Merge tag 'drm-next-2022-10-14' of git://anongit.freedesktop.org/drm/drm
[platform/kernel/linux-starfive.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
48
49 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
50 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
51 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
52
53 static u32 lpi_id_bits;
54
55 /*
56  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
57  * deal with (one configuration byte per interrupt). PENDBASE has to
58  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59  */
60 #define LPI_NRBITS              lpi_id_bits
61 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
62 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63
64 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
65
66 /*
67  * Collection structure - just an ID, and a redistributor address to
68  * ping. We use one per CPU as a bag of interrupts assigned to this
69  * CPU.
70  */
71 struct its_collection {
72         u64                     target_address;
73         u16                     col_id;
74 };
75
76 /*
77  * The ITS_BASER structure - contains memory information, cached
78  * value of BASER register configuration and ITS page size.
79  */
80 struct its_baser {
81         void            *base;
82         u64             val;
83         u32             order;
84         u32             psz;
85 };
86
87 struct its_device;
88
89 /*
90  * The ITS structure - contains most of the infrastructure, with the
91  * top-level MSI domain, the command queue, the collections, and the
92  * list of devices writing to it.
93  *
94  * dev_alloc_lock has to be taken for device allocations, while the
95  * spinlock must be taken to parse data structures such as the device
96  * list.
97  */
98 struct its_node {
99         raw_spinlock_t          lock;
100         struct mutex            dev_alloc_lock;
101         struct list_head        entry;
102         void __iomem            *base;
103         void __iomem            *sgir_base;
104         phys_addr_t             phys_base;
105         struct its_cmd_block    *cmd_base;
106         struct its_cmd_block    *cmd_write;
107         struct its_baser        tables[GITS_BASER_NR_REGS];
108         struct its_collection   *collections;
109         struct fwnode_handle    *fwnode_handle;
110         u64                     (*get_msi_base)(struct its_device *its_dev);
111         u64                     typer;
112         u64                     cbaser_save;
113         u32                     ctlr_save;
114         u32                     mpidr;
115         struct list_head        its_device_list;
116         u64                     flags;
117         unsigned long           list_nr;
118         int                     numa_node;
119         unsigned int            msi_domain_flags;
120         u32                     pre_its_base; /* for Socionext Synquacer */
121         int                     vlpi_redist_offset;
122 };
123
124 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
125 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
126 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127
128 #define ITS_ITT_ALIGN           SZ_256
129
130 /* The maximum number of VPEID bits supported by VLPI commands */
131 #define ITS_MAX_VPEID_BITS                                              \
132         ({                                                              \
133                 int nvpeid = 16;                                        \
134                 if (gic_rdists->has_rvpeid &&                           \
135                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
136                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
137                                       GICD_TYPER2_VID);                 \
138                                                                         \
139                 nvpeid;                                                 \
140         })
141 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
142
143 /* Convert page order to size in bytes */
144 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
145
146 struct event_lpi_map {
147         unsigned long           *lpi_map;
148         u16                     *col_map;
149         irq_hw_number_t         lpi_base;
150         int                     nr_lpis;
151         raw_spinlock_t          vlpi_lock;
152         struct its_vm           *vm;
153         struct its_vlpi_map     *vlpi_maps;
154         int                     nr_vlpis;
155 };
156
157 /*
158  * The ITS view of a device - belongs to an ITS, owns an interrupt
159  * translation table, and a list of interrupts.  If it some of its
160  * LPIs are injected into a guest (GICv4), the event_map.vm field
161  * indicates which one.
162  */
163 struct its_device {
164         struct list_head        entry;
165         struct its_node         *its;
166         struct event_lpi_map    event_map;
167         void                    *itt;
168         u32                     nr_ites;
169         u32                     device_id;
170         bool                    shared;
171 };
172
173 static struct {
174         raw_spinlock_t          lock;
175         struct its_device       *dev;
176         struct its_vpe          **vpes;
177         int                     next_victim;
178 } vpe_proxy;
179
180 struct cpu_lpi_count {
181         atomic_t        managed;
182         atomic_t        unmanaged;
183 };
184
185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186
187 static LIST_HEAD(its_nodes);
188 static DEFINE_RAW_SPINLOCK(its_lock);
189 static struct rdists *gic_rdists;
190 static struct irq_domain *its_parent;
191
192 static unsigned long its_list_map;
193 static u16 vmovp_seq_num;
194 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195
196 static DEFINE_IDA(its_vpeid_ida);
197
198 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
199 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
200 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
201 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
202
203 /*
204  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
205  * always have vSGIs mapped.
206  */
207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 {
209         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
210 }
211
212 static u16 get_its_list(struct its_vm *vm)
213 {
214         struct its_node *its;
215         unsigned long its_list = 0;
216
217         list_for_each_entry(its, &its_nodes, entry) {
218                 if (!is_v4(its))
219                         continue;
220
221                 if (require_its_list_vmovp(vm, its))
222                         __set_bit(its->list_nr, &its_list);
223         }
224
225         return (u16)its_list;
226 }
227
228 static inline u32 its_get_event_id(struct irq_data *d)
229 {
230         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
231         return d->hwirq - its_dev->event_map.lpi_base;
232 }
233
234 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
235                                                u32 event)
236 {
237         struct its_node *its = its_dev->its;
238
239         return its->collections + its_dev->event_map.col_map[event];
240 }
241
242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
243                                                u32 event)
244 {
245         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
246                 return NULL;
247
248         return &its_dev->event_map.vlpi_maps[event];
249 }
250
251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
252 {
253         if (irqd_is_forwarded_to_vcpu(d)) {
254                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
255                 u32 event = its_get_event_id(d);
256
257                 return dev_event_to_vlpi_map(its_dev, event);
258         }
259
260         return NULL;
261 }
262
263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
264 {
265         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
266         return vpe->col_idx;
267 }
268
269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
270 {
271         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
272 }
273
274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276         struct its_vlpi_map *map = get_vlpi_map(d);
277         int cpu;
278
279         if (map) {
280                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
281         } else {
282                 /* Physical LPIs are already locked via the irq_desc lock */
283                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
284                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
285                 /* Keep GCC quiet... */
286                 *flags = 0;
287         }
288
289         return cpu;
290 }
291
292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
293 {
294         struct its_vlpi_map *map = get_vlpi_map(d);
295
296         if (map)
297                 vpe_to_cpuid_unlock(map->vpe, flags);
298 }
299
300 static struct its_collection *valid_col(struct its_collection *col)
301 {
302         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
303                 return NULL;
304
305         return col;
306 }
307
308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
309 {
310         if (valid_col(its->collections + vpe->col_idx))
311                 return vpe;
312
313         return NULL;
314 }
315
316 /*
317  * ITS command descriptors - parameters to be encoded in a command
318  * block.
