irqchip/gic, gic-v3: Prevent GSI to SGI translations
[platform/kernel/linux-rpi.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS              lpi_id_bits
57 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
61
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68         u64                     target_address;
69         u16                     col_id;
70 };
71
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77         void            *base;
78         u64             val;
79         u32             order;
80         u32             psz;
81 };
82
83 struct its_device;
84
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95         raw_spinlock_t          lock;
96         struct mutex            dev_alloc_lock;
97         struct list_head        entry;
98         void __iomem            *base;
99         void __iomem            *sgir_base;
100         phys_addr_t             phys_base;
101         struct its_cmd_block    *cmd_base;
102         struct its_cmd_block    *cmd_write;
103         struct its_baser        tables[GITS_BASER_NR_REGS];
104         struct its_collection   *collections;
105         struct fwnode_handle    *fwnode_handle;
106         u64                     (*get_msi_base)(struct its_device *its_dev);
107         u64                     typer;
108         u64                     cbaser_save;
109         u32                     ctlr_save;
110         u32                     mpidr;
111         struct list_head        its_device_list;
112         u64                     flags;
113         unsigned long           list_nr;
114         int                     numa_node;
115         unsigned int            msi_domain_flags;
116         u32                     pre_its_base; /* for Socionext Synquacer */
117         int                     vlpi_redist_offset;
118 };
119
120 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN           SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS                                              \
128         ({                                                              \
129                 int nvpeid = 16;                                        \
130                 if (gic_rdists->has_rvpeid &&                           \
131                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
132                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
133                                       GICD_TYPER2_VID);                 \
134                                                                         \
135                 nvpeid;                                                 \
136         })
137 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143         unsigned long           *lpi_map;
144         u16                     *col_map;
145         irq_hw_number_t         lpi_base;
146         int                     nr_lpis;
147         raw_spinlock_t          vlpi_lock;
148         struct its_vm           *vm;
149         struct its_vlpi_map     *vlpi_maps;
150         int                     nr_vlpis;
151 };
152
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160         struct list_head        entry;
161         struct its_node         *its;
162         struct event_lpi_map    event_map;
163         void                    *itt;
164         u32                     nr_ites;
165         u32                     device_id;
166         bool                    shared;
167 };
168
169 static struct {
170         raw_spinlock_t          lock;
171         struct its_device       *dev;
172         struct its_vpe          **vpes;
173         int                     next_victim;
174 } vpe_proxy;
175
176 struct cpu_lpi_count {
177         atomic_t        managed;
178         atomic_t        unmanaged;
179 };
180
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
192 static DEFINE_IDA(its_vpeid_ida);
193
194 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
198
199 /*
200  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201  * always have vSGIs mapped.
202  */
203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207
208 static u16 get_its_list(struct its_vm *vm)
209 {
210         struct its_node *its;
211         unsigned long its_list = 0;
212
213         list_for_each_entry(its, &its_nodes, entry) {
214                 if (!is_v4(its))
215                         continue;
216
217                 if (require_its_list_vmovp(vm, its))
218                         __set_bit(its->list_nr, &its_list);
219         }
220
221         return (u16)its_list;
222 }
223
224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227         return d->hwirq - its_dev->event_map.lpi_base;
228 }
229
230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231                                                u32 event)
232 {
233         struct its_node *its = its_dev->its;
234
235         return its->collections + its_dev->event_map.col_map[event];
236 }
237
238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239                                                u32 event)
240 {
241         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242                 return NULL;
243
244         return &its_dev->event_map.vlpi_maps[event];
245 }
246
247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249         if (irqd_is_forwarded_to_vcpu(d)) {
250                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251                 u32 event = its_get_event_id(d);
252
253                 return dev_event_to_vlpi_map(its_dev, event);
254         }
255
256         return NULL;
257 }
258
259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262         return vpe->col_idx;
263 }
264
265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269
270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
271 {
272         struct its_vlpi_map *map = get_vlpi_map(d);
273         int cpu;
274
275         if (map) {
276                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
277         } else {
278                 /* Physical LPIs are already locked via the irq_desc lock */
279                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281                 /* Keep GCC quiet... */
282                 *flags = 0;
283         }
284
285         return cpu;
286 }
287
288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
289 {
290         struct its_vlpi_map *map = get_vlpi_map(d);
291
292         if (map)
293                 vpe_to_cpuid_unlock(map->vpe, flags);
294 }
295
296 static struct its_collection *valid_col(struct its_collection *col)
297 {
298         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
299                 return NULL;
300
301         return col;
302 }
303
304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305 {
306         if (valid_col(its->collections + vpe->col_idx))
307                 return vpe;
308
309         return NULL;
310 }
311
312 /*
313  * ITS command descriptors - parameters to be encoded in a command
314  * block.
315  */
316 struct its_cmd_desc {
317         union {
318                 struct {
319                         struct its_device *dev;
320                         u32 event_id;
321                 } its_inv_cmd;
322
323                 struct {
324                         struct its_device *dev;
325                         u32 event_id;
326                 } its_clear_cmd;
327
328                 struct {
329                         struct its_device *dev;
330                         u32 event_id;
331                 } its_int_cmd;
332
333                 struct {
334                         struct its_device *dev;
335                         int valid;
336                 } its_mapd_cmd;
337
338                 struct {
339                         struct its_collection *col;
340                         int valid;
341                 } its_mapc_cmd;
342
343                 struct {
344                         struct its_device *dev;
345                         u32 phys_id;
346                         u32 event_id;
347                 } its_mapti_cmd;
348
349                 struct {
350                         struct its_device *dev;
351                         struct its_collection *col;
352                         u32 event_id;
353                 } its_movi_cmd;
354
355                 struct {
356                         struct its_device *dev;
357                         u32 event_id;
358                 } its_discard_cmd;
359
360                 struct {
361                         struct its_collection *col;
362                 } its_invall_cmd;
363
364                 struct {
365                         struct its_vpe *vpe;
366                 } its_vinvall_cmd;
367
368                 struct {
369                         struct its_vpe *vpe;
370                         struct its_collection *col;
371                         bool valid;
372                 } its_vmapp_cmd;
373
374                 struct {
375                         struct its_vpe *vpe;
376                         struct its_device *dev;
377                         u32 virt_id;
378                         u32 event_id;
379                         bool db_enabled;
380                 } its_vmapti_cmd;
381
382                 struct {
383                         struct its_vpe *vpe;
384                         struct its_device *dev;
385                         u32 event_id;
386                         bool db_enabled;
387                 } its_vmovi_cmd;
388
389                 struct {
390                         struct its_vpe *vpe;
391                         struct its_collection *col;
392                         u16 seq_num;
393                         u16 its_list;
394                 } its_vmovp_cmd;
395
396                 struct {
397                         struct its_vpe *vpe;
398                 } its_invdb_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                         u8 sgi;
403                         u8 priority;
404                         bool enable;
405                         bool group;
406                         bool clear;
407                 } its_vsgi_cmd;
408         };
409 };
410
411 /*
412  * The ITS command block, which is what the ITS actually parses.
413  */
414 struct its_cmd_block {
415         union {
416                 u64     raw_cmd[4];
417                 __le64  raw_cmd_le[4];
418         };
419 };
420
421 #define ITS_CMD_QUEUE_SZ                SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423
424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425                                                     struct its_cmd_block *,
426                                                     struct its_cmd_desc *);
427
428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429                                               struct its_cmd_block *,
430                                               struct its_cmd_desc *);
431
432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433 {
434         u64 mask = GENMASK_ULL(h, l);
435         *raw_cmd &= ~mask;
436         *raw_cmd |= (val << l) & mask;
437 }
438
439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440 {
441         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
442 }
443
444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445 {
446         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
447 }
448
449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450 {
451         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
452 }
453
454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455 {
456         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
457 }
458
459 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460 {
461         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
462 }
463
464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465 {
466         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
467 }
468
469 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470 {
471         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
472 }
473
474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475 {
476         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
477 }
478
479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480 {
481         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
482 }
483
484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485 {
486         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487 }
488
489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490 {
491         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492 }
493
494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495 {
496         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497 }
498
499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500 {
501         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502 }
503
504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505 {
506         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507 }
508
509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510 {
511         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512 }
513
514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515 {
516         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
517 }
518
519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520 {
521         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522 }
523
524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525 {
526         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527 }
528
529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530 {
531         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532 }
533
534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535 {
536         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537 }
538
539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540                                         u32 vpe_db_lpi)
541 {
542         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543 }
544
545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546                                         u32 vpe_db_lpi)
547 {
548         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549 }
550
551 static void its_encode_db(struct its_cmd_block *cmd, bool db)
552 {
553         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554 }
555
556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557 {
558         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559 }
560
561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562 {
563         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564 }
565
566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567 {
568         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569 }
570
571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572 {
573         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574 }
575
576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577 {
578         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579 }
580
581 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582 {
583         /* Let's fixup BE commands */
584         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
588 }
589
590 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591                                                  struct its_cmd_block *cmd,
592                                                  struct its_cmd_desc *desc)
593 {
594         unsigned long itt_addr;
595         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
596
597         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599
600         its_encode_cmd(cmd, GITS_CMD_MAPD);
601         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602         its_encode_size(cmd, size - 1);
603         its_encode_itt(cmd, itt_addr);
604         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605
606         its_fixup_cmd(cmd);
607
608         return NULL;
609 }
610
611 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612                                                  struct its_cmd_block *cmd,
613                                                  struct its_cmd_desc *desc)
614 {
615         its_encode_cmd(cmd, GITS_CMD_MAPC);
616         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619
620         its_fixup_cmd(cmd);
621
622         return desc->its_mapc_cmd.col;
623 }
624
625 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626                                                   struct its_cmd_block *cmd,
627                                                   struct its_cmd_desc *desc)
628 {
629         struct its_collection *col;
630
631         col = dev_event_to_col(desc->its_mapti_cmd.dev,
632                                desc->its_mapti_cmd.event_id);
633
634         its_encode_cmd(cmd, GITS_CMD_MAPTI);
635         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
638         its_encode_collection(cmd, col->col_id);
639
640         its_fixup_cmd(cmd);
641
642         return valid_col(col);
643 }
644
645 static struct its_collection *its_build_movi_cmd(struct its_node *its,
646                                                  struct its_cmd_block *cmd,
647                                                  struct its_cmd_desc *desc)
648 {
649         struct its_collection *col;
650
651         col = dev_event_to_col(desc->its_movi_cmd.dev,
652                                desc->its_movi_cmd.event_id);
653
654         its_encode_cmd(cmd, GITS_CMD_MOVI);
655         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
656         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
657         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658
659         its_fixup_cmd(cmd);
660
661         return valid_col(col);
662 }
663
664 static struct its_collection *its_build_discard_cmd(struct its_node *its,
665                                                     struct its_cmd_block *cmd,
666                                                     struct its_cmd_desc *desc)
667 {
668         struct its_collection *col;
669
670         col = dev_event_to_col(desc->its_discard_cmd.dev,
671                                desc->its_discard_cmd.event_id);
672
673         its_encode_cmd(cmd, GITS_CMD_DISCARD);
674         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676
677         its_fixup_cmd(cmd);
678
679         return valid_col(col);
680 }
681
682 static struct its_collection *its_build_inv_cmd(struct its_node *its,
683                                                 struct its_cmd_block *cmd,
684                                                 struct its_cmd_desc *desc)
685 {
686         struct its_collection *col;
687
688         col = dev_event_to_col(desc->its_inv_cmd.dev,
689                                desc->its_inv_cmd.event_id);
690
691         its_encode_cmd(cmd, GITS_CMD_INV);
692         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694
695         its_fixup_cmd(cmd);
696
697         return valid_col(col);
698 }
699
700 static struct its_collection *its_build_int_cmd(struct its_node *its,
701                                                 struct its_cmd_block *cmd,
702                                                 struct its_cmd_desc *desc)
703 {
704         struct its_collection *col;
705
706         col = dev_event_to_col(desc->its_int_cmd.dev,
707                                desc->its_int_cmd.event_id);
708
709         its_encode_cmd(cmd, GITS_CMD_INT);
710         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712
713         its_fixup_cmd(cmd);
714
715         return valid_col(col);
716 }
717
718 static struct its_collection *its_build_clear_cmd(struct its_node *its,
719                                                   struct its_cmd_block *cmd,
720                                                   struct its_cmd_desc *desc)
721 {
722         struct its_collection *col;
723
724         col = dev_event_to_col(desc->its_clear_cmd.dev,
725                                desc->its_clear_cmd.event_id);
726
727         its_encode_cmd(cmd, GITS_CMD_CLEAR);
728         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730
731         its_fixup_cmd(cmd);
732
733         return valid_col(col);
734 }
735
736 static struct its_collection *its_build_invall_cmd(struct its_node *its,
737                                                    struct its_cmd_block *cmd,
738                                                    struct its_cmd_desc *desc)
739 {
740         its_encode_cmd(cmd, GITS_CMD_INVALL);
741         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
742
743         its_fixup_cmd(cmd);
744
745         return desc->its_invall_cmd.col;
746 }
747
748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749                                              struct its_cmd_block *cmd,
750                                              struct its_cmd_desc *desc)
751 {
752         its_encode_cmd(cmd, GITS_CMD_VINVALL);
753         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754
755         its_fixup_cmd(cmd);
756
757         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
758 }
759
760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761                                            struct its_cmd_block *cmd,
762                                            struct its_cmd_desc *desc)
763 {
764         unsigned long vpt_addr, vconf_addr;
765         u64 target;
766         bool alloc;
767
768         its_encode_cmd(cmd, GITS_CMD_VMAPP);
769         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
771
772         if (!desc->its_vmapp_cmd.valid) {
773                 if (is_v4_1(its)) {
774                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775                         its_encode_alloc(cmd, alloc);
776                 }
777
778                 goto out;
779         }
780
781         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783
784         its_encode_target(cmd, target);
785         its_encode_vpt_addr(cmd, vpt_addr);
786         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787
788         if (!is_v4_1(its))
789                 goto out;
790
791         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792
793         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794
795         its_encode_alloc(cmd, alloc);
796
797         /*
798          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
799          * to be unmapped first, and in this case, we may remap the vPE
800          * back while the VPT is not empty. So we can't assume that the
801          * VPT is empty on map. This is why we never advertise PTZ.
802          */
803         its_encode_ptz(cmd, false);
804         its_encode_vconf_addr(cmd, vconf_addr);
805         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
806
807 out:
808         its_fixup_cmd(cmd);
809
810         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
811 }
812
813 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
814                                             struct its_cmd_block *cmd,
815                                             struct its_cmd_desc *desc)
816 {
817         u32 db;
818
819         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
820                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
821         else
822                 db = 1023;
823
824         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
825         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
826         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
827         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
828         its_encode_db_phys_id(cmd, db);
829         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
830
831         its_fixup_cmd(cmd);
832
833         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
834 }
835
836 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
837                                            struct its_cmd_block *cmd,
838                                            struct its_cmd_desc *desc)
839 {
840         u32 db;
841
842         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
843                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
844         else
845                 db = 1023;
846
847         its_encode_cmd(cmd, GITS_CMD_VMOVI);
848         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
849         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
850         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
851         its_encode_db_phys_id(cmd, db);
852         its_encode_db_valid(cmd, true);
853
854         its_fixup_cmd(cmd);
855
856         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
857 }
858
859 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
860                                            struct its_cmd_block *cmd,
861                                            struct its_cmd_desc *desc)
862 {
863         u64 target;
864
865         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
866         its_encode_cmd(cmd, GITS_CMD_VMOVP);
867         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
868         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
869         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
870         its_encode_target(cmd, target);
871
872         if (is_v4_1(its)) {
873                 its_encode_db(cmd, true);
874                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
875         }
876
877         its_fixup_cmd(cmd);
878
879         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
880 }
881
882 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
883                                           struct its_cmd_block *cmd,
884                                           struct its_cmd_desc *desc)
885 {
886         struct its_vlpi_map *map;
887
888         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
889                                     desc->its_inv_cmd.event_id);
890
891         its_encode_cmd(cmd, GITS_CMD_INV);
892         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
893         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
894
895         its_fixup_cmd(cmd);
896
897         return valid_vpe(its, map->vpe);
898 }
899
900 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
901                                           struct its_cmd_block *cmd,
902                                           struct its_cmd_desc *desc)
903 {
904         struct its_vlpi_map *map;
905
906         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
907                                     desc->its_int_cmd.event_id);
908
909         its_encode_cmd(cmd, GITS_CMD_INT);
910         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
911         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
912
913         its_fixup_cmd(cmd);
914
915         return valid_vpe(its, map->vpe);
916 }
917
918 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
919                                             struct its_cmd_block *cmd,
920                                             struct its_cmd_desc *desc)
921 {
922         struct its_vlpi_map *map;
923
924         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
925                                     desc->its_clear_cmd.event_id);
926
927         its_encode_cmd(cmd, GITS_CMD_CLEAR);
928         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
929         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
930
931         its_fixup_cmd(cmd);
932
933         return valid_vpe(its, map->vpe);
934 }
935
936 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
937                                            struct its_cmd_block *cmd,
938                                            struct its_cmd_desc *desc)
939 {
940         if (WARN_ON(!is_v4_1(its)))
941                 return NULL;
942
943         its_encode_cmd(cmd, GITS_CMD_INVDB);
944         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
945
946         its_fixup_cmd(cmd);
947
948         return valid_vpe(its, desc->its_invdb_cmd.vpe);
949 }
950
951 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
952                                           struct its_cmd_block *cmd,
953                                           struct its_cmd_desc *desc)
954 {
955         if (WARN_ON(!is_v4_1(its)))
956                 return NULL;
957
958         its_encode_cmd(cmd, GITS_CMD_VSGI);
959         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
960         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
961         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
962         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
963         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
964         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
965
966         its_fixup_cmd(cmd);
967
968         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
969 }
970
971 static u64 its_cmd_ptr_to_offset(struct its_node *its,
972                                  struct its_cmd_block *ptr)
973 {
974         return (ptr - its->cmd_base) * sizeof(*ptr);
975 }
976
977 static int its_queue_full(struct its_node *its)
978 {
979         int widx;
980         int ridx;
981
982         widx = its->cmd_write - its->cmd_base;
983         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
984
985         /* This is incredibly unlikely to happen, unless the ITS locks up. */
986         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
987                 return 1;
988
989         return 0;
990 }
991
992 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
993 {
994         struct its_cmd_block *cmd;
995         u32 count = 1000000;    /* 1s! */
996
997         while (its_queue_full(its)) {
998                 count--;
999                 if (!count) {
1000                         pr_err_ratelimited("ITS queue not draining\n");
1001                         return NULL;
1002                 }
1003                 cpu_relax();
1004                 udelay(1);
1005         }
1006
1007         cmd = its->cmd_write++;
1008
1009         /* Handle queue wrapping */
1010         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1011                 its->cmd_write = its->cmd_base;
1012
1013         /* Clear command  */
1014         cmd->raw_cmd[0] = 0;
1015         cmd->raw_cmd[1] = 0;
1016         cmd->raw_cmd[2] = 0;
1017         cmd->raw_cmd[3] = 0;
1018
1019         return cmd;
1020 }
1021
1022 static struct its_cmd_block *its_post_commands(struct its_node *its)
1023 {
1024         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1025
1026         writel_relaxed(wr, its->base + GITS_CWRITER);
1027
1028         return its->cmd_write;
1029 }
1030
1031 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1032 {
1033         /*
1034          * Make sure the commands written to memory are observable by
1035          * the ITS.
