to move the doorbell
3827 * interrupt to its new location.
3829 * Another thing is that changing the affinity of a vPE affects
3830 * *other interrupts* such as all the vLPIs that are routed to
3831 * this vPE. This means that the irq_desc lock is not enough to
3832 * protect us, and that we must ensure nobody samples vpe->col_idx
3833 * during the update, hence the lock below which must also be
3834 * taken on any vLPI handling path that evaluates vpe->col_idx.
3836 from = vpe_to_cpuid_lock(vpe, &flags);
3843 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3844 * is sharing its VPE table with the current one.
3846 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3847 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3850 its_send_vmovp(vpe);
3851 its_vpe_db_proxy_move(vpe, from, cpu);
3854 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3855 vpe_to_cpuid_unlock(vpe, flags);
3857 return IRQ_SET_MASK_OK_DONE;
3860 static void its_wait_vpt_parse_complete(void)
3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3865 if (!gic_rdists->has_vpend_valid_dirty)
3868 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3870 !(val & GICR_VPENDBASER_Dirty),
3874 static void its_vpe_schedule(struct its_vpe *vpe)
3876 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3879 /* Schedule the VPE */
3880 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3881 GENMASK_ULL(51, 12);
3882 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3883 val |= GICR_VPROPBASER_RaWb;
3884 val |= GICR_VPROPBASER_InnerShareable;
3885 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3887 val = virt_to_phys(page_address(vpe->vpt_page)) &
3888 GENMASK_ULL(51, 16);
3889 val |= GICR_VPENDBASER_RaWaWb;
3890 val |= GICR_VPENDBASER_InnerShareable;
3892 * There is no good way of finding out if the pending table is
3893 * empty as we can race against the doorbell interrupt very
3894 * easily. So in the end, vpe->pending_last is only an
3895 * indication that the vcpu has something pending, not one
3896 * that the pending table is empty. A good implementation
3897 * would be able to read its coarse map pretty quickly anyway,
3898 * making this a tolerable issue.
3900 val |= GICR_VPENDBASER_PendingLast;
3901 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3902 val |= GICR_VPENDBASER_Valid;
3903 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3906 static void its_vpe_deschedule(struct its_vpe *vpe)
3908 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3911 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3913 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3914 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3917 static void its_vpe_invall(struct its_vpe *vpe)
3919 struct its_node *its;
3921 list_for_each_entry(its, &its_nodes, entry) {
3925 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3929 * Sending a VINVALL to a single ITS is enough, as all
3930 * we need is to reach the redistributors.
3932 its_send_vinvall(its, vpe);
3937 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3939 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3940 struct its_cmd_info *info = vcpu_info;
3942 switch (info->cmd_type) {
3944 its_vpe_schedule(vpe);
3947 case DESCHEDULE_VPE:
3948 its_vpe_deschedule(vpe);
3952 its_wait_vpt_parse_complete();
3956 its_vpe_invall(vpe);
3964 static void its_vpe_send_cmd(struct its_vpe *vpe,
3965 void (*cmd)(struct its_device *, u32))
3967 unsigned long flags;
3969 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3971 its_vpe_db_proxy_map_locked(vpe);
3972 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3974 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3977 static void its_vpe_send_inv(struct irq_data *d)
3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3981 if (gic_rdists->has_direct_lpi)
3982 __direct_lpi_inv(d, d->parent_data->hwirq);
3984 its_vpe_send_cmd(vpe, its_send_inv);
3987 static void its_vpe_mask_irq(struct irq_data *d)
3990 * We need to unmask the LPI, which is described by the parent
3991 * irq_data. Instead of calling into the parent (which won't
3992 * exactly do the right thing, let's simply use the
3993 * parent_data pointer. Yes, I'm naughty.
3995 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3996 its_vpe_send_inv(d);
3999 static void its_vpe_unmask_irq(struct irq_data *d)
4001 /* Same hack as above... */
4002 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4003 its_vpe_send_inv(d);
4006 static int its_vpe_set_irqchip_state(struct irq_data *d,
4007 enum irqchip_irq_state which,
4010 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4012 if (which != IRQCHIP_STATE_PENDING)
4015 if (gic_rdists->has_direct_lpi) {
4016 void __iomem *rdbase;
4018 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4020 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4022 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4023 wait_for_syncr(rdbase);
4027 its_vpe_send_cmd(vpe, its_send_int);
4029 its_vpe_send_cmd(vpe, its_send_clear);
4035 static int its_vpe_retrigger(struct irq_data *d)
4037 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4040 static struct irq_chip its_vpe_irq_chip = {
4041 .name = "GICv4-vpe",
4042 .irq_mask = its_vpe_mask_irq,
4043 .irq_unmask = its_vpe_unmask_irq,
4044 .irq_eoi = irq_chip_eoi_parent,
4045 .irq_set_affinity = its_vpe_set_affinity,
4046 .irq_retrigger = its_vpe_retrigger,
4047 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4048 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4051 static struct its_node *find_4_1_its(void)
4053 static struct its_node *its = NULL;
4056 list_for_each_entry(its, &its_nodes, entry) {
4068 static void its_vpe_4_1_send_inv(struct irq_data *d)
4070 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4071 struct its_node *its;
4074 * GICv4.1 wants doorbells to be invalidated using the
4075 * INVDB command in order to be broadcast to all RDs. Send
4076 * it to the first valid ITS, and let the HW do its magic.