319  */
320 struct its_cmd_desc {
321         union {
322                 struct {
323                         struct its_device *dev;
324                         u32 event_id;
325                 } its_inv_cmd;
326
327                 struct {
328                         struct its_device *dev;
329                         u32 event_id;
330                 } its_clear_cmd;
331
332                 struct {
333                         struct its_device *dev;
334                         u32 event_id;
335                 } its_int_cmd;
336
337                 struct {
338                         struct its_device *dev;
339                         int valid;
340                 } its_mapd_cmd;
341
342                 struct {
343                         struct its_collection *col;
344                         int valid;
345                 } its_mapc_cmd;
346
347                 struct {
348                         struct its_device *dev;
349                         u32 phys_id;
350                         u32 event_id;
351                 } its_mapti_cmd;
352
353                 struct {
354                         struct its_device *dev;
355                         struct its_collection *col;
356                         u32 event_id;
357                 } its_movi_cmd;
358
359                 struct {
360                         struct its_device *dev;
361                         u32 event_id;
362                 } its_discard_cmd;
363
364                 struct {
365                         struct its_collection *col;
366                 } its_invall_cmd;
367
368                 struct {
369                         struct its_vpe *vpe;
370                 } its_vinvall_cmd;
371
372                 struct {
373                         struct its_vpe *vpe;
374                         struct its_collection *col;
375                         bool valid;
376                 } its_vmapp_cmd;
377
378                 struct {
379                         struct its_vpe *vpe;
380                         struct its_device *dev;
381                         u32 virt_id;
382                         u32 event_id;
383                         bool db_enabled;
384                 } its_vmapti_cmd;
385
386                 struct {
387                         struct its_vpe *vpe;
388                         struct its_device *dev;
389                         u32 event_id;
390                         bool db_enabled;
391                 } its_vmovi_cmd;
392
393                 struct {
394                         struct its_vpe *vpe;
395                         struct its_collection *col;
396                         u16 seq_num;
397                         u16 its_list;
398                 } its_vmovp_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                 } its_invdb_cmd;
403
404                 struct {
405                         struct its_vpe *vpe;
406                         u8 sgi;
407                         u8 priority;
408                         bool enable;
409                         bool group;
410                         bool clear;
411                 } its_vsgi_cmd;
412         };
413 };
414
415 /*
416  * The ITS command block, which is what the ITS actually parses.
417  */
418 struct its_cmd_block {
419         union {
420                 u64     raw_cmd[4];
421                 __le64  raw_cmd_le[4];
422         };
423 };
424
425 #define ITS_CMD_QUEUE_SZ                SZ_64K
426 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
427
428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
429                                                     struct its_cmd_block *,
430                                                     struct its_cmd_desc *);
431
432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
433                                               struct its_cmd_block *,
434                                               struct its_cmd_desc *);
435
436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
437 {
438         u64 mask = GENMASK_ULL(h, l);
439         *raw_cmd &= ~mask;
440         *raw_cmd |= (val << l) & mask;
441 }
442
443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
444 {
445         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
446 }
447
448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
449 {
450         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
451 }
452
453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
454 {
455         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
456 }
457
458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
459 {
460         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
461 }
462
463 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
464 {
465         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
466 }
467
468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
469 {
470         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
471 }
472
473 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
474 {
475         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
476 }
477
478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
479 {
480         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
481 }
482
483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
484 {
485         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
486 }
487
488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
489 {
490         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
491 }
492
493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
494 {
495         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
496 }
497
498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
499 {
500         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
501 }
502
503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
504 {
505         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
506 }
507
508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
509 {
510         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
511 }
512
513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
514 {
515         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
516 }
517
518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
519 {
520         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
521 }
522
523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
524 {
525         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
526 }
527
528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
529 {
530         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
531 }
532
533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
534 {
535         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
536 }
537
538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
539 {
540         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
541 }
542
543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
544                                         u32 vpe_db_lpi)
545 {
546         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
547 }
548
549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
550                                         u32 vpe_db_lpi)
551 {
552         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
553 }
554
555 static void its_encode_db(struct its_cmd_block *cmd, bool db)
556 {
557         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
558 }
559
560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
561 {
562         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
563 }
564
565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
566 {
567         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
568 }
569
570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
571 {
572         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
573 }
574
575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
576 {
577         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
578 }
579
580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
581 {
582         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
583 }
584
585 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
586 {
587         /* Let's fixup BE commands */
588         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
589         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
590         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
591         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
592 }
593
594 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
595                                                  struct its_cmd_block *cmd,
596                                                  struct its_cmd_desc *desc)
597 {
598         unsigned long itt_addr;
599         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
600
601         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
602         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
603
604         its_encode_cmd(cmd, GITS_CMD_MAPD);
605         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
606         its_encode_size(cmd, size - 1);
607         its_encode_itt(cmd, itt_addr);
608         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
609
610         its_fixup_cmd(cmd);
611
612         return NULL;
613 }
614
615 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
616                                                  struct its_cmd_block *cmd,
617                                                  struct its_cmd_desc *desc)
618 {
619         its_encode_cmd(cmd, GITS_CMD_MAPC);
620         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
621         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
622         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
623
624         its_fixup_cmd(cmd);
625
626         return desc->its_mapc_cmd.col;
627 }
628
629 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
630                                                   struct its_cmd_block *cmd,
631                                                   struct its_cmd_desc *desc)
632 {
633         struct its_collection *col;
634
635         col = dev_event_to_col(desc->its_mapti_cmd.dev,
636                                desc->its_mapti_cmd.event_id);
637
638         its_encode_cmd(cmd, GITS_CMD_MAPTI);
639         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
640         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
641         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
642         its_encode_collection(cmd, col->col_id);
643
644         its_fixup_cmd(cmd);
645
646         return valid_col(col);
647 }
648
649 static struct its_collection *its_build_movi_cmd(struct its_node *its,
650                                                  struct its_cmd_block *cmd,
651                                                  struct its_cmd_desc *desc)
652 {
653         struct its_collection *col;
654
655         col = dev_event_to_col(desc->its_movi_cmd.dev,
656                                desc->its_movi_cmd.event_id);
657
658         its_encode_cmd(cmd, GITS_CMD_MOVI);
659         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
660         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
661         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
662
663         its_fixup_cmd(cmd);
664
665         return valid_col(col);
666 }
667
668 static struct its_collection *its_build_discard_cmd(struct its_node *its,
669                                                     struct its_cmd_block *cmd,
670                                                     struct its_cmd_desc *desc)
671 {
672         struct its_collection *col;
673
674         col = dev_event_to_col(desc->its_discard_cmd.dev,
675                                desc->its_discard_cmd.event_id);
676
677         its_encode_cmd(cmd, GITS_CMD_DISCARD);
678         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
679         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
680
681         its_fixup_cmd(cmd);
682
683         return valid_col(col);
684 }
685
686 static struct its_collection *its_build_inv_cmd(struct its_node *its,
687                                                 struct its_cmd_block *cmd,
688                                                 struct its_cmd_desc *desc)
689 {
690         struct its_collection *col;
691
692         col = dev_event_to_col(desc->its_inv_cmd.dev,
693                                desc->its_inv_cmd.event_id);
694
695         its_encode_cmd(cmd, GITS_CMD_INV);
696         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
697         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
698
699         its_fixup_cmd(cmd);
700
701         return valid_col(col);
702 }
703
704 static struct its_collection *its_build_int_cmd(struct its_node *its,
705                                                 struct its_cmd_block *cmd,
706                                                 struct its_cmd_desc *desc)
707 {
708         struct its_collection *col;
709
710         col = dev_event_to_col(desc->its_int_cmd.dev,
711                                desc->its_int_cmd.event_id);
712
713         its_encode_cmd(cmd, GITS_CMD_INT);
714         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
715         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
716
717         its_fixup_cmd(cmd);
718
719         return valid_col(col);
720 }
721
722 static struct its_collection *its_build_clear_cmd(struct its_node *its,
723                                                   struct its_cmd_block *cmd,
724                                                   struct its_cmd_desc *desc)
725 {
726         struct its_collection *col;
727
728         col = dev_event_to_col(desc->its_clear_cmd.dev,
729                                desc->its_clear_cmd.event_id);
730
731         its_encode_cmd(cmd, GITS_CMD_CLEAR);
732         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
733         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
734
735         its_fixup_cmd(cmd);
736
737         return valid_col(col);
738 }
739
740 static struct its_collection *its_build_invall_cmd(struct its_node *its,
741                                                    struct its_cmd_block *cmd,
742                                                    struct its_cmd_desc *desc)
743 {
744         its_encode_cmd(cmd, GITS_CMD_INVALL);
745         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
746
747         its_fixup_cmd(cmd);
748
749         return desc->its_invall_cmd.col;
750 }
751
752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
753                                              struct its_cmd_block *cmd,
754                                              struct its_cmd_desc *desc)
755 {
756         its_encode_cmd(cmd, GITS_CMD_VINVALL);
757         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
758
759         its_fixup_cmd(cmd);
760
761         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
762 }
763
764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
765                                            struct its_cmd_block *cmd,
766                                            struct its_cmd_desc *desc)
767 {
768         unsigned long vpt_addr, vconf_addr;
769         u64 target;
770         bool alloc;
771
772         its_encode_cmd(cmd, GITS_CMD_VMAPP);
773         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
774         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
775
776         if (!desc->its_vmapp_cmd.valid) {
777                 if (is_v4_1(its)) {
778                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
779                         its_encode_alloc(cmd, alloc);
780                 }
781
782                 goto out;
783         }
784
785         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
786         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
787
788         its_encode_target(cmd, target);
789         its_encode_vpt_addr(cmd, vpt_addr);
790         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
791
792         if (!is_v4_1(its))
793                 goto out;
794
795         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
796
797         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
798
799         its_encode_alloc(cmd, alloc);
800
801         /*
802          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
803          * to be unmapped first, and in this case, we may remap the vPE
804          * back while the VPT is not empty. So we can't assume that the
805          * VPT is empty on map. This is why we never advertise PTZ.
