Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/crash_dump.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/efi.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/list.h>
29 #include <linux/log2.h>
30 #include <linux/memblock.h>
31 #include <linux/mm.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_pci.h>
37 #include <linux/of_platform.h>
38 #include <linux/percpu.h>
39 #include <linux/slab.h>
40 #include <linux/syscore_ops.h>
41
42 #include <linux/irqchip.h>
43 #include <linux/irqchip/arm-gic-v3.h>
44 #include <linux/irqchip/arm-gic-v4.h>
45
46 #include <asm/cputype.h>
47 #include <asm/exception.h>
48
49 #include "irq-gic-common.h"
50
51 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
52 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
53 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
54 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
55
56 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
57 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
58
59 static u32 lpi_id_bits;
60
61 /*
62  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
63  * deal with (one configuration byte per interrupt). PENDBASE has to
64  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
65  */
66 #define LPI_NRBITS              lpi_id_bits
67 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
68 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
69
70 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
71
72 /*
73  * Collection structure - just an ID, and a redistributor address to
74  * ping. We use one per CPU as a bag of interrupts assigned to this
75  * CPU.
76  */
77 struct its_collection {
78         u64                     target_address;
79         u16                     col_id;
80 };
81
82 /*
83  * The ITS_BASER structure - contains memory information, cached
84  * value of BASER register configuration and ITS page size.
85  */
86 struct its_baser {
87         void            *base;
88         u64             val;
89         u32             order;
90         u32             psz;
91 };
92
93 struct its_device;
94
95 /*
96  * The ITS structure - contains most of the infrastructure, with the
97  * top-level MSI domain, the command queue, the collections, and the
98  * list of devices writing to it.
99  *
100  * dev_alloc_lock has to be taken for device allocations, while the
101  * spinlock must be taken to parse data structures such as the device
102  * list.
103  */
104 struct its_node {
105         raw_spinlock_t          lock;
106         struct mutex            dev_alloc_lock;
107         struct list_head        entry;
108         void __iomem            *base;
109         phys_addr_t             phys_base;
110         struct its_cmd_block    *cmd_base;
111         struct its_cmd_block    *cmd_write;
112         struct its_baser        tables[GITS_BASER_NR_REGS];
113         struct its_collection   *collections;
114         struct fwnode_handle    *fwnode_handle;
115         u64                     (*get_msi_base)(struct its_device *its_dev);
116         u64                     cbaser_save;
117         u32                     ctlr_save;
118         struct list_head        its_device_list;
119         u64                     flags;
120         unsigned long           list_nr;
121         u32                     ite_size;
122         u32                     device_ids;
123         int                     numa_node;
124         unsigned int            msi_domain_flags;
125         u32                     pre_its_base; /* for Socionext Synquacer */
126         bool                    is_v4;
127         int                     vlpi_redist_offset;
128 };
129
130 #define ITS_ITT_ALIGN           SZ_256
131
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS      (16)
134 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
135
136 /* Convert page order to size in bytes */
137 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
138
139 struct event_lpi_map {
140         unsigned long           *lpi_map;
141         u16                     *col_map;
142         irq_hw_number_t         lpi_base;
143         int                     nr_lpis;
144         struct mutex            vlpi_lock;
145         struct its_vm           *vm;
146         struct its_vlpi_map     *vlpi_maps;
147         int                     nr_vlpis;
148 };
149
150 /*
151  * The ITS view of a device - belongs to an ITS, owns an interrupt
152  * translation table, and a list of interrupts.  If it some of its
153  * LPIs are injected into a guest (GICv4), the event_map.vm field
154  * indicates which one.
155  */
156 struct its_device {
157         struct list_head        entry;
158         struct its_node         *its;
159         struct event_lpi_map    event_map;
160         void                    *itt;
161         u32                     nr_ites;
162         u32                     device_id;
163         bool                    shared;
164 };
165
166 static struct {
167         raw_spinlock_t          lock;
168         struct its_device       *dev;
169         struct its_vpe          **vpes;
170         int                     next_victim;
171 } vpe_proxy;
172
173 static LIST_HEAD(its_nodes);
174 static DEFINE_RAW_SPINLOCK(its_lock);
175 static struct rdists *gic_rdists;
176 static struct irq_domain *its_parent;
177
178 static unsigned long its_list_map;
179 static u16 vmovp_seq_num;
180 static DEFINE_RAW_SPINLOCK(vmovp_lock);
181
182 static DEFINE_IDA(its_vpeid_ida);
183
184 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
185 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
186 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
187 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
188
189 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
190                                                u32 event)
191 {
192         struct its_node *its = its_dev->its;
193
194         return its->collections + its_dev->event_map.col_map[event];
195 }
196
197 static struct its_collection *valid_col(struct its_collection *col)
198 {
199         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
200                 return NULL;
201
202         return col;
203 }
204
205 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
206 {
207         if (valid_col(its->collections + vpe->col_idx))
208                 return vpe;
209
210         return NULL;
211 }
212
213 /*
214  * ITS command descriptors - parameters to be encoded in a command
215  * block.
216  */
217 struct its_cmd_desc {
218         union {
219                 struct {
220                         struct its_device *dev;
221                         u32 event_id;
222                 } its_inv_cmd;
223
224                 struct {
225                         struct its_device *dev;
226                         u32 event_id;
227                 } its_clear_cmd;
228
229                 struct {
230                         struct its_device *dev;
231                         u32 event_id;
232                 } its_int_cmd;
233
234                 struct {
235                         struct its_device *dev;
236                         int valid;
237                 } its_mapd_cmd;
238
239                 struct {
240                         struct its_collection *col;
241                         int valid;
242                 } its_mapc_cmd;
243
244                 struct {
245                         struct its_device *dev;
246                         u32 phys_id;
247                         u32 event_id;
248                 } its_mapti_cmd;
249
250                 struct {
251                         struct its_device *dev;
252                         struct its_collection *col;
253                         u32 event_id;
254                 } its_movi_cmd;
255
256                 struct {
257                         struct its_device *dev;
258                         u32 event_id;
259                 } its_discard_cmd;
260
261                 struct {
262                         struct its_collection *col;
263                 } its_invall_cmd;
264
265                 struct {
266                         struct its_vpe *vpe;
267                 } its_vinvall_cmd;
268
269                 struct {
270                         struct its_vpe *vpe;
271                         struct its_collection *col;
272                         bool valid;
273                 } its_vmapp_cmd;
274
275                 struct {
276                         struct its_vpe *vpe;
277                         struct its_device *dev;
278                         u32 virt_id;
279                         u32 event_id;
280                         bool db_enabled;
281                 } its_vmapti_cmd;
282
283                 struct {
284                         struct its_vpe *vpe;
285                         struct its_device *dev;
286                         u32 event_id;
287                         bool db_enabled;
288                 } its_vmovi_cmd;
289
290                 struct {
291                         struct its_vpe *vpe;
292                         struct its_collection *col;
293                         u16 seq_num;
294                         u16 its_list;
295                 } its_vmovp_cmd;
296         };
297 };
298
299 /*
300  * The ITS command block, which is what the ITS actually parses.
301  */
302 struct its_cmd_block {
303         u64     raw_cmd[4];
304 };
305
306 #define ITS_CMD_QUEUE_SZ                SZ_64K
307 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
308
309 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
310                                                     struct its_cmd_block *,
311                                                     struct its_cmd_desc *);
312
313 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
314                                               struct its_cmd_block *,
315                                               struct its_cmd_desc *);
316
317 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
318 {
319         u64 mask = GENMASK_ULL(h, l);
320         *raw_cmd &= ~mask;
321         *raw_cmd |= (val << l) & mask;
322 }
323
324 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
325 {
326         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
327 }
328
329 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
330 {
331         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
332 }
333
334 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
335 {
336         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
337 }
338
339 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
340 {
341         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
342 }
343
344 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
345 {
346         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
347 }
348
349 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
350 {
351         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
352 }
353
354 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
355 {
356         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
357 }
358
359 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
360 {
361         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
362 }
363
364 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
365 {
366         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
367 }
368
369 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
370 {
371         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
372 }
373
374 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
375 {
376         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
377 }
378
379 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
380 {
381         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
382 }
383
384 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
385 {
386         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
387 }
388
389 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
390 {
391         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
392 }
393
394 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
395 {
396         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
397 }
398
399 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
400 {
401         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
402 }
403
404 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
405 {
406         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
407 }
408
409 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
410 {
411         /* Let's fixup BE commands */
412         cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
413         cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
414         cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
415         cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
416 }
417
418 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
419                                                  struct its_cmd_block *cmd,
420                                                  struct its_cmd_desc *desc)
421 {
422         unsigned long itt_addr;
423         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
424
425         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
426         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
427
428         its_encode_cmd(cmd, GITS_CMD_MAPD);
429         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
430         its_encode_size(cmd, size - 1);
431         its_encode_itt(cmd, itt_addr);
432         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
433
434         its_fixup_cmd(cmd);
435
436         return NULL;
437 }
438
439 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
440                                                  struct its_cmd_block *cmd,
441                                                  struct its_cmd_desc *desc)
442 {
443         its_encode_cmd(cmd, GITS_CMD_MAPC);
444         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
445         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
446         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
447
448         its_fixup_cmd(cmd);
449
450         return desc->its_mapc_cmd.col;
451 }
452
453 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
454                                                   struct its_cmd_block *cmd,
455                                                   struct its_cmd_desc *desc)
456 {
457         struct its_collection *col;
458
459         col = dev_event_to_col(desc->its_mapti_cmd.dev,
460                                desc->its_mapti_cmd.event_id);
461
462         its_encode_cmd(cmd, GITS_CMD_MAPTI);
463         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
464         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
465         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
466         its_encode_collection(cmd, col->col_id);
467
468         its_fixup_cmd(cmd);
469
470         return valid_col(col);
471 }
472
473 static struct its_collection *its_build_movi_cmd(struct its_node *its,
474                                                  struct its_cmd_block *cmd,
475                                                  struct its_cmd_desc *desc)
476 {
477         struct its_collection *col;
478
479         col = dev_event_to_col(desc->its_movi_cmd.dev,
480                                desc->its_movi_cmd.event_id);
481
482         its_encode_cmd(cmd, GITS_CMD_MOVI);
483         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
484         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
485         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
486
487         its_fixup_cmd(cmd);
488
489         return valid_col(col);
490 }
491
492 static struct its_collection *its_build_discard_cmd(struct its_node *its,
493                                                     struct its_cmd_block *cmd,
494                                                     struct its_cmd_desc *desc)
495 {
496         struct its_collection *col;
497
498         col = dev_event_to_col(desc->its_discard_cmd.dev,
499                                desc->its_discard_cmd.event_id);
500
501         its_encode_cmd(cmd, GITS_CMD_DISCARD);
502         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
503         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
504
505         its_fixup_cmd(cmd);
506
507         return valid_col(col);
508 }
509
510 static struct its_collection *its_build_inv_cmd(struct its_node *its,
511                                                 struct its_cmd_block *cmd,
512                                                 struct its_cmd_desc *desc)
513 {
514         struct its_collection *col;
515
516         col = dev_event_to_col(desc->its_inv_cmd.dev,
517                                desc->its_inv_cmd.event_id);
518
519         its_encode_cmd(cmd, GITS_CMD_INV);
520         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
521         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
522
523         its_fixup_cmd(cmd);
524
525         return valid_col(col);
526 }
527
528 static struct its_collection *its_build_int_cmd(struct its_node *its,
529                                                 struct its_cmd_block *cmd,
530                                                 struct its_cmd_desc *desc)
531 {
532         struct its_collection *col;
533
534         col = dev_event_to_col(desc->its_int_cmd.dev,
535                                desc->its_int_cmd.event_id);
536
537         its_encode_cmd(cmd, GITS_CMD_INT);
538         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
539         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
540
541         its_fixup_cmd(cmd);
542
543         return valid_col(col);
544 }
545
546 static struct its_collection *its_build_clear_cmd(struct its_node *its,
547                                                   struct its_cmd_block *cmd,
548                                                   struct its_cmd_desc *desc)
549 {
550         struct its_collection *col;
551
552         col = dev_event_to_col(desc->its_clear_cmd.dev,
553                                desc->its_clear_cmd.event_id);
554
555         its_encode_cmd(cmd, GITS_CMD_CLEAR);
556         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
557         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
558
559         its_fixup_cmd(cmd);
560
561         return valid_col(col);
562 }
563
564 static struct its_collection *its_build_invall_cmd(struct its_node *its,
565                                                    struct its_cmd_block *cmd,
566                                                    struct its_cmd_desc *desc)
567 {
568         its_encode_cmd(cmd, GITS_CMD_INVALL);
569         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
570
571         its_fixup_cmd(cmd);
572
573         return NULL;
574 }
575
576 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
577                                              struct its_cmd_block *cmd,
578                                              struct its_cmd_desc *desc)
579 {
580         its_encode_cmd(cmd, GITS_CMD_VINVALL);
581         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
582
583         its_fixup_cmd(cmd);
584
585         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
586 }
587
588 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
589                                            struct its_cmd_block *cmd,
590                                            struct its_cmd_desc *desc)
591 {
592         unsigned long vpt_addr;
593         u64 target;
594
595         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
596         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
597
598         its_encode_cmd(cmd, GITS_CMD_VMAPP);
599         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
600         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
601         its_encode_target(cmd, target);
602         its_encode_vpt_addr(cmd, vpt_addr);
603         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
604
605         its_fixup_cmd(cmd);
606
607         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
608 }
609
610 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
611                                             struct its_cmd_block *cmd,
612                                             struct its_cmd_desc *desc)
613 {
614         u32 db;
615
616         if (desc->its_vmapti_cmd.db_enabled)
617                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
618         else
619                 db = 1023;
620
621         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
622         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
623         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
624         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
625         its_encode_db_phys_id(cmd, db);
626         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
627
628         its_fixup_cmd(cmd);
629
630         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
631 }
632
633 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
634                                            struct its_cmd_block *cmd,
635                                            struct its_cmd_desc *desc)
636 {
637         u32 db;
638
639         if (desc->its_vmovi_cmd.db_enabled)
640                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
641         else
642                 db = 1023;
643
644         its_encode_cmd(cmd, GITS_CMD_VMOVI);
645         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
646         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
647         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
648         its_encode_db_phys_id(cmd, db);
649         its_encode_db_valid(cmd, true);
650
651         its_fixup_cmd(cmd);
652
653         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
654 }
655
656 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
657                                            struct its_cmd_block *cmd,
658                                            struct its_cmd_desc *desc)
659 {
660         u64 target;
661
662         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
663         its_encode_cmd(cmd, GITS_CMD_VMOVP);
664         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
665         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
666         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
667         its_encode_target(cmd, target);
668
669         its_fixup_cmd(cmd);
670
671         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
672 }
673
674 static u64 its_cmd_ptr_to_offset(struct its_node *its,
675                                  struct its_cmd_block *ptr)
676 {
677         return (ptr - its->cmd_base) * sizeof(*ptr);
678 }
679
680 static int its_queue_full(struct its_node *its)
681 {
682         int widx;
683         int ridx;
684
685         widx = its->cmd_write - its->cmd_base;
686         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
687
688         /* This is incredibly unlikely to happen, unless the ITS locks up. */
689         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
690                 return 1;
691
692         return 0;
693 }
694
695 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
696 {
697         struct its_cmd_block *cmd;
698         u32 count = 1000000;    /* 1s! */
699
700         while (its_queue_full(its)) {
701                 count--;
702                 if (!count) {
703                         pr_err_ratelimited("ITS queue not draining\n");
704                         return NULL;
705                 }
706                 cpu_relax();
707                 udelay(1);
708         }
709
710         cmd = its->cmd_write++;
711
712         /* Handle queue wrapping */
713         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
714                 its->cmd_write = its->cmd_base;
715
716         /* Clear command  */
717         cmd->raw_cmd[0] = 0;
718         cmd->raw_cmd[1] = 0;
719         cmd->raw_cmd[2] = 0;
720         cmd->raw_cmd[3] = 0;
721
722         return cmd;
723 }
724
725 static struct its_cmd_block *its_post_commands(struct its_node *its)
726 {
727         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
728
729         writel_relaxed(wr, its->base + GITS_CWRITER);
730
731         return its->cmd_write;
732 }
733
734 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
735 {
736         /*
737          * Make sure the commands written to memory are observable by
738          * the ITS.