4078 its = find_4_1_its();
4080 its_send_invdb(its, vpe);
4083 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4085 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4086 its_vpe_4_1_send_inv(d);
4089 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4091 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4092 its_vpe_4_1_send_inv(d);
4095 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4096 struct its_cmd_info *info)
4098 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4101 /* Schedule the VPE */
4102 val |= GICR_VPENDBASER_Valid;
4103 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4104 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4105 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4107 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4110 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4111 struct its_cmd_info *info)
4113 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4117 unsigned long flags;
4120 * vPE is going to block: make the vPE non-resident with
4121 * PendingLast clear and DB set. The GIC guarantees that if
4122 * we read-back PendingLast clear, then a doorbell will be
4123 * delivered when an interrupt comes.
4125 * Note the locking to deal with the concurrent update of
4126 * pending_last from the doorbell interrupt handler that can
4129 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4130 val = its_clear_vpend_valid(vlpi_base,
4131 GICR_VPENDBASER_PendingLast,
4132 GICR_VPENDBASER_4_1_DB);
4133 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4134 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4137 * We're not blocking, so just make the vPE non-resident
4138 * with PendingLast set, indicating that we'll be back.
4140 val = its_clear_vpend_valid(vlpi_base,
4142 GICR_VPENDBASER_PendingLast);
4143 vpe->pending_last = true;
4147 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4149 void __iomem *rdbase;
4150 unsigned long flags;
4154 val = GICR_INVALLR_V;
4155 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4157 /* Target the redistributor this vPE is currently known on */
4158 cpu = vpe_to_cpuid_lock(vpe, &flags);
4159 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4160 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4161 gic_write_lpir(val, rdbase + GICR_INVALLR);
4163 wait_for_syncr(rdbase);
4164 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4165 vpe_to_cpuid_unlock(vpe, flags);
4168 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171 struct its_cmd_info *info = vcpu_info;
4173 switch (info->cmd_type) {
4175 its_vpe_4_1_schedule(vpe, info);
4178 case DESCHEDULE_VPE:
4179 its_vpe_4_1_deschedule(vpe, info);
4183 its_wait_vpt_parse_complete();
4187 its_vpe_4_1_invall(vpe);
4195 static struct irq_chip its_vpe_4_1_irq_chip = {
4196 .name = "GICv4.1-vpe",
4197 .irq_mask = its_vpe_4_1_mask_irq,
4198 .irq_unmask = its_vpe_4_1_unmask_irq,
4199 .irq_eoi = irq_chip_eoi_parent,
4200 .irq_set_affinity = its_vpe_set_affinity,
4201 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4204 static void its_configure_sgi(struct irq_data *d, bool clear)
4206 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4207 struct its_cmd_desc desc;
4209 desc.its_vsgi_cmd.vpe = vpe;
4210 desc.its_vsgi_cmd.sgi = d->hwirq;
4211 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4212 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4213 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4214 desc.its_vsgi_cmd.clear = clear;
4217 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4218 * destination VPE is mapped there. Since we map them eagerly at
4219 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4221 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4224 static void its_sgi_mask_irq(struct irq_data *d)
4226 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4228 vpe->sgi_config[d->hwirq].enabled = false;
4229 its_configure_sgi(d, false);
4232 static void its_sgi_unmask_irq(struct irq_data *d)
4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4236 vpe->sgi_config[d->hwirq].enabled = true;
4237 its_configure_sgi(d, false);
4240 static int its_sgi_set_affinity(struct irq_data *d,
4241 const struct cpumask *mask_val,
4245 * There is no notion of affinity for virtual SGIs, at least
4246 * not on the host (since they can only be targeting a vPE).
4247 * Tell the kernel we've done whatever it asked for.