806          */
807         its_encode_ptz(cmd, false);
808         its_encode_vconf_addr(cmd, vconf_addr);
809         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
810
811 out:
812         its_fixup_cmd(cmd);
813
814         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
815 }
816
817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
818                                             struct its_cmd_block *cmd,
819                                             struct its_cmd_desc *desc)
820 {
821         u32 db;
822
823         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
824                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
825         else
826                 db = 1023;
827
828         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
829         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
830         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
831         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
832         its_encode_db_phys_id(cmd, db);
833         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
834
835         its_fixup_cmd(cmd);
836
837         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
838 }
839
840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
841                                            struct its_cmd_block *cmd,
842                                            struct its_cmd_desc *desc)
843 {
844         u32 db;
845
846         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
847                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
848         else
849                 db = 1023;
850
851         its_encode_cmd(cmd, GITS_CMD_VMOVI);
852         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
853         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
854         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
855         its_encode_db_phys_id(cmd, db);
856         its_encode_db_valid(cmd, true);
857
858         its_fixup_cmd(cmd);
859
860         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
861 }
862
863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
864                                            struct its_cmd_block *cmd,
865                                            struct its_cmd_desc *desc)
866 {
867         u64 target;
868
869         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
870         its_encode_cmd(cmd, GITS_CMD_VMOVP);
871         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
872         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
873         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
874         its_encode_target(cmd, target);
875
876         if (is_v4_1(its)) {
877                 its_encode_db(cmd, true);
878                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
879         }
880
881         its_fixup_cmd(cmd);
882
883         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
884 }
885
886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
887                                           struct its_cmd_block *cmd,
888                                           struct its_cmd_desc *desc)
889 {
890         struct its_vlpi_map *map;
891
892         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
893                                     desc->its_inv_cmd.event_id);
894
895         its_encode_cmd(cmd, GITS_CMD_INV);
896         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
897         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
898
899         its_fixup_cmd(cmd);
900
901         return valid_vpe(its, map->vpe);
902 }
903
904 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
905                                           struct its_cmd_block *cmd,
906                                           struct its_cmd_desc *desc)
907 {
908         struct its_vlpi_map *map;
909
910         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
911                                     desc->its_int_cmd.event_id);
912
913         its_encode_cmd(cmd, GITS_CMD_INT);
914         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
915         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
916
917         its_fixup_cmd(cmd);
918
919         return valid_vpe(its, map->vpe);
920 }
921
922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
923                                             struct its_cmd_block *cmd,
924                                             struct its_cmd_desc *desc)
925 {
926         struct its_vlpi_map *map;
927
928         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
929                                     desc->its_clear_cmd.event_id);
930
931         its_encode_cmd(cmd, GITS_CMD_CLEAR);
932         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
933         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
934
935         its_fixup_cmd(cmd);
936
937         return valid_vpe(its, map->vpe);
938 }
939
940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
941                                            struct its_cmd_block *cmd,
942                                            struct its_cmd_desc *desc)
943 {
944         if (WARN_ON(!is_v4_1(its)))
945                 return NULL;
946
947         its_encode_cmd(cmd, GITS_CMD_INVDB);
948         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
949
950         its_fixup_cmd(cmd);
951
952         return valid_vpe(its, desc->its_invdb_cmd.vpe);
953 }
954
955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
956                                           struct its_cmd_block *cmd,
957                                           struct its_cmd_desc *desc)
958 {
959         if (WARN_ON(!is_v4_1(its)))
960                 return NULL;
961
962         its_encode_cmd(cmd, GITS_CMD_VSGI);
963         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
964         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
965         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
966         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
967         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
968         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
969
970         its_fixup_cmd(cmd);
971
972         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
973 }
974
975 static u64 its_cmd_ptr_to_offset(struct its_node *its,
976                                  struct its_cmd_block *ptr)
977 {
978         return (ptr - its->cmd_base) * sizeof(*ptr);
979 }
980
981 static int its_queue_full(struct its_node *its)
982 {
983         int widx;
984         int ridx;
985
986         widx = its->cmd_write - its->cmd_base;
987         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
988
989         /* This is incredibly unlikely to happen, unless the ITS locks up. */
990         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
991                 return 1;
992
993         return 0;
994 }
995
996 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
997 {
998         struct its_cmd_block *cmd;
999         u32 count = 1000000;    /* 1s! */
1000
1001         while (its_queue_full(its)) {
1002                 count--;
1003                 if (!count) {
1004                         pr_err_ratelimited("ITS queue not draining\n");
1005                         return NULL;
1006                 }
1007                 cpu_relax();
1008                 udelay(1);
1009         }
1010
1011         cmd = its->cmd_write++;
1012
1013         /* Handle queue wrapping */
1014         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015                 its->cmd_write = its->cmd_base;
1016
1017         /* Clear command  */
1018         cmd->raw_cmd[0] = 0;
1019         cmd->raw_cmd[1] = 0;
1020         cmd->raw_cmd[2] = 0;
1021         cmd->raw_cmd[3] = 0;
1022
1023         return cmd;
1024 }
1025
1026 static struct its_cmd_block *its_post_commands(struct its_node *its)
1027 {
1028         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030         writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032         return its->cmd_write;
1033 }
1034
1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036 {
1037         /*
1038          * Make sure the commands written to memory are observable by
1039          * the ITS.