1036          */
1037         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1038                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1039         else
1040                 dsb(ishst);
1041 }
1042
1043 static int its_wait_for_range_completion(struct its_node *its,
1044                                          u64    prev_idx,
1045                                          struct its_cmd_block *to)
1046 {
1047         u64 rd_idx, to_idx, linear_idx;
1048         u32 count = 1000000;    /* 1s! */
1049
1050         /* Linearize to_idx if the command set has wrapped around */
1051         to_idx = its_cmd_ptr_to_offset(its, to);
1052         if (to_idx < prev_idx)
1053                 to_idx += ITS_CMD_QUEUE_SZ;
1054
1055         linear_idx = prev_idx;
1056
1057         while (1) {
1058                 s64 delta;
1059
1060                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1061
1062                 /*
1063                  * Compute the read pointer progress, taking the
1064                  * potential wrap-around into account.
1065                  */
1066                 delta = rd_idx - prev_idx;
1067                 if (rd_idx < prev_idx)
1068                         delta += ITS_CMD_QUEUE_SZ;
1069
1070                 linear_idx += delta;
1071                 if (linear_idx >= to_idx)
1072                         break;
1073
1074                 count--;
1075                 if (!count) {
1076                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1077                                            to_idx, linear_idx);
1078                         return -1;
1079                 }
1080                 prev_idx = rd_idx;
1081                 cpu_relax();
1082                 udelay(1);
1083         }
1084
1085         return 0;
1086 }
1087
1088 /* Warning, macro hell follows */
1089 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1090 void name(struct its_node *its,                                         \
1091           buildtype builder,                                            \
1092           struct its_cmd_desc *desc)                                    \
1093 {                                                                       \
1094         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1095         synctype *sync_obj;                                             \
1096         unsigned long flags;                                            \
1097         u64 rd_idx;                                                     \
1098                                                                         \
1099         raw_spin_lock_irqsave(&its->lock, flags);                       \
1100                                                                         \
1101         cmd = its_allocate_entry(its);                                  \
1102         if (!cmd) {             /* We're soooooo screewed... */         \
1103                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1104                 return;                                                 \
1105         }                                                               \
1106         sync_obj = builder(its, cmd, desc);                             \
1107         its_flush_cmd(its, cmd);                                        \
1108                                                                         \
1109         if (sync_obj) {                                                 \
1110                 sync_cmd = its_allocate_entry(its);                     \
1111                 if (!sync_cmd)                                          \
1112                         goto post;                                      \
1113                                                                         \
1114                 buildfn(its, sync_cmd, sync_obj);                       \
1115                 its_flush_cmd(its, sync_cmd);                           \
1116         }                                                               \
1117                                                                         \
1118 post:                                                                   \
1119         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1120         next_cmd = its_post_commands(its);                              \
1121         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1122                                                                         \
1123         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1124                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1125 }
1126
1127 static void its_build_sync_cmd(struct its_node *its,
1128                                struct its_cmd_block *sync_cmd,
1129                                struct its_collection *sync_col)
1130 {
1131         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1132         its_encode_target(sync_cmd, sync_col->target_address);
1133
1134         its_fixup_cmd(sync_cmd);
1135 }
1136
1137 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1138                              struct its_collection, its_build_sync_cmd)
1139
1140 static void its_build_vsync_cmd(struct its_node *its,
1141                                 struct its_cmd_block *sync_cmd,
1142                                 struct its_vpe *sync_vpe)
1143 {
1144         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1145         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1146
1147         its_fixup_cmd(sync_cmd);
1148 }
1149
1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1151                              struct its_vpe, its_build_vsync_cmd)
1152
1153 static void its_send_int(struct its_device *dev, u32 event_id)
1154 {
1155         struct its_cmd_desc desc;
1156
1157         desc.its_int_cmd.dev = dev;
1158         desc.its_int_cmd.event_id = event_id;
1159
1160         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1161 }
1162
1163 static void its_send_clear(struct its_device *dev, u32 event_id)
1164 {
1165         struct its_cmd_desc desc;
1166
1167         desc.its_clear_cmd.dev = dev;
1168         desc.its_clear_cmd.event_id = event_id;
1169
1170         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1171 }
1172
1173 static void its_send_inv(struct its_device *dev, u32 event_id)
1174 {
1175         struct its_cmd_desc desc;
1176
1177         desc.its_inv_cmd.dev = dev;
1178         desc.its_inv_cmd.event_id = event_id;
1179
1180         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1181 }
1182
1183 static void its_send_mapd(struct its_device *dev, int valid)
1184 {
1185         struct its_cmd_desc desc;
1186
1187         desc.its_mapd_cmd.dev = dev;
1188         desc.its_mapd_cmd.valid = !!valid;
1189
1190         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1191 }
1192
1193 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1194                           int valid)
1195 {
1196         struct its_cmd_desc desc;
1197
1198         desc.its_mapc_cmd.col = col;
1199         desc.its_mapc_cmd.valid = !!valid;
1200
1201         its_send_single_command(its, its_build_mapc_cmd, &desc);
1202 }
1203
1204 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1205 {
1206         struct its_cmd_desc desc;
1207
1208         desc.its_mapti_cmd.dev = dev;
1209         desc.its_mapti_cmd.phys_id = irq_id;
1210         desc.its_mapti_cmd.event_id = id;
1211
1212         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1213 }
1214
1215 static void its_send_movi(struct its_device *dev,
1216                           struct its_collection *col, u32 id)
1217 {
1218         struct its_cmd_desc desc;
1219
1220         desc.its_movi_cmd.dev = dev;
1221         desc.its_movi_cmd.col = col;
1222         desc.its_movi_cmd.event_id = id;
1223
1224         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1225 }
1226
1227 static void its_send_discard(struct its_device *dev, u32 id)
1228 {
1229         struct its_cmd_desc desc;
1230
1231         desc.its_discard_cmd.dev = dev;
1232         desc.its_discard_cmd.event_id = id;
1233
1234         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1235 }
1236
1237 static void its_send_invall(struct its_node *its, struct its_collection *col)
1238 {
1239         struct its_cmd_desc desc;
1240
1241         desc.its_invall_cmd.col = col;
1242
1243         its_send_single_command(its, its_build_invall_cmd, &desc);
1244 }
1245
1246 static void its_send_vmapti(struct its_device *dev, u32 id)
1247 {
1248         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1249         struct its_cmd_desc desc;
1250
1251         desc.its_vmapti_cmd.vpe = map->vpe;
1252         desc.its_vmapti_cmd.dev = dev;
1253         desc.its_vmapti_cmd.virt_id = map->vintid;
1254         desc.its_vmapti_cmd.event_id = id;
1255         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1256
1257         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1258 }
1259
1260 static void its_send_vmovi(struct its_device *dev, u32 id)
1261 {
1262         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1263         struct its_cmd_desc desc;
1264
1265         desc.its_vmovi_cmd.vpe = map->vpe;
1266         desc.its_vmovi_cmd.dev = dev;
1267         desc.its_vmovi_cmd.event_id = id;
1268         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1269
1270         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1271 }
1272
1273 static void its_send_vmapp(struct its_node *its,
1274                            struct its_vpe *vpe, bool valid)
1275 {
1276         struct its_cmd_desc desc;
1277
1278         desc.its_vmapp_cmd.vpe = vpe;
1279         desc.its_vmapp_cmd.valid = valid;
1280         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1281
1282         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1283 }
1284
1285 static void its_send_vmovp(struct its_vpe *vpe)
1286 {
1287         struct its_cmd_desc desc = {};
1288         struct its_node *its;
1289         unsigned long flags;
1290         int col_id = vpe->col_idx;
1291
1292         desc.its_vmovp_cmd.vpe = vpe;
1293
1294         if (!its_list_map) {
1295                 its = list_first_entry(&its_nodes, struct its_node, entry);
1296                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1297                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1298                 return;
1299         }
1300
1301         /*
1302          * Yet another marvel of the architecture. If using the
1303          * its_list "feature", we need to make sure that all ITSs
1304          * receive all VMOVP commands in the same order. The only way
1305          * to guarantee this is to make vmovp a serialization point.
1306          *
1307          * Wall <-- Head.
1308          */
1309         raw_spin_lock_irqsave(&vmovp_lock, flags);
1310
1311         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1312         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1313
1314         /* Emit VMOVPs */
1315         list_for_each_entry(its, &its_nodes, entry) {
1316                 if (!is_v4(its))
1317                         continue;
1318
1319                 if (!require_its_list_vmovp(vpe->its_vm, its))
1320                         continue;
1321
1322                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1323                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1324         }
1325
1326         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1327 }
1328
1329 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1330 {
1331         struct its_cmd_desc desc;
1332
1333         desc.its_vinvall_cmd.vpe = vpe;
1334         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1335 }
1336
1337 static void its_send_vinv(struct its_device *dev, u32 event_id)
1338 {
1339         struct its_cmd_desc desc;
1340
1341         /*
1342          * There is no real VINV command. This is just a normal INV,
1343          * with a VSYNC instead of a SYNC.
1344          */
1345         desc.its_inv_cmd.dev = dev;
1346         desc.its_inv_cmd.event_id = event_id;
1347
1348         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1349 }
1350
1351 static void its_send_vint(struct its_device *dev, u32 event_id)
1352 {
1353         struct its_cmd_desc desc;
1354
1355         /*
1356          * There is no real VINT command. This is just a normal INT,
1357          * with a VSYNC instead of a SYNC.
1358          */
1359         desc.its_int_cmd.dev = dev;
1360         desc.its_int_cmd.event_id = event_id;
1361
1362         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1363 }
1364
1365 static void its_send_vclear(struct its_device *dev, u32 event_id)
1366 {
1367         struct its_cmd_desc desc;
1368
1369         /*
1370          * There is no real VCLEAR command. This is just a normal CLEAR,
1371          * with a VSYNC instead of a SYNC.
1372          */
1373         desc.its_clear_cmd.dev = dev;
1374         desc.its_clear_cmd.event_id = event_id;
1375
1376         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1377 }
1378
1379 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1380 {
1381         struct its_cmd_desc desc;
1382
1383         desc.its_invdb_cmd.vpe = vpe;
1384         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1385 }
1386
1387 /*
1388  * irqchip functions - assumes MSI, mostly.
1389  */
1390 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1391 {
1392         struct its_vlpi_map *map = get_vlpi_map(d);
1393         irq_hw_number_t hwirq;
1394         void *va;
1395         u8 *cfg;
1396
1397         if (map) {
1398                 va = page_address(map->vm->vprop_page);
1399                 hwirq = map->vintid;
1400
1401                 /* Remember the updated property */
1402                 map->properties &= ~clr;
1403                 map->properties |= set | LPI_PROP_GROUP1;
1404         } else {
1405                 va = gic_rdists->prop_table_va;
1406                 hwirq = d->hwirq;
1407         }
1408
1409         cfg = va + hwirq - 8192;
1410         *cfg &= ~clr;
1411         *cfg |= set | LPI_PROP_GROUP1;
1412
1413         /*
1414          * Make the above write visible to the redistributors.
1415          * And yes, we're flushing exactly: One. Single. Byte.
1416          * Humpf...
1417          */
1418         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1419                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1420         else
1421                 dsb(ishst);
1422 }
1423
1424 static void wait_for_syncr(void __iomem *rdbase)
1425 {
1426         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1427                 cpu_relax();
1428 }
1429
1430 static void direct_lpi_inv(struct irq_data *d)
1431 {
1432         struct its_vlpi_map *map = get_vlpi_map(d);
1433         void __iomem *rdbase;
1434         unsigned long flags;
1435         u64 val;
1436         int cpu;
1437
1438         if (map) {
1439                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1440
1441                 WARN_ON(!is_v4_1(its_dev->its));
1442
1443                 val  = GICR_INVLPIR_V;
1444                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1445                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1446         } else {
1447                 val = d->hwirq;
1448         }
1449
1450         /* Target the redistributor this LPI is currently routed to */
1451         cpu = irq_to_cpuid_lock(d, &flags);
1452         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455
1456         wait_for_syncr(rdbase);
1457         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458         irq_to_cpuid_unlock(d, flags);
1459 }
1460
1461 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1462 {
1463         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1464
1465         lpi_write_config(d, clr, set);
1466         if (gic_rdists->has_direct_lpi &&
1467             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1468                 direct_lpi_inv(d);
1469         else if (!irqd_is_forwarded_to_vcpu(d))
1470                 its_send_inv(its_dev, its_get_event_id(d));
1471         else
1472                 its_send_vinv(its_dev, its_get_event_id(d));
1473 }
1474
1475 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1476 {
1477         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1478         u32 event = its_get_event_id(d);
1479         struct its_vlpi_map *map;
1480
1481         /*
1482          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1483          * here.
1484          */
1485         if (is_v4_1(its_dev->its))
1486                 return;
1487
1488         map = dev_event_to_vlpi_map(its_dev, event);
1489
1490         if (map->db_enabled == enable)
1491                 return;
1492
1493         map->db_enabled = enable;
1494
1495         /*
1496          * More fun with the architecture:
1497          *
1498          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1499          * value or to 1023, depending on the enable bit. But that
1500          * would be issuing a mapping for an /existing/ DevID+EventID
1501          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1502          * to the /same/ vPE, using this opportunity to adjust the
1503          * doorbell. Mouahahahaha. We loves it, Precious.
1504          */
1505         its_send_vmovi(its_dev, event);
1506 }
1507
1508 static void its_mask_irq(struct irq_data *d)
1509 {
1510         if (irqd_is_forwarded_to_vcpu(d))
1511                 its_vlpi_set_doorbell(d, false);
1512
1513         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1514 }
1515
1516 static void its_unmask_irq(struct irq_data *d)
1517 {
1518         if (irqd_is_forwarded_to_vcpu(d))
1519                 its_vlpi_set_doorbell(d, true);
1520
1521         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1522 }
1523
1524 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1525 {
1526         if (irqd_affinity_is_managed(d))
1527                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1528
1529         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1530 }
1531
1532 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1533 {
1534         if (irqd_affinity_is_managed(d))
1535                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1536         else
1537                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1538 }
1539
1540 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1541 {
1542         if (irqd_affinity_is_managed(d))
1543                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1544         else
1545                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1546 }
1547
1548 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1549                                               const struct cpumask *cpu_mask)
1550 {
1551         unsigned int cpu = nr_cpu_ids, tmp;
1552         int count = S32_MAX;
1553
1554         for_each_cpu(tmp, cpu_mask) {
1555                 int this_count = its_read_lpi_count(d, tmp);
1556                 if (this_count < count) {
1557                         cpu = tmp;
1558                         count = this_count;
1559                 }
1560         }
1561
1562         return cpu;
1563 }
1564
1565 /*
1566  * As suggested by Thomas Gleixner in:
1567  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1568  */
1569 static int its_select_cpu(struct irq_data *d,
1570                           const struct cpumask *aff_mask)
1571 {
1572         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573         cpumask_var_t tmpmask;
1574         int cpu, node;
1575
1576         if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1577                 return -ENOMEM;
1578
1579         node = its_dev->its->numa_node;
1580
1581         if (!irqd_affinity_is_managed(d)) {
1582                 /* First try the NUMA node */
1583                 if (node != NUMA_NO_NODE) {
1584                         /*
1585                          * Try the intersection of the affinity mask and the
1586                          * node mask (and the online mask, just to be safe).
1587                          */
1588                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1589                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1590
1591                         /*
1592                          * Ideally, we would check if the mask is empty, and
1593                          * try again on the full node here.