4249 irq_data_update_effective_affinity(d, mask_val);
4250 return IRQ_SET_MASK_OK;
4253 static int its_sgi_set_irqchip_state(struct irq_data *d,
4254 enum irqchip_irq_state which,
4257 if (which != IRQCHIP_STATE_PENDING)
4261 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262 struct its_node *its = find_4_1_its();
4265 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4266 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4267 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4269 its_configure_sgi(d, true);
4275 static int its_sgi_get_irqchip_state(struct irq_data *d,
4276 enum irqchip_irq_state which, bool *val)
4278 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4280 unsigned long flags;
4281 u32 count = 1000000; /* 1s! */
4285 if (which != IRQCHIP_STATE_PENDING)
4289 * Locking galore! We can race against two different events:
4291 * - Concurrent vPE affinity change: we must make sure it cannot
4292 * happen, or we'll talk to the wrong redistributor. This is
4293 * identical to what happens with vLPIs.
4295 * - Concurrent VSGIPENDR access: As it involves accessing two
4296 * MMIO registers, this must be made atomic one way or another.
4298 cpu = vpe_to_cpuid_lock(vpe, &flags);
4299 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4301 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4303 status = readl_relaxed(base + GICR_VSGIPENDR);
4304 if (!(status & GICR_VSGIPENDR_BUSY))
4309 pr_err_ratelimited("Unable to get SGI status\n");
4317 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4318 vpe_to_cpuid_unlock(vpe, flags);
4323 *val = !!(status & (1 << d->hwirq));
4328 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4330 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4331 struct its_cmd_info *info = vcpu_info;
4333 switch (info->cmd_type) {
4334 case PROP_UPDATE_VSGI:
4335 vpe->sgi_config[d->hwirq].priority = info->priority;
4336 vpe->sgi_config[d->hwirq].group = info->group;
4337 its_configure_sgi(d, false);
4345 static struct irq_chip its_sgi_irq_chip = {
4346 .name = "GICv4.1-sgi",
4347 .irq_mask = its_sgi_mask_irq,
4348 .irq_unmask = its_sgi_unmask_irq,
4349 .irq_set_affinity = its_sgi_set_affinity,
4350 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4351 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4352 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4355 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4356 unsigned int virq, unsigned int nr_irqs,
4359 struct its_vpe *vpe = args;
4362 /* Yes, we do want 16 SGIs */
4363 WARN_ON(nr_irqs != 16);
4365 for (i = 0; i < 16; i++) {
4366 vpe->sgi_config[i].priority = 0;
4367 vpe->sgi_config[i].enabled = false;
4368 vpe->sgi_config[i].group = false;
4370 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4371 &its_sgi_irq_chip, vpe);
4372 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4378 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4380 unsigned int nr_irqs)
4385 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4386 struct irq_data *d, bool reserve)
4388 /* Write out the initial SGI configuration */
4389 its_configure_sgi(d, false);
4393 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4396 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4399 * The VSGI command is awkward:
4401 * - To change the configuration, CLEAR must be set to false,
4402 * leaving the pending bit unchanged.
4403 * - To clear the pending bit, CLEAR must be set to true, leaving
4404 * the configuration unchanged.
4406 * You just can't do both at once, hence the two commands below.
4408 vpe->sgi_config[d->hwirq].enabled = false;
4409 its_configure_sgi(d, false);
4410 its_configure_sgi(d, true);
4413 static const struct irq_domain_ops its_sgi_domain_ops = {
4414 .alloc = its_sgi_irq_domain_alloc,
4415 .free = its_sgi_irq_domain_free,
4416 .activate = its_sgi_irq_domain_activate,
4417 .deactivate = its_sgi_irq_domain_deactivate,
4420 static int its_vpe_id_alloc(void)
4422 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4425 static void its_vpe_id_free(u16 id)
4427 ida_simple_remove(&its_vpeid_ida, id);
4430 static int its_vpe_init(struct its_vpe *vpe)
4432 struct page *vpt_page;
4435 /* Allocate vpe_id */
4436 vpe_id = its_vpe_id_alloc();
4441 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4443 its_vpe_id_free(vpe_id);
4447 if (!its_alloc_vpe_table(vpe_id)) {
4448 its_vpe_id_free(vpe_id);
4449 its_free_pending_table(vpt_page);
4453 raw_spin_lock_init(&vpe->vpe_lock);
4454 vpe->vpe_id = vpe_id;
4455 vpe->vpt_page = vpt_page;
4456 if (gic_rdists->has_rvpeid)
4457 atomic_set(&vpe->vmapp_count, 0);
4459 vpe->vpe_proxy_event = -1;
4464 static void its_vpe_teardown(struct its_vpe *vpe)
4466 its_vpe_db_proxy_unmap(vpe);
4467 its_vpe_id_free(vpe->vpe_id);
4468 its_free_pending_table(vpe->vpt_page);
4471 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4473 unsigned int nr_irqs)
4475 struct its_vm *vm = domain->host_data;