739          */
740         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
741                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
742         else
743                 dsb(ishst);
744 }
745
746 static int its_wait_for_range_completion(struct its_node *its,
747                                          struct its_cmd_block *from,
748                                          struct its_cmd_block *to)
749 {
750         u64 rd_idx, from_idx, to_idx;
751         u32 count = 1000000;    /* 1s! */
752
753         from_idx = its_cmd_ptr_to_offset(its, from);
754         to_idx = its_cmd_ptr_to_offset(its, to);
755
756         while (1) {
757                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
758
759                 /* Direct case */
760                 if (from_idx < to_idx && rd_idx >= to_idx)
761                         break;
762
763                 /* Wrapped case */
764                 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
765                         break;
766
767                 count--;
768                 if (!count) {
769                         pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
770                                            from_idx, to_idx, rd_idx);
771                         return -1;
772                 }
773                 cpu_relax();
774                 udelay(1);
775         }
776
777         return 0;
778 }
779
780 /* Warning, macro hell follows */
781 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
782 void name(struct its_node *its,                                         \
783           buildtype builder,                                            \
784           struct its_cmd_desc *desc)                                    \
785 {                                                                       \
786         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
787         synctype *sync_obj;                                             \
788         unsigned long flags;                                            \
789                                                                         \
790         raw_spin_lock_irqsave(&its->lock, flags);                       \
791                                                                         \
792         cmd = its_allocate_entry(its);                                  \
793         if (!cmd) {             /* We're soooooo screewed... */         \
794                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
795                 return;                                                 \
796         }                                                               \
797         sync_obj = builder(its, cmd, desc);                             \
798         its_flush_cmd(its, cmd);                                        \
799                                                                         \
800         if (sync_obj) {                                                 \
801                 sync_cmd = its_allocate_entry(its);                     \
802                 if (!sync_cmd)                                          \
803                         goto post;                                      \
804                                                                         \
805                 buildfn(its, sync_cmd, sync_obj);                       \
806                 its_flush_cmd(its, sync_cmd);                           \
807         }                                                               \
808                                                                         \
809 post:                                                                   \
810         next_cmd = its_post_commands(its);                              \
811         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
812                                                                         \
813         if (its_wait_for_range_completion(its, cmd, next_cmd))          \
814                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
815 }
816
817 static void its_build_sync_cmd(struct its_node *its,
818                                struct its_cmd_block *sync_cmd,
819                                struct its_collection *sync_col)
820 {
821         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
822         its_encode_target(sync_cmd, sync_col->target_address);
823
824         its_fixup_cmd(sync_cmd);
825 }
826
827 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
828                              struct its_collection, its_build_sync_cmd)
829
830 static void its_build_vsync_cmd(struct its_node *its,
831                                 struct its_cmd_block *sync_cmd,
832                                 struct its_vpe *sync_vpe)
833 {
834         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
835         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
836
837         its_fixup_cmd(sync_cmd);
838 }
839
840 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
841                              struct its_vpe, its_build_vsync_cmd)
842
843 static void its_send_int(struct its_device *dev, u32 event_id)
844 {
845         struct its_cmd_desc desc;
846
847         desc.its_int_cmd.dev = dev;
848         desc.its_int_cmd.event_id = event_id;
849
850         its_send_single_command(dev->its, its_build_int_cmd, &desc);
851 }
852
853 static void its_send_clear(struct its_device *dev, u32 event_id)
854 {
855         struct its_cmd_desc desc;
856
857         desc.its_clear_cmd.dev = dev;
858         desc.its_clear_cmd.event_id = event_id;
859
860         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
861 }
862
863 static void its_send_inv(struct its_device *dev, u32 event_id)
864 {
865         struct its_cmd_desc desc;
866
867         desc.its_inv_cmd.dev = dev;
868         desc.its_inv_cmd.event_id = event_id;
869
870         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
871 }
872
873 static void its_send_mapd(struct its_device *dev, int valid)
874 {
875         struct its_cmd_desc desc;
876
877         desc.its_mapd_cmd.dev = dev;
878         desc.its_mapd_cmd.valid = !!valid;
879
880         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
881 }
882
883 static void its_send_mapc(struct its_node *its, struct its_collection *col,
884                           int valid)
885 {
886         struct its_cmd_desc desc;
887
888         desc.its_mapc_cmd.col = col;
889         desc.its_mapc_cmd.valid = !!valid;
890
891         its_send_single_command(its, its_build_mapc_cmd, &desc);
892 }
893
894 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
895 {
896         struct its_cmd_desc desc;
897
898         desc.its_mapti_cmd.dev = dev;
899         desc.its_mapti_cmd.phys_id = irq_id;
900         desc.its_mapti_cmd.event_id = id;
901
902         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
903 }
904
905 static void its_send_movi(struct its_device *dev,
906                           struct its_collection *col, u32 id)
907 {
908         struct its_cmd_desc desc;
909
910         desc.its_movi_cmd.dev = dev;
911         desc.its_movi_cmd.col = col;
912         desc.its_movi_cmd.event_id = id;
913
914         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
915 }
916
917 static void its_send_discard(struct its_device *dev, u32 id)
918 {
919         struct its_cmd_desc desc;
920
921         desc.its_discard_cmd.dev = dev;
922         desc.its_discard_cmd.event_id = id;
923
924         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
925 }
926
927 static void its_send_invall(struct its_node *its, struct its_collection *col)
928 {
929         struct its_cmd_desc desc;
930
931         desc.its_invall_cmd.col = col;
932
933         its_send_single_command(its, its_build_invall_cmd, &desc);
934 }
935
936 static void its_send_vmapti(struct its_device *dev, u32 id)
937 {
938         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
939         struct its_cmd_desc desc;
940
941         desc.its_vmapti_cmd.vpe = map->vpe;
942         desc.its_vmapti_cmd.dev = dev;
943         desc.its_vmapti_cmd.virt_id = map->vintid;
944         desc.its_vmapti_cmd.event_id = id;
945         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
946
947         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
948 }
949
950 static void its_send_vmovi(struct its_device *dev, u32 id)
951 {
952         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
953         struct its_cmd_desc desc;
954
955         desc.its_vmovi_cmd.vpe = map->vpe;
956         desc.its_vmovi_cmd.dev = dev;
957         desc.its_vmovi_cmd.event_id = id;
958         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
959
960         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
961 }
962
963 static void its_send_vmapp(struct its_node *its,
964                            struct its_vpe *vpe, bool valid)
965 {
966         struct its_cmd_desc desc;
967
968         desc.its_vmapp_cmd.vpe = vpe;
969         desc.its_vmapp_cmd.valid = valid;
970         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
971
972         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
973 }
974
975 static void its_send_vmovp(struct its_vpe *vpe)
976 {
977         struct its_cmd_desc desc;
978         struct its_node *its;
979         unsigned long flags;
980         int col_id = vpe->col_idx;
981
982         desc.its_vmovp_cmd.vpe = vpe;
983         desc.its_vmovp_cmd.its_list = (u16)its_list_map;
984
985         if (!its_list_map) {
986                 its = list_first_entry(&its_nodes, struct its_node, entry);
987                 desc.its_vmovp_cmd.seq_num = 0;
988                 desc.its_vmovp_cmd.col = &its->collections[col_id];
989                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
990                 return;
991         }
992
993         /*
994          * Yet another marvel of the architecture. If using the
995          * its_list "feature", we need to make sure that all ITSs
996          * receive all VMOVP commands in the same order. The only way
997          * to guarantee this is to make vmovp a serialization point.
998          *
999          * Wall <-- Head.
1000          */
1001         raw_spin_lock_irqsave(&vmovp_lock, flags);
1002
1003         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1004
1005         /* Emit VMOVPs */
1006         list_for_each_entry(its, &its_nodes, entry) {
1007                 if (!its->is_v4)
1008                         continue;
1009
1010                 if (!vpe->its_vm->vlpi_count[its->list_nr])
1011                         continue;
1012
1013                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1014                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1015         }
1016
1017         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1018 }
1019
1020 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1021 {
1022         struct its_cmd_desc desc;
1023
1024         desc.its_vinvall_cmd.vpe = vpe;
1025         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1026 }
1027
1028 /*
1029  * irqchip functions - assumes MSI, mostly.
1030  */
1031
1032 static inline u32 its_get_event_id(struct irq_data *d)
1033 {
1034         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1035         return d->hwirq - its_dev->event_map.lpi_base;
1036 }
1037
1038 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1039 {
1040         irq_hw_number_t hwirq;
1041         void *va;
1042         u8 *cfg;
1043
1044         if (irqd_is_forwarded_to_vcpu(d)) {
1045                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1046                 u32 event = its_get_event_id(d);
1047                 struct its_vlpi_map *map;
1048
1049                 va = page_address(its_dev->event_map.vm->vprop_page);
1050                 map = &its_dev->event_map.vlpi_maps[event];
1051                 hwirq = map->vintid;
1052
1053                 /* Remember the updated property */
1054                 map->properties &= ~clr;
1055                 map->properties |= set | LPI_PROP_GROUP1;
1056         } else {
1057                 va = gic_rdists->prop_table_va;
1058                 hwirq = d->hwirq;
1059         }
1060
1061         cfg = va + hwirq - 8192;
1062         *cfg &= ~clr;
1063         *cfg |= set | LPI_PROP_GROUP1;
1064
1065         /*
1066          * Make the above write visible to the redistributors.
1067          * And yes, we're flushing exactly: One. Single. Byte.
1068          * Humpf...
1069          */
1070         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1071                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1072         else
1073                 dsb(ishst);
1074 }
1075
1076 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1077 {
1078         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1079
1080         lpi_write_config(d, clr, set);
1081         its_send_inv(its_dev, its_get_event_id(d));
1082 }
1083
1084 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1085 {
1086         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1087         u32 event = its_get_event_id(d);
1088
1089         if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1090                 return;
1091
1092         its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1093
1094         /*
1095          * More fun with the architecture:
1096          *
1097          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1098          * value or to 1023, depending on the enable bit. But that
1099          * would be issueing a mapping for an /existing/ DevID+EventID
1100          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1101          * to the /same/ vPE, using this opportunity to adjust the
1102          * doorbell. Mouahahahaha. We loves it, Precious.