1040          */
1041         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043         else
1044                 dsb(ishst);
1045 }
1046
1047 static int its_wait_for_range_completion(struct its_node *its,
1048                                          u64    prev_idx,
1049                                          struct its_cmd_block *to)
1050 {
1051         u64 rd_idx, to_idx, linear_idx;
1052         u32 count = 1000000;    /* 1s! */
1053
1054         /* Linearize to_idx if the command set has wrapped around */
1055         to_idx = its_cmd_ptr_to_offset(its, to);
1056         if (to_idx < prev_idx)
1057                 to_idx += ITS_CMD_QUEUE_SZ;
1058
1059         linear_idx = prev_idx;
1060
1061         while (1) {
1062                 s64 delta;
1063
1064                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066                 /*
1067                  * Compute the read pointer progress, taking the
1068                  * potential wrap-around into account.
1069                  */
1070                 delta = rd_idx - prev_idx;
1071                 if (rd_idx < prev_idx)
1072                         delta += ITS_CMD_QUEUE_SZ;
1073
1074                 linear_idx += delta;
1075                 if (linear_idx >= to_idx)
1076                         break;
1077
1078                 count--;
1079                 if (!count) {
1080                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081                                            to_idx, linear_idx);
1082                         return -1;
1083                 }
1084                 prev_idx = rd_idx;
1085                 cpu_relax();
1086                 udelay(1);
1087         }
1088
1089         return 0;
1090 }
1091
1092 /* Warning, macro hell follows */
1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1094 void name(struct its_node *its,                                         \
1095           buildtype builder,                                            \
1096           struct its_cmd_desc *desc)                                    \
1097 {                                                                       \
1098         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1099         synctype *sync_obj;                                             \
1100         unsigned long flags;                                            \
1101         u64 rd_idx;                                                     \
1102                                                                         \
1103         raw_spin_lock_irqsave(&its->lock, flags);                       \
1104                                                                         \
1105         cmd = its_allocate_entry(its);                                  \
1106         if (!cmd) {             /* We're soooooo screewed... */         \
1107                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1108                 return;                                                 \
1109         }                                                               \
1110         sync_obj = builder(its, cmd, desc);                             \
1111         its_flush_cmd(its, cmd);                                        \
1112                                                                         \
1113         if (sync_obj) {                                                 \
1114                 sync_cmd = its_allocate_entry(its);                     \
1115                 if (!sync_cmd)                                          \
1116                         goto post;                                      \
1117                                                                         \
1118                 buildfn(its, sync_cmd, sync_obj);                       \
1119                 its_flush_cmd(its, sync_cmd);                           \
1120         }                                                               \
1121                                                                         \
1122 post:                                                                   \
1123         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1124         next_cmd = its_post_commands(its);                              \
1125         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1126                                                                         \
1127         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1128                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1129 }
1130
1131 static void its_build_sync_cmd(struct its_node *its,
1132                                struct its_cmd_block *sync_cmd,
1133                                struct its_collection *sync_col)
1134 {
1135         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136         its_encode_target(sync_cmd, sync_col->target_address);
1137
1138         its_fixup_cmd(sync_cmd);
1139 }
1140
1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142                              struct its_collection, its_build_sync_cmd)
1143
1144 static void its_build_vsync_cmd(struct its_node *its,
1145                                 struct its_cmd_block *sync_cmd,
1146                                 struct its_vpe *sync_vpe)
1147 {
1148         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151         its_fixup_cmd(sync_cmd);
1152 }
1153
1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155                              struct its_vpe, its_build_vsync_cmd)
1156
1157 static void its_send_int(struct its_device *dev, u32 event_id)
1158 {
1159         struct its_cmd_desc desc;
1160
1161         desc.its_int_cmd.dev = dev;
1162         desc.its_int_cmd.event_id = event_id;
1163
1164         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165 }
1166
1167 static void its_send_clear(struct its_device *dev, u32 event_id)
1168 {
1169         struct its_cmd_desc desc;
1170
1171         desc.its_clear_cmd.dev = dev;
1172         desc.its_clear_cmd.event_id = event_id;
1173
1174         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175 }
1176
1177 static void its_send_inv(struct its_device *dev, u32 event_id)
1178 {
1179         struct its_cmd_desc desc;
1180
1181         desc.its_inv_cmd.dev = dev;
1182         desc.its_inv_cmd.event_id = event_id;
1183
1184         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185 }
1186
1187 static void its_send_mapd(struct its_device *dev, int valid)
1188 {
1189         struct its_cmd_desc desc;
1190
1191         desc.its_mapd_cmd.dev = dev;
1192         desc.its_mapd_cmd.valid = !!valid;
1193
1194         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195 }
1196
1197 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198                           int valid)
1199 {
1200         struct its_cmd_desc desc;
1201
1202         desc.its_mapc_cmd.col = col;
1203         desc.its_mapc_cmd.valid = !!valid;
1204
1205         its_send_single_command(its, its_build_mapc_cmd, &desc);
1206 }
1207
1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209 {
1210         struct its_cmd_desc desc;
1211
1212         desc.its_mapti_cmd.dev = dev;
1213         desc.its_mapti_cmd.phys_id = irq_id;
1214         desc.its_mapti_cmd.event_id = id;
1215
1216         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217 }
1218
1219 static void its_send_movi(struct its_device *dev,
1220                           struct its_collection *col, u32 id)
1221 {
1222         struct its_cmd_desc desc;
1223
1224         desc.its_movi_cmd.dev = dev;
1225         desc.its_movi_cmd.col = col;
1226         desc.its_movi_cmd.event_id = id;
1227
1228         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229 }
1230
1231 static void its_send_discard(struct its_device *dev, u32 id)
1232 {
1233         struct its_cmd_desc desc;
1234
1235         desc.its_discard_cmd.dev = dev;
1236         desc.its_discard_cmd.event_id = id;
1237
1238         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239 }
1240
1241 static void its_send_invall(struct its_node *its, struct its_collection *col)
1242 {
1243         struct its_cmd_desc desc;
1244
1245         desc.its_invall_cmd.col = col;
1246
1247         its_send_single_command(its, its_build_invall_cmd, &desc);
1248 }
1249
1250 static void its_send_vmapti(struct its_device *dev, u32 id)
1251 {
1252         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253         struct its_cmd_desc desc;
1254
1255         desc.its_vmapti_cmd.vpe = map->vpe;
1256         desc.its_vmapti_cmd.dev = dev;
1257         desc.its_vmapti_cmd.virt_id = map->vintid;
1258         desc.its_vmapti_cmd.event_id = id;
1259         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262 }
1263
1264 static void its_send_vmovi(struct its_device *dev, u32 id)
1265 {
1266         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267         struct its_cmd_desc desc;
1268
1269         desc.its_vmovi_cmd.vpe = map->vpe;
1270         desc.its_vmovi_cmd.dev = dev;
1271         desc.its_vmovi_cmd.event_id = id;
1272         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275 }
1276
1277 static void its_send_vmapp(struct its_node *its,
1278                            struct its_vpe *vpe, bool valid)
1279 {
1280         struct its_cmd_desc desc;
1281
1282         desc.its_vmapp_cmd.vpe = vpe;
1283         desc.its_vmapp_cmd.valid = valid;
1284         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287 }
1288
1289 static void its_send_vmovp(struct its_vpe *vpe)
1290 {
1291         struct its_cmd_desc desc = {};
1292         struct its_node *its;
1293         unsigned long flags;
1294         int col_id = vpe->col_idx;
1295
1296         desc.its_vmovp_cmd.vpe = vpe;
1297
1298         if (!its_list_map) {
1299                 its = list_first_entry(&its_nodes, struct its_node, entry);
1300                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1301                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302                 return;
1303         }
1304
1305         /*
1306          * Yet another marvel of the architecture. If using the
1307          * its_list "feature", we need to make sure that all ITSs
1308          * receive all VMOVP commands in the same order. The only way
1309          * to guarantee this is to make vmovp a serialization point.