1594                          *
1595                          * But it turns out that the way ACPI describes the
1596                          * affinity for ITSs only deals about memory, and
1597                          * not target CPUs, so it cannot describe a single
1598                          * ITS placed next to two NUMA nodes.
1599                          *
1600                          * Instead, just fallback on the online mask. This
1601                          * diverges from Thomas' suggestion above.
1602                          */
1603                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1604                         if (cpu < nr_cpu_ids)
1605                                 goto out;
1606
1607                         /* If we can't cross sockets, give up */
1608                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1609                                 goto out;
1610
1611                         /* If the above failed, expand the search */
1612                 }
1613
1614                 /* Try the intersection of the affinity and online masks */
1615                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1616
1617                 /* If that doesn't fly, the online mask is the last resort */
1618                 if (cpumask_empty(tmpmask))
1619                         cpumask_copy(tmpmask, cpu_online_mask);
1620
1621                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1622         } else {
1623                 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1624
1625                 /* If we cannot cross sockets, limit the search to that node */
1626                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1627                     node != NUMA_NO_NODE)
1628                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1629
1630                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1631         }
1632 out:
1633         free_cpumask_var(tmpmask);
1634
1635         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1636         return cpu;
1637 }
1638
1639 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1640                             bool force)
1641 {
1642         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1643         struct its_collection *target_col;
1644         u32 id = its_get_event_id(d);
1645         int cpu, prev_cpu;
1646
1647         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1648         if (irqd_is_forwarded_to_vcpu(d))
1649                 return -EINVAL;
1650
1651         prev_cpu = its_dev->event_map.col_map[id];
1652         its_dec_lpi_count(d, prev_cpu);
1653
1654         if (!force)
1655                 cpu = its_select_cpu(d, mask_val);
1656         else
1657                 cpu = cpumask_pick_least_loaded(d, mask_val);
1658
1659         if (cpu < 0 || cpu >= nr_cpu_ids)
1660                 goto err;
1661
1662         /* don't set the affinity when the target cpu is same as current one */
1663         if (cpu != prev_cpu) {
1664                 target_col = &its_dev->its->collections[cpu];
1665                 its_send_movi(its_dev, target_col, id);
1666                 its_dev->event_map.col_map[id] = cpu;
1667                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1668         }
1669
1670         its_inc_lpi_count(d, cpu);
1671
1672         return IRQ_SET_MASK_OK_DONE;
1673
1674 err:
1675         its_inc_lpi_count(d, prev_cpu);
1676         return -EINVAL;
1677 }
1678
1679 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1680 {
1681         struct its_node *its = its_dev->its;
1682
1683         return its->phys_base + GITS_TRANSLATER;
1684 }
1685
1686 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1687 {
1688         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1689         struct its_node *its;
1690         u64 addr;
1691
1692         its = its_dev->its;
1693         addr = its->get_msi_base(its_dev);
1694
1695         msg->address_lo         = lower_32_bits(addr);
1696         msg->address_hi         = upper_32_bits(addr);
1697         msg->data               = its_get_event_id(d);
1698
1699         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1700 }
1701
1702 static int its_irq_set_irqchip_state(struct irq_data *d,
1703                                      enum irqchip_irq_state which,
1704                                      bool state)
1705 {
1706         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1707         u32 event = its_get_event_id(d);
1708
1709         if (which != IRQCHIP_STATE_PENDING)
1710                 return -EINVAL;
1711
1712         if (irqd_is_forwarded_to_vcpu(d)) {
1713                 if (state)
1714                         its_send_vint(its_dev, event);
1715                 else
1716                         its_send_vclear(its_dev, event);
1717         } else {
1718                 if (state)
1719                         its_send_int(its_dev, event);
1720                 else
1721                         its_send_clear(its_dev, event);
1722         }
1723
1724         return 0;
1725 }
1726
1727 static int its_irq_retrigger(struct irq_data *d)
1728 {
1729         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1730 }
1731
1732 /*
1733  * Two favourable cases:
1734  *
1735  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1736  *     for vSGI delivery
1737  *
1738  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1739  *     and we're better off mapping all VPEs always
1740  *
1741  * If neither (a) nor (b) is true, then we map vPEs on demand.
1742  *
1743  */
1744 static bool gic_requires_eager_mapping(void)
1745 {
1746         if (!its_list_map || gic_rdists->has_rvpeid)
1747                 return true;
1748
1749         return false;
1750 }
1751
1752 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1753 {
1754         unsigned long flags;
1755
1756         if (gic_requires_eager_mapping())
1757                 return;
1758
1759         raw_spin_lock_irqsave(&vmovp_lock, flags);
1760
1761         /*
1762          * If the VM wasn't mapped yet, iterate over the vpes and get
1763          * them mapped now.
1764          */
1765         vm->vlpi_count[its->list_nr]++;
1766
1767         if (vm->vlpi_count[its->list_nr] == 1) {
1768                 int i;
1769
1770                 for (i = 0; i < vm->nr_vpes; i++) {
1771                         struct its_vpe *vpe = vm->vpes[i];
1772                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1773
1774                         /* Map the VPE to the first possible CPU */
1775                         vpe->col_idx = cpumask_first(cpu_online_mask);
1776                         its_send_vmapp(its, vpe, true);
1777                         its_send_vinvall(its, vpe);
1778                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1779                 }
1780         }
1781
1782         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1783 }
1784
1785 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1786 {
1787         unsigned long flags;
1788
1789         /* Not using the ITS list? Everything is always mapped. */
1790         if (gic_requires_eager_mapping())
1791                 return;
1792
1793         raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795         if (!--vm->vlpi_count[its->list_nr]) {
1796                 int i;
1797
1798                 for (i = 0; i < vm->nr_vpes; i++)
1799                         its_send_vmapp(its, vm->vpes[i], false);
1800         }
1801
1802         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803 }
1804
1805 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1806 {
1807         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1808         u32 event = its_get_event_id(d);
1809         int ret = 0;
1810
1811         if (!info->map)
1812                 return -EINVAL;
1813
1814         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1815
1816         if (!its_dev->event_map.vm) {
1817                 struct its_vlpi_map *maps;
1818
1819                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1820                                GFP_ATOMIC);
1821                 if (!maps) {
1822                         ret = -ENOMEM;
1823                         goto out;
1824                 }
1825
1826                 its_dev->event_map.vm = info->map->vm;
1827                 its_dev->event_map.vlpi_maps = maps;
1828         } else if (its_dev->event_map.vm != info->map->vm) {
1829                 ret = -EINVAL;
1830                 goto out;
1831         }
1832
1833         /* Get our private copy of the mapping information */
1834         its_dev->event_map.vlpi_maps[event] = *info->map;
1835
1836         if (irqd_is_forwarded_to_vcpu(d)) {
1837                 /* Already mapped, move it around */
1838                 its_send_vmovi(its_dev, event);
1839         } else {
1840                 /* Ensure all the VPEs are mapped on this ITS */
1841                 its_map_vm(its_dev->its, info->map->vm);
1842
1843                 /*
1844                  * Flag the interrupt as forwarded so that we can
1845                  * start poking the virtual property table.
1846                  */
1847                 irqd_set_forwarded_to_vcpu(d);
1848
1849                 /* Write out the property to the prop table */
1850                 lpi_write_config(d, 0xff, info->map->properties);
1851
1852                 /* Drop the physical mapping */
1853                 its_send_discard(its_dev, event);
1854
1855                 /* and install the virtual one */
1856                 its_send_vmapti(its_dev, event);
1857
1858                 /* Increment the number of VLPIs */
1859                 its_dev->event_map.nr_vlpis++;
1860         }
1861
1862 out:
1863         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1864         return ret;
1865 }
1866
1867 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1868 {
1869         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1870         struct its_vlpi_map *map;
1871         int ret = 0;
1872
1873         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1874
1875         map = get_vlpi_map(d);
1876
1877         if (!its_dev->event_map.vm || !map) {
1878                 ret = -EINVAL;
1879                 goto out;
1880         }
1881
1882         /* Copy our mapping information to the incoming request */
1883         *info->map = *map;
1884
1885 out:
1886         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1887         return ret;
1888 }
1889
1890 static int its_vlpi_unmap(struct irq_data *d)
1891 {
1892         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1893         u32 event = its_get_event_id(d);
1894         int ret = 0;
1895
1896         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1897
1898         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1899                 ret = -EINVAL;
1900                 goto out;
1901         }
1902
1903         /* Drop the virtual mapping */
1904         its_send_discard(its_dev, event);
1905
1906         /* and restore the physical one */
1907         irqd_clr_forwarded_to_vcpu(d);
1908         its_send_mapti(its_dev, d->hwirq, event);
1909         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1910                                     LPI_PROP_ENABLED |
1911                                     LPI_PROP_GROUP1));
1912
1913         /* Potentially unmap the VM from this ITS */
1914         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1915
1916         /*
1917          * Drop the refcount and make the device available again if
1918          * this was the last VLPI.
1919          */
1920         if (!--its_dev->event_map.nr_vlpis) {
1921                 its_dev->event_map.vm = NULL;
1922                 kfree(its_dev->event_map.vlpi_maps);
1923         }
1924
1925 out:
1926         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927         return ret;
1928 }
1929
1930 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1931 {
1932         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933
1934         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1935                 return -EINVAL;
1936
1937         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1938                 lpi_update_config(d, 0xff, info->config);
1939         else
1940                 lpi_write_config(d, 0xff, info->config);
1941         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1942
1943         return 0;
1944 }
1945
1946 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1947 {
1948         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1949         struct its_cmd_info *info = vcpu_info;
1950
1951         /* Need a v4 ITS */
1952         if (!is_v4(its_dev->its))
1953                 return -EINVAL;
1954
1955         /* Unmap request? */
1956         if (!info)
1957                 return its_vlpi_unmap(d);
1958
1959         switch (info->cmd_type) {
1960         case MAP_VLPI:
1961                 return its_vlpi_map(d, info);
1962
1963         case GET_VLPI:
1964                 return its_vlpi_get(d, info);
1965
1966         case PROP_UPDATE_VLPI:
1967         case PROP_UPDATE_AND_INV_VLPI:
1968                 return its_vlpi_prop_update(d, info);
1969
1970         default:
1971                 return -EINVAL;
1972         }
1973 }
1974
1975 static struct irq_chip its_irq_chip = {
1976         .name                   = "ITS",
1977         .irq_mask               = its_mask_irq,
1978         .irq_unmask             = its_unmask_irq,
1979         .irq_eoi                = irq_chip_eoi_parent,
1980         .irq_set_affinity       = its_set_affinity,
1981         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1982         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1983         .irq_retrigger          = its_irq_retrigger,
1984         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1985 };
1986
1987
1988 /*
1989  * How we allocate LPIs:
1990  *
1991  * lpi_range_list contains ranges of LPIs that are to available to
1992  * allocate from. To allocate LPIs, just pick the first range that
1993  * fits the required allocation, and reduce it by the required
1994  * amount. Once empty, remove the range from the list.
1995  *
1996  * To free a range of LPIs, add a free range to the list, sort it and
1997  * merge the result if the new range happens to be adjacent to an
1998  * already free block.
1999  *
2000  * The consequence of the above is that allocation is cost is low, but
2001  * freeing is expensive. We assumes that freeing rarely occurs.
2002  */
2003 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2004
2005 static DEFINE_MUTEX(lpi_range_lock);
2006 static LIST_HEAD(lpi_range_list);
2007
2008 struct lpi_range {
2009         struct list_head        entry;
2010         u32                     base_id;
2011         u32                     span;
2012 };
2013
2014 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2015 {
2016         struct lpi_range *range;
2017
2018         range = kmalloc(sizeof(*range), GFP_KERNEL);
2019         if (range) {
2020                 range->base_id = base;
2021                 range->span = span;
2022         }
2023
2024         return range;
2025 }
2026
2027 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2028 {
2029         struct lpi_range *range, *tmp;
2030         int err = -ENOSPC;
2031
2032         mutex_lock(&lpi_range_lock);
2033
2034         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2035                 if (range->span >= nr_lpis) {
2036                         *base = range->base_id;
2037                         range->base_id += nr_lpis;
2038                         range->span -= nr_lpis;
2039
2040                         if (range->span == 0) {
2041                                 list_del(&range->entry);
2042                                 kfree(range);
2043                         }
2044
2045                         err = 0;
2046                         break;
2047                 }
2048         }
2049
2050         mutex_unlock(&lpi_range_lock);
2051
2052         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2053         return err;
2054 }
2055
2056 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2057 {
2058         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2059                 return;
2060         if (a->base_id + a->span != b->base_id)
2061                 return;
2062         b->base_id = a->base_id;
2063         b->span += a->span;
2064         list_del(&a->entry);
2065         kfree(a);
2066 }
2067
2068 static int free_lpi_range(u32 base, u32 nr_lpis)
2069 {
2070         struct lpi_range *new, *old;
2071
2072         new = mk_lpi_range(base, nr_lpis);
2073         if (!new)
2074                 return -ENOMEM;
2075
2076         mutex_lock(&lpi_range_lock);
2077
2078         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2079                 if (old->base_id < base)
2080                         break;
2081         }
2082         /*
2083          * old is the last element with ->base_id smaller than base,
2084          * so new goes right after it. If there are no elements with
2085          * ->base_id smaller than base, &old->entry ends up pointing
2086          * at the head of the list, and inserting new it the start of
2087          * the list is the right thing to do in that case as well.
2088          */
2089         list_add(&new->entry, &old->entry);
2090         /*
2091          * Now check if we can merge with the preceding and/or
2092          * following ranges.
2093          */
2094         merge_lpi_ranges(old, new);
2095         merge_lpi_ranges(new, list_next_entry(new, entry));
2096
2097         mutex_unlock(&lpi_range_lock);
2098         return 0;
2099 }
2100
2101 static int __init its_lpi_init(u32 id_bits)
2102 {
2103         u32 lpis = (1UL << id_bits) - 8192;
2104         u32 numlpis;
2105         int err;
2106
2107         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2108
2109         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2110                 lpis = numlpis;
2111                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2112                         lpis);
2113         }
2114
2115         /*
2116          * Initializing the allocator is just the same as freeing the
2117          * full range of LPIs.
2118          */
2119         err = free_lpi_range(8192, lpis);
2120         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2121         return err;
2122 }
2123
2124 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2125 {
2126         unsigned long *bitmap = NULL;
2127         int err = 0;
2128
2129         do {
2130                 err = alloc_lpi_range(nr_irqs, base);
2131                 if (!err)
2132                         break;
2133
2134                 nr_irqs /= 2;
2135         } while (nr_irqs > 0);
2136
2137         if (!nr_irqs)
2138                 err = -ENOSPC;
2139
2140         if (err)
2141                 goto out;
2142
2143         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2144         if (!bitmap)
2145                 goto out;
2146
2147         *nr_ids = nr_irqs;
2148
2149 out:
2150         if (!bitmap)
2151                 *base = *nr_ids = 0;
2152
2153         return bitmap;
2154 }
2155
2156 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2157 {
2158         WARN_ON(free_lpi_range(base, nr_ids));
2159         bitmap_free(bitmap);
2160 }
2161
2162 static void gic_reset_prop_table(void *va)
2163 {
2164         /* Priority 0xa0, Group-1, disabled */
2165         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2166
2167         /* Make sure the GIC will observe the written configuration */
2168         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2169 }
2170
2171 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2172 {
2173         struct page *prop_page;
2174
2175         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2176         if (!prop_page)
2177                 return NULL;
2178
2179         gic_reset_prop_table(page_address(prop_page));
2180
2181         return prop_page;
2182 }
2183
2184 static void its_free_prop_table(struct page *prop_page)
2185 {
2186         free_pages((unsigned long)page_address(prop_page),
2187                    get_order(LPI_PROPBASE_SZ));
2188 }
2189
2190 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2191 {
2192         phys_addr_t start, end, addr_end;
2193         u64 i;
2194
2195         /*
2196          * We don't bother checking for a kdump kernel as by
2197          * construction, the LPI tables are out of this kernel's
2198          * memory map.