1103          */
1104         its_send_vmovi(its_dev, event);
1105 }
1106
1107 static void its_mask_irq(struct irq_data *d)
1108 {
1109         if (irqd_is_forwarded_to_vcpu(d))
1110                 its_vlpi_set_doorbell(d, false);
1111
1112         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1113 }
1114
1115 static void its_unmask_irq(struct irq_data *d)
1116 {
1117         if (irqd_is_forwarded_to_vcpu(d))
1118                 its_vlpi_set_doorbell(d, true);
1119
1120         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1121 }
1122
1123 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1124                             bool force)
1125 {
1126         unsigned int cpu;
1127         const struct cpumask *cpu_mask = cpu_online_mask;
1128         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1129         struct its_collection *target_col;
1130         u32 id = its_get_event_id(d);
1131
1132         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1133         if (irqd_is_forwarded_to_vcpu(d))
1134                 return -EINVAL;
1135
1136        /* lpi cannot be routed to a redistributor that is on a foreign node */
1137         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1138                 if (its_dev->its->numa_node >= 0) {
1139                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1140                         if (!cpumask_intersects(mask_val, cpu_mask))
1141                                 return -EINVAL;
1142                 }
1143         }
1144
1145         cpu = cpumask_any_and(mask_val, cpu_mask);
1146
1147         if (cpu >= nr_cpu_ids)
1148                 return -EINVAL;
1149
1150         /* don't set the affinity when the target cpu is same as current one */
1151         if (cpu != its_dev->event_map.col_map[id]) {
1152                 target_col = &its_dev->its->collections[cpu];
1153                 its_send_movi(its_dev, target_col, id);
1154                 its_dev->event_map.col_map[id] = cpu;
1155                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1156         }
1157
1158         return IRQ_SET_MASK_OK_DONE;
1159 }
1160
1161 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1162 {
1163         struct its_node *its = its_dev->its;
1164
1165         return its->phys_base + GITS_TRANSLATER;
1166 }
1167
1168 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1169 {
1170         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1171         struct its_node *its;
1172         u64 addr;
1173
1174         its = its_dev->its;
1175         addr = its->get_msi_base(its_dev);
1176
1177         msg->address_lo         = lower_32_bits(addr);
1178         msg->address_hi         = upper_32_bits(addr);
1179         msg->data               = its_get_event_id(d);
1180
1181         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1182 }
1183
1184 static int its_irq_set_irqchip_state(struct irq_data *d,
1185                                      enum irqchip_irq_state which,
1186                                      bool state)
1187 {
1188         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1189         u32 event = its_get_event_id(d);
1190
1191         if (which != IRQCHIP_STATE_PENDING)
1192                 return -EINVAL;
1193
1194         if (state)
1195                 its_send_int(its_dev, event);
1196         else
1197                 its_send_clear(its_dev, event);
1198
1199         return 0;
1200 }
1201
1202 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1203 {
1204         unsigned long flags;
1205
1206         /* Not using the ITS list? Everything is always mapped. */
1207         if (!its_list_map)
1208                 return;
1209
1210         raw_spin_lock_irqsave(&vmovp_lock, flags);
1211
1212         /*
1213          * If the VM wasn't mapped yet, iterate over the vpes and get
1214          * them mapped now.
1215          */
1216         vm->vlpi_count[its->list_nr]++;
1217
1218         if (vm->vlpi_count[its->list_nr] == 1) {
1219                 int i;
1220
1221                 for (i = 0; i < vm->nr_vpes; i++) {
1222                         struct its_vpe *vpe = vm->vpes[i];
1223                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1224
1225                         /* Map the VPE to the first possible CPU */
1226                         vpe->col_idx = cpumask_first(cpu_online_mask);
1227                         its_send_vmapp(its, vpe, true);
1228                         its_send_vinvall(its, vpe);
1229                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1230                 }
1231         }
1232
1233         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1234 }
1235
1236 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1237 {
1238         unsigned long flags;
1239
1240         /* Not using the ITS list? Everything is always mapped. */
1241         if (!its_list_map)
1242                 return;
1243
1244         raw_spin_lock_irqsave(&vmovp_lock, flags);
1245
1246         if (!--vm->vlpi_count[its->list_nr]) {
1247                 int i;
1248
1249                 for (i = 0; i < vm->nr_vpes; i++)
1250                         its_send_vmapp(its, vm->vpes[i], false);
1251         }
1252
1253         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1254 }
1255
1256 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1257 {
1258         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1259         u32 event = its_get_event_id(d);
1260         int ret = 0;
1261
1262         if (!info->map)
1263                 return -EINVAL;
1264
1265         mutex_lock(&its_dev->event_map.vlpi_lock);
1266
1267         if (!its_dev->event_map.vm) {
1268                 struct its_vlpi_map *maps;
1269
1270                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1271                                GFP_KERNEL);
1272                 if (!maps) {
1273                         ret = -ENOMEM;
1274                         goto out;
1275                 }
1276
1277                 its_dev->event_map.vm = info->map->vm;
1278                 its_dev->event_map.vlpi_maps = maps;
1279         } else if (its_dev->event_map.vm != info->map->vm) {
1280                 ret = -EINVAL;
1281                 goto out;
1282         }
1283
1284         /* Get our private copy of the mapping information */
1285         its_dev->event_map.vlpi_maps[event] = *info->map;
1286
1287         if (irqd_is_forwarded_to_vcpu(d)) {
1288                 /* Already mapped, move it around */
1289                 its_send_vmovi(its_dev, event);
1290         } else {
1291                 /* Ensure all the VPEs are mapped on this ITS */
1292                 its_map_vm(its_dev->its, info->map->vm);
1293
1294                 /*
1295                  * Flag the interrupt as forwarded so that we can
1296                  * start poking the virtual property table.
1297                  */
1298                 irqd_set_forwarded_to_vcpu(d);
1299
1300                 /* Write out the property to the prop table */
1301                 lpi_write_config(d, 0xff, info->map->properties);
1302
1303                 /* Drop the physical mapping */
1304                 its_send_discard(its_dev, event);
1305
1306                 /* and install the virtual one */
1307                 its_send_vmapti(its_dev, event);
1308
1309                 /* Increment the number of VLPIs */
1310                 its_dev->event_map.nr_vlpis++;
1311         }
1312
1313 out:
1314         mutex_unlock(&its_dev->event_map.vlpi_lock);
1315         return ret;
1316 }
1317
1318 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1319 {
1320         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1321         u32 event = its_get_event_id(d);
1322         int ret = 0;
1323
1324         mutex_lock(&its_dev->event_map.vlpi_lock);
1325
1326         if (!its_dev->event_map.vm ||
1327             !its_dev->event_map.vlpi_maps[event].vm) {
1328                 ret = -EINVAL;
1329                 goto out;
1330         }
1331
1332         /* Copy our mapping information to the incoming request */
1333         *info->map = its_dev->event_map.vlpi_maps[event];
1334
1335 out:
1336         mutex_unlock(&its_dev->event_map.vlpi_lock);
1337         return ret;
1338 }
1339
1340 static int its_vlpi_unmap(struct irq_data *d)
1341 {
1342         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1343         u32 event = its_get_event_id(d);
1344         int ret = 0;
1345
1346         mutex_lock(&its_dev->event_map.vlpi_lock);
1347
1348         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1349                 ret = -EINVAL;
1350                 goto out;
1351         }
1352
1353         /* Drop the virtual mapping */
1354         its_send_discard(its_dev, event);
1355
1356         /* and restore the physical one */
1357         irqd_clr_forwarded_to_vcpu(d);
1358         its_send_mapti(its_dev, d->hwirq, event);
1359         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1360                                     LPI_PROP_ENABLED |
1361                                     LPI_PROP_GROUP1));
1362
1363         /* Potentially unmap the VM from this ITS */
1364         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1365
1366         /*
1367          * Drop the refcount and make the device available again if
1368          * this was the last VLPI.
1369          */
1370         if (!--its_dev->event_map.nr_vlpis) {
1371                 its_dev->event_map.vm = NULL;
1372                 kfree(its_dev->event_map.vlpi_maps);
1373         }
1374
1375 out:
1376         mutex_unlock(&its_dev->event_map.vlpi_lock);
1377         return ret;
1378 }
1379
1380 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1381 {
1382         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1383
1384         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1385                 return -EINVAL;
1386
1387         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1388                 lpi_update_config(d, 0xff, info->config);
1389         else
1390                 lpi_write_config(d, 0xff, info->config);
1391         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1392
1393         return 0;
1394 }
1395
1396 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1397 {
1398         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1399         struct its_cmd_info *info = vcpu_info;
1400
1401         /* Need a v4 ITS */
1402         if (!its_dev->its->is_v4)
1403                 return -EINVAL;
1404
1405         /* Unmap request? */
1406         if (!info)
1407                 return its_vlpi_unmap(d);
1408
1409         switch (info->cmd_type) {
1410         case MAP_VLPI:
1411                 return its_vlpi_map(d, info);
1412
1413         case GET_VLPI:
1414                 return its_vlpi_get(d, info);
1415
1416         case PROP_UPDATE_VLPI:
1417         case PROP_UPDATE_AND_INV_VLPI:
1418                 return its_vlpi_prop_update(d, info);
1419
1420         default:
1421                 return -EINVAL;
1422         }
1423 }
1424
1425 static struct irq_chip its_irq_chip = {
1426         .name                   = "ITS",
1427         .irq_mask               = its_mask_irq,
1428         .irq_unmask             = its_unmask_irq,
1429         .irq_eoi                = irq_chip_eoi_parent,
1430         .irq_set_affinity       = its_set_affinity,
1431         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1432         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1433         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1434 };
1435
1436
1437 /*
1438  * How we allocate LPIs:
1439  *
1440  * lpi_range_list contains ranges of LPIs that are to available to
1441  * allocate from. To allocate LPIs, just pick the first range that
1442  * fits the required allocation, and reduce it by the required
1443  * amount. Once empty, remove the range from the list.
1444  *
1445  * To free a range of LPIs, add a free range to the list, sort it and
1446  * merge the result if the new range happens to be adjacent to an
1447  * already free block.
1448  *
1449  * The consequence of the above is that allocation is cost is low, but
1450  * freeing is expensive. We assumes that freeing rarely occurs.
1451  */
1452 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1453
1454 static DEFINE_MUTEX(lpi_range_lock);
1455 static LIST_HEAD(lpi_range_list);
1456
1457 struct lpi_range {
1458         struct list_head        entry;
1459         u32                     base_id;
1460         u32                     span;
1461 };
1462
1463 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1464 {
1465         struct lpi_range *range;
1466
1467         range = kmalloc(sizeof(*range), GFP_KERNEL);
1468         if (range) {
1469                 range->base_id = base;
1470                 range->span = span;
1471         }
1472
1473         return range;
1474 }
1475
1476 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1477 {
1478         struct lpi_range *range, *tmp;
1479         int err = -ENOSPC;
1480
1481         mutex_lock(&lpi_range_lock);
1482
1483         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1484                 if (range->span >= nr_lpis) {
1485                         *base = range->base_id;
1486                         range->base_id += nr_lpis;
1487                         range->span -= nr_lpis;
1488
1489                         if (range->span == 0) {
1490                                 list_del(&range->entry);
1491                                 kfree(range);
1492                         }
1493
1494                         err = 0;
1495                         break;
1496                 }
1497         }
1498
1499         mutex_unlock(&lpi_range_lock);
1500
1501         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1502         return err;
1503 }
1504
1505 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1506 {
1507         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1508                 return;
1509         if (a->base_id + a->span != b->base_id)
1510                 return;
1511         b->base_id = a->base_id;
1512         b->span += a->span;
1513         list_del(&a->entry);
1514         kfree(a);
1515 }
1516
1517 static int free_lpi_range(u32 base, u32 nr_lpis)
1518 {
1519         struct lpi_range *new, *old;
1520
1521         new = mk_lpi_range(base, nr_lpis);
1522         if (!new)
1523                 return -ENOMEM;
1524
1525         mutex_lock(&lpi_range_lock);
1526
1527         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1528                 if (old->base_id < base)
1529                         break;
1530         }
1531         /*
1532          * old is the last element with ->base_id smaller than base,
1533          * so new goes right after it. If there are no elements with
1534          * ->base_id smaller than base, &old->entry ends up pointing
1535          * at the head of the list, and inserting new it the start of
1536          * the list is the right thing to do in that case as well.
1537          */
1538         list_add(&new->entry, &old->entry);
1539         /*
1540          * Now check if we can merge with the preceding and/or
1541          * following ranges.
1542          */
1543         merge_lpi_ranges(old, new);
1544         merge_lpi_ranges(new, list_next_entry(new, entry));
1545
1546         mutex_unlock(&lpi_range_lock);
1547         return 0;
1548 }
1549
1550 static int __init its_lpi_init(u32 id_bits)
1551 {
1552         u32 lpis = (1UL << id_bits) - 8192;
1553         u32 numlpis;
1554         int err;
1555
1556         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1557
1558         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1559                 lpis = numlpis;
1560                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1561                         lpis);
1562         }
1563
1564         /*
1565          * Initializing the allocator is just the same as freeing the
1566          * full range of LPIs.