1310          *
1311          * Wall <-- Head.
1312          */
1313         raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318         /* Emit VMOVPs */
1319         list_for_each_entry(its, &its_nodes, entry) {
1320                 if (!is_v4(its))
1321                         continue;
1322
1323                 if (!require_its_list_vmovp(vpe->its_vm, its))
1324                         continue;
1325
1326                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1327                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328         }
1329
1330         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331 }
1332
1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334 {
1335         struct its_cmd_desc desc;
1336
1337         desc.its_vinvall_cmd.vpe = vpe;
1338         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339 }
1340
1341 static void its_send_vinv(struct its_device *dev, u32 event_id)
1342 {
1343         struct its_cmd_desc desc;
1344
1345         /*
1346          * There is no real VINV command. This is just a normal INV,
1347          * with a VSYNC instead of a SYNC.
1348          */
1349         desc.its_inv_cmd.dev = dev;
1350         desc.its_inv_cmd.event_id = event_id;
1351
1352         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353 }
1354
1355 static void its_send_vint(struct its_device *dev, u32 event_id)
1356 {
1357         struct its_cmd_desc desc;
1358
1359         /*
1360          * There is no real VINT command. This is just a normal INT,
1361          * with a VSYNC instead of a SYNC.
1362          */
1363         desc.its_int_cmd.dev = dev;
1364         desc.its_int_cmd.event_id = event_id;
1365
1366         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367 }
1368
1369 static void its_send_vclear(struct its_device *dev, u32 event_id)
1370 {
1371         struct its_cmd_desc desc;
1372
1373         /*
1374          * There is no real VCLEAR command. This is just a normal CLEAR,
1375          * with a VSYNC instead of a SYNC.
1376          */
1377         desc.its_clear_cmd.dev = dev;
1378         desc.its_clear_cmd.event_id = event_id;
1379
1380         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381 }
1382
1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384 {
1385         struct its_cmd_desc desc;
1386
1387         desc.its_invdb_cmd.vpe = vpe;
1388         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389 }
1390
1391 /*
1392  * irqchip functions - assumes MSI, mostly.
1393  */
1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395 {
1396         struct its_vlpi_map *map = get_vlpi_map(d);
1397         irq_hw_number_t hwirq;
1398         void *va;
1399         u8 *cfg;
1400
1401         if (map) {
1402                 va = page_address(map->vm->vprop_page);
1403                 hwirq = map->vintid;
1404
1405                 /* Remember the updated property */
1406                 map->properties &= ~clr;
1407                 map->properties |= set | LPI_PROP_GROUP1;
1408         } else {
1409                 va = gic_rdists->prop_table_va;
1410                 hwirq = d->hwirq;
1411         }
1412
1413         cfg = va + hwirq - 8192;
1414         *cfg &= ~clr;
1415         *cfg |= set | LPI_PROP_GROUP1;
1416
1417         /*
1418          * Make the above write visible to the redistributors.
1419          * And yes, we're flushing exactly: One. Single. Byte.
1420          * Humpf...
1421          */
1422         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424         else
1425                 dsb(ishst);
1426 }
1427
1428 static void wait_for_syncr(void __iomem *rdbase)
1429 {
1430         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431                 cpu_relax();
1432 }
1433
1434 static void direct_lpi_inv(struct irq_data *d)
1435 {
1436         struct its_vlpi_map *map = get_vlpi_map(d);
1437         void __iomem *rdbase;
1438         unsigned long flags;
1439         u64 val;
1440         int cpu;
1441
1442         if (map) {
1443                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445                 WARN_ON(!is_v4_1(its_dev->its));
1446
1447                 val  = GICR_INVLPIR_V;
1448                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450         } else {
1451                 val = d->hwirq;
1452         }
1453
1454         /* Target the redistributor this LPI is currently routed to */
1455         cpu = irq_to_cpuid_lock(d, &flags);
1456         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460         wait_for_syncr(rdbase);
1461         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462         irq_to_cpuid_unlock(d, flags);
1463 }
1464
1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466 {
1467         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469         lpi_write_config(d, clr, set);
1470         if (gic_rdists->has_direct_lpi &&
1471             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472                 direct_lpi_inv(d);
1473         else if (!irqd_is_forwarded_to_vcpu(d))
1474                 its_send_inv(its_dev, its_get_event_id(d));
1475         else
1476                 its_send_vinv(its_dev, its_get_event_id(d));
1477 }
1478
1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480 {
1481         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482         u32 event = its_get_event_id(d);
1483         struct its_vlpi_map *map;
1484
1485         /*
1486          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487          * here.
1488          */
1489         if (is_v4_1(its_dev->its))
1490                 return;
1491
1492         map = dev_event_to_vlpi_map(its_dev, event);
1493
1494         if (map->db_enabled == enable)
1495                 return;
1496
1497         map->db_enabled = enable;
1498
1499         /*
1500          * More fun with the architecture:
1501          *
1502          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503          * value or to 1023, depending on the enable bit. But that
1504          * would be issuing a mapping for an /existing/ DevID+EventID
1505          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506          * to the /same/ vPE, using this opportunity to adjust the
1507          * doorbell. Mouahahahaha. We loves it, Precious.
1508          */
1509         its_send_vmovi(its_dev, event);
1510 }
1511
1512 static void its_mask_irq(struct irq_data *d)
1513 {
1514         if (irqd_is_forwarded_to_vcpu(d))
1515                 its_vlpi_set_doorbell(d, false);
1516
1517         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518 }
1519
1520 static void its_unmask_irq(struct irq_data *d)
1521 {
1522         if (irqd_is_forwarded_to_vcpu(d))
1523                 its_vlpi_set_doorbell(d, true);
1524
1525         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526 }
1527
1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529 {
1530         if (irqd_affinity_is_managed(d))
1531                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
1536 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537 {
1538         if (irqd_affinity_is_managed(d))
1539                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540         else
1541                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
1544 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545 {
1546         if (irqd_affinity_is_managed(d))
1547                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548         else
1549                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551
1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553                                               const struct cpumask *cpu_mask)
1554 {
1555         unsigned int cpu = nr_cpu_ids, tmp;
1556         int count = S32_MAX;
1557
1558         for_each_cpu(tmp, cpu_mask) {
1559                 int this_count = its_read_lpi_count(d, tmp);
1560                 if (this_count < count) {
1561                         cpu = tmp;
1562                         count = this_count;
1563                 }
1564         }
1565
1566         return cpu;
1567 }
1568
1569 /*
1570  * As suggested by Thomas Gleixner in:
1571  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572  */
1573 static int its_select_cpu(struct irq_data *d,
1574                           const struct cpumask *aff_mask)
1575 {
1576         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1578         static struct cpumask __tmpmask;
1579         struct cpumask *tmpmask;
1580         unsigned long flags;
1581         int cpu, node;
1582         node = its_dev->its->numa_node;
1583         tmpmask = &__tmpmask;
1584
1585         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1586
1587         if (!irqd_affinity_is_managed(d)) {
1588                 /* First try the NUMA node */
1589                 if (node != NUMA_NO_NODE) {
1590                         /*
1591                          * Try the intersection of the affinity mask and the
1592                          * node mask (and the online mask, just to be safe).
1593                          */
1594                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1595                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1596
1597                         /*
1598                          * Ideally, we would check if the mask is empty, and
1599                          * try again on the full node here.