4478 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4480 for (i = 0; i < nr_irqs; i++) {
4481 struct irq_data *data = irq_domain_get_irq_data(domain,
4483 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4485 BUG_ON(vm != vpe->its_vm);
4487 clear_bit(data->hwirq, vm->db_bitmap);
4488 its_vpe_teardown(vpe);
4489 irq_domain_reset_irq_data(data);
4492 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4493 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4494 its_free_prop_table(vm->vprop_page);
4498 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4499 unsigned int nr_irqs, void *args)
4501 struct irq_chip *irqchip = &its_vpe_irq_chip;
4502 struct its_vm *vm = args;
4503 unsigned long *bitmap;
4504 struct page *vprop_page;
4505 int base, nr_ids, i, err = 0;
4509 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4513 if (nr_ids < nr_irqs) {
4514 its_lpi_free(bitmap, base, nr_ids);
4518 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4520 its_lpi_free(bitmap, base, nr_ids);
4524 vm->db_bitmap = bitmap;
4525 vm->db_lpi_base = base;
4526 vm->nr_db_lpis = nr_ids;
4527 vm->vprop_page = vprop_page;
4529 if (gic_rdists->has_rvpeid)
4530 irqchip = &its_vpe_4_1_irq_chip;
4532 for (i = 0; i < nr_irqs; i++) {
4533 vm->vpes[i]->vpe_db_lpi = base + i;
4534 err = its_vpe_init(vm->vpes[i]);
4537 err = its_irq_gic_domain_alloc(domain, virq + i,
4538 vm->vpes[i]->vpe_db_lpi);
4541 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4542 irqchip, vm->vpes[i]);
4544 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4549 its_vpe_irq_domain_free(domain, virq, i);
4551 its_lpi_free(bitmap, base, nr_ids);
4552 its_free_prop_table(vprop_page);
4558 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4559 struct irq_data *d, bool reserve)
4561 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562 struct its_node *its;
4565 * If we use the list map, we issue VMAPP on demand... Unless
4566 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4567 * so that VSGIs can work.
4569 if (!gic_requires_eager_mapping())
4572 /* Map the VPE to the first possible CPU */
4573 vpe->col_idx = cpumask_first(cpu_online_mask);
4575 list_for_each_entry(its, &its_nodes, entry) {
4579 its_send_vmapp(its, vpe, true);
4580 its_send_vinvall(its, vpe);
4583 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4588 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4591 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4592 struct its_node *its;
4595 * If we use the list map on GICv4.0, we unmap the VPE once no
4596 * VLPIs are associated with the VM.
4598 if (!gic_requires_eager_mapping())
4601 list_for_each_entry(its, &its_nodes, entry) {
4605 its_send_vmapp(its, vpe, false);
4609 * There may be a direct read to the VPT after unmapping the
4610 * vPE, to guarantee the validity of this, we make the VPT
4611 * memory coherent with the CPU caches here.
4613 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4614 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4618 static const struct irq_domain_ops its_vpe_domain_ops = {
4619 .alloc = its_vpe_irq_domain_alloc,
4620 .free = its_vpe_irq_domain_free,
4621 .activate = its_vpe_irq_domain_activate,
4622 .deactivate = its_vpe_irq_domain_deactivate,
4625 static int its_force_quiescent(void __iomem *base)
4627 u32 count = 1000000; /* 1s */
4630 val = readl_relaxed(base + GITS_CTLR);
4632 * GIC architecture specification requires the ITS to be both
4633 * disabled and quiescent for writes to GITS_BASER<n> or
4634 * GITS_CBASER to not have UNPREDICTABLE results.
4636 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4639 /* Disable the generation of all interrupts to this ITS */
4640 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4641 writel_relaxed(val, base + GITS_CTLR);
4643 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4645 val = readl_relaxed(base + GITS_CTLR);
4646 if (val & GITS_CTLR_QUIESCENT)
4658 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4660 struct its_node *its = data;
4662 /* erratum 22375: only alloc 8MB table size (20 bits) */
4663 its->typer &= ~GITS_TYPER_DEVBITS;
4664 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4665 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4670 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4672 struct its_node *its = data;
4674 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4679 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4681 struct its_node *its = data;
4683 /* On QDF2400, the size of the ITE is 16Bytes */
4684 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4685 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4690 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4692 struct its_node *its = its_dev->its;
4695 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4696 * which maps 32-bit writes targeted at a separate window of
4697 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4698 * with device ID taken from bits [device_id_bits + 1:2] of
4699 * the window offset.