1567          */
1568         err = free_lpi_range(8192, lpis);
1569         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1570         return err;
1571 }
1572
1573 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1574 {
1575         unsigned long *bitmap = NULL;
1576         int err = 0;
1577
1578         do {
1579                 err = alloc_lpi_range(nr_irqs, base);
1580                 if (!err)
1581                         break;
1582
1583                 nr_irqs /= 2;
1584         } while (nr_irqs > 0);
1585
1586         if (!nr_irqs)
1587                 err = -ENOSPC;
1588
1589         if (err)
1590                 goto out;
1591
1592         bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1593         if (!bitmap)
1594                 goto out;
1595
1596         *nr_ids = nr_irqs;
1597
1598 out:
1599         if (!bitmap)
1600                 *base = *nr_ids = 0;
1601
1602         return bitmap;
1603 }
1604
1605 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1606 {
1607         WARN_ON(free_lpi_range(base, nr_ids));
1608         kfree(bitmap);
1609 }
1610
1611 static void gic_reset_prop_table(void *va)
1612 {
1613         /* Priority 0xa0, Group-1, disabled */
1614         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1615
1616         /* Make sure the GIC will observe the written configuration */
1617         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1618 }
1619
1620 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1621 {
1622         struct page *prop_page;
1623
1624         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1625         if (!prop_page)
1626                 return NULL;
1627
1628         gic_reset_prop_table(page_address(prop_page));
1629
1630         return prop_page;
1631 }
1632
1633 static void its_free_prop_table(struct page *prop_page)
1634 {
1635         free_pages((unsigned long)page_address(prop_page),
1636                    get_order(LPI_PROPBASE_SZ));
1637 }
1638
1639 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1640 {
1641         phys_addr_t start, end, addr_end;
1642         u64 i;
1643
1644         /*
1645          * We don't bother checking for a kdump kernel as by
1646          * construction, the LPI tables are out of this kernel's
1647          * memory map.
1648          */
1649         if (is_kdump_kernel())
1650                 return true;
1651
1652         addr_end = addr + size - 1;
1653
1654         for_each_reserved_mem_region(i, &start, &end) {
1655                 if (addr >= start && addr_end <= end)
1656                         return true;
1657         }
1658
1659         /* Not found, not a good sign... */
1660         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1661                 &addr, &addr_end);
1662         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1663         return false;
1664 }
1665
1666 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1667 {
1668         if (efi_enabled(EFI_CONFIG_TABLES))
1669                 return efi_mem_reserve_persistent(addr, size);
1670
1671         return 0;
1672 }
1673
1674 static int __init its_setup_lpi_prop_table(void)
1675 {
1676         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1677                 u64 val;
1678
1679                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1680                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1681
1682                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1683                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1684                                                      LPI_PROPBASE_SZ,
1685                                                      MEMREMAP_WB);
1686                 gic_reset_prop_table(gic_rdists->prop_table_va);
1687         } else {
1688                 struct page *page;
1689
1690                 lpi_id_bits = min_t(u32,
1691                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1692                                     ITS_MAX_LPI_NRBITS);
1693                 page = its_allocate_prop_table(GFP_NOWAIT);
1694                 if (!page) {
1695                         pr_err("Failed to allocate PROPBASE\n");
1696                         return -ENOMEM;
1697                 }
1698
1699                 gic_rdists->prop_table_pa = page_to_phys(page);
1700                 gic_rdists->prop_table_va = page_address(page);
1701                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1702                                           LPI_PROPBASE_SZ));
1703         }
1704
1705         pr_info("GICv3: using LPI property table @%pa\n",
1706                 &gic_rdists->prop_table_pa);
1707
1708         return its_lpi_init(lpi_id_bits);
1709 }
1710
1711 static const char *its_base_type_string[] = {
1712         [GITS_BASER_TYPE_DEVICE]        = "Devices",
1713         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1714         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1715         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1716         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1717         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1718         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1719 };
1720
1721 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1722 {
1723         u32 idx = baser - its->tables;
1724
1725         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1726 }
1727
1728 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1729                             u64 val)
1730 {
1731         u32 idx = baser - its->tables;
1732
1733         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1734         baser->val = its_read_baser(its, baser);
1735 }
1736
1737 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1738                            u64 cache, u64 shr, u32 psz, u32 order,
1739                            bool indirect)
1740 {
1741         u64 val = its_read_baser(its, baser);
1742         u64 esz = GITS_BASER_ENTRY_SIZE(val);
1743         u64 type = GITS_BASER_TYPE(val);
1744         u64 baser_phys, tmp;
1745         u32 alloc_pages;
1746         struct page *page;
1747         void *base;
1748
1749 retry_alloc_baser:
1750         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1751         if (alloc_pages > GITS_BASER_PAGES_MAX) {
1752                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1753                         &its->phys_base, its_base_type_string[type],
1754                         alloc_pages, GITS_BASER_PAGES_MAX);
1755                 alloc_pages = GITS_BASER_PAGES_MAX;
1756                 order = get_order(GITS_BASER_PAGES_MAX * psz);
1757         }
1758
1759         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1760         if (!page)
1761                 return -ENOMEM;
1762
1763         base = (void *)page_address(page);
1764         baser_phys = virt_to_phys(base);
1765
1766         /* Check if the physical address of the memory is above 48bits */
1767         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1768
1769                 /* 52bit PA is supported only when PageSize=64K */
1770                 if (psz != SZ_64K) {
1771                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1772                         free_pages((unsigned long)base, order);
1773                         return -ENXIO;
1774                 }
1775
1776                 /* Convert 52bit PA to 48bit field */
1777                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1778         }
1779
1780 retry_baser:
1781         val = (baser_phys                                        |
1782                 (type << GITS_BASER_TYPE_SHIFT)                  |
1783                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1784                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1785                 cache                                            |
1786                 shr                                              |
1787                 GITS_BASER_VALID);
1788
1789         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1790
1791         switch (psz) {
1792         case SZ_4K:
1793                 val |= GITS_BASER_PAGE_SIZE_4K;
1794                 break;
1795         case SZ_16K:
1796                 val |= GITS_BASER_PAGE_SIZE_16K;
1797                 break;
1798         case SZ_64K:
1799                 val |= GITS_BASER_PAGE_SIZE_64K;
1800                 break;
1801         }
1802
1803         its_write_baser(its, baser, val);
1804         tmp = baser->val;
1805
1806         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1807                 /*
1808                  * Shareability didn't stick. Just use
1809                  * whatever the read reported, which is likely
1810                  * to be the only thing this redistributor
1811                  * supports. If that's zero, make it
1812                  * non-cacheable as well.
1813                  */
1814                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1815                 if (!shr) {
1816                         cache = GITS_BASER_nC;
1817                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1818                 }
1819                 goto retry_baser;
1820         }
1821
1822         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1823                 /*
1824                  * Page size didn't stick. Let's try a smaller
1825                  * size and retry. If we reach 4K, then
1826                  * something is horribly wrong...
1827                  */
1828                 free_pages((unsigned long)base, order);
1829                 baser->base = NULL;
1830
1831                 switch (psz) {
1832                 case SZ_16K:
1833                         psz = SZ_4K;
1834                         goto retry_alloc_baser;
1835                 case SZ_64K:
1836                         psz = SZ_16K;
1837                         goto retry_alloc_baser;
1838                 }
1839         }
1840
1841         if (val != tmp) {
1842                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1843                        &its->phys_base, its_base_type_string[type],
1844                        val, tmp);
1845                 free_pages((unsigned long)base, order);
1846                 return -ENXIO;
1847         }
1848
1849         baser->order = order;
1850         baser->base = base;
1851         baser->psz = psz;
1852         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1853
1854         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1855                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1856                 its_base_type_string[type],
1857                 (unsigned long)virt_to_phys(base),
1858                 indirect ? "indirect" : "flat", (int)esz,
1859                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1860
1861         return 0;
1862 }
1863
1864 static bool its_parse_indirect_baser(struct its_node *its,
1865                                      struct its_baser *baser,
1866                                      u32 psz, u32 *order, u32 ids)
1867 {
1868         u64 tmp = its_read_baser(its, baser);
1869         u64 type = GITS_BASER_TYPE(tmp);
1870         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1871         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1872         u32 new_order = *order;
1873         bool indirect = false;
1874
1875         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1876         if ((esz << ids) > (psz * 2)) {
1877                 /*
1878                  * Find out whether hw supports a single or two-level table by
1879                  * table by reading bit at offset '62' after writing '1' to it.
1880                  */
1881                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1882                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1883
1884                 if (indirect) {
1885                         /*
1886                          * The size of the lvl2 table is equal to ITS page size
1887                          * which is 'psz'. For computing lvl1 table size,
1888                          * subtract ID bits that sparse lvl2 table from 'ids'
1889                          * which is reported by ITS hardware times lvl1 table
1890                          * entry size.
1891                          */
1892                         ids -= ilog2(psz / (int)esz);
1893                         esz = GITS_LVL1_ENTRY_SIZE;
1894                 }
1895         }
1896
1897         /*
1898          * Allocate as many entries as required to fit the
1899          * range of device IDs that the ITS can grok... The ID
1900          * space being incredibly sparse, this results in a
1901          * massive waste of memory if two-level device table
1902          * feature is not supported by hardware.
1903          */
1904         new_order = max_t(u32, get_order(esz << ids), new_order);
1905         if (new_order >= MAX_ORDER) {
1906                 new_order = MAX_ORDER - 1;
1907                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1908                 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1909                         &its->phys_base, its_base_type_string[type],
1910                         its->device_ids, ids);
1911         }
1912
1913         *order = new_order;
1914
1915         return indirect;
1916 }
1917
1918 static void its_free_tables(struct its_node *its)
1919 {
1920         int i;
1921
1922         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1923                 if (its->tables[i].base) {
1924                         free_pages((unsigned long)its->tables[i].base,
1925                                    its->tables[i].order);
1926                         its->tables[i].base = NULL;
1927                 }
1928         }
1929 }
1930
1931 static int its_alloc_tables(struct its_node *its)
1932 {
1933         u64 shr = GITS_BASER_InnerShareable;
1934         u64 cache = GITS_BASER_RaWaWb;
1935         u32 psz = SZ_64K;
1936         int err, i;
1937
1938         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1939                 /* erratum 24313: ignore memory access type */
1940                 cache = GITS_BASER_nCnB;
1941
1942         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1943                 struct its_baser *baser = its->tables + i;
1944                 u64 val = its_read_baser(its, baser);
1945                 u64 type = GITS_BASER_TYPE(val);
1946                 u32 order = get_order(psz);
1947                 bool indirect = false;
1948
1949                 switch (type) {
1950                 case GITS_BASER_TYPE_NONE:
1951                         continue;
1952
1953                 case GITS_BASER_TYPE_DEVICE:
1954                         indirect = its_parse_indirect_baser(its, baser,
1955                                                             psz, &order,
1956                                                             its->device_ids);
1957                         break;
1958
1959                 case GITS_BASER_TYPE_VCPU:
1960                         indirect = its_parse_indirect_baser(its, baser,
1961                                                             psz, &order,
1962                                                             ITS_MAX_VPEID_BITS);
1963                         break;
1964                 }
1965
1966                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1967                 if (err < 0) {
1968                         its_free_tables(its);
1969                         return err;
1970                 }
1971
1972                 /* Update settings which will be used for next BASERn */
1973                 psz = baser->psz;
1974                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1975                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1976         }
1977
1978         return 0;
1979 }
1980
1981 static int its_alloc_collections(struct its_node *its)
1982 {
1983         int i;
1984
1985         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1986                                    GFP_KERNEL);
1987         if (!its->collections)
1988                 return -ENOMEM;
1989
1990         for (i = 0; i < nr_cpu_ids; i++)
1991                 its->collections[i].target_address = ~0ULL;
1992
1993         return 0;
1994 }
1995
1996 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1997 {
1998         struct page *pend_page;
1999
2000         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2001                                 get_order(LPI_PENDBASE_SZ));
2002         if (!pend_page)
2003                 return NULL;
2004
2005         /* Make sure the GIC will observe the zero-ed page */
2006         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2007
2008         return pend_page;
2009 }
2010
2011 static void its_free_pending_table(struct page *pt)
2012 {
2013         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2014 }
2015
2016 /*
2017  * Booting with kdump and LPIs enabled is generally fine. Any other
2018  * case is wrong in the absence of firmware/EFI support.
2019  */
2020 static bool enabled_lpis_allowed(void)
2021 {
2022         phys_addr_t addr;
2023         u64 val;
2024
2025         /* Check whether the property table is in a reserved region */
2026         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2027         addr = val & GENMASK_ULL(51, 12);
2028
2029         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2030 }
2031
2032 static int __init allocate_lpi_tables(void)
2033 {
2034         u64 val;
2035         int err, cpu;
2036
2037         /*
2038          * If LPIs are enabled while we run this from the boot CPU,
2039          * flag the RD tables as pre-allocated if the stars do align.
2040          */
2041         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2042         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2043                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2044                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2045                 pr_info("GICv3: Using preallocated redistributor tables\n");
2046         }
2047
2048         err = its_setup_lpi_prop_table();
2049         if (err)
2050                 return err;
2051
2052         /*
2053          * We allocate all the pending tables anyway, as we may have a
2054          * mix of RDs that have had LPIs enabled, and some that
2055          * don't. We'll free the unused ones as each CPU comes online.
2056          */
2057         for_each_possible_cpu(cpu) {
2058                 struct page *pend_page;
2059
2060                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2061                 if (!pend_page) {
2062                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2063                         return -ENOMEM;
2064                 }
2065
2066                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2073 {
2074         u32 count = 1000000;    /* 1s! */
2075         bool clean;
2076         u64 val;
2077
2078         val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2079         val &= ~GICR_VPENDBASER_Valid;
2080         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2081
2082         do {
2083                 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2084                 clean = !(val & GICR_VPENDBASER_Dirty);
2085                 if (!clean) {
2086                         count--;
2087                         cpu_relax();
2088                         udelay(1);
2089                 }
2090         } while (!clean && count);
2091
2092         return val;
2093 }
2094
2095 static void its_cpu_init_lpis(void)
2096 {
2097         void __iomem *rbase = gic_data_rdist_rd_base();
2098         struct page *pend_page;
2099         phys_addr_t paddr;
2100         u64 val, tmp;
2101
2102         if (gic_data_rdist()->lpi_enabled)
2103                 return;
2104
2105         val = readl_relaxed(rbase + GICR_CTLR);
2106         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2107             (val & GICR_CTLR_ENABLE_LPIS)) {
2108                 /*
2109                  * Check that we get the same property table on all
2110                  * RDs. If we don't, this is hopeless.