1600                          *
1601                          * But it turns out that the way ACPI describes the
1602                          * affinity for ITSs only deals about memory, and
1603                          * not target CPUs, so it cannot describe a single
1604                          * ITS placed next to two NUMA nodes.
1605                          *
1606                          * Instead, just fallback on the online mask. This
1607                          * diverges from Thomas' suggestion above.
1608                          */
1609                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1610                         if (cpu < nr_cpu_ids)
1611                                 goto out;
1612
1613                         /* If we can't cross sockets, give up */
1614                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1615                                 goto out;
1616
1617                         /* If the above failed, expand the search */
1618                 }
1619
1620                 /* Try the intersection of the affinity and online masks */
1621                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1622
1623                 /* If that doesn't fly, the online mask is the last resort */
1624                 if (cpumask_empty(tmpmask))
1625                         cpumask_copy(tmpmask, cpu_online_mask);
1626
1627                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1628         } else {
1629                 cpumask_copy(tmpmask, aff_mask);
1630
1631                 /* If we cannot cross sockets, limit the search to that node */
1632                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1633                     node != NUMA_NO_NODE)
1634                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1635
1636                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1637         }
1638 out:
1639         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1640
1641         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1642         return cpu;
1643 }
1644
1645 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1646                             bool force)
1647 {
1648         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1649         struct its_collection *target_col;
1650         u32 id = its_get_event_id(d);
1651         int cpu, prev_cpu;
1652
1653         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1654         if (irqd_is_forwarded_to_vcpu(d))
1655                 return -EINVAL;
1656
1657         prev_cpu = its_dev->event_map.col_map[id];
1658         its_dec_lpi_count(d, prev_cpu);
1659
1660         if (!force)
1661                 cpu = its_select_cpu(d, mask_val);
1662         else
1663                 cpu = cpumask_pick_least_loaded(d, mask_val);
1664
1665         if (cpu < 0 || cpu >= nr_cpu_ids)
1666                 goto err;
1667
1668         /* don't set the affinity when the target cpu is same as current one */
1669         if (cpu != prev_cpu) {
1670                 target_col = &its_dev->its->collections[cpu];
1671                 its_send_movi(its_dev, target_col, id);
1672                 its_dev->event_map.col_map[id] = cpu;
1673                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1674         }
1675
1676         its_inc_lpi_count(d, cpu);
1677
1678         return IRQ_SET_MASK_OK_DONE;
1679
1680 err:
1681         its_inc_lpi_count(d, prev_cpu);
1682         return -EINVAL;
1683 }
1684
1685 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1686 {
1687         struct its_node *its = its_dev->its;
1688
1689         return its->phys_base + GITS_TRANSLATER;
1690 }
1691
1692 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1693 {
1694         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1695         struct its_node *its;
1696         u64 addr;
1697
1698         its = its_dev->its;
1699         addr = its->get_msi_base(its_dev);
1700
1701         msg->address_lo         = lower_32_bits(addr);
1702         msg->address_hi         = upper_32_bits(addr);
1703         msg->data               = its_get_event_id(d);
1704
1705         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1706 }
1707
1708 static int its_irq_set_irqchip_state(struct irq_data *d,
1709                                      enum irqchip_irq_state which,
1710                                      bool state)
1711 {
1712         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1713         u32 event = its_get_event_id(d);
1714
1715         if (which != IRQCHIP_STATE_PENDING)
1716                 return -EINVAL;
1717
1718         if (irqd_is_forwarded_to_vcpu(d)) {
1719                 if (state)
1720                         its_send_vint(its_dev, event);
1721                 else
1722                         its_send_vclear(its_dev, event);
1723         } else {
1724                 if (state)
1725                         its_send_int(its_dev, event);
1726                 else
1727                         its_send_clear(its_dev, event);
1728         }
1729
1730         return 0;
1731 }
1732
1733 static int its_irq_retrigger(struct irq_data *d)
1734 {
1735         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1736 }
1737
1738 /*
1739  * Two favourable cases:
1740  *
1741  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1742  *     for vSGI delivery
1743  *
1744  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1745  *     and we're better off mapping all VPEs always
1746  *
1747  * If neither (a) nor (b) is true, then we map vPEs on demand.
1748  *
1749  */
1750 static bool gic_requires_eager_mapping(void)
1751 {
1752         if (!its_list_map || gic_rdists->has_rvpeid)
1753                 return true;
1754
1755         return false;
1756 }
1757
1758 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1759 {
1760         unsigned long flags;
1761
1762         if (gic_requires_eager_mapping())
1763                 return;
1764
1765         raw_spin_lock_irqsave(&vmovp_lock, flags);
1766
1767         /*
1768          * If the VM wasn't mapped yet, iterate over the vpes and get
1769          * them mapped now.
1770          */
1771         vm->vlpi_count[its->list_nr]++;
1772
1773         if (vm->vlpi_count[its->list_nr] == 1) {
1774                 int i;
1775
1776                 for (i = 0; i < vm->nr_vpes; i++) {
1777                         struct its_vpe *vpe = vm->vpes[i];
1778                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1779
1780                         /* Map the VPE to the first possible CPU */
1781                         vpe->col_idx = cpumask_first(cpu_online_mask);
1782                         its_send_vmapp(its, vpe, true);
1783                         its_send_vinvall(its, vpe);
1784                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1785                 }
1786         }
1787
1788         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1789 }
1790
1791 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1792 {
1793         unsigned long flags;
1794
1795         /* Not using the ITS list? Everything is always mapped. */
1796         if (gic_requires_eager_mapping())
1797                 return;
1798
1799         raw_spin_lock_irqsave(&vmovp_lock, flags);
1800
1801         if (!--vm->vlpi_count[its->list_nr]) {
1802                 int i;
1803
1804                 for (i = 0; i < vm->nr_vpes; i++)
1805                         its_send_vmapp(its, vm->vpes[i], false);
1806         }
1807
1808         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1809 }
1810
1811 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1812 {
1813         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814         u32 event = its_get_event_id(d);
1815         int ret = 0;
1816
1817         if (!info->map)
1818                 return -EINVAL;
1819
1820         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1821
1822         if (!its_dev->event_map.vm) {
1823                 struct its_vlpi_map *maps;
1824
1825                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1826                                GFP_ATOMIC);
1827                 if (!maps) {
1828                         ret = -ENOMEM;
1829                         goto out;
1830                 }
1831
1832                 its_dev->event_map.vm = info->map->vm;
1833                 its_dev->event_map.vlpi_maps = maps;
1834         } else if (its_dev->event_map.vm != info->map->vm) {
1835                 ret = -EINVAL;
1836                 goto out;
1837         }
1838
1839         /* Get our private copy of the mapping information */
1840         its_dev->event_map.vlpi_maps[event] = *info->map;
1841
1842         if (irqd_is_forwarded_to_vcpu(d)) {
1843                 /* Already mapped, move it around */
1844                 its_send_vmovi(its_dev, event);
1845         } else {
1846                 /* Ensure all the VPEs are mapped on this ITS */
1847                 its_map_vm(its_dev->its, info->map->vm);
1848
1849                 /*
1850                  * Flag the interrupt as forwarded so that we can
1851                  * start poking the virtual property table.