2199          */
2200         if (is_kdump_kernel())
2201                 return true;
2202
2203         addr_end = addr + size - 1;
2204
2205         for_each_reserved_mem_range(i, &start, &end) {
2206                 if (addr >= start && addr_end <= end)
2207                         return true;
2208         }
2209
2210         /* Not found, not a good sign... */
2211         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2212                 &addr, &addr_end);
2213         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2214         return false;
2215 }
2216
2217 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2218 {
2219         if (efi_enabled(EFI_CONFIG_TABLES))
2220                 return efi_mem_reserve_persistent(addr, size);
2221
2222         return 0;
2223 }
2224
2225 static int __init its_setup_lpi_prop_table(void)
2226 {
2227         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2228                 u64 val;
2229
2230                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2231                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2232
2233                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2234                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2235                                                      LPI_PROPBASE_SZ,
2236                                                      MEMREMAP_WB);
2237                 gic_reset_prop_table(gic_rdists->prop_table_va);
2238         } else {
2239                 struct page *page;
2240
2241                 lpi_id_bits = min_t(u32,
2242                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2243                                     ITS_MAX_LPI_NRBITS);
2244                 page = its_allocate_prop_table(GFP_NOWAIT);
2245                 if (!page) {
2246                         pr_err("Failed to allocate PROPBASE\n");
2247                         return -ENOMEM;
2248                 }
2249
2250                 gic_rdists->prop_table_pa = page_to_phys(page);
2251                 gic_rdists->prop_table_va = page_address(page);
2252                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2253                                           LPI_PROPBASE_SZ));
2254         }
2255
2256         pr_info("GICv3: using LPI property table @%pa\n",
2257                 &gic_rdists->prop_table_pa);
2258
2259         return its_lpi_init(lpi_id_bits);
2260 }
2261
2262 static const char *its_base_type_string[] = {
2263         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2264         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2265         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2266         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2267         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2268         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2269         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2270 };
2271
2272 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2273 {
2274         u32 idx = baser - its->tables;
2275
2276         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2277 }
2278
2279 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2280                             u64 val)
2281 {
2282         u32 idx = baser - its->tables;
2283
2284         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2285         baser->val = its_read_baser(its, baser);
2286 }
2287
2288 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2289                            u64 cache, u64 shr, u32 order, bool indirect)
2290 {
2291         u64 val = its_read_baser(its, baser);
2292         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2293         u64 type = GITS_BASER_TYPE(val);
2294         u64 baser_phys, tmp;
2295         u32 alloc_pages, psz;
2296         struct page *page;
2297         void *base;
2298
2299         psz = baser->psz;
2300         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2301         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2302                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2303                         &its->phys_base, its_base_type_string[type],
2304                         alloc_pages, GITS_BASER_PAGES_MAX);
2305                 alloc_pages = GITS_BASER_PAGES_MAX;
2306                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2307         }
2308
2309         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2310         if (!page)
2311                 return -ENOMEM;
2312
2313         base = (void *)page_address(page);
2314         baser_phys = virt_to_phys(base);
2315
2316         /* Check if the physical address of the memory is above 48bits */
2317         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2318
2319                 /* 52bit PA is supported only when PageSize=64K */
2320                 if (psz != SZ_64K) {
2321                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2322                         free_pages((unsigned long)base, order);
2323                         return -ENXIO;
2324                 }
2325
2326                 /* Convert 52bit PA to 48bit field */
2327                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2328         }
2329
2330 retry_baser:
2331         val = (baser_phys                                        |
2332                 (type << GITS_BASER_TYPE_SHIFT)                  |
2333                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2334                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2335                 cache                                            |
2336                 shr                                              |
2337                 GITS_BASER_VALID);
2338
2339         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2340
2341         switch (psz) {
2342         case SZ_4K:
2343                 val |= GITS_BASER_PAGE_SIZE_4K;
2344                 break;
2345         case SZ_16K:
2346                 val |= GITS_BASER_PAGE_SIZE_16K;
2347                 break;
2348         case SZ_64K:
2349                 val |= GITS_BASER_PAGE_SIZE_64K;
2350                 break;
2351         }
2352
2353         its_write_baser(its, baser, val);
2354         tmp = baser->val;
2355
2356         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2357                 /*
2358                  * Shareability didn't stick. Just use
2359                  * whatever the read reported, which is likely
2360                  * to be the only thing this redistributor
2361                  * supports. If that's zero, make it
2362                  * non-cacheable as well.
2363                  */
2364                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2365                 if (!shr) {
2366                         cache = GITS_BASER_nC;
2367                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2368                 }
2369                 goto retry_baser;
2370         }
2371
2372         if (val != tmp) {
2373                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2374                        &its->phys_base, its_base_type_string[type],
2375                        val, tmp);
2376                 free_pages((unsigned long)base, order);
2377                 return -ENXIO;
2378         }
2379
2380         baser->order = order;
2381         baser->base = base;
2382         baser->psz = psz;
2383         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2384
2385         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2386                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2387                 its_base_type_string[type],
2388                 (unsigned long)virt_to_phys(base),
2389                 indirect ? "indirect" : "flat", (int)esz,
2390                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2391
2392         return 0;
2393 }
2394
2395 static bool its_parse_indirect_baser(struct its_node *its,
2396                                      struct its_baser *baser,
2397                                      u32 *order, u32 ids)
2398 {
2399         u64 tmp = its_read_baser(its, baser);
2400         u64 type = GITS_BASER_TYPE(tmp);
2401         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2402         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2403         u32 new_order = *order;
2404         u32 psz = baser->psz;
2405         bool indirect = false;
2406
2407         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2408         if ((esz << ids) > (psz * 2)) {
2409                 /*
2410                  * Find out whether hw supports a single or two-level table by
2411                  * table by reading bit at offset '62' after writing '1' to it.
2412                  */
2413                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2414                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2415
2416                 if (indirect) {
2417                         /*
2418                          * The size of the lvl2 table is equal to ITS page size
2419                          * which is 'psz'. For computing lvl1 table size,
2420                          * subtract ID bits that sparse lvl2 table from 'ids'
2421                          * which is reported by ITS hardware times lvl1 table
2422                          * entry size.
2423                          */
2424                         ids -= ilog2(psz / (int)esz);
2425                         esz = GITS_LVL1_ENTRY_SIZE;
2426                 }
2427         }
2428
2429         /*
2430          * Allocate as many entries as required to fit the
2431          * range of device IDs that the ITS can grok... The ID
2432          * space being incredibly sparse, this results in a
2433          * massive waste of memory if two-level device table
2434          * feature is not supported by hardware.
2435          */
2436         new_order = max_t(u32, get_order(esz << ids), new_order);
2437         if (new_order >= MAX_ORDER) {
2438                 new_order = MAX_ORDER - 1;
2439                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2440                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2441                         &its->phys_base, its_base_type_string[type],
2442                         device_ids(its), ids);
2443         }
2444
2445         *order = new_order;
2446
2447         return indirect;
2448 }
2449
2450 static u32 compute_common_aff(u64 val)
2451 {
2452         u32 aff, clpiaff;
2453
2454         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2455         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2456
2457         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2458 }
2459
2460 static u32 compute_its_aff(struct its_node *its)
2461 {
2462         u64 val;
2463         u32 svpet;
2464
2465         /*
2466          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2467          * the resulting affinity. We then use that to see if this match
2468          * our own affinity.
2469          */
2470         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2471         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2472         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2473         return compute_common_aff(val);
2474 }
2475
2476 static struct its_node *find_sibling_its(struct its_node *cur_its)
2477 {
2478         struct its_node *its;
2479         u32 aff;
2480
2481         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2482                 return NULL;
2483
2484         aff = compute_its_aff(cur_its);
2485
2486         list_for_each_entry(its, &its_nodes, entry) {
2487                 u64 baser;
2488
2489                 if (!is_v4_1(its) || its == cur_its)
2490                         continue;
2491
2492                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2493                         continue;
2494
2495                 if (aff != compute_its_aff(its))
2496                         continue;
2497
2498                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2499                 baser = its->tables[2].val;
2500                 if (!(baser & GITS_BASER_VALID))
2501                         continue;
2502
2503                 return its;
2504         }
2505
2506         return NULL;
2507 }
2508
2509 static void its_free_tables(struct its_node *its)
2510 {
2511         int i;
2512
2513         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2514                 if (its->tables[i].base) {
2515                         free_pages((unsigned long)its->tables[i].base,
2516                                    its->tables[i].order);
2517                         its->tables[i].base = NULL;
2518                 }
2519         }
2520 }
2521
2522 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2523 {
2524         u64 psz = SZ_64K;
2525
2526         while (psz) {
2527                 u64 val, gpsz;
2528
2529                 val = its_read_baser(its, baser);
2530                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2531
2532                 switch (psz) {
2533                 case SZ_64K:
2534                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2535                         break;
2536                 case SZ_16K:
2537                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2538                         break;
2539                 case SZ_4K:
2540                 default:
2541                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2542                         break;
2543                 }
2544
2545                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2546
2547                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2548                 its_write_baser(its, baser, val);
2549
2550                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2551                         break;
2552
2553                 switch (psz) {
2554                 case SZ_64K:
2555                         psz = SZ_16K;
2556                         break;
2557                 case SZ_16K:
2558                         psz = SZ_4K;
2559                         break;
2560                 case SZ_4K:
2561                 default:
2562                         return -1;
2563                 }
2564         }
2565
2566         baser->psz = psz;
2567         return 0;
2568 }
2569
2570 static int its_alloc_tables(struct its_node *its)
2571 {
2572         u64 shr = GITS_BASER_InnerShareable;
2573         u64 cache = GITS_BASER_RaWaWb;
2574         int err, i;
2575
2576         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2577                 /* erratum 24313: ignore memory access type */
2578                 cache = GITS_BASER_nCnB;
2579
2580         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2581                 struct its_baser *baser = its->tables + i;
2582                 u64 val = its_read_baser(its, baser);
2583                 u64 type = GITS_BASER_TYPE(val);
2584                 bool indirect = false;
2585                 u32 order;
2586
2587                 if (type == GITS_BASER_TYPE_NONE)
2588                         continue;
2589
2590                 if (its_probe_baser_psz(its, baser)) {
2591                         its_free_tables(its);
2592                         return -ENXIO;
2593                 }
2594
2595                 order = get_order(baser->psz);
2596
2597                 switch (type) {
2598                 case GITS_BASER_TYPE_DEVICE:
2599                         indirect = its_parse_indirect_baser(its, baser, &order,
2600                                                             device_ids(its));
2601                         break;
2602
2603                 case GITS_BASER_TYPE_VCPU:
2604                         if (is_v4_1(its)) {
2605                                 struct its_node *sibling;
2606
2607                                 WARN_ON(i != 2);
2608                                 if ((sibling = find_sibling_its(its))) {
2609                                         *baser = sibling->tables[2];
2610                                         its_write_baser(its, baser, baser->val);
2611                                         continue;
2612                                 }
2613                         }
2614
2615                         indirect = its_parse_indirect_baser(its, baser, &order,
2616                                                             ITS_MAX_VPEID_BITS);
2617                         break;
2618                 }
2619
2620                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2621                 if (err < 0) {
2622                         its_free_tables(its);
2623                         return err;
2624                 }
2625
2626                 /* Update settings which will be used for next BASERn */
2627                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2628                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2629         }
2630
2631         return 0;
2632 }
2633
2634 static u64 inherit_vpe_l1_table_from_its(void)
2635 {
2636         struct its_node *its;
2637         u64 val;
2638         u32 aff;
2639
2640         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2641         aff = compute_common_aff(val);
2642
2643         list_for_each_entry(its, &its_nodes, entry) {
2644                 u64 baser, addr;
2645
2646                 if (!is_v4_1(its))
2647                         continue;
2648
2649                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2650                         continue;
2651
2652                 if (aff != compute_its_aff(its))
2653                         continue;
2654
2655                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2656                 baser = its->tables[2].val;
2657                 if (!(baser & GITS_BASER_VALID))
2658                         continue;
2659
2660                 /* We have a winner! */
2661                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2662
2663                 val  = GICR_VPROPBASER_4_1_VALID;
2664                 if (baser & GITS_BASER_INDIRECT)
2665                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2666                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2667                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2668                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2669                 case GIC_PAGE_SIZE_64K:
2670                         addr = GITS_BASER_ADDR_48_to_52(baser);
2671                         break;
2672                 default:
2673                         addr = baser & GENMASK_ULL(47, 12);
2674                         break;
2675                 }
2676                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2677                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2678                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2679                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2680                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2681                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2682
2683                 return val;
2684         }
2685
2686         return 0;
2687 }
2688
2689 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2690 {
2691         u32 aff;
2692         u64 val;
2693         int cpu;
2694
2695         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2696         aff = compute_common_aff(val);
2697
2698         for_each_possible_cpu(cpu) {
2699                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2700
2701                 if (!base || cpu == smp_processor_id())
2702                         continue;
2703
2704                 val = gic_read_typer(base + GICR_TYPER);
2705                 if (aff != compute_common_aff(val))
2706                         continue;
2707
2708                 /*
2709                  * At this point, we have a victim. This particular CPU
2710                  * has already booted, and has an affinity that matches
2711                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2712                  * Make sure we don't write the Z bit in that case.
2713                  */
2714                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2715                 val &= ~GICR_VPROPBASER_4_1_Z;
2716
2717                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2718                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2719
2720                 return val;
2721         }
2722
2723         return 0;
2724 }
2725
2726 static bool allocate_vpe_l2_table(int cpu, u32 id)
2727 {
2728         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2729         unsigned int psz, esz, idx, npg, gpsz;
2730         u64 val;
2731         struct page *page;
2732         __le64 *table;
2733
2734         if (!gic_rdists->has_rvpeid)
2735                 return true;
2736
2737         /* Skip non-present CPUs */
2738         if (!base)
2739                 return true;
2740
2741         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2742
2743         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2744         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2745         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2746
2747         switch (gpsz) {
2748         default:
2749                 WARN_ON(1);
2750                 fallthrough;
2751         case GIC_PAGE_SIZE_4K:
2752                 psz = SZ_4K;
2753                 break;
2754         case GIC_PAGE_SIZE_16K:
2755                 psz = SZ_16K;
2756                 break;
2757         case GIC_PAGE_SIZE_64K:
2758                 psz = SZ_64K;
2759                 break;
2760         }
2761
2762         /* Don't allow vpe_id that exceeds single, flat table limit */
2763         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2764                 return (id < (npg * psz / (esz * SZ_8)));
2765
2766         /* Compute 1st level table index & check if that exceeds table limit */
2767         idx = id >> ilog2(psz / (esz * SZ_8));
2768         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2769                 return false;
2770
2771         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2772
2773         /* Allocate memory for 2nd level table */
2774         if (!table[idx]) {
2775                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2776                 if (!page)
2777                         return false;
2778
2779                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2780                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2781                         gic_flush_dcache_to_poc(page_address(page), psz);
2782
2783                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2784
2785                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2786                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2788
2789                 /* Ensure updated table contents are visible to RD hardware */
2790                 dsb(sy);
2791         }
2792
2793         return true;
2794 }
2795
2796 static int allocate_vpe_l1_table(void)
2797 {
2798         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2799         u64 val, gpsz, npg, pa;
2800         unsigned int psz = SZ_64K;
2801         unsigned int np, epp, esz;
2802         struct page *page;
2803
2804         if (!gic_rdists->has_rvpeid)
2805                 return 0;
2806
2807         /*
2808          * if VPENDBASER.Valid is set, disable any previously programmed
2809          * VPE by setting PendingLast while clearing Valid. This has the
2810          * effect of making sure no doorbell will be generated and we can
2811          * then safely clear VPROPBASER.Valid.
2812          */
2813         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2814                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2815                                       vlpi_base + GICR_VPENDBASER);
2816
2817         /*
2818          * If we can inherit the configuration from another RD, let's do
2819          * so. Otherwise, we have to go through the allocation process. We
2820          * assume that all RDs have the exact same requirements, as
2821          * nothing will work otherwise.
2822          */
2823         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2824         if (val & GICR_VPROPBASER_4_1_VALID)
2825                 goto out;
2826
2827         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2828         if (!gic_data_rdist()->vpe_table_mask)
2829                 return -ENOMEM;
2830
2831         val = inherit_vpe_l1_table_from_its();
2832         if (val & GICR_VPROPBASER_4_1_VALID)
2833                 goto out;
2834
2835         /* First probe the page size */
2836         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2837         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2838         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2839         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2840         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2841
2842         switch (gpsz) {
2843         default:
2844                 gpsz = GIC_PAGE_SIZE_4K;
2845                 fallthrough;
2846         case GIC_PAGE_SIZE_4K:
2847                 psz = SZ_4K;
2848                 break;
2849         case GIC_PAGE_SIZE_16K:
2850                 psz = SZ_16K;
2851                 break;
2852         case GIC_PAGE_SIZE_64K:
2853                 psz = SZ_64K;
2854                 break;
2855         }
2856
2857         /*
2858          * Start populating the register from scratch, including RO fields
2859          * (which we want to print in debug cases...)
2860          */
2861         val = 0;
2862         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2863         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2864
2865         /* How many entries per GIC page? */
2866         esz++;
2867         epp = psz / (esz * SZ_8);
2868
2869         /*
2870          * If we need more than just a single L1 page, flag the table
2871          * as indirect and compute the number of required L1 pages.
2872          */
2873         if (epp < ITS_MAX_VPEID) {
2874                 int nl2;
2875
2876                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2877
2878                 /* Number of L2 pages required to cover the VPEID space */
2879                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2880
2881                 /* Number of L1 pages to point to the L2 pages */
2882                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2883         } else {
2884                 npg = 1;
2885         }
2886
2887         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2888
2889         /* Right, that's the number of CPU pages we need for L1 */
2890         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2891
2892         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2893                  np, npg, psz, epp, esz);
2894         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2895         if (!page)
2896                 return -ENOMEM;
2897
2898         gic_data_rdist()->vpe_l1_base = page_address(page);
2899         pa = virt_to_phys(page_address(page));
2900         WARN_ON(!IS_ALIGNED(pa, psz));
2901
2902         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2903         val |= GICR_VPROPBASER_RaWb;
2904         val |= GICR_VPROPBASER_InnerShareable;
2905         val |= GICR_VPROPBASER_4_1_Z;
2906         val |= GICR_VPROPBASER_4_1_VALID;
2907
2908 out:
2909         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2910         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2911
2912         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2913                  smp_processor_id(), val,
2914                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2915
2916         return 0;
2917 }
2918
2919 static int its_alloc_collections(struct its_node *its)
2920 {
2921         int i;
2922
2923         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2924                                    GFP_KERNEL);
2925         if (!its->collections)
2926                 return -ENOMEM;
2927
2928         for (i = 0; i < nr_cpu_ids; i++)
2929                 its->collections[i].target_address = ~0ULL;
2930
2931         return 0;
2932 }
2933
2934 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2935 {
2936         struct page *pend_page;
2937
2938         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2939                                 get_order(LPI_PENDBASE_SZ));
2940         if (!pend_page)
2941                 return NULL;
2942
2943         /* Make sure the GIC will observe the zero-ed page */
2944         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2945
2946         return pend_page;
2947 }
2948
2949 static void its_free_pending_table(struct page *pt)
2950 {
2951         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2952 }
2953
2954 /*
2955  * Booting with kdump and LPIs enabled is generally fine. Any other
2956  * case is wrong in the absence of firmware/EFI support.