2111                  */
2112                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2113                 paddr &= GENMASK_ULL(51, 12);
2114                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2115                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2116
2117                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2118                 paddr &= GENMASK_ULL(51, 16);
2119
2120                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2121                 its_free_pending_table(gic_data_rdist()->pend_page);
2122                 gic_data_rdist()->pend_page = NULL;
2123
2124                 goto out;
2125         }
2126
2127         pend_page = gic_data_rdist()->pend_page;
2128         paddr = page_to_phys(pend_page);
2129         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2130
2131         /* set PROPBASE */
2132         val = (gic_rdists->prop_table_pa |
2133                GICR_PROPBASER_InnerShareable |
2134                GICR_PROPBASER_RaWaWb |
2135                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2136
2137         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2138         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2139
2140         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2141                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2142                         /*
2143                          * The HW reports non-shareable, we must
2144                          * remove the cacheability attributes as
2145                          * well.
2146                          */
2147                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2148                                  GICR_PROPBASER_CACHEABILITY_MASK);
2149                         val |= GICR_PROPBASER_nC;
2150                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2151                 }
2152                 pr_info_once("GIC: using cache flushing for LPI property table\n");
2153                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2154         }
2155
2156         /* set PENDBASE */
2157         val = (page_to_phys(pend_page) |
2158                GICR_PENDBASER_InnerShareable |
2159                GICR_PENDBASER_RaWaWb);
2160
2161         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2162         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2163
2164         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2165                 /*
2166                  * The HW reports non-shareable, we must remove the
2167                  * cacheability attributes as well.
2168                  */
2169                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2170                          GICR_PENDBASER_CACHEABILITY_MASK);
2171                 val |= GICR_PENDBASER_nC;
2172                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2173         }
2174
2175         /* Enable LPIs */
2176         val = readl_relaxed(rbase + GICR_CTLR);
2177         val |= GICR_CTLR_ENABLE_LPIS;
2178         writel_relaxed(val, rbase + GICR_CTLR);
2179
2180         if (gic_rdists->has_vlpis) {
2181                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2182
2183                 /*
2184                  * It's possible for CPU to receive VLPIs before it is
2185                  * sheduled as a vPE, especially for the first CPU, and the
2186                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
2187                  * as out of range and dropped by GIC.
2188                  * So we initialize IDbits to known value to avoid VLPI drop.
2189                  */
2190                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2191                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2192                         smp_processor_id(), val);
2193                 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2194
2195                 /*
2196                  * Also clear Valid bit of GICR_VPENDBASER, in case some
2197                  * ancient programming gets left in and has possibility of
2198                  * corrupting memory.
2199                  */
2200                 val = its_clear_vpend_valid(vlpi_base);
2201                 WARN_ON(val & GICR_VPENDBASER_Dirty);
2202         }
2203
2204         /* Make sure the GIC has seen the above */
2205         dsb(sy);
2206 out:
2207         gic_data_rdist()->lpi_enabled = true;
2208         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2209                 smp_processor_id(),
2210                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
2211                 &paddr);
2212 }
2213
2214 static void its_cpu_init_collection(struct its_node *its)
2215 {
2216         int cpu = smp_processor_id();
2217         u64 target;
2218
2219         /* avoid cross node collections and its mapping */
2220         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2221                 struct device_node *cpu_node;
2222
2223                 cpu_node = of_get_cpu_node(cpu, NULL);
2224                 if (its->numa_node != NUMA_NO_NODE &&
2225                         its->numa_node != of_node_to_nid(cpu_node))
2226                         return;
2227         }
2228
2229         /*
2230          * We now have to bind each collection to its target
2231          * redistributor.
2232          */
2233         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2234                 /*
2235                  * This ITS wants the physical address of the
2236                  * redistributor.
2237                  */
2238                 target = gic_data_rdist()->phys_base;
2239         } else {
2240                 /* This ITS wants a linear CPU number. */
2241                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2242                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
2243         }
2244
2245         /* Perform collection mapping */
2246         its->collections[cpu].target_address = target;
2247         its->collections[cpu].col_id = cpu;
2248
2249         its_send_mapc(its, &its->collections[cpu], 1);
2250         its_send_invall(its, &its->collections[cpu]);
2251 }
2252
2253 static void its_cpu_init_collections(void)
2254 {
2255         struct its_node *its;
2256
2257         raw_spin_lock(&its_lock);
2258
2259         list_for_each_entry(its, &its_nodes, entry)
2260                 its_cpu_init_collection(its);
2261
2262         raw_spin_unlock(&its_lock);
2263 }
2264
2265 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2266 {
2267         struct its_device *its_dev = NULL, *tmp;
2268         unsigned long flags;
2269
2270         raw_spin_lock_irqsave(&its->lock, flags);
2271
2272         list_for_each_entry(tmp, &its->its_device_list, entry) {
2273                 if (tmp->device_id == dev_id) {
2274                         its_dev = tmp;
2275                         break;
2276                 }
2277         }
2278
2279         raw_spin_unlock_irqrestore(&its->lock, flags);
2280
2281         return its_dev;
2282 }
2283
2284 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2285 {
2286         int i;
2287
2288         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2289                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2290                         return &its->tables[i];
2291         }
2292
2293         return NULL;
2294 }
2295
2296 static bool its_alloc_table_entry(struct its_node *its,
2297                                   struct its_baser *baser, u32 id)
2298 {
2299         struct page *page;
2300         u32 esz, idx;
2301         __le64 *table;
2302
2303         /* Don't allow device id that exceeds single, flat table limit */
2304         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2305         if (!(baser->val & GITS_BASER_INDIRECT))
2306                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2307
2308         /* Compute 1st level table index & check if that exceeds table limit */
2309         idx = id >> ilog2(baser->psz / esz);
2310         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2311                 return false;
2312
2313         table = baser->base;
2314
2315         /* Allocate memory for 2nd level table */
2316         if (!table[idx]) {
2317                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2318                                         get_order(baser->psz));
2319                 if (!page)
2320                         return false;
2321
2322                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2323                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2324                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2325
2326                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2327
2328                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2329                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2330                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2331
2332                 /* Ensure updated table contents are visible to ITS hardware */
2333                 dsb(sy);
2334         }
2335
2336         return true;
2337 }
2338
2339 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2340 {
2341         struct its_baser *baser;
2342
2343         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2344
2345         /* Don't allow device id that exceeds ITS hardware limit */
2346         if (!baser)
2347                 return (ilog2(dev_id) < its->device_ids);
2348
2349         return its_alloc_table_entry(its, baser, dev_id);
2350 }
2351
2352 static bool its_alloc_vpe_table(u32 vpe_id)
2353 {
2354         struct its_node *its;
2355
2356         /*
2357          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2358          * could try and only do it on ITSs corresponding to devices
2359          * that have interrupts targeted at this VPE, but the
2360          * complexity becomes crazy (and you have tons of memory
2361          * anyway, right?).
2362          */
2363         list_for_each_entry(its, &its_nodes, entry) {
2364                 struct its_baser *baser;
2365
2366                 if (!its->is_v4)
2367                         continue;
2368
2369                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2370                 if (!baser)
2371                         return false;
2372
2373                 if (!its_alloc_table_entry(its, baser, vpe_id))
2374                         return false;
2375         }
2376
2377         return true;
2378 }
2379
2380 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2381                                             int nvecs, bool alloc_lpis)
2382 {
2383         struct its_device *dev;
2384         unsigned long *lpi_map = NULL;
2385         unsigned long flags;
2386         u16 *col_map = NULL;
2387         void *itt;
2388         int lpi_base;
2389         int nr_lpis;
2390         int nr_ites;
2391         int sz;
2392
2393         if (!its_alloc_device_table(its, dev_id))
2394                 return NULL;
2395
2396         if (WARN_ON(!is_power_of_2(nvecs)))
2397                 nvecs = roundup_pow_of_two(nvecs);
2398
2399         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2400         /*
2401          * Even if the device wants a single LPI, the ITT must be
2402          * sized as a power of two (and you need at least one bit...).
2403          */
2404         nr_ites = max(2, nvecs);
2405         sz = nr_ites * its->ite_size;
2406         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2407         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2408         if (alloc_lpis) {
2409                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2410                 if (lpi_map)
2411                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
2412                                           GFP_KERNEL);
2413         } else {
2414                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2415                 nr_lpis = 0;
2416                 lpi_base = 0;
2417         }
2418
2419         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2420                 kfree(dev);
2421                 kfree(itt);
2422                 kfree(lpi_map);
2423                 kfree(col_map);
2424                 return NULL;
2425         }
2426
2427         gic_flush_dcache_to_poc(itt, sz);
2428
2429         dev->its = its;
2430         dev->itt = itt;
2431         dev->nr_ites = nr_ites;
2432         dev->event_map.lpi_map = lpi_map;
2433         dev->event_map.col_map = col_map;
2434         dev->event_map.lpi_base = lpi_base;
2435         dev->event_map.nr_lpis = nr_lpis;
2436         mutex_init(&dev->event_map.vlpi_lock);
2437         dev->device_id = dev_id;
2438         INIT_LIST_HEAD(&dev->entry);
2439
2440         raw_spin_lock_irqsave(&its->lock, flags);
2441         list_add(&dev->entry, &its->its_device_list);
2442         raw_spin_unlock_irqrestore(&its->lock, flags);
2443
2444         /* Map device to its ITT */
2445         its_send_mapd(dev, 1);
2446
2447         return dev;
2448 }
2449
2450 static void its_free_device(struct its_device *its_dev)
2451 {
2452         unsigned long flags;
2453
2454         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2455         list_del(&its_dev->entry);
2456         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2457         kfree(its_dev->itt);
2458         kfree(its_dev);
2459 }
2460
2461 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2462 {
2463         int idx;
2464
2465         idx = bitmap_find_free_region(dev->event_map.lpi_map,
2466                                       dev->event_map.nr_lpis,
2467                                       get_count_order(nvecs));
2468         if (idx < 0)
2469                 return -ENOSPC;
2470
2471         *hwirq = dev->event_map.lpi_base + idx;
2472         set_bit(idx, dev->event_map.lpi_map);
2473
2474         return 0;
2475 }
2476
2477 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2478                            int nvec, msi_alloc_info_t *info)
2479 {
2480         struct its_node *its;
2481         struct its_device *its_dev;
2482         struct msi_domain_info *msi_info;
2483         u32 dev_id;
2484         int err = 0;
2485
2486         /*
2487          * We ignore "dev" entirely, and rely on the dev_id that has
2488          * been passed via the scratchpad. This limits this domain's
2489          * usefulness to upper layers that definitely know that they
2490          * are built on top of the ITS.
2491          */
2492         dev_id = info->scratchpad[0].ul;
2493
2494         msi_info = msi_get_domain_info(domain);
2495         its = msi_info->data;
2496
2497         if (!gic_rdists->has_direct_lpi &&
2498             vpe_proxy.dev &&
2499             vpe_proxy.dev->its == its &&
2500             dev_id == vpe_proxy.dev->device_id) {
2501                 /* Bad luck. Get yourself a better implementation */
2502                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2503                           dev_id);
2504                 return -EINVAL;
2505         }
2506
2507         mutex_lock(&its->dev_alloc_lock);
2508         its_dev = its_find_device(its, dev_id);
2509         if (its_dev) {
2510                 /*
2511                  * We already have seen this ID, probably through
2512                  * another alias (PCI bridge of some sort). No need to
2513                  * create the device.