4701 return its->pre_its_base + (its_dev->device_id << 2);
4704 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4706 struct its_node *its = data;
4707 u32 pre_its_window[2];
4710 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4711 "socionext,synquacer-pre-its",
4713 ARRAY_SIZE(pre_its_window))) {
4715 its->pre_its_base = pre_its_window[0];
4716 its->get_msi_base = its_irq_get_msi_base_pre_its;
4718 ids = ilog2(pre_its_window[1]) - 2;
4719 if (device_ids(its) > ids) {
4720 its->typer &= ~GITS_TYPER_DEVBITS;
4721 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4724 /* the pre-ITS breaks isolation, so disable MSI remapping */
4725 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4731 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4733 struct its_node *its = data;
4736 * Hip07 insists on using the wrong address for the VLPI
4737 * page. Trick it into doing the right thing...
4739 its->vlpi_redist_offset = SZ_128K;
4743 static bool __maybe_unused its_enable_rk3588001(void *data)
4745 struct its_node *its = data;
4747 if (!of_machine_is_compatible("rockchip,rk3588") &&
4748 !of_machine_is_compatible("rockchip,rk3588s"))
4751 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4752 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4757 static const struct gic_quirk its_quirks[] = {
4758 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4760 .desc = "ITS: Cavium errata 22375, 24313",
4761 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4763 .init = its_enable_quirk_cavium_22375,
4766 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4768 .desc = "ITS: Cavium erratum 23144",
4769 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4771 .init = its_enable_quirk_cavium_23144,
4774 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4776 .desc = "ITS: QDF2400 erratum 0065",
4777 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4779 .init = its_enable_quirk_qdf2400_e0065,
4782 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4785 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4786 * implementation, but with a 'pre-ITS' added that requires
4787 * special handling in software.
4789 .desc = "ITS: Socionext Synquacer pre-ITS",
4792 .init = its_enable_quirk_socionext_synquacer,
4795 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4797 .desc = "ITS: Hip07 erratum 161600802",
4800 .init = its_enable_quirk_hip07_161600802,
4803 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4805 .desc = "ITS: Rockchip erratum RK3588001",
4808 .init = its_enable_rk3588001,
4815 static void its_enable_quirks(struct its_node *its)
4817 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4819 gic_enable_quirks(iidr, its_quirks, its);
4822 static int its_save_disable(void)
4824 struct its_node *its;
4827 raw_spin_lock(&its_lock);
4828 list_for_each_entry(its, &its_nodes, entry) {
4832 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4833 err = its_force_quiescent(base);
4835 pr_err("ITS@%pa: failed to quiesce: %d\n",
4836 &its->phys_base, err);
4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4841 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4846 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853 raw_spin_unlock(&its_lock);
4858 static void its_restore_enable(void)
4860 struct its_node *its;
4863 raw_spin_lock(&its_lock);
4864 list_for_each_entry(its, &its_nodes, entry) {
4871 * Make sure that the ITS is disabled. If it fails to quiesce,
4872 * don't restore it since writing to CBASER or BASER<n>
4873 * registers is undefined according to the GIC v3 ITS
4876 * Firmware resuming with the ITS enabled is terminally broken.
4878 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4879 ret = its_force_quiescent(base);
4881 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4882 &its->phys_base, ret);
4886 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4889 * Writing CBASER resets CREADR to 0, so make CWRITER and
4890 * cmd_write line up with it.
4892 its->cmd_write = its->cmd_base;
4893 gits_write_cwriter(0, base + GITS_CWRITER);
4895 /* Restore GITS_BASER from the value cache. */
4896 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4897 struct its_baser *baser = &its->tables[i];
4899 if (!(baser->val & GITS_BASER_VALID))
4902 its_write_baser(its, baser, baser->val);
4904 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4907 * Reinit the collection if it's stored in the ITS. This is
4908 * indicated by the col_id being less than the HCC field.
4909 * CID < HCC as specified in the GIC v3 Documentation.