1852                  */
1853                 irqd_set_forwarded_to_vcpu(d);
1854
1855                 /* Write out the property to the prop table */
1856                 lpi_write_config(d, 0xff, info->map->properties);
1857
1858                 /* Drop the physical mapping */
1859                 its_send_discard(its_dev, event);
1860
1861                 /* and install the virtual one */
1862                 its_send_vmapti(its_dev, event);
1863
1864                 /* Increment the number of VLPIs */
1865                 its_dev->event_map.nr_vlpis++;
1866         }
1867
1868 out:
1869         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1870         return ret;
1871 }
1872
1873 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1874 {
1875         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1876         struct its_vlpi_map *map;
1877         int ret = 0;
1878
1879         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1880
1881         map = get_vlpi_map(d);
1882
1883         if (!its_dev->event_map.vm || !map) {
1884                 ret = -EINVAL;
1885                 goto out;
1886         }
1887
1888         /* Copy our mapping information to the incoming request */
1889         *info->map = *map;
1890
1891 out:
1892         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893         return ret;
1894 }
1895
1896 static int its_vlpi_unmap(struct irq_data *d)
1897 {
1898         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899         u32 event = its_get_event_id(d);
1900         int ret = 0;
1901
1902         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903
1904         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1905                 ret = -EINVAL;
1906                 goto out;
1907         }
1908
1909         /* Drop the virtual mapping */
1910         its_send_discard(its_dev, event);
1911
1912         /* and restore the physical one */
1913         irqd_clr_forwarded_to_vcpu(d);
1914         its_send_mapti(its_dev, d->hwirq, event);
1915         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1916                                     LPI_PROP_ENABLED |
1917                                     LPI_PROP_GROUP1));
1918
1919         /* Potentially unmap the VM from this ITS */
1920         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1921
1922         /*
1923          * Drop the refcount and make the device available again if
1924          * this was the last VLPI.
1925          */
1926         if (!--its_dev->event_map.nr_vlpis) {
1927                 its_dev->event_map.vm = NULL;
1928                 kfree(its_dev->event_map.vlpi_maps);
1929         }
1930
1931 out:
1932         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1933         return ret;
1934 }
1935
1936 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1937 {
1938         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1939
1940         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1941                 return -EINVAL;
1942
1943         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1944                 lpi_update_config(d, 0xff, info->config);
1945         else
1946                 lpi_write_config(d, 0xff, info->config);
1947         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1948
1949         return 0;
1950 }
1951
1952 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1953 {
1954         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1955         struct its_cmd_info *info = vcpu_info;
1956
1957         /* Need a v4 ITS */
1958         if (!is_v4(its_dev->its))
1959                 return -EINVAL;
1960
1961         /* Unmap request? */
1962         if (!info)
1963                 return its_vlpi_unmap(d);
1964
1965         switch (info->cmd_type) {
1966         case MAP_VLPI:
1967                 return its_vlpi_map(d, info);
1968
1969         case GET_VLPI:
1970                 return its_vlpi_get(d, info);
1971
1972         case PROP_UPDATE_VLPI:
1973         case PROP_UPDATE_AND_INV_VLPI:
1974                 return its_vlpi_prop_update(d, info);
1975
1976         default:
1977                 return -EINVAL;
1978         }
1979 }
1980
1981 static struct irq_chip its_irq_chip = {
1982         .name                   = "ITS",
1983         .irq_mask               = its_mask_irq,
1984         .irq_unmask             = its_unmask_irq,
1985         .irq_eoi                = irq_chip_eoi_parent,
1986         .irq_set_affinity       = its_set_affinity,
1987         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1988         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1989         .irq_retrigger          = its_irq_retrigger,
1990         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1991 };
1992
1993
1994 /*
1995  * How we allocate LPIs:
1996  *
1997  * lpi_range_list contains ranges of LPIs that are to available to
1998  * allocate from. To allocate LPIs, just pick the first range that
1999  * fits the required allocation, and reduce it by the required
2000  * amount. Once empty, remove the range from the list.
2001  *
2002  * To free a range of LPIs, add a free range to the list, sort it and
2003  * merge the result if the new range happens to be adjacent to an
2004  * already free block.
2005  *
2006  * The consequence of the above is that allocation is cost is low, but
2007  * freeing is expensive. We assumes that freeing rarely occurs.
2008  */
2009 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2010
2011 static DEFINE_MUTEX(lpi_range_lock);
2012 static LIST_HEAD(lpi_range_list);
2013
2014 struct lpi_range {
2015         struct list_head        entry;
2016         u32                     base_id;
2017         u32                     span;
2018 };
2019
2020 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2021 {
2022         struct lpi_range *range;
2023
2024         range = kmalloc(sizeof(*range), GFP_KERNEL);
2025         if (range) {
2026                 range->base_id = base;
2027                 range->span = span;
2028         }
2029
2030         return range;
2031 }
2032
2033 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2034 {
2035         struct lpi_range *range, *tmp;
2036         int err = -ENOSPC;
2037
2038         mutex_lock(&lpi_range_lock);
2039
2040         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2041                 if (range->span >= nr_lpis) {
2042                         *base = range->base_id;
2043                         range->base_id += nr_lpis;
2044                         range->span -= nr_lpis;
2045
2046                         if (range->span == 0) {
2047                                 list_del(&range->entry);
2048                                 kfree(range);
2049                         }
2050
2051                         err = 0;
2052                         break;
2053                 }
2054         }
2055
2056         mutex_unlock(&lpi_range_lock);
2057
2058         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2059         return err;
2060 }
2061
2062 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2063 {
2064         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2065                 return;
2066         if (a->base_id + a->span != b->base_id)
2067                 return;
2068         b->base_id = a->base_id;
2069         b->span += a->span;
2070         list_del(&a->entry);
2071         kfree(a);
2072 }
2073
2074 static int free_lpi_range(u32 base, u32 nr_lpis)
2075 {
2076         struct lpi_range *new, *old;
2077
2078         new = mk_lpi_range(base, nr_lpis);
2079         if (!new)
2080                 return -ENOMEM;
2081
2082         mutex_lock(&lpi_range_lock);
2083
2084         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2085                 if (old->base_id < base)
2086                         break;
2087         }
2088         /*
2089          * old is the last element with ->base_id smaller than base,
2090          * so new goes right after it. If there are no elements with
2091          * ->base_id smaller than base, &old->entry ends up pointing
2092          * at the head of the list, and inserting new it the start of
2093          * the list is the right thing to do in that case as well.
2094          */
2095         list_add(&new->entry, &old->entry);
2096         /*
2097          * Now check if we can merge with the preceding and/or
2098          * following ranges.
2099          */
2100         merge_lpi_ranges(old, new);
2101         merge_lpi_ranges(new, list_next_entry(new, entry));
2102
2103         mutex_unlock(&lpi_range_lock);
2104         return 0;
2105 }
2106
2107 static int __init its_lpi_init(u32 id_bits)
2108 {
2109         u32 lpis = (1UL << id_bits) - 8192;
2110         u32 numlpis;
2111         int err;
2112
2113         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2114
2115         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2116                 lpis = numlpis;
2117                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2118                         lpis);
2119         }
2120
2121         /*
2122          * Initializing the allocator is just the same as freeing the
2123          * full range of LPIs.