2514                  */
2515                 its_dev->shared = true;
2516                 pr_debug("Reusing ITT for devID %x\n", dev_id);
2517                 goto out;
2518         }
2519
2520         its_dev = its_create_device(its, dev_id, nvec, true);
2521         if (!its_dev) {
2522                 err = -ENOMEM;
2523                 goto out;
2524         }
2525
2526         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2527 out:
2528         mutex_unlock(&its->dev_alloc_lock);
2529         info->scratchpad[0].ptr = its_dev;
2530         return err;
2531 }
2532
2533 static struct msi_domain_ops its_msi_domain_ops = {
2534         .msi_prepare    = its_msi_prepare,
2535 };
2536
2537 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2538                                     unsigned int virq,
2539                                     irq_hw_number_t hwirq)
2540 {
2541         struct irq_fwspec fwspec;
2542
2543         if (irq_domain_get_of_node(domain->parent)) {
2544                 fwspec.fwnode = domain->parent->fwnode;
2545                 fwspec.param_count = 3;
2546                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2547                 fwspec.param[1] = hwirq;
2548                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2549         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2550                 fwspec.fwnode = domain->parent->fwnode;
2551                 fwspec.param_count = 2;
2552                 fwspec.param[0] = hwirq;
2553                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2554         } else {
2555                 return -EINVAL;
2556         }
2557
2558         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2559 }
2560
2561 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2562                                 unsigned int nr_irqs, void *args)
2563 {
2564         msi_alloc_info_t *info = args;
2565         struct its_device *its_dev = info->scratchpad[0].ptr;
2566         struct its_node *its = its_dev->its;
2567         irq_hw_number_t hwirq;
2568         int err;
2569         int i;
2570
2571         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2572         if (err)
2573                 return err;
2574
2575         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2576         if (err)
2577                 return err;
2578
2579         for (i = 0; i < nr_irqs; i++) {
2580                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2581                 if (err)
2582                         return err;
2583
2584                 irq_domain_set_hwirq_and_chip(domain, virq + i,
2585                                               hwirq + i, &its_irq_chip, its_dev);
2586                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2587                 pr_debug("ID:%d pID:%d vID:%d\n",
2588                          (int)(hwirq + i - its_dev->event_map.lpi_base),
2589                          (int)(hwirq + i), virq + i);
2590         }
2591
2592         return 0;
2593 }
2594
2595 static int its_irq_domain_activate(struct irq_domain *domain,
2596                                    struct irq_data *d, bool reserve)
2597 {
2598         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2599         u32 event = its_get_event_id(d);
2600         const struct cpumask *cpu_mask = cpu_online_mask;
2601         int cpu;
2602
2603         /* get the cpu_mask of local node */
2604         if (its_dev->its->numa_node >= 0)
2605                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2606
2607         /* Bind the LPI to the first possible CPU */
2608         cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2609         if (cpu >= nr_cpu_ids) {
2610                 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2611                         return -EINVAL;
2612
2613                 cpu = cpumask_first(cpu_online_mask);
2614         }
2615
2616         its_dev->event_map.col_map[event] = cpu;
2617         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2618
2619         /* Map the GIC IRQ and event to the device */
2620         its_send_mapti(its_dev, d->hwirq, event);
2621         return 0;
2622 }
2623
2624 static void its_irq_domain_deactivate(struct irq_domain *domain,
2625                                       struct irq_data *d)
2626 {
2627         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2628         u32 event = its_get_event_id(d);
2629
2630         /* Stop the delivery of interrupts */
2631         its_send_discard(its_dev, event);
2632 }
2633
2634 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2635                                 unsigned int nr_irqs)
2636 {
2637         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2638         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2639         struct its_node *its = its_dev->its;
2640         int i;
2641
2642         for (i = 0; i < nr_irqs; i++) {
2643                 struct irq_data *data = irq_domain_get_irq_data(domain,
2644                                                                 virq + i);
2645                 u32 event = its_get_event_id(data);
2646
2647                 /* Mark interrupt index as unused */
2648                 clear_bit(event, its_dev->event_map.lpi_map);
2649
2650                 /* Nuke the entry in the domain */
2651                 irq_domain_reset_irq_data(data);
2652         }
2653
2654         mutex_lock(&its->dev_alloc_lock);
2655
2656         /*
2657          * If all interrupts have been freed, start mopping the
2658          * floor. This is conditionned on the device not being shared.
2659          */
2660         if (!its_dev->shared &&
2661             bitmap_empty(its_dev->event_map.lpi_map,
2662                          its_dev->event_map.nr_lpis)) {
2663                 its_lpi_free(its_dev->event_map.lpi_map,
2664                              its_dev->event_map.lpi_base,
2665                              its_dev->event_map.nr_lpis);
2666                 kfree(its_dev->event_map.col_map);
2667
2668                 /* Unmap device/itt */
2669                 its_send_mapd(its_dev, 0);
2670                 its_free_device(its_dev);
2671         }
2672
2673         mutex_unlock(&its->dev_alloc_lock);
2674
2675         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2676 }
2677
2678 static const struct irq_domain_ops its_domain_ops = {
2679         .alloc                  = its_irq_domain_alloc,
2680         .free                   = its_irq_domain_free,
2681         .activate               = its_irq_domain_activate,
2682         .deactivate             = its_irq_domain_deactivate,
2683 };
2684
2685 /*
2686  * This is insane.
2687  *
2688  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2689  * likely), the only way to perform an invalidate is to use a fake
2690  * device to issue an INV command, implying that the LPI has first
2691  * been mapped to some event on that device. Since this is not exactly
2692  * cheap, we try to keep that mapping around as long as possible, and
2693  * only issue an UNMAP if we're short on available slots.
2694  *
2695  * Broken by design(tm).
2696  */
2697 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2698 {
2699         /* Already unmapped? */
2700         if (vpe->vpe_proxy_event == -1)
2701                 return;
2702
2703         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2704         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2705
2706         /*
2707          * We don't track empty slots at all, so let's move the
2708          * next_victim pointer if we can quickly reuse that slot
2709          * instead of nuking an existing entry. Not clear that this is
2710          * always a win though, and this might just generate a ripple
2711          * effect... Let's just hope VPEs don't migrate too often.
2712          */
2713         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2714                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2715
2716         vpe->vpe_proxy_event = -1;
2717 }
2718
2719 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2720 {
2721         if (!gic_rdists->has_direct_lpi) {
2722                 unsigned long flags;
2723
2724                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2725                 its_vpe_db_proxy_unmap_locked(vpe);
2726                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2727         }
2728 }
2729
2730 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2731 {
2732         /* Already mapped? */
2733         if (vpe->vpe_proxy_event != -1)
2734                 return;
2735
2736         /* This slot was already allocated. Kick the other VPE out. */
2737         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2738                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2739
2740         /* Map the new VPE instead */
2741         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2742         vpe->vpe_proxy_event = vpe_proxy.next_victim;
2743         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2744
2745         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2746         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2747 }
2748
2749 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2750 {
2751         unsigned long flags;
2752         struct its_collection *target_col;
2753
2754         if (gic_rdists->has_direct_lpi) {
2755                 void __iomem *rdbase;
2756
2757                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2758                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2759                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2760                         cpu_relax();
2761
2762                 return;
2763         }
2764
2765         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2766
2767         its_vpe_db_proxy_map_locked(vpe);
2768
2769         target_col = &vpe_proxy.dev->its->collections[to];
2770         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2771         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2772
2773         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2774 }
2775
2776 static int its_vpe_set_affinity(struct irq_data *d,
2777                                 const struct cpumask *mask_val,
2778                                 bool force)
2779 {
2780         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2781         int cpu = cpumask_first(mask_val);
2782
2783         /*
2784          * Changing affinity is mega expensive, so let's be as lazy as
2785          * we can and only do it if we really have to. Also, if mapped
2786          * into the proxy device, we need to move the doorbell
2787          * interrupt to its new location.
2788          */
2789         if (vpe->col_idx != cpu) {
2790                 int from = vpe->col_idx;
2791
2792                 vpe->col_idx = cpu;
2793                 its_send_vmovp(vpe);
2794                 its_vpe_db_proxy_move(vpe, from, cpu);
2795         }
2796
2797         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2798
2799         return IRQ_SET_MASK_OK_DONE;
2800 }
2801
2802 static void its_vpe_schedule(struct its_vpe *vpe)
2803 {
2804         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805         u64 val;
2806
2807         /* Schedule the VPE */
2808         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2809                 GENMASK_ULL(51, 12);
2810         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2811         val |= GICR_VPROPBASER_RaWb;
2812         val |= GICR_VPROPBASER_InnerShareable;
2813         gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2814
2815         val  = virt_to_phys(page_address(vpe->vpt_page)) &
2816                 GENMASK_ULL(51, 16);
2817         val |= GICR_VPENDBASER_RaWaWb;
2818         val |= GICR_VPENDBASER_NonShareable;
2819         /*
2820          * There is no good way of finding out if the pending table is
2821          * empty as we can race against the doorbell interrupt very
2822          * easily. So in the end, vpe->pending_last is only an
2823          * indication that the vcpu has something pending, not one
2824          * that the pending table is empty. A good implementation
2825          * would be able to read its coarse map pretty quickly anyway,
2826          * making this a tolerable issue.
2827          */
2828         val |= GICR_VPENDBASER_PendingLast;
2829         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2830         val |= GICR_VPENDBASER_Valid;
2831         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2832 }
2833
2834 static void its_vpe_deschedule(struct its_vpe *vpe)
2835 {
2836         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2837         u64 val;
2838
2839         val = its_clear_vpend_valid(vlpi_base);
2840
2841         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2842                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2843                 vpe->idai = false;
2844                 vpe->pending_last = true;
2845         } else {
2846                 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2847                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2848         }
2849 }
2850
2851 static void its_vpe_invall(struct its_vpe *vpe)
2852 {
2853         struct its_node *its;
2854
2855         list_for_each_entry(its, &its_nodes, entry) {
2856                 if (!its->is_v4)
2857                         continue;
2858
2859                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2860                         continue;
2861
2862                 /*
2863                  * Sending a VINVALL to a single ITS is enough, as all
2864                  * we need is to reach the redistributors.
2865                  */
2866                 its_send_vinvall(its, vpe);
2867                 return;
2868         }
2869 }
2870
2871 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2872 {
2873         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2874         struct its_cmd_info *info = vcpu_info;
2875
2876         switch (info->cmd_type) {
2877         case SCHEDULE_VPE:
2878                 its_vpe_schedule(vpe);
2879                 return 0;
2880
2881         case DESCHEDULE_VPE:
2882                 its_vpe_deschedule(vpe);
2883                 return 0;
2884
2885         case INVALL_VPE:
2886                 its_vpe_invall(vpe);
2887                 return 0;
2888
2889         default:
2890                 return -EINVAL;
2891         }
2892 }
2893
2894 static void its_vpe_send_cmd(struct its_vpe *vpe,
2895                              void (*cmd)(struct its_device *, u32))
2896 {
2897         unsigned long flags;
2898
2899         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2900
2901         its_vpe_db_proxy_map_locked(vpe);
2902         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2903
2904         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2905 }
2906
2907 static void its_vpe_send_inv(struct irq_data *d)
2908 {
2909         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2910
2911         if (gic_rdists->has_direct_lpi) {
2912                 void __iomem *rdbase;
2913
2914                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2915                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2916                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2917                         cpu_relax();
2918         } else {
2919                 its_vpe_send_cmd(vpe, its_send_inv);
2920         }
2921 }
2922
2923 static void its_vpe_mask_irq(struct irq_data *d)
2924 {
2925         /*
2926          * We need to unmask the LPI, which is described by the parent
2927          * irq_data. Instead of calling into the parent (which won't
2928          * exactly do the right thing, let's simply use the
2929          * parent_data pointer. Yes, I'm naughty.
2930          */
2931         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2932         its_vpe_send_inv(d);
2933 }
2934
2935 static void its_vpe_unmask_irq(struct irq_data *d)
2936 {
2937         /* Same hack as above... */
2938         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2939         its_vpe_send_inv(d);
2940 }
2941
2942 static int its_vpe_set_irqchip_state(struct irq_data *d,
2943                                      enum irqchip_irq_state which,
2944                                      bool state)
2945 {
2946         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2947
2948         if (which != IRQCHIP_STATE_PENDING)
2949                 return -EINVAL;
2950
2951         if (gic_rdists->has_direct_lpi) {
2952                 void __iomem *rdbase;
2953
2954                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2955                 if (state) {
2956                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2957                 } else {
2958                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2959                         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2960                                 cpu_relax();
2961                 }
2962         } else {
2963                 if (state)
2964                         its_vpe_send_cmd(vpe, its_send_int);
2965                 else
2966                         its_vpe_send_cmd(vpe, its_send_clear);
2967         }
2968
2969         return 0;
2970 }
2971
2972 static struct irq_chip its_vpe_irq_chip = {
2973         .name                   = "GICv4-vpe",
2974         .irq_mask               = its_vpe_mask_irq,
2975         .irq_unmask             = its_vpe_unmask_irq,
2976         .irq_eoi                = irq_chip_eoi_parent,
2977         .irq_set_affinity       = its_vpe_set_affinity,
2978         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2979         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2980 };
2981
2982 static int its_vpe_id_alloc(void)
2983 {
2984         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2985 }
2986
2987 static void its_vpe_id_free(u16 id)
2988 {
2989         ida_simple_remove(&its_vpeid_ida, id);
2990 }
2991
2992 static int its_vpe_init(struct its_vpe *vpe)
2993 {
2994         struct page *vpt_page;
2995         int vpe_id;
2996
2997         /* Allocate vpe_id */
2998         vpe_id = its_vpe_id_alloc();
2999         if (vpe_id < 0)
3000                 return vpe_id;
3001
3002         /* Allocate VPT */
3003         vpt_page = its_allocate_pending_table(GFP_KERNEL);
3004         if (!vpt_page) {
3005                 its_vpe_id_free(vpe_id);
3006                 return -ENOMEM;
3007         }
3008
3009         if (!its_alloc_vpe_table(vpe_id)) {
3010                 its_vpe_id_free(vpe_id);
3011                 its_free_pending_table(vpe->vpt_page);
3012                 return -ENOMEM;
3013         }
3014
3015         vpe->vpe_id = vpe_id;
3016         vpe->vpt_page = vpt_page;
3017         vpe->vpe_proxy_event = -1;
3018
3019         return 0;
3020 }
3021
3022 static void its_vpe_teardown(struct its_vpe *vpe)
3023 {
3024         its_vpe_db_proxy_unmap(vpe);
3025         its_vpe_id_free(vpe->vpe_id);
3026         its_free_pending_table(vpe->vpt_page);
3027 }
3028
3029 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3030                                     unsigned int virq,
3031                                     unsigned int nr_irqs)
3032 {
3033         struct its_vm *vm = domain->host_data;
3034         int i;
3035
3036         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3037
3038         for (i = 0; i < nr_irqs; i++) {
3039                 struct irq_data *data = irq_domain_get_irq_data(domain,
3040                                                                 virq + i);
3041                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3042
3043                 BUG_ON(vm != vpe->its_vm);
3044
3045                 clear_bit(data->hwirq, vm->db_bitmap);
3046                 its_vpe_teardown(vpe);
3047                 irq_domain_reset_irq_data(data);
3048         }
3049
3050         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3051                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3052                 its_free_prop_table(vm->vprop_page);
3053         }
3054 }
3055
3056 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3057                                     unsigned int nr_irqs, void *args)
3058 {
3059         struct its_vm *vm = args;
3060         unsigned long *bitmap;
3061         struct page *vprop_page;
3062         int base, nr_ids, i, err = 0;
3063
3064         BUG_ON(!vm);
3065
3066         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3067         if (!bitmap)
3068                 return -ENOMEM;
3069
3070         if (nr_ids < nr_irqs) {
3071                 its_lpi_free(bitmap, base, nr_ids);
3072                 return -ENOMEM;
3073         }
3074
3075         vprop_page = its_allocate_prop_table(GFP_KERNEL);
3076         if (!vprop_page) {
3077                 its_lpi_free(bitmap, base, nr_ids);
3078                 return -ENOMEM;
3079         }
3080
3081         vm->db_bitmap = bitmap;
3082         vm->db_lpi_base = base;
3083         vm->nr_db_lpis = nr_ids;
3084         vm->vprop_page = vprop_page;
3085
3086         for (i = 0; i < nr_irqs; i++) {
3087                 vm->vpes[i]->vpe_db_lpi = base + i;
3088                 err = its_vpe_init(vm->vpes[i]);
3089                 if (err)
3090                         break;
3091                 err = its_irq_gic_domain_alloc(domain, virq + i,
3092                                                vm->vpes[i]->vpe_db_lpi);
3093                 if (err)
3094                         break;
3095                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3096                                               &its_vpe_irq_chip, vm->vpes[i]);
3097                 set_bit(i, bitmap);
3098         }
3099
3100         if (err) {
3101                 if (i > 0)
3102                         its_vpe_irq_domain_free(domain, virq, i - 1);
3103
3104                 its_lpi_free(bitmap, base, nr_ids);
3105                 its_free_prop_table(vprop_page);
3106         }
3107
3108         return err;
3109 }
3110
3111 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3112                                        struct irq_data *d, bool reserve)
3113 {
3114         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3115         struct its_node *its;
3116
3117         /* If we use the list map, we issue VMAPP on demand... */
3118         if (its_list_map)
3119                 return 0;
3120
3121         /* Map the VPE to the first possible CPU */
3122         vpe->col_idx = cpumask_first(cpu_online_mask);
3123
3124         list_for_each_entry(its, &its_nodes, entry) {
3125                 if (!its->is_v4)
3126                         continue;
3127
3128                 its_send_vmapp(its, vpe, true);
3129                 its_send_vinvall(its, vpe);
3130         }
3131
3132         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3133
3134         return 0;
3135 }
3136
3137 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3138                                           struct irq_data *d)
3139 {
3140         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3141         struct its_node *its;
3142
3143         /*
3144          * If we use the list map, we unmap the VPE once no VLPIs are
3145          * associated with the VM.