4911 if (its->collections[smp_processor_id()].col_id <
4912 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4913 its_cpu_init_collection(its);
4915 raw_spin_unlock(&its_lock);
4918 static struct syscore_ops its_syscore_ops = {
4919 .suspend = its_save_disable,
4920 .resume = its_restore_enable,
4923 static void __init __iomem *its_map_one(struct resource *res, int *err)
4925 void __iomem *its_base;
4928 its_base = ioremap(res->start, SZ_64K);
4930 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4935 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4936 if (val != 0x30 && val != 0x40) {
4937 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4942 *err = its_force_quiescent(its_base);
4944 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4955 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4957 struct irq_domain *inner_domain;
4958 struct msi_domain_info *info;
4960 info = kzalloc(sizeof(*info), GFP_KERNEL);
4964 info->ops = &its_msi_domain_ops;
4967 inner_domain = irq_domain_create_hierarchy(its_parent,
4968 its->msi_domain_flags, 0,
4969 handle, &its_domain_ops,
4971 if (!inner_domain) {
4976 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4981 static int its_init_vpe_domain(void)
4983 struct its_node *its;
4987 if (gic_rdists->has_direct_lpi) {
4988 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4992 /* Any ITS will do, even if not v4 */
4993 its = list_first_entry(&its_nodes, struct its_node, entry);
4995 entries = roundup_pow_of_two(nr_cpu_ids);
4996 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4998 if (!vpe_proxy.vpes)
5001 /* Use the last possible DevID */
5002 devid = GENMASK(device_ids(its) - 1, 0);
5003 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5004 if (!vpe_proxy.dev) {
5005 kfree(vpe_proxy.vpes);
5006 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5010 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5012 raw_spin_lock_init(&vpe_proxy.lock);
5013 vpe_proxy.next_victim = 0;
5014 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5015 devid, vpe_proxy.dev->nr_ites);
5020 static int __init its_compute_its_list_map(struct resource *res,
5021 void __iomem *its_base)
5027 * This is assumed to be done early enough that we're
5028 * guaranteed to be single-threaded, hence no
5029 * locking. Should this change, we should address
5032 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5033 if (its_number >= GICv4_ITS_LIST_MAX) {
5034 pr_err("ITS@%pa: No ITSList entry available!\n",
5039 ctlr = readl_relaxed(its_base + GITS_CTLR);
5040 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5041 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5042 writel_relaxed(ctlr, its_base + GITS_CTLR);
5043 ctlr = readl_relaxed(its_base + GITS_CTLR);
5044 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5045 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5046 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5049 if (test_and_set_bit(its_number, &its_list_map)) {
5050 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5051 &res->start, its_number);
5058 static int __init its_probe_one(struct resource *res,
5059 struct fwnode_handle *handle, int numa_node)
5061 struct its_node *its;
5062 void __iomem *its_base;
5063 u64 baser, tmp, typer;
5068 its_base = its_map_one(res, &err);
5072 pr_info("ITS %pR\n", res);
5074 its = kzalloc(sizeof(*its), GFP_KERNEL);
5080 raw_spin_lock_init(&its->lock);
5081 mutex_init(&its->dev_alloc_lock);
5082 INIT_LIST_HEAD(&its->entry);
5083 INIT_LIST_HEAD(&its->its_device_list);
5084 typer = gic_read_typer(its_base + GITS_TYPER);
5086 its->base = its_base;
5087 its->phys_base = res->start;
5089 if (!(typer & GITS_TYPER_VMOVP)) {
5090 err = its_compute_its_list_map(res, its_base);
5096 pr_info("ITS@%pa: Using ITS number %d\n",
5099 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5103 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5105 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5106 if (!its->sgir_base) {
5111 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5113 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5114 &res->start, its->mpidr, svpet);
5118 its->numa_node = numa_node;
5120 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5121 get_order(ITS_CMD_QUEUE_SZ));
5124 goto out_unmap_sgir;
5126 its->cmd_base = (void *)page_address(page);
5127 its->cmd_write = its->cmd_base;
5128 its->fwnode_handle = handle;
5129 its->get_msi_base = its_irq_get_msi_base;
5130 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5132 its_enable_quirks(its);
5134 err = its_alloc_tables(its);
5138 err = its_alloc_collections(its);
5140 goto out_free_tables;
5142 baser = (virt_to_phys(its->cmd_base) |
5143 GITS_CBASER_RaWaWb |
5144 GITS_CBASER_InnerShareable |
5145 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5148 gits_write_cbaser(baser, its->base + GITS_CBASER);
5149 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5151 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5152 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5154 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5155 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5157 * The HW reports non-shareable, we must
5158 * remove the cacheability attributes as
5161 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5162 GITS_CBASER_CACHEABILITY_MASK);
5163 baser |= GITS_CBASER_nC;
5164 gits_write_cbaser(baser, its->base + GITS_CBASER);
5166 pr_info("ITS: using cache flushing for cmd queue\n");
5167 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5170 gits_write_cwriter(0, its->base + GITS_CWRITER);
5171 ctlr = readl_relaxed(its->base + GITS_CTLR);
5172 ctlr |= GITS_CTLR_ENABLE;
5174 ctlr |= GITS_CTLR_ImDe;
5175 writel_relaxed(ctlr, its->base + GITS_CTLR);
5177 err = its_init_domain(handle, its);
5179 goto out_free_tables;
5181 raw_spin_lock(&its_lock);
5182 list_add(&its->entry, &its_nodes);
5183 raw_spin_unlock(&its_lock);
5188 its_free_tables(its);
5190 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5193 iounmap(its->sgir_base);
5198 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5202 static bool gic_rdists_supports_plpis(void)
5204 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207 static int redist_disable_lpis(void)
5209 void __iomem *rbase = gic_data_rdist_rd_base();
5210 u64 timeout = USEC_PER_SEC;
5213 if (!gic_rdists_supports_plpis()) {
5214 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5218 val = readl_relaxed(rbase + GICR_CTLR);
5219 if (!(val & GICR_CTLR_ENABLE_LPIS))
5223 * If coming via a CPU hotplug event, we don't need to disable
5224 * LPIs before trying to re-enable them. They are already
5225 * configured and all is well in the world.