2957  */
2958 static bool enabled_lpis_allowed(void)
2959 {
2960         phys_addr_t addr;
2961         u64 val;
2962
2963         /* Check whether the property table is in a reserved region */
2964         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2965         addr = val & GENMASK_ULL(51, 12);
2966
2967         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2968 }
2969
2970 static int __init allocate_lpi_tables(void)
2971 {
2972         u64 val;
2973         int err, cpu;
2974
2975         /*
2976          * If LPIs are enabled while we run this from the boot CPU,
2977          * flag the RD tables as pre-allocated if the stars do align.
2978          */
2979         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2980         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2981                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2982                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2983                 pr_info("GICv3: Using preallocated redistributor tables\n");
2984         }
2985
2986         err = its_setup_lpi_prop_table();
2987         if (err)
2988                 return err;
2989
2990         /*
2991          * We allocate all the pending tables anyway, as we may have a
2992          * mix of RDs that have had LPIs enabled, and some that
2993          * don't. We'll free the unused ones as each CPU comes online.
2994          */
2995         for_each_possible_cpu(cpu) {
2996                 struct page *pend_page;
2997
2998                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2999                 if (!pend_page) {
3000                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3001                         return -ENOMEM;
3002                 }
3003
3004                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3005         }
3006
3007         return 0;
3008 }
3009
3010 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3011 {
3012         u32 count = 1000000;    /* 1s! */
3013         bool clean;
3014         u64 val;
3015
3016         do {
3017                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3018                 clean = !(val & GICR_VPENDBASER_Dirty);
3019                 if (!clean) {
3020                         count--;
3021                         cpu_relax();
3022                         udelay(1);
3023                 }
3024         } while (!clean && count);
3025
3026         if (unlikely(!clean))
3027                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3028
3029         return val;
3030 }
3031
3032 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3033 {
3034         u64 val;
3035
3036         /* Make sure we wait until the RD is done with the initial scan */
3037         val = read_vpend_dirty_clear(vlpi_base);
3038         val &= ~GICR_VPENDBASER_Valid;
3039         val &= ~clr;
3040         val |= set;
3041         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3042
3043         val = read_vpend_dirty_clear(vlpi_base);
3044         if (unlikely(val & GICR_VPENDBASER_Dirty))
3045                 val |= GICR_VPENDBASER_PendingLast;
3046
3047         return val;
3048 }
3049
3050 static void its_cpu_init_lpis(void)
3051 {
3052         void __iomem *rbase = gic_data_rdist_rd_base();
3053         struct page *pend_page;
3054         phys_addr_t paddr;
3055         u64 val, tmp;
3056
3057         if (gic_data_rdist()->lpi_enabled)
3058                 return;
3059
3060         val = readl_relaxed(rbase + GICR_CTLR);
3061         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3062             (val & GICR_CTLR_ENABLE_LPIS)) {
3063                 /*
3064                  * Check that we get the same property table on all
3065                  * RDs. If we don't, this is hopeless.
3066                  */
3067                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3068                 paddr &= GENMASK_ULL(51, 12);
3069                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3070                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3071
3072                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3073                 paddr &= GENMASK_ULL(51, 16);
3074
3075                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3076                 its_free_pending_table(gic_data_rdist()->pend_page);
3077                 gic_data_rdist()->pend_page = NULL;
3078
3079                 goto out;
3080         }
3081
3082         pend_page = gic_data_rdist()->pend_page;
3083         paddr = page_to_phys(pend_page);
3084         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3085
3086         /* set PROPBASE */
3087         val = (gic_rdists->prop_table_pa |
3088                GICR_PROPBASER_InnerShareable |
3089                GICR_PROPBASER_RaWaWb |
3090                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3091
3092         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3093         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3094
3095         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3096                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3097                         /*
3098                          * The HW reports non-shareable, we must
3099                          * remove the cacheability attributes as
3100                          * well.
3101                          */
3102                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3103                                  GICR_PROPBASER_CACHEABILITY_MASK);
3104                         val |= GICR_PROPBASER_nC;
3105                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3106                 }
3107                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3108                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3109         }
3110
3111         /* set PENDBASE */
3112         val = (page_to_phys(pend_page) |
3113                GICR_PENDBASER_InnerShareable |
3114                GICR_PENDBASER_RaWaWb);
3115
3116         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3117         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118
3119         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3120                 /*
3121                  * The HW reports non-shareable, we must remove the
3122                  * cacheability attributes as well.
3123                  */
3124                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3125                          GICR_PENDBASER_CACHEABILITY_MASK);
3126                 val |= GICR_PENDBASER_nC;
3127                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3128         }
3129
3130         /* Enable LPIs */
3131         val = readl_relaxed(rbase + GICR_CTLR);
3132         val |= GICR_CTLR_ENABLE_LPIS;
3133         writel_relaxed(val, rbase + GICR_CTLR);
3134
3135         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3136                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3137
3138                 /*
3139                  * It's possible for CPU to receive VLPIs before it is
3140                  * scheduled as a vPE, especially for the first CPU, and the
3141                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3142                  * as out of range and dropped by GIC.
3143                  * So we initialize IDbits to known value to avoid VLPI drop.
3144                  */
3145                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3146                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3147                         smp_processor_id(), val);
3148                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3149
3150                 /*
3151                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3152                  * ancient programming gets left in and has possibility of
3153                  * corrupting memory.
3154                  */
3155                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3156         }
3157
3158         if (allocate_vpe_l1_table()) {
3159                 /*
3160                  * If the allocation has failed, we're in massive trouble.
3161                  * Disable direct injection, and pray that no VM was
3162                  * already running...
3163                  */
3164                 gic_rdists->has_rvpeid = false;
3165                 gic_rdists->has_vlpis = false;
3166         }
3167
3168         /* Make sure the GIC has seen the above */
3169         dsb(sy);
3170 out:
3171         gic_data_rdist()->lpi_enabled = true;
3172         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3173                 smp_processor_id(),
3174                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3175                 &paddr);
3176 }
3177
3178 static void its_cpu_init_collection(struct its_node *its)
3179 {
3180         int cpu = smp_processor_id();
3181         u64 target;
3182
3183         /* avoid cross node collections and its mapping */
3184         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3185                 struct device_node *cpu_node;
3186
3187                 cpu_node = of_get_cpu_node(cpu, NULL);
3188                 if (its->numa_node != NUMA_NO_NODE &&
3189                         its->numa_node != of_node_to_nid(cpu_node))
3190                         return;
3191         }
3192
3193         /*
3194          * We now have to bind each collection to its target
3195          * redistributor.
3196          */
3197         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3198                 /*
3199                  * This ITS wants the physical address of the
3200                  * redistributor.
3201                  */
3202                 target = gic_data_rdist()->phys_base;
3203         } else {
3204                 /* This ITS wants a linear CPU number. */
3205                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3206                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3207         }
3208
3209         /* Perform collection mapping */
3210         its->collections[cpu].target_address = target;
3211         its->collections[cpu].col_id = cpu;
3212
3213         its_send_mapc(its, &its->collections[cpu], 1);
3214         its_send_invall(its, &its->collections[cpu]);
3215 }
3216
3217 static void its_cpu_init_collections(void)
3218 {
3219         struct its_node *its;
3220
3221         raw_spin_lock(&its_lock);
3222
3223         list_for_each_entry(its, &its_nodes, entry)
3224                 its_cpu_init_collection(its);
3225
3226         raw_spin_unlock(&its_lock);
3227 }
3228
3229 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3230 {
3231         struct its_device *its_dev = NULL, *tmp;
3232         unsigned long flags;
3233
3234         raw_spin_lock_irqsave(&its->lock, flags);
3235
3236         list_for_each_entry(tmp, &its->its_device_list, entry) {
3237                 if (tmp->device_id == dev_id) {
3238                         its_dev = tmp;
3239                         break;
3240                 }
3241         }
3242
3243         raw_spin_unlock_irqrestore(&its->lock, flags);
3244
3245         return its_dev;
3246 }
3247
3248 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3249 {
3250         int i;
3251
3252         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3253                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3254                         return &its->tables[i];
3255         }
3256
3257         return NULL;
3258 }
3259
3260 static bool its_alloc_table_entry(struct its_node *its,
3261                                   struct its_baser *baser, u32 id)
3262 {
3263         struct page *page;
3264         u32 esz, idx;
3265         __le64 *table;
3266
3267         /* Don't allow device id that exceeds single, flat table limit */
3268         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3269         if (!(baser->val & GITS_BASER_INDIRECT))
3270                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3271
3272         /* Compute 1st level table index & check if that exceeds table limit */
3273         idx = id >> ilog2(baser->psz / esz);
3274         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3275                 return false;
3276
3277         table = baser->base;
3278
3279         /* Allocate memory for 2nd level table */
3280         if (!table[idx]) {
3281                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3282                                         get_order(baser->psz));
3283                 if (!page)
3284                         return false;
3285
3286                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3287                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3288                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3289
3290                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3291
3292                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3293                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3294                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3295
3296                 /* Ensure updated table contents are visible to ITS hardware */
3297                 dsb(sy);
3298         }
3299
3300         return true;
3301 }
3302
3303 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3304 {
3305         struct its_baser *baser;
3306
3307         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3308
3309         /* Don't allow device id that exceeds ITS hardware limit */
3310         if (!baser)
3311                 return (ilog2(dev_id) < device_ids(its));
3312
3313         return its_alloc_table_entry(its, baser, dev_id);
3314 }
3315
3316 static bool its_alloc_vpe_table(u32 vpe_id)
3317 {
3318         struct its_node *its;
3319         int cpu;
3320
3321         /*
3322          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3323          * could try and only do it on ITSs corresponding to devices
3324          * that have interrupts targeted at this VPE, but the
3325          * complexity becomes crazy (and you have tons of memory
3326          * anyway, right?).
3327          */
3328         list_for_each_entry(its, &its_nodes, entry) {
3329                 struct its_baser *baser;
3330
3331                 if (!is_v4(its))
3332                         continue;
3333
3334                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3335                 if (!baser)
3336                         return false;
3337
3338                 if (!its_alloc_table_entry(its, baser, vpe_id))
3339                         return false;
3340         }
3341
3342         /* Non v4.1? No need to iterate RDs and go back early. */
3343         if (!gic_rdists->has_rvpeid)
3344                 return true;
3345
3346         /*
3347          * Make sure the L2 tables are allocated for all copies of
3348          * the L1 table on *all* v4.1 RDs.
3349          */
3350         for_each_possible_cpu(cpu) {
3351                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3352                         return false;
3353         }
3354
3355         return true;
3356 }
3357
3358 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3359                                             int nvecs, bool alloc_lpis)
3360 {
3361         struct its_device *dev;
3362         unsigned long *lpi_map = NULL;
3363         unsigned long flags;
3364         u16 *col_map = NULL;
3365         void *itt;
3366         int lpi_base;
3367         int nr_lpis;
3368         int nr_ites;
3369         int sz;
3370
3371         if (!its_alloc_device_table(its, dev_id))
3372                 return NULL;
3373
3374         if (WARN_ON(!is_power_of_2(nvecs)))
3375                 nvecs = roundup_pow_of_two(nvecs);
3376
3377         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3378         /*
3379          * Even if the device wants a single LPI, the ITT must be
3380          * sized as a power of two (and you need at least one bit...).
3381          */
3382         nr_ites = max(2, nvecs);
3383         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3384         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3385         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3386         if (alloc_lpis) {
3387                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3388                 if (lpi_map)
3389                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3390                                           GFP_KERNEL);
3391         } else {
3392                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3393                 nr_lpis = 0;
3394                 lpi_base = 0;
3395         }
3396
3397         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3398                 kfree(dev);
3399                 kfree(itt);
3400                 bitmap_free(lpi_map);
3401                 kfree(col_map);
3402                 return NULL;
3403         }
3404
3405         gic_flush_dcache_to_poc(itt, sz);
3406
3407         dev->its = its;
3408         dev->itt = itt;
3409         dev->nr_ites = nr_ites;
3410         dev->event_map.lpi_map = lpi_map;
3411         dev->event_map.col_map = col_map;
3412         dev->event_map.lpi_base = lpi_base;
3413         dev->event_map.nr_lpis = nr_lpis;
3414         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3415         dev->device_id = dev_id;
3416         INIT_LIST_HEAD(&dev->entry);
3417
3418         raw_spin_lock_irqsave(&its->lock, flags);
3419         list_add(&dev->entry, &its->its_device_list);
3420         raw_spin_unlock_irqrestore(&its->lock, flags);
3421
3422         /* Map device to its ITT */
3423         its_send_mapd(dev, 1);
3424
3425         return dev;
3426 }
3427
3428 static void its_free_device(struct its_device *its_dev)
3429 {
3430         unsigned long flags;
3431
3432         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3433         list_del(&its_dev->entry);
3434         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3435         kfree(its_dev->event_map.col_map);
3436         kfree(its_dev->itt);
3437         kfree(its_dev);
3438 }
3439
3440 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3441 {
3442         int idx;
3443
3444         /* Find a free LPI region in lpi_map and allocate them. */
3445         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3446                                       dev->event_map.nr_lpis,
3447                                       get_count_order(nvecs));
3448         if (idx < 0)
3449                 return -ENOSPC;
3450
3451         *hwirq = dev->event_map.lpi_base + idx;
3452
3453         return 0;
3454 }
3455
3456 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3457                            int nvec, msi_alloc_info_t *info)
3458 {
3459         struct its_node *its;
3460         struct its_device *its_dev;
3461         struct msi_domain_info *msi_info;
3462         u32 dev_id;
3463         int err = 0;
3464
3465         /*
3466          * We ignore "dev" entirely, and rely on the dev_id that has
3467          * been passed via the scratchpad. This limits this domain's
3468          * usefulness to upper layers that definitely know that they
3469          * are built on top of the ITS.
3470          */
3471         dev_id = info->scratchpad[0].ul;
3472
3473         msi_info = msi_get_domain_info(domain);
3474         its = msi_info->data;
3475
3476         if (!gic_rdists->has_direct_lpi &&
3477             vpe_proxy.dev &&
3478             vpe_proxy.dev->its == its &&
3479             dev_id == vpe_proxy.dev->device_id) {
3480                 /* Bad luck. Get yourself a better implementation */
3481                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3482                           dev_id);
3483                 return -EINVAL;
3484         }
3485
3486         mutex_lock(&its->dev_alloc_lock);
3487         its_dev = its_find_device(its, dev_id);
3488         if (its_dev) {
3489                 /*
3490                  * We already have seen this ID, probably through
3491                  * another alias (PCI bridge of some sort). No need to
3492                  * create the device.
3493                  */
3494                 its_dev->shared = true;
3495                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3496                 goto out;
3497         }
3498
3499         its_dev = its_create_device(its, dev_id, nvec, true);
3500         if (!its_dev) {
3501                 err = -ENOMEM;
3502                 goto out;
3503         }
3504
3505         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3506                 its_dev->shared = true;
3507
3508         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3509 out:
3510         mutex_unlock(&its->dev_alloc_lock);
3511         info->scratchpad[0].ptr = its_dev;
3512         return err;
3513 }
3514
3515 static struct msi_domain_ops its_msi_domain_ops = {
3516         .msi_prepare    = its_msi_prepare,
3517 };
3518
3519 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3520                                     unsigned int virq,
3521                                     irq_hw_number_t hwirq)
3522 {
3523         struct irq_fwspec fwspec;
3524
3525         if (irq_domain_get_of_node(domain->parent)) {
3526                 fwspec.fwnode = domain->parent->fwnode;
3527                 fwspec.param_count = 3;
3528                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3529                 fwspec.param[1] = hwirq;
3530                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3531         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3532                 fwspec.fwnode = domain->parent->fwnode;
3533                 fwspec.param_count = 2;
3534                 fwspec.param[0] = hwirq;
3535                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3536         } else {
3537                 return -EINVAL;
3538         }
3539
3540         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3541 }
3542
3543 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3544                                 unsigned int nr_irqs, void *args)
3545 {
3546         msi_alloc_info_t *info = args;
3547         struct its_device *its_dev = info->scratchpad[0].ptr;
3548         struct its_node *its = its_dev->its;
3549         struct irq_data *irqd;
3550         irq_hw_number_t hwirq;
3551         int err;
3552         int i;
3553
3554         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3555         if (err)
3556                 return err;
3557
3558         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3559         if (err)
3560                 return err;
3561
3562         for (i = 0; i < nr_irqs; i++) {
3563                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3564                 if (err)
3565                         return err;
3566
3567                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3568                                               hwirq + i, &its_irq_chip, its_dev);
3569                 irqd = irq_get_irq_data(virq + i);
3570                 irqd_set_single_target(irqd);
3571                 irqd_set_affinity_on_activate(irqd);
3572                 pr_debug("ID:%d pID:%d vID:%d\n",
3573                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3574                          (int)(hwirq + i), virq + i);
3575         }
3576
3577         return 0;
3578 }
3579
3580 static int its_irq_domain_activate(struct irq_domain *domain,
3581                                    struct irq_data *d, bool reserve)
3582 {
3583         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3584         u32 event = its_get_event_id(d);
3585         int cpu;
3586
3587         cpu = its_select_cpu(d, cpu_online_mask);
3588         if (cpu < 0 || cpu >= nr_cpu_ids)
3589                 return -EINVAL;
3590
3591         its_inc_lpi_count(d, cpu);
3592         its_dev->event_map.col_map[event] = cpu;
3593         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3594
3595         /* Map the GIC IRQ and event to the device */
3596         its_send_mapti(its_dev, d->hwirq, event);
3597         return 0;
3598 }
3599
3600 static void its_irq_domain_deactivate(struct irq_domain *domain,
3601                                       struct irq_data *d)
3602 {
3603         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3604         u32 event = its_get_event_id(d);
3605
3606         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3607         /* Stop the delivery of interrupts */
3608         its_send_discard(its_dev, event);
3609 }
3610
3611 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3612                                 unsigned int nr_irqs)
3613 {
3614         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3615         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3616         struct its_node *its = its_dev->its;
3617         int i;
3618
3619         bitmap_release_region(its_dev->event_map.lpi_map,
3620                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3621                               get_count_order(nr_irqs));
3622
3623         for (i = 0; i < nr_irqs; i++) {
3624                 struct irq_data *data = irq_domain_get_irq_data(domain,
3625                                                                 virq + i);
3626                 /* Nuke the entry in the domain */
3627                 irq_domain_reset_irq_data(data);
3628         }
3629
3630         mutex_lock(&its->dev_alloc_lock);
3631
3632         /*
3633          * If all interrupts have been freed, start mopping the
3634          * floor. This is conditioned on the device not being shared.