3146          */
3147         if (its_list_map)
3148                 return;
3149
3150         list_for_each_entry(its, &its_nodes, entry) {
3151                 if (!its->is_v4)
3152                         continue;
3153
3154                 its_send_vmapp(its, vpe, false);
3155         }
3156 }
3157
3158 static const struct irq_domain_ops its_vpe_domain_ops = {
3159         .alloc                  = its_vpe_irq_domain_alloc,
3160         .free                   = its_vpe_irq_domain_free,
3161         .activate               = its_vpe_irq_domain_activate,
3162         .deactivate             = its_vpe_irq_domain_deactivate,
3163 };
3164
3165 static int its_force_quiescent(void __iomem *base)
3166 {
3167         u32 count = 1000000;    /* 1s */
3168         u32 val;
3169
3170         val = readl_relaxed(base + GITS_CTLR);
3171         /*
3172          * GIC architecture specification requires the ITS to be both
3173          * disabled and quiescent for writes to GITS_BASER<n> or
3174          * GITS_CBASER to not have UNPREDICTABLE results.
3175          */
3176         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3177                 return 0;
3178
3179         /* Disable the generation of all interrupts to this ITS */
3180         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3181         writel_relaxed(val, base + GITS_CTLR);
3182
3183         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3184         while (1) {
3185                 val = readl_relaxed(base + GITS_CTLR);
3186                 if (val & GITS_CTLR_QUIESCENT)
3187                         return 0;
3188
3189                 count--;
3190                 if (!count)
3191                         return -EBUSY;
3192
3193                 cpu_relax();
3194                 udelay(1);
3195         }
3196 }
3197
3198 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3199 {
3200         struct its_node *its = data;
3201
3202         /* erratum 22375: only alloc 8MB table size */
3203         its->device_ids = 0x14;         /* 20 bits, 8MB */
3204         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3205
3206         return true;
3207 }
3208
3209 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3210 {
3211         struct its_node *its = data;
3212
3213         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3214
3215         return true;
3216 }
3217
3218 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3219 {
3220         struct its_node *its = data;
3221
3222         /* On QDF2400, the size of the ITE is 16Bytes */
3223         its->ite_size = 16;
3224
3225         return true;
3226 }
3227
3228 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3229 {
3230         struct its_node *its = its_dev->its;
3231
3232         /*
3233          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3234          * which maps 32-bit writes targeted at a separate window of
3235          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3236          * with device ID taken from bits [device_id_bits + 1:2] of
3237          * the window offset.
3238          */
3239         return its->pre_its_base + (its_dev->device_id << 2);
3240 }
3241
3242 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3243 {
3244         struct its_node *its = data;
3245         u32 pre_its_window[2];
3246         u32 ids;
3247
3248         if (!fwnode_property_read_u32_array(its->fwnode_handle,
3249                                            "socionext,synquacer-pre-its",
3250                                            pre_its_window,
3251                                            ARRAY_SIZE(pre_its_window))) {
3252
3253                 its->pre_its_base = pre_its_window[0];
3254                 its->get_msi_base = its_irq_get_msi_base_pre_its;
3255
3256                 ids = ilog2(pre_its_window[1]) - 2;
3257                 if (its->device_ids > ids)
3258                         its->device_ids = ids;
3259
3260                 /* the pre-ITS breaks isolation, so disable MSI remapping */
3261                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3262                 return true;
3263         }
3264         return false;
3265 }
3266
3267 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3268 {
3269         struct its_node *its = data;
3270
3271         /*
3272          * Hip07 insists on using the wrong address for the VLPI
3273          * page. Trick it into doing the right thing...
3274          */
3275         its->vlpi_redist_offset = SZ_128K;
3276         return true;
3277 }
3278
3279 static const struct gic_quirk its_quirks[] = {
3280 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3281         {
3282                 .desc   = "ITS: Cavium errata 22375, 24313",
3283                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3284                 .mask   = 0xffff0fff,
3285                 .init   = its_enable_quirk_cavium_22375,
3286         },
3287 #endif
3288 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3289         {
3290                 .desc   = "ITS: Cavium erratum 23144",
3291                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3292                 .mask   = 0xffff0fff,
3293                 .init   = its_enable_quirk_cavium_23144,
3294         },
3295 #endif
3296 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3297         {
3298                 .desc   = "ITS: QDF2400 erratum 0065",
3299                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3300                 .mask   = 0xffffffff,
3301                 .init   = its_enable_quirk_qdf2400_e0065,
3302         },
3303 #endif
3304 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3305         {
3306                 /*
3307                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3308                  * implementation, but with a 'pre-ITS' added that requires
3309                  * special handling in software.
3310                  */
3311                 .desc   = "ITS: Socionext Synquacer pre-ITS",
3312                 .iidr   = 0x0001143b,
3313                 .mask   = 0xffffffff,
3314                 .init   = its_enable_quirk_socionext_synquacer,
3315         },
3316 #endif
3317 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3318         {
3319                 .desc   = "ITS: Hip07 erratum 161600802",
3320                 .iidr   = 0x00000004,
3321                 .mask   = 0xffffffff,
3322                 .init   = its_enable_quirk_hip07_161600802,
3323         },
3324 #endif
3325         {
3326         }
3327 };
3328
3329 static void its_enable_quirks(struct its_node *its)
3330 {
3331         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3332
3333         gic_enable_quirks(iidr, its_quirks, its);
3334 }
3335
3336 static int its_save_disable(void)
3337 {
3338         struct its_node *its;
3339         int err = 0;
3340
3341         raw_spin_lock(&its_lock);
3342         list_for_each_entry(its, &its_nodes, entry) {
3343                 void __iomem *base;
3344
3345                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3346                         continue;
3347
3348                 base = its->base;
3349                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3350                 err = its_force_quiescent(base);
3351                 if (err) {
3352                         pr_err("ITS@%pa: failed to quiesce: %d\n",
3353                                &its->phys_base, err);
3354                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3355                         goto err;
3356                 }
3357
3358                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3359         }
3360
3361 err:
3362         if (err) {
3363                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3364                         void __iomem *base;
3365
3366                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3367                                 continue;
3368
3369                         base = its->base;
3370                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3371                 }
3372         }
3373         raw_spin_unlock(&its_lock);
3374
3375         return err;
3376 }
3377
3378 static void its_restore_enable(void)
3379 {
3380         struct its_node *its;
3381         int ret;
3382
3383         raw_spin_lock(&its_lock);
3384         list_for_each_entry(its, &its_nodes, entry) {
3385                 void __iomem *base;
3386                 int i;
3387
3388                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3389                         continue;
3390
3391                 base = its->base;
3392
3393                 /*
3394                  * Make sure that the ITS is disabled. If it fails to quiesce,
3395                  * don't restore it since writing to CBASER or BASER<n>
3396                  * registers is undefined according to the GIC v3 ITS
3397                  * Specification.
3398                  */
3399                 ret = its_force_quiescent(base);
3400                 if (ret) {
3401                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3402                                &its->phys_base, ret);
3403                         continue;
3404                 }
3405
3406                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3407
3408                 /*
3409                  * Writing CBASER resets CREADR to 0, so make CWRITER and
3410                  * cmd_write line up with it.
3411                  */
3412                 its->cmd_write = its->cmd_base;
3413                 gits_write_cwriter(0, base + GITS_CWRITER);
3414
3415                 /* Restore GITS_BASER from the value cache. */
3416                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3417                         struct its_baser *baser = &its->tables[i];
3418
3419                         if (!(baser->val & GITS_BASER_VALID))
3420                                 continue;
3421
3422                         its_write_baser(its, baser, baser->val);
3423                 }
3424                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3425
3426                 /*
3427                  * Reinit the collection if it's stored in the ITS. This is
3428                  * indicated by the col_id being less than the HCC field.
3429                  * CID < HCC as specified in the GIC v3 Documentation.
3430                  */
3431                 if (its->collections[smp_processor_id()].col_id <
3432                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3433                         its_cpu_init_collection(its);
3434         }
3435         raw_spin_unlock(&its_lock);
3436 }
3437
3438 static struct syscore_ops its_syscore_ops = {
3439         .suspend = its_save_disable,
3440         .resume = its_restore_enable,
3441 };
3442
3443 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3444 {
3445         struct irq_domain *inner_domain;
3446         struct msi_domain_info *info;
3447
3448         info = kzalloc(sizeof(*info), GFP_KERNEL);
3449         if (!info)
3450                 return -ENOMEM;
3451
3452         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3453         if (!inner_domain) {
3454                 kfree(info);
3455                 return -ENOMEM;
3456         }
3457
3458         inner_domain->parent = its_parent;
3459         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3460         inner_domain->flags |= its->msi_domain_flags;
3461         info->ops = &its_msi_domain_ops;
3462         info->data = its;
3463         inner_domain->host_data = info;
3464
3465         return 0;
3466 }
3467
3468 static int its_init_vpe_domain(void)
3469 {
3470         struct its_node *its;
3471         u32 devid;
3472         int entries;
3473
3474         if (gic_rdists->has_direct_lpi) {
3475                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3476                 return 0;
3477         }
3478
3479         /* Any ITS will do, even if not v4 */
3480         its = list_first_entry(&its_nodes, struct its_node, entry);
3481
3482         entries = roundup_pow_of_two(nr_cpu_ids);
3483         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3484                                  GFP_KERNEL);
3485         if (!vpe_proxy.vpes) {
3486                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3487                 return -ENOMEM;
3488         }
3489
3490         /* Use the last possible DevID */
3491         devid = GENMASK(its->device_ids - 1, 0);
3492         vpe_proxy.dev = its_create_device(its, devid, entries, false);
3493         if (!vpe_proxy.dev) {
3494                 kfree(vpe_proxy.vpes);
3495                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3496                 return -ENOMEM;
3497         }
3498
3499         BUG_ON(entries > vpe_proxy.dev->nr_ites);
3500
3501         raw_spin_lock_init(&vpe_proxy.lock);
3502         vpe_proxy.next_victim = 0;
3503         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3504                 devid, vpe_proxy.dev->nr_ites);
3505
3506         return 0;
3507 }
3508
3509 static int __init its_compute_its_list_map(struct resource *res,
3510                                            void __iomem *its_base)
3511 {
3512         int its_number;
3513         u32 ctlr;
3514
3515         /*
3516          * This is assumed to be done early enough that we're
3517          * guaranteed to be single-threaded, hence no
3518          * locking. Should this change, we should address
3519          * this.