5227 * If running with preallocated tables, there is nothing to do.
5229 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5230 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5234 * From that point on, we only try to do some damage control.
5236 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5237 smp_processor_id());
5238 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241 val &= ~GICR_CTLR_ENABLE_LPIS;
5242 writel_relaxed(val, rbase + GICR_CTLR);
5244 /* Make sure any change to GICR_CTLR is observable by the GIC */
5248 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5249 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5250 * Error out if we time out waiting for RWP to clear.
5252 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5254 pr_err("CPU%d: Timeout while disabling LPIs\n",
5255 smp_processor_id());
5263 * After it has been written to 1, it is IMPLEMENTATION
5264 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5265 * cleared to 0. Error out if clearing the bit failed.
5267 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5268 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5275 int its_cpu_init(void)
5277 if (!list_empty(&its_nodes)) {
5280 ret = redist_disable_lpis();
5284 its_cpu_init_lpis();
5285 its_cpu_init_collections();
5291 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5293 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5294 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5298 rdist_memreserve_cpuhp_cleanup_workfn);
5300 static int its_cpu_memreserve_lpi(unsigned int cpu)
5302 struct page *pend_page;
5305 /* This gets to run exactly once per CPU */
5306 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309 pend_page = gic_data_rdist()->pend_page;
5310 if (WARN_ON(!pend_page)) {
5315 * If the pending table was pre-programmed, free the memory we
5316 * preemptively allocated. Otherwise, reserve that memory for
5319 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5320 its_free_pending_table(pend_page);
5321 gic_data_rdist()->pend_page = NULL;
5323 phys_addr_t paddr = page_to_phys(pend_page);
5324 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5328 /* Last CPU being brought up gets to issue the cleanup */
5329 if (!IS_ENABLED(CONFIG_SMP) ||
5330 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5331 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5333 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5337 /* Mark all the BASER registers as invalid before they get reprogrammed */
5338 static int __init its_reset_one(struct resource *res)
5340 void __iomem *its_base;
5343 its_base = its_map_one(res, &err);
5347 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5348 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5354 static const struct of_device_id its_device_id[] = {
5355 { .compatible = "arm,gic-v3-its", },
5359 static int __init its_of_probe(struct device_node *node)
5361 struct device_node *np;
5362 struct resource res;
5365 * Make sure *all* the ITS are reset before we probe any, as
5366 * they may be sharing memory. If any of the ITS fails to
5367 * reset, don't even try to go any further, as this could
5368 * result in something even worse.
5370 for (np = of_find_matching_node(node, its_device_id); np;
5371 np = of_find_matching_node(np, its_device_id)) {
5374 if (!of_device_is_available(np) ||
5375 !of_property_read_bool(np, "msi-controller") ||
5376 of_address_to_resource(np, 0, &res))
5379 err = its_reset_one(&res);
5384 for (np = of_find_matching_node(node, its_device_id); np;
5385 np = of_find_matching_node(np, its_device_id)) {
5386 if (!of_device_is_available(np))
5388 if (!of_property_read_bool(np, "msi-controller")) {
5389 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5394 if (of_address_to_resource(np, 0, &res)) {
5395 pr_warn("%pOF: no regs?\n", np);
5399 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5406 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5408 #ifdef CONFIG_ACPI_NUMA
5409 struct its_srat_map {
5416 static struct its_srat_map *its_srat_maps __initdata;
5417 static int its_in_srat __initdata;
5419 static int __init acpi_get_its_numa_node(u32 its_id)
5423 for (i = 0; i < its_in_srat; i++) {
5424 if (its_id == its_srat_maps[i].its_id)
5425 return its_srat_maps[i].numa_node;
5427 return NUMA_NO_NODE;
5430 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5431 const unsigned long end)
5436 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5437 const unsigned long end)
5440 struct acpi_srat_gic_its_affinity *its_affinity;
5442 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5446 if (its_affinity->header.length < sizeof(*its_affinity)) {
5447 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5448 its_affinity->header.length);
5453 * Note that in theory a new proximity node could be created by this
5454 * entry as it is an SRAT resource allocation structure.