3635          */
3636         if (!its_dev->shared &&
3637             bitmap_empty(its_dev->event_map.lpi_map,
3638                          its_dev->event_map.nr_lpis)) {
3639                 its_lpi_free(its_dev->event_map.lpi_map,
3640                              its_dev->event_map.lpi_base,
3641                              its_dev->event_map.nr_lpis);
3642
3643                 /* Unmap device/itt */
3644                 its_send_mapd(its_dev, 0);
3645                 its_free_device(its_dev);
3646         }
3647
3648         mutex_unlock(&its->dev_alloc_lock);
3649
3650         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3651 }
3652
3653 static const struct irq_domain_ops its_domain_ops = {
3654         .alloc                  = its_irq_domain_alloc,
3655         .free                   = its_irq_domain_free,
3656         .activate               = its_irq_domain_activate,
3657         .deactivate             = its_irq_domain_deactivate,
3658 };
3659
3660 /*
3661  * This is insane.
3662  *
3663  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3664  * likely), the only way to perform an invalidate is to use a fake
3665  * device to issue an INV command, implying that the LPI has first
3666  * been mapped to some event on that device. Since this is not exactly
3667  * cheap, we try to keep that mapping around as long as possible, and
3668  * only issue an UNMAP if we're short on available slots.
3669  *
3670  * Broken by design(tm).
3671  *
3672  * GICv4.1, on the other hand, mandates that we're able to invalidate
3673  * by writing to a MMIO register. It doesn't implement the whole of
3674  * DirectLPI, but that's good enough. And most of the time, we don't
3675  * even have to invalidate anything, as the redistributor can be told
3676  * whether to generate a doorbell or not (we thus leave it enabled,
3677  * always).
3678  */
3679 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3680 {
3681         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3682         if (gic_rdists->has_rvpeid)
3683                 return;
3684
3685         /* Already unmapped? */
3686         if (vpe->vpe_proxy_event == -1)
3687                 return;
3688
3689         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3690         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3691
3692         /*
3693          * We don't track empty slots at all, so let's move the
3694          * next_victim pointer if we can quickly reuse that slot
3695          * instead of nuking an existing entry. Not clear that this is
3696          * always a win though, and this might just generate a ripple
3697          * effect... Let's just hope VPEs don't migrate too often.
3698          */
3699         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3700                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3701
3702         vpe->vpe_proxy_event = -1;
3703 }
3704
3705 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3706 {
3707         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3708         if (gic_rdists->has_rvpeid)
3709                 return;
3710
3711         if (!gic_rdists->has_direct_lpi) {
3712                 unsigned long flags;
3713
3714                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3715                 its_vpe_db_proxy_unmap_locked(vpe);
3716                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3717         }
3718 }
3719
3720 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3721 {
3722         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3723         if (gic_rdists->has_rvpeid)
3724                 return;
3725
3726         /* Already mapped? */
3727         if (vpe->vpe_proxy_event != -1)
3728                 return;
3729
3730         /* This slot was already allocated. Kick the other VPE out. */
3731         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3732                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3733
3734         /* Map the new VPE instead */
3735         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3736         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3737         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3738
3739         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3740         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3741 }
3742
3743 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3744 {
3745         unsigned long flags;
3746         struct its_collection *target_col;
3747
3748         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3749         if (gic_rdists->has_rvpeid)
3750                 return;
3751
3752         if (gic_rdists->has_direct_lpi) {
3753                 void __iomem *rdbase;
3754
3755                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3756                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3757                 wait_for_syncr(rdbase);
3758
3759                 return;
3760         }
3761
3762         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3763
3764         its_vpe_db_proxy_map_locked(vpe);
3765
3766         target_col = &vpe_proxy.dev->its->collections[to];
3767         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3768         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3769
3770         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3771 }
3772
3773 static int its_vpe_set_affinity(struct irq_data *d,
3774                                 const struct cpumask *mask_val,
3775                                 bool force)
3776 {
3777         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3778         int from, cpu = cpumask_first(mask_val);
3779         unsigned long flags;
3780
3781         /*
3782          * Changing affinity is mega expensive, so let's be as lazy as
3783          * we can and only do it if we really have to. Also, if mapped
3784          * into the proxy device, we need to move the doorbell
3785          * interrupt to its new location.
3786          *
3787          * Another thing is that changing the affinity of a vPE affects
3788          * *other interrupts* such as all the vLPIs that are routed to
3789          * this vPE. This means that the irq_desc lock is not enough to
3790          * protect us, and that we must ensure nobody samples vpe->col_idx
3791          * during the update, hence the lock below which must also be
3792          * taken on any vLPI handling path that evaluates vpe->col_idx.
3793          */
3794         from = vpe_to_cpuid_lock(vpe, &flags);
3795         if (from == cpu)
3796                 goto out;
3797
3798         vpe->col_idx = cpu;
3799
3800         /*
3801          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3802          * is sharing its VPE table with the current one.
3803          */
3804         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3805             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3806                 goto out;
3807
3808         its_send_vmovp(vpe);
3809         its_vpe_db_proxy_move(vpe, from, cpu);
3810
3811 out:
3812         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3813         vpe_to_cpuid_unlock(vpe, flags);
3814
3815         return IRQ_SET_MASK_OK_DONE;
3816 }
3817
3818 static void its_wait_vpt_parse_complete(void)
3819 {
3820         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3821         u64 val;
3822
3823         if (!gic_rdists->has_vpend_valid_dirty)
3824                 return;
3825
3826         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3827                                                        val,
3828                                                        !(val & GICR_VPENDBASER_Dirty),
3829                                                        1, 500));
3830 }
3831
3832 static void its_vpe_schedule(struct its_vpe *vpe)
3833 {
3834         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3835         u64 val;
3836
3837         /* Schedule the VPE */
3838         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3839                 GENMASK_ULL(51, 12);
3840         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3841         val |= GICR_VPROPBASER_RaWb;
3842         val |= GICR_VPROPBASER_InnerShareable;
3843         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3844
3845         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3846                 GENMASK_ULL(51, 16);
3847         val |= GICR_VPENDBASER_RaWaWb;
3848         val |= GICR_VPENDBASER_InnerShareable;
3849         /*
3850          * There is no good way of finding out if the pending table is
3851          * empty as we can race against the doorbell interrupt very
3852          * easily. So in the end, vpe->pending_last is only an
3853          * indication that the vcpu has something pending, not one
3854          * that the pending table is empty. A good implementation
3855          * would be able to read its coarse map pretty quickly anyway,
3856          * making this a tolerable issue.
3857          */
3858         val |= GICR_VPENDBASER_PendingLast;
3859         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3860         val |= GICR_VPENDBASER_Valid;
3861         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3862 }
3863
3864 static void its_vpe_deschedule(struct its_vpe *vpe)
3865 {
3866         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3867         u64 val;
3868
3869         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3870
3871         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3872         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3873 }
3874
3875 static void its_vpe_invall(struct its_vpe *vpe)
3876 {
3877         struct its_node *its;
3878
3879         list_for_each_entry(its, &its_nodes, entry) {
3880                 if (!is_v4(its))
3881                         continue;
3882
3883                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3884                         continue;
3885
3886                 /*
3887                  * Sending a VINVALL to a single ITS is enough, as all
3888                  * we need is to reach the redistributors.
3889                  */
3890                 its_send_vinvall(its, vpe);
3891                 return;
3892         }
3893 }
3894
3895 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3896 {
3897         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3898         struct its_cmd_info *info = vcpu_info;
3899
3900         switch (info->cmd_type) {
3901         case SCHEDULE_VPE:
3902                 its_vpe_schedule(vpe);
3903                 return 0;
3904
3905         case DESCHEDULE_VPE:
3906                 its_vpe_deschedule(vpe);
3907                 return 0;
3908
3909         case COMMIT_VPE:
3910                 its_wait_vpt_parse_complete();
3911                 return 0;
3912
3913         case INVALL_VPE:
3914                 its_vpe_invall(vpe);
3915                 return 0;
3916
3917         default:
3918                 return -EINVAL;
3919         }
3920 }
3921
3922 static void its_vpe_send_cmd(struct its_vpe *vpe,
3923                              void (*cmd)(struct its_device *, u32))
3924 {
3925         unsigned long flags;
3926
3927         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3928
3929         its_vpe_db_proxy_map_locked(vpe);
3930         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3931
3932         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3933 }
3934
3935 static void its_vpe_send_inv(struct irq_data *d)
3936 {
3937         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3938
3939         if (gic_rdists->has_direct_lpi) {
3940                 void __iomem *rdbase;
3941
3942                 /* Target the redistributor this VPE is currently known on */
3943                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3944                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3945                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3946                 wait_for_syncr(rdbase);
3947                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3948         } else {
3949                 its_vpe_send_cmd(vpe, its_send_inv);
3950         }
3951 }
3952
3953 static void its_vpe_mask_irq(struct irq_data *d)
3954 {
3955         /*
3956          * We need to unmask the LPI, which is described by the parent
3957          * irq_data. Instead of calling into the parent (which won't
3958          * exactly do the right thing, let's simply use the
3959          * parent_data pointer. Yes, I'm naughty.
3960          */
3961         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3962         its_vpe_send_inv(d);
3963 }
3964
3965 static void its_vpe_unmask_irq(struct irq_data *d)
3966 {
3967         /* Same hack as above... */
3968         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3969         its_vpe_send_inv(d);
3970 }
3971
3972 static int its_vpe_set_irqchip_state(struct irq_data *d,
3973                                      enum irqchip_irq_state which,
3974                                      bool state)
3975 {
3976         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3977
3978         if (which != IRQCHIP_STATE_PENDING)
3979                 return -EINVAL;
3980
3981         if (gic_rdists->has_direct_lpi) {
3982                 void __iomem *rdbase;
3983
3984                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3985                 if (state) {
3986                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3987                 } else {
3988                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3989                         wait_for_syncr(rdbase);
3990                 }
3991         } else {
3992                 if (state)
3993                         its_vpe_send_cmd(vpe, its_send_int);
3994                 else
3995                         its_vpe_send_cmd(vpe, its_send_clear);
3996         }
3997
3998         return 0;
3999 }
4000
4001 static int its_vpe_retrigger(struct irq_data *d)
4002 {
4003         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4004 }
4005
4006 static struct irq_chip its_vpe_irq_chip = {
4007         .name                   = "GICv4-vpe",
4008         .irq_mask               = its_vpe_mask_irq,
4009         .irq_unmask             = its_vpe_unmask_irq,
4010         .irq_eoi                = irq_chip_eoi_parent,
4011         .irq_set_affinity       = its_vpe_set_affinity,
4012         .irq_retrigger          = its_vpe_retrigger,
4013         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4014         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4015 };
4016
4017 static struct its_node *find_4_1_its(void)
4018 {
4019         static struct its_node *its = NULL;
4020
4021         if (!its) {
4022                 list_for_each_entry(its, &its_nodes, entry) {
4023                         if (is_v4_1(its))
4024                                 return its;
4025                 }
4026
4027                 /* Oops? */
4028                 its = NULL;
4029         }
4030
4031         return its;
4032 }
4033
4034 static void its_vpe_4_1_send_inv(struct irq_data *d)
4035 {
4036         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4037         struct its_node *its;
4038
4039         /*
4040          * GICv4.1 wants doorbells to be invalidated using the
4041          * INVDB command in order to be broadcast to all RDs. Send
4042          * it to the first valid ITS, and let the HW do its magic.
4043          */
4044         its = find_4_1_its();
4045         if (its)
4046                 its_send_invdb(its, vpe);
4047 }
4048
4049 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4050 {
4051         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4052         its_vpe_4_1_send_inv(d);
4053 }
4054
4055 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4056 {
4057         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4058         its_vpe_4_1_send_inv(d);
4059 }
4060
4061 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4062                                  struct its_cmd_info *info)
4063 {
4064         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4065         u64 val = 0;
4066
4067         /* Schedule the VPE */
4068         val |= GICR_VPENDBASER_Valid;
4069         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4070         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4071         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4072
4073         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4074 }
4075
4076 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4077                                    struct its_cmd_info *info)
4078 {
4079         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4080         u64 val;
4081
4082         if (info->req_db) {
4083                 unsigned long flags;
4084
4085                 /*
4086                  * vPE is going to block: make the vPE non-resident with
4087                  * PendingLast clear and DB set. The GIC guarantees that if
4088                  * we read-back PendingLast clear, then a doorbell will be
4089                  * delivered when an interrupt comes.
4090                  *
4091                  * Note the locking to deal with the concurrent update of
4092                  * pending_last from the doorbell interrupt handler that can
4093                  * run concurrently.
4094                  */
4095                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4096                 val = its_clear_vpend_valid(vlpi_base,
4097                                             GICR_VPENDBASER_PendingLast,
4098                                             GICR_VPENDBASER_4_1_DB);
4099                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4100                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4101         } else {
4102                 /*
4103                  * We're not blocking, so just make the vPE non-resident
4104                  * with PendingLast set, indicating that we'll be back.
4105                  */
4106                 val = its_clear_vpend_valid(vlpi_base,
4107                                             0,
4108                                             GICR_VPENDBASER_PendingLast);
4109                 vpe->pending_last = true;
4110         }
4111 }
4112
4113 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4114 {
4115         void __iomem *rdbase;
4116         unsigned long flags;
4117         u64 val;
4118         int cpu;
4119
4120         val  = GICR_INVALLR_V;
4121         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4122
4123         /* Target the redistributor this vPE is currently known on */
4124         cpu = vpe_to_cpuid_lock(vpe, &flags);
4125         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4126         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4127         gic_write_lpir(val, rdbase + GICR_INVALLR);
4128
4129         wait_for_syncr(rdbase);
4130         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131         vpe_to_cpuid_unlock(vpe, flags);
4132 }
4133
4134 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4135 {
4136         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4137         struct its_cmd_info *info = vcpu_info;
4138
4139         switch (info->cmd_type) {
4140         case SCHEDULE_VPE:
4141                 its_vpe_4_1_schedule(vpe, info);
4142                 return 0;
4143
4144         case DESCHEDULE_VPE:
4145                 its_vpe_4_1_deschedule(vpe, info);
4146                 return 0;
4147
4148         case COMMIT_VPE:
4149                 its_wait_vpt_parse_complete();
4150                 return 0;
4151
4152         case INVALL_VPE:
4153                 its_vpe_4_1_invall(vpe);
4154                 return 0;
4155
4156         default:
4157                 return -EINVAL;
4158         }
4159 }
4160
4161 static struct irq_chip its_vpe_4_1_irq_chip = {
4162         .name                   = "GICv4.1-vpe",
4163         .irq_mask               = its_vpe_4_1_mask_irq,
4164         .irq_unmask             = its_vpe_4_1_unmask_irq,
4165         .irq_eoi                = irq_chip_eoi_parent,
4166         .irq_set_affinity       = its_vpe_set_affinity,
4167         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4168 };
4169
4170 static void its_configure_sgi(struct irq_data *d, bool clear)
4171 {
4172         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4173         struct its_cmd_desc desc;
4174
4175         desc.its_vsgi_cmd.vpe = vpe;
4176         desc.its_vsgi_cmd.sgi = d->hwirq;
4177         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4178         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4179         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4180         desc.its_vsgi_cmd.clear = clear;
4181
4182         /*
4183          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4184          * destination VPE is mapped there. Since we map them eagerly at
4185          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4186          */
4187         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4188 }
4189
4190 static void its_sgi_mask_irq(struct irq_data *d)
4191 {
4192         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4193
4194         vpe->sgi_config[d->hwirq].enabled = false;
4195         its_configure_sgi(d, false);
4196 }
4197
4198 static void its_sgi_unmask_irq(struct irq_data *d)
4199 {
4200         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4201
4202         vpe->sgi_config[d->hwirq].enabled = true;
4203         its_configure_sgi(d, false);
4204 }
4205
4206 static int its_sgi_set_affinity(struct irq_data *d,
4207                                 const struct cpumask *mask_val,
4208                                 bool force)
4209 {
4210         /*
4211          * There is no notion of affinity for virtual SGIs, at least
4212          * not on the host (since they can only be targeting a vPE).