3520          */
3521         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3522         if (its_number >= GICv4_ITS_LIST_MAX) {
3523                 pr_err("ITS@%pa: No ITSList entry available!\n",
3524                        &res->start);
3525                 return -EINVAL;
3526         }
3527
3528         ctlr = readl_relaxed(its_base + GITS_CTLR);
3529         ctlr &= ~GITS_CTLR_ITS_NUMBER;
3530         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3531         writel_relaxed(ctlr, its_base + GITS_CTLR);
3532         ctlr = readl_relaxed(its_base + GITS_CTLR);
3533         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3534                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3535                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3536         }
3537
3538         if (test_and_set_bit(its_number, &its_list_map)) {
3539                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3540                        &res->start, its_number);
3541                 return -EINVAL;
3542         }
3543
3544         return its_number;
3545 }
3546
3547 static int __init its_probe_one(struct resource *res,
3548                                 struct fwnode_handle *handle, int numa_node)
3549 {
3550         struct its_node *its;
3551         void __iomem *its_base;
3552         u32 val, ctlr;
3553         u64 baser, tmp, typer;
3554         struct page *page;
3555         int err;
3556
3557         its_base = ioremap(res->start, resource_size(res));
3558         if (!its_base) {
3559                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3560                 return -ENOMEM;
3561         }
3562
3563         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3564         if (val != 0x30 && val != 0x40) {
3565                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3566                 err = -ENODEV;
3567                 goto out_unmap;
3568         }
3569
3570         err = its_force_quiescent(its_base);
3571         if (err) {
3572                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3573                 goto out_unmap;
3574         }
3575
3576         pr_info("ITS %pR\n", res);
3577
3578         its = kzalloc(sizeof(*its), GFP_KERNEL);
3579         if (!its) {
3580                 err = -ENOMEM;
3581                 goto out_unmap;
3582         }
3583
3584         raw_spin_lock_init(&its->lock);
3585         mutex_init(&its->dev_alloc_lock);
3586         INIT_LIST_HEAD(&its->entry);
3587         INIT_LIST_HEAD(&its->its_device_list);
3588         typer = gic_read_typer(its_base + GITS_TYPER);
3589         its->base = its_base;
3590         its->phys_base = res->start;
3591         its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3592         its->device_ids = GITS_TYPER_DEVBITS(typer);
3593         its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3594         if (its->is_v4) {
3595                 if (!(typer & GITS_TYPER_VMOVP)) {
3596                         err = its_compute_its_list_map(res, its_base);
3597                         if (err < 0)
3598                                 goto out_free_its;
3599
3600                         its->list_nr = err;
3601
3602                         pr_info("ITS@%pa: Using ITS number %d\n",
3603                                 &res->start, err);
3604                 } else {
3605                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3606                 }
3607         }
3608
3609         its->numa_node = numa_node;
3610
3611         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3612                                 get_order(ITS_CMD_QUEUE_SZ));
3613         if (!page) {
3614                 err = -ENOMEM;
3615                 goto out_free_its;
3616         }
3617         its->cmd_base = (void *)page_address(page);
3618         its->cmd_write = its->cmd_base;
3619         its->fwnode_handle = handle;
3620         its->get_msi_base = its_irq_get_msi_base;
3621         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3622
3623         its_enable_quirks(its);
3624
3625         err = its_alloc_tables(its);
3626         if (err)
3627                 goto out_free_cmd;
3628
3629         err = its_alloc_collections(its);
3630         if (err)
3631                 goto out_free_tables;
3632
3633         baser = (virt_to_phys(its->cmd_base)    |
3634                  GITS_CBASER_RaWaWb             |
3635                  GITS_CBASER_InnerShareable     |
3636                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3637                  GITS_CBASER_VALID);
3638
3639         gits_write_cbaser(baser, its->base + GITS_CBASER);
3640         tmp = gits_read_cbaser(its->base + GITS_CBASER);
3641
3642         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3643                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3644                         /*
3645                          * The HW reports non-shareable, we must
3646                          * remove the cacheability attributes as
3647                          * well.
3648                          */
3649                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3650                                    GITS_CBASER_CACHEABILITY_MASK);
3651                         baser |= GITS_CBASER_nC;
3652                         gits_write_cbaser(baser, its->base + GITS_CBASER);
3653                 }
3654                 pr_info("ITS: using cache flushing for cmd queue\n");
3655                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3656         }
3657
3658         gits_write_cwriter(0, its->base + GITS_CWRITER);
3659         ctlr = readl_relaxed(its->base + GITS_CTLR);
3660         ctlr |= GITS_CTLR_ENABLE;
3661         if (its->is_v4)
3662                 ctlr |= GITS_CTLR_ImDe;
3663         writel_relaxed(ctlr, its->base + GITS_CTLR);
3664
3665         if (GITS_TYPER_HCC(typer))
3666                 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3667
3668         err = its_init_domain(handle, its);
3669         if (err)
3670                 goto out_free_tables;
3671
3672         raw_spin_lock(&its_lock);
3673         list_add(&its->entry, &its_nodes);
3674         raw_spin_unlock(&its_lock);
3675
3676         return 0;
3677
3678 out_free_tables:
3679         its_free_tables(its);
3680 out_free_cmd:
3681         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3682 out_free_its:
3683         kfree(its);
3684 out_unmap:
3685         iounmap(its_base);
3686         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3687         return err;
3688 }
3689
3690 static bool gic_rdists_supports_plpis(void)
3691 {
3692         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3693 }
3694
3695 static int redist_disable_lpis(void)
3696 {
3697         void __iomem *rbase = gic_data_rdist_rd_base();
3698         u64 timeout = USEC_PER_SEC;
3699         u64 val;
3700
3701         if (!gic_rdists_supports_plpis()) {
3702                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3703                 return -ENXIO;
3704         }
3705
3706         val = readl_relaxed(rbase + GICR_CTLR);
3707         if (!(val & GICR_CTLR_ENABLE_LPIS))
3708                 return 0;
3709
3710         /*
3711          * If coming via a CPU hotplug event, we don't need to disable
3712          * LPIs before trying to re-enable them. They are already
3713          * configured and all is well in the world.
3714          *
3715          * If running with preallocated tables, there is nothing to do.
3716          */
3717         if (gic_data_rdist()->lpi_enabled ||
3718             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3719                 return 0;
3720
3721         /*
3722          * From that point on, we only try to do some damage control.
3723          */
3724         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3725                 smp_processor_id());
3726         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3727
3728         /* Disable LPIs */
3729         val &= ~GICR_CTLR_ENABLE_LPIS;
3730         writel_relaxed(val, rbase + GICR_CTLR);
3731
3732         /* Make sure any change to GICR_CTLR is observable by the GIC */
3733         dsb(sy);
3734
3735         /*
3736          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3737          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3738          * Error out if we time out waiting for RWP to clear.
3739          */
3740         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3741                 if (!timeout) {
3742                         pr_err("CPU%d: Timeout while disabling LPIs\n",
3743                                smp_processor_id());
3744                         return -ETIMEDOUT;
3745                 }
3746                 udelay(1);
3747                 timeout--;
3748         }
3749
3750         /*
3751          * After it has been written to 1, it is IMPLEMENTATION
3752          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3753          * cleared to 0. Error out if clearing the bit failed.
3754          */
3755         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3756                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3757                 return -EBUSY;
3758         }
3759
3760         return 0;
3761 }
3762
3763 int its_cpu_init(void)
3764 {
3765         if (!list_empty(&its_nodes)) {
3766                 int ret;
3767
3768                 ret = redist_disable_lpis();
3769                 if (ret)
3770                         return ret;
3771
3772                 its_cpu_init_lpis();
3773                 its_cpu_init_collections();
3774         }
3775
3776         return 0;
3777 }
3778
3779 static const struct of_device_id its_device_id[] = {
3780         {       .compatible     = "arm,gic-v3-its",     },
3781         {},
3782 };
3783
3784 static int __init its_of_probe(struct device_node *node)
3785 {
3786         struct device_node *np;
3787         struct resource res;
3788
3789         for (np = of_find_matching_node(node, its_device_id); np;
3790              np = of_find_matching_node(np, its_device_id)) {
3791                 if (!of_device_is_available(np))
3792                         continue;
3793                 if (!of_property_read_bool(np, "msi-controller")) {
3794                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3795                                 np);
3796                         continue;
3797                 }
3798
3799                 if (of_address_to_resource(np, 0, &res)) {
3800                         pr_warn("%pOF: no regs?\n", np);
3801                         continue;
3802                 }
3803
3804                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3805         }
3806         return 0;
3807 }
3808
3809 #ifdef CONFIG_ACPI
3810
3811 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3812
3813 #ifdef CONFIG_ACPI_NUMA
3814 struct its_srat_map {
3815         /* numa node id */
3816         u32     numa_node;
3817         /* GIC ITS ID */
3818         u32     its_id;
3819 };
3820
3821 static struct its_srat_map *its_srat_maps __initdata;
3822 static int its_in_srat __initdata;
3823
3824 static int __init acpi_get_its_numa_node(u32 its_id)
3825 {
3826         int i;
3827
3828         for (i = 0; i < its_in_srat; i++) {
3829                 if (its_id == its_srat_maps[i].its_id)
3830                         return its_srat_maps[i].numa_node;
3831         }
3832         return NUMA_NO_NODE;
3833 }
3834
3835 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
3836                                           const unsigned long end)
3837 {
3838         return 0;
3839 }
3840
3841 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
3842                          const unsigned long end)
3843 {
3844         int node;
3845         struct acpi_srat_gic_its_affinity *its_affinity;
3846
3847         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3848         if (!its_affinity)
3849                 return -EINVAL;
3850
3851         if (its_affinity->header.length < sizeof(*its_affinity)) {
3852                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3853                         its_affinity->header.length);
3854                 return -EINVAL;
3855         }
3856
3857         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3858
3859         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3860                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3861                 return 0;
3862         }
3863
3864         its_srat_maps[its_in_srat].numa_node = node;
3865         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3866         its_in_srat++;
3867         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3868                 its_affinity->proximity_domain, its_affinity->its_id, node);
3869
3870         return 0;
3871 }
3872
3873 static void __init acpi_table_parse_srat_its(void)
3874 {
3875         int count;
3876
3877         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3878                         sizeof(struct acpi_table_srat),
3879                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3880                         gic_acpi_match_srat_its, 0);
3881         if (count <= 0)
3882                 return;
3883
3884         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3885                                       GFP_KERNEL);
3886         if (!its_srat_maps) {
3887                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3888                 return;
3889         }
3890
3891         acpi_table_parse_entries(ACPI_SIG_SRAT,
3892                         sizeof(struct acpi_table_srat),
3893                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3894                         gic_acpi_parse_srat_its, 0);
3895 }
3896
3897 /* free the its_srat_maps after ITS probing */
3898 static void __init acpi_its_srat_maps_free(void)
3899 {
3900         kfree(its_srat_maps);
3901 }
3902 #else
3903 static void __init acpi_table_parse_srat_its(void)      { }
3904 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3905 static void __init acpi_its_srat_maps_free(void) { }
3906 #endif
3907
3908 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
3909                                           const unsigned long end)
3910 {
3911         struct acpi_madt_generic_translator *its_entry;
3912         struct fwnode_handle *dom_handle;
3913         struct resource res;
3914         int err;
3915
3916         its_entry = (struct acpi_madt_generic_translator *)header;
3917         memset(&res, 0, sizeof(res));
3918         res.start = its_entry->base_address;
3919         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3920         res.flags = IORESOURCE_MEM;
3921
3922         dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3923         if (!dom_handle) {
3924                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3925                        &res.start);
3926                 return -ENOMEM;
3927         }
3928
3929         err = iort_register_domain_token(its_entry->translation_id, res.start,
3930                                          dom_handle);
3931         if (err) {
3932                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3933                        &res.start, its_entry->translation_id);
3934                 goto dom_err;
3935         }
3936
3937         err = its_probe_one(&res, dom_handle,
3938                         acpi_get_its_numa_node(its_entry->translation_id));
3939         if (!err)
3940                 return 0;
3941
3942         iort_deregister_domain_token(its_entry->translation_id);
3943 dom_err:
3944         irq_domain_free_fwnode(dom_handle);
3945         return err;
3946 }
3947
3948 static void __init its_acpi_probe(void)
3949 {
3950         acpi_table_parse_srat_its();
3951         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3952                               gic_acpi_parse_madt_its, 0);
3953         acpi_its_srat_maps_free();
3954 }
3955 #else
3956 static void __init its_acpi_probe(void) { }
3957 #endif
3958
3959 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3960                     struct irq_domain *parent_domain)
3961 {
3962         struct device_node *of_node;
3963         struct its_node *its;
3964         bool has_v4 = false;
3965         int err;
3966
3967         its_parent = parent_domain;
3968         of_node = to_of_node(handle);
3969         if (of_node)
3970                 its_of_probe(of_node);
3971         else
3972                 its_acpi_probe();
3973
3974         if (list_empty(&its_nodes)) {
3975                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3976                 return -ENXIO;
3977         }
3978
3979         gic_rdists = rdists;
3980
3981         err = allocate_lpi_tables();
3982         if (err)
3983                 return err;
3984
3985         list_for_each_entry(its, &its_nodes, entry)
3986                 has_v4 |= its->is_v4;
3987
3988         if (has_v4 & rdists->has_vlpis) {
3989                 if (its_init_vpe_domain() ||
3990                     its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3991                         rdists->has_vlpis = false;
3992                         pr_err("ITS: Disabling GICv4 support\n");
3993                 }
3994         }
3995
3996         register_syscore_ops(&its_syscore_ops);
3997
3998         return 0;
3999 }