5455 * We do not currently support doing so.
5457 node = pxm_to_node(its_affinity->proximity_domain);
5459 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5460 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5464 its_srat_maps[its_in_srat].numa_node = node;
5465 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5467 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5468 its_affinity->proximity_domain, its_affinity->its_id, node);
5473 static void __init acpi_table_parse_srat_its(void)
5477 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5478 sizeof(struct acpi_table_srat),
5479 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5480 gic_acpi_match_srat_its, 0);
5484 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5489 acpi_table_parse_entries(ACPI_SIG_SRAT,
5490 sizeof(struct acpi_table_srat),
5491 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5492 gic_acpi_parse_srat_its, 0);
5495 /* free the its_srat_maps after ITS probing */
5496 static void __init acpi_its_srat_maps_free(void)
5498 kfree(its_srat_maps);
5501 static void __init acpi_table_parse_srat_its(void) { }
5502 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5503 static void __init acpi_its_srat_maps_free(void) { }
5506 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5507 const unsigned long end)
5509 struct acpi_madt_generic_translator *its_entry;
5510 struct fwnode_handle *dom_handle;
5511 struct resource res;
5514 its_entry = (struct acpi_madt_generic_translator *)header;
5515 memset(&res, 0, sizeof(res));
5516 res.start = its_entry->base_address;
5517 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5518 res.flags = IORESOURCE_MEM;
5520 dom_handle = irq_domain_alloc_fwnode(&res.start);
5522 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5527 err = iort_register_domain_token(its_entry->translation_id, res.start,
5530 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5531 &res.start, its_entry->translation_id);
5535 err = its_probe_one(&res, dom_handle,
5536 acpi_get_its_numa_node(its_entry->translation_id));
5540 iort_deregister_domain_token(its_entry->translation_id);
5542 irq_domain_free_fwnode(dom_handle);
5546 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5547 const unsigned long end)
5549 struct acpi_madt_generic_translator *its_entry;
5550 struct resource res;
5552 its_entry = (struct acpi_madt_generic_translator *)header;
5553 res = (struct resource) {
5554 .start = its_entry->base_address,
5555 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5556 .flags = IORESOURCE_MEM,
5559 return its_reset_one(&res);
5562 static void __init its_acpi_probe(void)
5564 acpi_table_parse_srat_its();
5566 * Make sure *all* the ITS are reset before we probe any, as
5567 * they may be sharing memory. If any of the ITS fails to
5568 * reset, don't even try to go any further, as this could
5569 * result in something even worse.
5571 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5572 its_acpi_reset, 0) > 0)
5573 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5574 gic_acpi_parse_madt_its, 0);
5575 acpi_its_srat_maps_free();
5578 static void __init its_acpi_probe(void) { }
5581 int __init its_lpi_memreserve_init(void)
5585 if (!efi_enabled(EFI_CONFIG_TABLES))
5588 if (list_empty(&its_nodes))
5591 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5592 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5593 "irqchip/arm/gicv3/memreserve:online",
5594 its_cpu_memreserve_lpi,
5599 gic_rdists->cpuhp_memreserve_state = state;
5604 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5605 struct irq_domain *parent_domain)
5607 struct device_node *of_node;
5608 struct its_node *its;
5609 bool has_v4 = false;
5610 bool has_v4_1 = false;
5613 gic_rdists = rdists;
5615 its_parent = parent_domain;
5616 of_node = to_of_node(handle);
5618 its_of_probe(of_node);
5622 if (list_empty(&its_nodes)) {
5623 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5627 err = allocate_lpi_tables();
5631 list_for_each_entry(its, &its_nodes, entry) {
5632 has_v4 |= is_v4(its);
5633 has_v4_1 |= is_v4_1(its);
5636 /* Don't bother with inconsistent systems */
5637 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5638 rdists->has_rvpeid = false;
5640 if (has_v4 & rdists->has_vlpis) {
5641 const struct irq_domain_ops *sgi_ops;
5644 sgi_ops = &its_sgi_domain_ops;
5648 if (its_init_vpe_domain() ||
5649 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5650 rdists->has_vlpis = false;
5651 pr_err("ITS: Disabling GICv4 support\n");
5655 register_syscore_ops(&its_syscore_ops);