4213          * Tell the kernel we've done whatever it asked for.
4214          */
4215         irq_data_update_effective_affinity(d, mask_val);
4216         return IRQ_SET_MASK_OK;
4217 }
4218
4219 static int its_sgi_set_irqchip_state(struct irq_data *d,
4220                                      enum irqchip_irq_state which,
4221                                      bool state)
4222 {
4223         if (which != IRQCHIP_STATE_PENDING)
4224                 return -EINVAL;
4225
4226         if (state) {
4227                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4228                 struct its_node *its = find_4_1_its();
4229                 u64 val;
4230
4231                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4232                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4233                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4234         } else {
4235                 its_configure_sgi(d, true);
4236         }
4237
4238         return 0;
4239 }
4240
4241 static int its_sgi_get_irqchip_state(struct irq_data *d,
4242                                      enum irqchip_irq_state which, bool *val)
4243 {
4244         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4245         void __iomem *base;
4246         unsigned long flags;
4247         u32 count = 1000000;    /* 1s! */
4248         u32 status;
4249         int cpu;
4250
4251         if (which != IRQCHIP_STATE_PENDING)
4252                 return -EINVAL;
4253
4254         /*
4255          * Locking galore! We can race against two different events:
4256          *
4257          * - Concurrent vPE affinity change: we must make sure it cannot
4258          *   happen, or we'll talk to the wrong redistributor. This is
4259          *   identical to what happens with vLPIs.
4260          *
4261          * - Concurrent VSGIPENDR access: As it involves accessing two
4262          *   MMIO registers, this must be made atomic one way or another.
4263          */
4264         cpu = vpe_to_cpuid_lock(vpe, &flags);
4265         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4266         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4267         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4268         do {
4269                 status = readl_relaxed(base + GICR_VSGIPENDR);
4270                 if (!(status & GICR_VSGIPENDR_BUSY))
4271                         goto out;
4272
4273                 count--;
4274                 if (!count) {
4275                         pr_err_ratelimited("Unable to get SGI status\n");
4276                         goto out;
4277                 }
4278                 cpu_relax();
4279                 udelay(1);
4280         } while (count);
4281
4282 out:
4283         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4284         vpe_to_cpuid_unlock(vpe, flags);
4285
4286         if (!count)
4287                 return -ENXIO;
4288
4289         *val = !!(status & (1 << d->hwirq));
4290
4291         return 0;
4292 }
4293
4294 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4295 {
4296         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4297         struct its_cmd_info *info = vcpu_info;
4298
4299         switch (info->cmd_type) {
4300         case PROP_UPDATE_VSGI:
4301                 vpe->sgi_config[d->hwirq].priority = info->priority;
4302                 vpe->sgi_config[d->hwirq].group = info->group;
4303                 its_configure_sgi(d, false);
4304                 return 0;
4305
4306         default:
4307                 return -EINVAL;
4308         }
4309 }
4310
4311 static struct irq_chip its_sgi_irq_chip = {
4312         .name                   = "GICv4.1-sgi",
4313         .irq_mask               = its_sgi_mask_irq,
4314         .irq_unmask             = its_sgi_unmask_irq,
4315         .irq_set_affinity       = its_sgi_set_affinity,
4316         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4317         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4318         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4319 };
4320
4321 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4322                                     unsigned int virq, unsigned int nr_irqs,
4323                                     void *args)
4324 {
4325         struct its_vpe *vpe = args;
4326         int i;
4327
4328         /* Yes, we do want 16 SGIs */
4329         WARN_ON(nr_irqs != 16);
4330
4331         for (i = 0; i < 16; i++) {
4332                 vpe->sgi_config[i].priority = 0;
4333                 vpe->sgi_config[i].enabled = false;
4334                 vpe->sgi_config[i].group = false;
4335
4336                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4337                                               &its_sgi_irq_chip, vpe);
4338                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4339         }
4340
4341         return 0;
4342 }
4343
4344 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4345                                     unsigned int virq,
4346                                     unsigned int nr_irqs)
4347 {
4348         /* Nothing to do */
4349 }
4350
4351 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4352                                        struct irq_data *d, bool reserve)
4353 {
4354         /* Write out the initial SGI configuration */
4355         its_configure_sgi(d, false);
4356         return 0;
4357 }
4358
4359 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4360                                           struct irq_data *d)
4361 {
4362         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4363
4364         /*
4365          * The VSGI command is awkward:
4366          *
4367          * - To change the configuration, CLEAR must be set to false,
4368          *   leaving the pending bit unchanged.
4369          * - To clear the pending bit, CLEAR must be set to true, leaving
4370          *   the configuration unchanged.
4371          *
4372          * You just can't do both at once, hence the two commands below.
4373          */
4374         vpe->sgi_config[d->hwirq].enabled = false;
4375         its_configure_sgi(d, false);
4376         its_configure_sgi(d, true);
4377 }
4378
4379 static const struct irq_domain_ops its_sgi_domain_ops = {
4380         .alloc          = its_sgi_irq_domain_alloc,
4381         .free           = its_sgi_irq_domain_free,
4382         .activate       = its_sgi_irq_domain_activate,
4383         .deactivate     = its_sgi_irq_domain_deactivate,
4384 };
4385
4386 static int its_vpe_id_alloc(void)
4387 {
4388         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4389 }
4390
4391 static void its_vpe_id_free(u16 id)
4392 {
4393         ida_simple_remove(&its_vpeid_ida, id);
4394 }
4395
4396 static int its_vpe_init(struct its_vpe *vpe)
4397 {
4398         struct page *vpt_page;
4399         int vpe_id;
4400
4401         /* Allocate vpe_id */
4402         vpe_id = its_vpe_id_alloc();
4403         if (vpe_id < 0)
4404                 return vpe_id;
4405
4406         /* Allocate VPT */
4407         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4408         if (!vpt_page) {
4409                 its_vpe_id_free(vpe_id);
4410                 return -ENOMEM;
4411         }
4412
4413         if (!its_alloc_vpe_table(vpe_id)) {
4414                 its_vpe_id_free(vpe_id);
4415                 its_free_pending_table(vpt_page);
4416                 return -ENOMEM;
4417         }
4418
4419         raw_spin_lock_init(&vpe->vpe_lock);
4420         vpe->vpe_id = vpe_id;
4421         vpe->vpt_page = vpt_page;
4422         if (gic_rdists->has_rvpeid)
4423                 atomic_set(&vpe->vmapp_count, 0);
4424         else
4425                 vpe->vpe_proxy_event = -1;
4426
4427         return 0;
4428 }
4429
4430 static void its_vpe_teardown(struct its_vpe *vpe)
4431 {
4432         its_vpe_db_proxy_unmap(vpe);
4433         its_vpe_id_free(vpe->vpe_id);
4434         its_free_pending_table(vpe->vpt_page);
4435 }
4436
4437 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4438                                     unsigned int virq,
4439                                     unsigned int nr_irqs)
4440 {
4441         struct its_vm *vm = domain->host_data;
4442         int i;
4443
4444         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4445
4446         for (i = 0; i < nr_irqs; i++) {
4447                 struct irq_data *data = irq_domain_get_irq_data(domain,
4448                                                                 virq + i);
4449                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4450
4451                 BUG_ON(vm != vpe->its_vm);
4452
4453                 clear_bit(data->hwirq, vm->db_bitmap);
4454                 its_vpe_teardown(vpe);
4455                 irq_domain_reset_irq_data(data);
4456         }
4457
4458         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4459                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4460                 its_free_prop_table(vm->vprop_page);
4461         }
4462 }
4463
4464 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4465                                     unsigned int nr_irqs, void *args)
4466 {
4467         struct irq_chip *irqchip = &its_vpe_irq_chip;
4468         struct its_vm *vm = args;
4469         unsigned long *bitmap;
4470         struct page *vprop_page;
4471         int base, nr_ids, i, err = 0;
4472
4473         BUG_ON(!vm);
4474
4475         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4476         if (!bitmap)
4477                 return -ENOMEM;
4478
4479         if (nr_ids < nr_irqs) {
4480                 its_lpi_free(bitmap, base, nr_ids);
4481                 return -ENOMEM;
4482         }
4483
4484         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4485         if (!vprop_page) {
4486                 its_lpi_free(bitmap, base, nr_ids);
4487                 return -ENOMEM;
4488         }
4489
4490         vm->db_bitmap = bitmap;
4491         vm->db_lpi_base = base;
4492         vm->nr_db_lpis = nr_ids;
4493         vm->vprop_page = vprop_page;
4494
4495         if (gic_rdists->has_rvpeid)
4496                 irqchip = &its_vpe_4_1_irq_chip;
4497
4498         for (i = 0; i < nr_irqs; i++) {
4499                 vm->vpes[i]->vpe_db_lpi = base + i;
4500                 err = its_vpe_init(vm->vpes[i]);
4501                 if (err)
4502                         break;
4503                 err = its_irq_gic_domain_alloc(domain, virq + i,
4504                                                vm->vpes[i]->vpe_db_lpi);
4505                 if (err)
4506                         break;
4507                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4508                                               irqchip, vm->vpes[i]);
4509                 set_bit(i, bitmap);
4510         }
4511
4512         if (err) {
4513                 if (i > 0)
4514                         its_vpe_irq_domain_free(domain, virq, i);
4515
4516                 its_lpi_free(bitmap, base, nr_ids);
4517                 its_free_prop_table(vprop_page);
4518         }
4519
4520         return err;
4521 }
4522
4523 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4524                                        struct irq_data *d, bool reserve)
4525 {
4526         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4527         struct its_node *its;
4528
4529         /*
4530          * If we use the list map, we issue VMAPP on demand... Unless
4531          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4532          * so that VSGIs can work.
4533          */
4534         if (!gic_requires_eager_mapping())
4535                 return 0;
4536
4537         /* Map the VPE to the first possible CPU */
4538         vpe->col_idx = cpumask_first(cpu_online_mask);
4539
4540         list_for_each_entry(its, &its_nodes, entry) {
4541                 if (!is_v4(its))
4542                         continue;
4543
4544                 its_send_vmapp(its, vpe, true);
4545                 its_send_vinvall(its, vpe);
4546         }
4547
4548         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4549
4550         return 0;
4551 }
4552
4553 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4554                                           struct irq_data *d)
4555 {
4556         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4557         struct its_node *its;
4558
4559         /*
4560          * If we use the list map on GICv4.0, we unmap the VPE once no
4561          * VLPIs are associated with the VM.
4562          */
4563         if (!gic_requires_eager_mapping())
4564                 return;
4565
4566         list_for_each_entry(its, &its_nodes, entry) {
4567                 if (!is_v4(its))
4568                         continue;
4569
4570                 its_send_vmapp(its, vpe, false);
4571         }
4572
4573         /*
4574          * There may be a direct read to the VPT after unmapping the
4575          * vPE, to guarantee the validity of this, we make the VPT
4576          * memory coherent with the CPU caches here.
4577          */
4578         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4579                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4580                                         LPI_PENDBASE_SZ);
4581 }
4582
4583 static const struct irq_domain_ops its_vpe_domain_ops = {
4584         .alloc                  = its_vpe_irq_domain_alloc,
4585         .free                   = its_vpe_irq_domain_free,
4586         .activate               = its_vpe_irq_domain_activate,
4587         .deactivate             = its_vpe_irq_domain_deactivate,
4588 };
4589
4590 static int its_force_quiescent(void __iomem *base)
4591 {
4592         u32 count = 1000000;    /* 1s */
4593         u32 val;
4594
4595         val = readl_relaxed(base + GITS_CTLR);
4596         /*
4597          * GIC architecture specification requires the ITS to be both
4598          * disabled and quiescent for writes to GITS_BASER<n> or
4599          * GITS_CBASER to not have UNPREDICTABLE results.
4600          */
4601         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4602                 return 0;
4603
4604         /* Disable the generation of all interrupts to this ITS */
4605         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4606         writel_relaxed(val, base + GITS_CTLR);
4607
4608         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4609         while (1) {
4610                 val = readl_relaxed(base + GITS_CTLR);
4611                 if (val & GITS_CTLR_QUIESCENT)
4612                         return 0;
4613
4614                 count--;
4615                 if (!count)
4616                         return -EBUSY;
4617
4618                 cpu_relax();
4619                 udelay(1);
4620         }
4621 }
4622
4623 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4624 {
4625         struct its_node *its = data;
4626
4627         /* erratum 22375: only alloc 8MB table size (20 bits) */
4628         its->typer &= ~GITS_TYPER_DEVBITS;
4629         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4630         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4631
4632         return true;
4633 }
4634
4635 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4636 {
4637         struct its_node *its = data;
4638
4639         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4640
4641         return true;
4642 }
4643
4644 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4645 {
4646         struct its_node *its = data;
4647
4648         /* On QDF2400, the size of the ITE is 16Bytes */
4649         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4650         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4651
4652         return true;
4653 }
4654
4655 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4656 {
4657         struct its_node *its = its_dev->its;
4658
4659         /*
4660          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4661          * which maps 32-bit writes targeted at a separate window of
4662          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4663          * with device ID taken from bits [device_id_bits + 1:2] of
4664          * the window offset.
4665          */
4666         return its->pre_its_base + (its_dev->device_id << 2);
4667 }
4668
4669 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4670 {
4671         struct its_node *its = data;
4672         u32 pre_its_window[2];
4673         u32 ids;
4674
4675         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4676                                            "socionext,synquacer-pre-its",
4677                                            pre_its_window,
4678                                            ARRAY_SIZE(pre_its_window))) {
4679
4680                 its->pre_its_base = pre_its_window[0];
4681                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4682
4683                 ids = ilog2(pre_its_window[1]) - 2;
4684                 if (device_ids(its) > ids) {
4685                         its->typer &= ~GITS_TYPER_DEVBITS;
4686                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4687                 }
4688
4689                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4690                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4691                 return true;
4692         }
4693         return false;
4694 }
4695
4696 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4697 {
4698         struct its_node *its = data;
4699
4700         /*
4701          * Hip07 insists on using the wrong address for the VLPI
4702          * page. Trick it into doing the right thing...
4703          */
4704         its->vlpi_redist_offset = SZ_128K;
4705         return true;
4706 }
4707
4708 static const struct gic_quirk its_quirks[] = {
4709 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4710         {
4711                 .desc   = "ITS: Cavium errata 22375, 24313",
4712                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4713                 .mask   = 0xffff0fff,
4714                 .init   = its_enable_quirk_cavium_22375,
4715         },
4716 #endif
4717 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4718         {
4719                 .desc   = "ITS: Cavium erratum 23144",
4720                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4721                 .mask   = 0xffff0fff,
4722                 .init   = its_enable_quirk_cavium_23144,
4723         },
4724 #endif
4725 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4726         {
4727                 .desc   = "ITS: QDF2400 erratum 0065",
4728                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4729                 .mask   = 0xffffffff,
4730                 .init   = its_enable_quirk_qdf2400_e0065,
4731         },
4732 #endif
4733 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4734         {
4735                 /*
4736                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4737                  * implementation, but with a 'pre-ITS' added that requires
4738                  * special handling in software.
4739                  */
4740                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4741                 .iidr   = 0x0001143b,
4742                 .mask   = 0xffffffff,
4743                 .init   = its_enable_quirk_socionext_synquacer,
4744         },
4745 #endif
4746 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4747         {
4748                 .desc   = "ITS: Hip07 erratum 161600802",
4749                 .iidr   = 0x00000004,
4750                 .mask   = 0xffffffff,
4751                 .init   = its_enable_quirk_hip07_161600802,
4752         },
4753 #endif
4754         {
4755         }
4756 };
4757
4758 static void its_enable_quirks(struct its_node *its)
4759 {
4760         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4761
4762         gic_enable_quirks(iidr, its_quirks, its);
4763 }
4764
4765 static int its_save_disable(void)
4766 {
4767         struct its_node *its;
4768         int err = 0;
4769
4770         raw_spin_lock(&its_lock);
4771         list_for_each_entry(its, &its_nodes, entry) {
4772                 void __iomem *base;
4773
4774                 base = its->base;
4775                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4776                 err = its_force_quiescent(base);
4777                 if (err) {
4778                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4779                                &its->phys_base, err);
4780                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4781                         goto err;
4782                 }
4783
4784                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4785         }
4786
4787 err:
4788         if (err) {
4789                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4790                         void __iomem *base;
4791
4792                         base = its->base;
4793                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4794                 }
4795         }
4796         raw_spin_unlock(&its_lock);
4797
4798         return err;
4799 }
4800
4801 static void its_restore_enable(void)
4802 {
4803         struct its_node *its;
4804         int ret;
4805
4806         raw_spin_lock(&its_lock);
4807         list_for_each_entry(its, &its_nodes, entry) {
4808                 void __iomem *base;
4809                 int i;
4810
4811                 base = its->base;
4812
4813                 /*
4814                  * Make sure that the ITS is disabled. If it fails to quiesce,
4815                  * don't restore it since writing to CBASER or BASER<n>
4816                  * registers is undefined according to the GIC v3 ITS
4817                  * Specification.
4818                  *
4819                  * Firmware resuming with the ITS enabled is terminally broken.
4820                  */
4821                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4822                 ret = its_force_quiescent(base);
4823                 if (ret) {
4824                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4825                                &its->phys_base, ret);
4826                         continue;
4827                 }
4828
4829                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4830
4831                 /*
4832                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4833                  * cmd_write line up with it.
4834                  */
4835                 its->cmd_write = its->cmd_base;
4836                 gits_write_cwriter(0, base + GITS_CWRITER);
4837
4838                 /* Restore GITS_BASER from the value cache. */
4839                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4840                         struct its_baser *baser = &its->tables[i];
4841
4842                         if (!(baser->val & GITS_BASER_VALID))
4843                                 continue;
4844
4845                         its_write_baser(its, baser, baser->val);
4846                 }
4847                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4848
4849                 /*
4850                  * Reinit the collection if it's stored in the ITS. This is
4851                  * indicated by the col_id being less than the HCC field.
4852                  * CID < HCC as specified in the GIC v3 Documentation.
4853                  */
4854                 if (its->collections[smp_processor_id()].col_id <
4855                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4856                         its_cpu_init_collection(its);
4857         }
4858         raw_spin_unlock(&its_lock);
4859 }
4860
4861 static struct syscore_ops its_syscore_ops = {
4862         .suspend = its_save_disable,
4863         .resume = its_restore_enable,
4864 };
4865
4866 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4867 {
4868         struct irq_domain *inner_domain;
4869         struct msi_domain_info *info;
4870
4871         info = kzalloc(sizeof(*info), GFP_KERNEL);
4872         if (!info)
4873                 return -ENOMEM;
4874
4875         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4876         if (!inner_domain) {
4877                 kfree(info);
4878                 return -ENOMEM;
4879         }
4880
4881         inner_domain->parent = its_parent;
4882         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4883         inner_domain->flags |= its->msi_domain_flags;
4884         info->ops = &its_msi_domain_ops;
4885         info->data = its;
4886         inner_domain->host_data = info;
4887
4888         return 0;
4889 }
4890
4891 static int its_init_vpe_domain(void)
4892 {
4893         struct its_node *its;
4894         u32 devid;
4895         int entries;
4896
4897         if (gic_rdists->has_direct_lpi) {
4898                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4899                 return 0;
4900         }
4901
4902         /* Any ITS will do, even if not v4 */
4903         its = list_first_entry(&its_nodes, struct its_node, entry);
4904
4905         entries = roundup_pow_of_two(nr_cpu_ids);
4906         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4907                                  GFP_KERNEL);
4908         if (!vpe_proxy.vpes)
4909                 return -ENOMEM;
4910
4911         /* Use the last possible DevID */
4912         devid = GENMASK(device_ids(its) - 1, 0);
4913         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4914         if (!vpe_proxy.dev) {
4915                 kfree(vpe_proxy.vpes);
4916                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4917                 return -ENOMEM;
4918         }
4919
4920         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4921
4922         raw_spin_lock_init(&vpe_proxy.lock);
4923         vpe_proxy.next_victim = 0;
4924         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4925                 devid, vpe_proxy.dev->nr_ites);
4926
4927         return 0;
4928 }
4929
4930 static int __init its_compute_its_list_map(struct resource *res,
4931                                            void __iomem *its_base)
4932 {
4933         int its_number;
4934         u32 ctlr;
4935
4936         /*
4937          * This is assumed to be done early enough that we're
4938          * guaranteed to be single-threaded, hence no
4939          * locking. Should this change, we should address
4940          * this.
4941          */
4942         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4943         if (its_number >= GICv4_ITS_LIST_MAX) {
4944                 pr_err("ITS@%pa: No ITSList entry available!\n",
4945                        &res->start);
4946                 return -EINVAL;
4947         }
4948
4949         ctlr = readl_relaxed(its_base + GITS_CTLR);
4950         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4951         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4952         writel_relaxed(ctlr, its_base + GITS_CTLR);
4953         ctlr = readl_relaxed(its_base + GITS_CTLR);
4954         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4955                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4956                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4957         }
4958
4959         if (test_and_set_bit(its_number, &its_list_map)) {
4960                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4961                        &res->start, its_number);
4962                 return -EINVAL;
4963         }
4964
4965         return its_number;
4966 }
4967
4968 static int __init its_probe_one(struct resource *res,
4969                                 struct fwnode_handle *handle, int numa_node)
4970 {
4971         struct its_node *its;
4972         void __iomem *its_base;
4973         u32 val, ctlr;
4974         u64 baser, tmp, typer;
4975         struct page *page;
4976         int err;
4977
4978         its_base = ioremap(res->start, SZ_64K);
4979         if (!its_base) {
4980                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4981                 return -ENOMEM;
4982         }
4983
4984         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4985         if (val != 0x30 && val != 0x40) {
4986                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4987                 err = -ENODEV;
4988                 goto out_unmap;
4989         }
4990
4991         err = its_force_quiescent(its_base);
4992         if (err) {
4993                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4994                 goto out_unmap;
4995         }
4996
4997         pr_info("ITS %pR\n", res);
4998
4999         its = kzalloc(sizeof(*its), GFP_KERNEL);
5000         if (!its) {
5001                 err = -ENOMEM;
5002                 goto out_unmap;
5003         }
5004
5005         raw_spin_lock_init(&its->lock);
5006         mutex_init(&its->dev_alloc_lock);
5007         INIT_LIST_HEAD(&its->entry);
5008         INIT_LIST_HEAD(&its->its_device_list);
5009         typer = gic_read_typer(its_base + GITS_TYPER);
5010         its->typer = typer;
5011         its->base = its_base;
5012         its->phys_base = res->start;
5013         if (is_v4(its)) {
5014                 if (!(typer & GITS_TYPER_VMOVP)) {
5015                         err = its_compute_its_list_map(res, its_base);
5016                         if (err < 0)
5017                                 goto out_free_its;
5018
5019                         its->list_nr = err;
5020
5021                         pr_info("ITS@%pa: Using ITS number %d\n",
5022                                 &res->start, err);
5023                 } else {
5024                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5025                 }
5026
5027                 if (is_v4_1(its)) {
5028                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5029
5030                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5031                         if (!its->sgir_base) {
5032                                 err = -ENOMEM;
5033                                 goto out_free_its;
5034                         }
5035
5036                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5037
5038                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5039                                 &res->start, its->mpidr, svpet);
5040                 }
5041         }
5042
5043         its->numa_node = numa_node;
5044
5045         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5046                                 get_order(ITS_CMD_QUEUE_SZ));
5047         if (!page) {
5048                 err = -ENOMEM;
5049                 goto out_unmap_sgir;
5050         }
5051         its->cmd_base = (void *)page_address(page);
5052         its->cmd_write = its->cmd_base;
5053         its->fwnode_handle = handle;
5054         its->get_msi_base = its_irq_get_msi_base;
5055         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5056
5057         its_enable_quirks(its);
5058
5059         err = its_alloc_tables(its);
5060         if (err)
5061                 goto out_free_cmd;
5062
5063         err = its_alloc_collections(its);
5064         if (err)
5065                 goto out_free_tables;
5066
5067         baser = (virt_to_phys(its->cmd_base)    |
5068                  GITS_CBASER_RaWaWb             |
5069                  GITS_CBASER_InnerShareable     |
5070                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5071                  GITS_CBASER_VALID);
5072
5073         gits_write_cbaser(baser, its->base + GITS_CBASER);
5074         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5075
5076         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5077                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5078                         /*
5079                          * The HW reports non-shareable, we must
5080                          * remove the cacheability attributes as
5081                          * well.
5082                          */
5083                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5084                                    GITS_CBASER_CACHEABILITY_MASK);
5085                         baser |= GITS_CBASER_nC;
5086                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5087                 }
5088                 pr_info("ITS: using cache flushing for cmd queue\n");
5089                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5090         }
5091
5092         gits_write_cwriter(0, its->base + GITS_CWRITER);
5093         ctlr = readl_relaxed(its->base + GITS_CTLR);
5094         ctlr |= GITS_CTLR_ENABLE;
5095         if (is_v4(its))
5096                 ctlr |= GITS_CTLR_ImDe;
5097         writel_relaxed(ctlr, its->base + GITS_CTLR);
5098
5099         err = its_init_domain(handle, its);
5100         if (err)
5101                 goto out_free_tables;
5102
5103         raw_spin_lock(&its_lock);
5104         list_add(&its->entry, &its_nodes);
5105         raw_spin_unlock(&its_lock);
5106
5107         return 0;
5108
5109 out_free_tables:
5110         its_free_tables(its);
5111 out_free_cmd:
5112         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5113 out_unmap_sgir:
5114         if (its->sgir_base)
5115                 iounmap(its->sgir_base);
5116 out_free_its:
5117         kfree(its);
5118 out_unmap:
5119         iounmap(its_base);
5120         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5121         return err;
5122 }
5123
5124 static bool gic_rdists_supports_plpis(void)
5125 {
5126         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5127 }
5128
5129 static int redist_disable_lpis(void)
5130 {
5131         void __iomem *rbase = gic_data_rdist_rd_base();
5132         u64 timeout = USEC_PER_SEC;
5133         u64 val;
5134
5135         if (!gic_rdists_supports_plpis()) {
5136                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5137                 return -ENXIO;
5138         }
5139
5140         val = readl_relaxed(rbase + GICR_CTLR);
5141         if (!(val & GICR_CTLR_ENABLE_LPIS))
5142                 return 0;
5143
5144         /*
5145          * If coming via a CPU hotplug event, we don't need to disable
5146          * LPIs before trying to re-enable them. They are already
5147          * configured and all is well in the world.
5148          *
5149          * If running with preallocated tables, there is nothing to do.
5150          */
5151         if (gic_data_rdist()->lpi_enabled ||
5152             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5153                 return 0;
5154
5155         /*
5156          * From that point on, we only try to do some damage control.
5157          */
5158         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5159                 smp_processor_id());
5160         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5161
5162         /* Disable LPIs */
5163         val &= ~GICR_CTLR_ENABLE_LPIS;
5164         writel_relaxed(val, rbase + GICR_CTLR);
5165
5166         /* Make sure any change to GICR_CTLR is observable by the GIC */
5167         dsb(sy);
5168
5169         /*
5170          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5171          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5172          * Error out if we time out waiting for RWP to clear.
5173          */
5174         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5175                 if (!timeout) {
5176                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5177                                smp_processor_id());
5178                         return -ETIMEDOUT;
5179                 }
5180                 udelay(1);
5181                 timeout--;
5182         }
5183
5184         /*
5185          * After it has been written to 1, it is IMPLEMENTATION
5186          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5187          * cleared to 0. Error out if clearing the bit failed.
5188          */
5189         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5190                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5191                 return -EBUSY;
5192         }
5193
5194         return 0;
5195 }
5196
5197 int its_cpu_init(void)
5198 {
5199         if (!list_empty(&its_nodes)) {
5200                 int ret;
5201
5202                 ret = redist_disable_lpis();
5203                 if (ret)
5204                         return ret;
5205
5206                 its_cpu_init_lpis();
5207                 its_cpu_init_collections();
5208         }
5209
5210         return 0;
5211 }
5212
5213 static const struct of_device_id its_device_id[] = {
5214         {       .compatible     = "arm,gic-v3-its",     },
5215         {},
5216 };
5217
5218 static int __init its_of_probe(struct device_node *node)
5219 {
5220         struct device_node *np;
5221         struct resource res;
5222
5223         for (np = of_find_matching_node(node, its_device_id); np;
5224              np = of_find_matching_node(np, its_device_id)) {
5225                 if (!of_device_is_available(np))
5226                         continue;
5227                 if (!of_property_read_bool(np, "msi-controller")) {
5228                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5229                                 np);
5230                         continue;
5231                 }
5232
5233                 if (of_address_to_resource(np, 0, &res)) {
5234                         pr_warn("%pOF: no regs?\n", np);
5235                         continue;
5236                 }
5237
5238                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5239         }
5240         return 0;
5241 }
5242
5243 #ifdef CONFIG_ACPI
5244
5245 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5246
5247 #ifdef CONFIG_ACPI_NUMA
5248 struct its_srat_map {
5249         /* numa node id */
5250         u32     numa_node;
5251         /* GIC ITS ID */
5252         u32     its_id;
5253 };
5254
5255 static struct its_srat_map *its_srat_maps __initdata;
5256 static int its_in_srat __initdata;
5257
5258 static int __init acpi_get_its_numa_node(u32 its_id)
5259 {
5260         int i;
5261
5262         for (i = 0; i < its_in_srat; i++) {
5263                 if (its_id == its_srat_maps[i].its_id)
5264                         return its_srat_maps[i].numa_node;
5265         }
5266         return NUMA_NO_NODE;
5267 }
5268
5269 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5270                                           const unsigned long end)
5271 {
5272         return 0;
5273 }
5274
5275 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5276                          const unsigned long end)
5277 {
5278         int node;
5279         struct acpi_srat_gic_its_affinity *its_affinity;
5280
5281         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5282         if (!its_affinity)
5283                 return -EINVAL;
5284
5285         if (its_affinity->header.length < sizeof(*its_affinity)) {
5286                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5287                         its_affinity->header.length);
5288                 return -EINVAL;
5289         }
5290
5291         /*
5292          * Note that in theory a new proximity node could be created by this
5293          * entry as it is an SRAT resource allocation structure.
5294          * We do not currently support doing so.
5295          */
5296         node = pxm_to_node(its_affinity->proximity_domain);
5297
5298         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5299                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5300                 return 0;
5301         }
5302
5303         its_srat_maps[its_in_srat].numa_node = node;
5304         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5305         its_in_srat++;
5306         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5307                 its_affinity->proximity_domain, its_affinity->its_id, node);
5308
5309         return 0;
5310 }
5311
5312 static void __init acpi_table_parse_srat_its(void)
5313 {
5314         int count;
5315
5316         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5317                         sizeof(struct acpi_table_srat),
5318                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5319                         gic_acpi_match_srat_its, 0);
5320         if (count <= 0)
5321                 return;
5322
5323         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5324                                       GFP_KERNEL);
5325         if (!its_srat_maps)
5326                 return;
5327
5328         acpi_table_parse_entries(ACPI_SIG_SRAT,
5329                         sizeof(struct acpi_table_srat),
5330                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5331                         gic_acpi_parse_srat_its, 0);
5332 }
5333
5334 /* free the its_srat_maps after ITS probing */
5335 static void __init acpi_its_srat_maps_free(void)
5336 {
5337         kfree(its_srat_maps);
5338 }
5339 #else
5340 static void __init acpi_table_parse_srat_its(void)      { }
5341 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5342 static void __init acpi_its_srat_maps_free(void) { }
5343 #endif
5344
5345 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5346                                           const unsigned long end)
5347 {
5348         struct acpi_madt_generic_translator *its_entry;
5349         struct fwnode_handle *dom_handle;
5350         struct resource res;
5351         int err;
5352
5353         its_entry = (struct acpi_madt_generic_translator *)header;
5354         memset(&res, 0, sizeof(res));
5355         res.start = its_entry->base_address;
5356         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5357         res.flags = IORESOURCE_MEM;
5358
5359         dom_handle = irq_domain_alloc_fwnode(&res.start);
5360         if (!dom_handle) {
5361                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5362                        &res.start);
5363                 return -ENOMEM;
5364         }
5365
5366         err = iort_register_domain_token(its_entry->translation_id, res.start,
5367                                          dom_handle);
5368         if (err) {
5369                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5370                        &res.start, its_entry->translation_id);
5371                 goto dom_err;
5372         }
5373
5374         err = its_probe_one(&res, dom_handle,
5375                         acpi_get_its_numa_node(its_entry->translation_id));
5376         if (!err)
5377                 return 0;
5378
5379         iort_deregister_domain_token(its_entry->translation_id);
5380 dom_err:
5381         irq_domain_free_fwnode(dom_handle);
5382         return err;
5383 }
5384
5385 static void __init its_acpi_probe(void)
5386 {
5387         acpi_table_parse_srat_its();
5388         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5389                               gic_acpi_parse_madt_its, 0);
5390         acpi_its_srat_maps_free();
5391 }
5392 #else
5393 static void __init its_acpi_probe(void) { }
5394 #endif
5395
5396 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5397                     struct irq_domain *parent_domain)
5398 {
5399         struct device_node *of_node;
5400         struct its_node *its;
5401         bool has_v4 = false;
5402         bool has_v4_1 = false;
5403         int err;
5404
5405         gic_rdists = rdists;
5406
5407         its_parent = parent_domain;
5408         of_node = to_of_node(handle);
5409         if (of_node)
5410                 its_of_probe(of_node);
5411         else
5412                 its_acpi_probe();
5413
5414         if (list_empty(&its_nodes)) {
5415                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5416                 return -ENXIO;
5417         }
5418
5419         err = allocate_lpi_tables();
5420         if (err)
5421                 return err;
5422
5423         list_for_each_entry(its, &its_nodes, entry) {
5424                 has_v4 |= is_v4(its);
5425                 has_v4_1 |= is_v4_1(its);
5426         }
5427
5428         /* Don't bother with inconsistent systems */
5429         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5430                 rdists->has_rvpeid = false;
5431
5432         if (has_v4 & rdists->has_vlpis) {
5433                 const struct irq_domain_ops *sgi_ops;
5434
5435                 if (has_v4_1)
5436                         sgi_ops = &its_sgi_domain_ops;
5437                 else
5438                         sgi_ops = NULL;
5439
5440                 if (its_init_vpe_domain() ||
5441                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5442                         rdists->has_vlpis = false;
5443                         pr_err("ITS: Disabling GICv4 support\n");
5444                 }
5445         }
5446
5447         register_syscore_ops(&its_syscore_ops);
5448
5449         return 0;
5450 }