2124          */
2125         err = free_lpi_range(8192, lpis);
2126         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2127         return err;
2128 }
2129
2130 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2131 {
2132         unsigned long *bitmap = NULL;
2133         int err = 0;
2134
2135         do {
2136                 err = alloc_lpi_range(nr_irqs, base);
2137                 if (!err)
2138                         break;
2139
2140                 nr_irqs /= 2;
2141         } while (nr_irqs > 0);
2142
2143         if (!nr_irqs)
2144                 err = -ENOSPC;
2145
2146         if (err)
2147                 goto out;
2148
2149         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2150         if (!bitmap)
2151                 goto out;
2152
2153         *nr_ids = nr_irqs;
2154
2155 out:
2156         if (!bitmap)
2157                 *base = *nr_ids = 0;
2158
2159         return bitmap;
2160 }
2161
2162 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2163 {
2164         WARN_ON(free_lpi_range(base, nr_ids));
2165         bitmap_free(bitmap);
2166 }
2167
2168 static void gic_reset_prop_table(void *va)
2169 {
2170         /* Priority 0xa0, Group-1, disabled */
2171         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2172
2173         /* Make sure the GIC will observe the written configuration */
2174         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2175 }
2176
2177 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2178 {
2179         struct page *prop_page;
2180
2181         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2182         if (!prop_page)
2183                 return NULL;
2184
2185         gic_reset_prop_table(page_address(prop_page));
2186
2187         return prop_page;
2188 }
2189
2190 static void its_free_prop_table(struct page *prop_page)
2191 {
2192         free_pages((unsigned long)page_address(prop_page),
2193                    get_order(LPI_PROPBASE_SZ));
2194 }
2195
2196 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2197 {
2198         phys_addr_t start, end, addr_end;
2199         u64 i;
2200
2201         /*
2202          * We don't bother checking for a kdump kernel as by
2203          * construction, the LPI tables are out of this kernel's
2204          * memory map.
2205          */
2206         if (is_kdump_kernel())
2207                 return true;
2208
2209         addr_end = addr + size - 1;
2210
2211         for_each_reserved_mem_range(i, &start, &end) {
2212                 if (addr >= start && addr_end <= end)
2213                         return true;
2214         }
2215
2216         /* Not found, not a good sign... */
2217         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2218                 &addr, &addr_end);
2219         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2220         return false;
2221 }
2222
2223 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2224 {
2225         if (efi_enabled(EFI_CONFIG_TABLES))
2226                 return efi_mem_reserve_persistent(addr, size);
2227
2228         return 0;
2229 }
2230
2231 static int __init its_setup_lpi_prop_table(void)
2232 {
2233         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2234                 u64 val;
2235
2236                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2237                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2238
2239                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2240                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2241                                                      LPI_PROPBASE_SZ,
2242                                                      MEMREMAP_WB);
2243                 gic_reset_prop_table(gic_rdists->prop_table_va);
2244         } else {
2245                 struct page *page;
2246
2247                 lpi_id_bits = min_t(u32,
2248                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2249                                     ITS_MAX_LPI_NRBITS);
2250                 page = its_allocate_prop_table(GFP_NOWAIT);
2251                 if (!page) {
2252                         pr_err("Failed to allocate PROPBASE\n");
2253                         return -ENOMEM;
2254                 }
2255
2256                 gic_rdists->prop_table_pa = page_to_phys(page);
2257                 gic_rdists->prop_table_va = page_address(page);
2258                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2259                                           LPI_PROPBASE_SZ));
2260         }
2261
2262         pr_info("GICv3: using LPI property table @%pa\n",
2263                 &gic_rdists->prop_table_pa);
2264
2265         return its_lpi_init(lpi_id_bits);
2266 }
2267
2268 static const char *its_base_type_string[] = {
2269         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2270         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2271         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2272         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2273         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2274         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2275         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2276 };
2277
2278 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2279 {
2280         u32 idx = baser - its->tables;
2281
2282         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2283 }
2284
2285 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2286                             u64 val)
2287 {
2288         u32 idx = baser - its->tables;
2289
2290         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2291         baser->val = its_read_baser(its, baser);
2292 }
2293
2294 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2295                            u64 cache, u64 shr, u32 order, bool indirect)
2296 {
2297         u64 val = its_read_baser(its, baser);
2298         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2299         u64 type = GITS_BASER_TYPE(val);
2300         u64 baser_phys, tmp;
2301         u32 alloc_pages, psz;
2302         struct page *page;
2303         void *base;
2304
2305         psz = baser->psz;
2306         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2307         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2308                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2309                         &its->phys_base, its_base_type_string[type],
2310                         alloc_pages, GITS_BASER_PAGES_MAX);
2311                 alloc_pages = GITS_BASER_PAGES_MAX;
2312                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2313         }
2314
2315         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2316         if (!page)
2317                 return -ENOMEM;
2318
2319         base = (void *)page_address(page);
2320         baser_phys = virt_to_phys(base);
2321
2322         /* Check if the physical address of the memory is above 48bits */
2323         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2324
2325                 /* 52bit PA is supported only when PageSize=64K */
2326                 if (psz != SZ_64K) {
2327                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2328                         free_pages((unsigned long)base, order);
2329                         return -ENXIO;
2330                 }
2331
2332                 /* Convert 52bit PA to 48bit field */
2333                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2334         }
2335
2336 retry_baser:
2337         val = (baser_phys                                        |
2338                 (type << GITS_BASER_TYPE_SHIFT)                  |
2339                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2340                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2341                 cache                                            |
2342                 shr                                              |
2343                 GITS_BASER_VALID);
2344
2345         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2346
2347         switch (psz) {
2348         case SZ_4K:
2349                 val |= GITS_BASER_PAGE_SIZE_4K;
2350                 break;
2351         case SZ_16K:
2352                 val |= GITS_BASER_PAGE_SIZE_16K;
2353                 break;
2354         case SZ_64K:
2355                 val |= GITS_BASER_PAGE_SIZE_64K;
2356                 break;
2357         }
2358
2359         its_write_baser(its, baser, val);
2360         tmp = baser->val;
2361
2362         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2363                 /*
2364                  * Shareability didn't stick. Just use
2365                  * whatever the read reported, which is likely
2366                  * to be the only thing this redistributor
2367                  * supports. If that's zero, make it
2368                  * non-cacheable as well.
2369                  */
2370                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2371                 if (!shr) {
2372                         cache = GITS_BASER_nC;
2373                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2374                 }
2375                 goto retry_baser;
2376         }
2377
2378         if (val != tmp) {
2379                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2380                        &its->phys_base, its_base_type_string[type],
2381                        val, tmp);
2382                 free_pages((unsigned long)base, order);
2383                 return -ENXIO;
2384         }
2385
2386         baser->order = order;
2387         baser->base = base;
2388         baser->psz = psz;
2389         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2390
2391         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2392                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2393                 its_base_type_string[type],
2394                 (unsigned long)virt_to_phys(base),
2395                 indirect ? "indirect" : "flat", (int)esz,
2396                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2397
2398         return 0;
2399 }
2400
2401 static bool its_parse_indirect_baser(struct its_node *its,
2402                                      struct its_baser *baser,
2403                                      u32 *order, u32 ids)
2404 {
2405         u64 tmp = its_read_baser(its, baser);
2406         u64 type = GITS_BASER_TYPE(tmp);
2407         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2408         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2409         u32 new_order = *order;
2410         u32 psz = baser->psz;
2411         bool indirect = false;
2412
2413         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2414         if ((esz << ids) > (psz * 2)) {
2415                 /*
2416                  * Find out whether hw supports a single or two-level table by
2417                  * table by reading bit at offset '62' after writing '1' to it.
2418                  */
2419                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2420                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2421
2422                 if (indirect) {
2423                         /*
2424                          * The size of the lvl2 table is equal to ITS page size
2425                          * which is 'psz'. For computing lvl1 table size,
2426                          * subtract ID bits that sparse lvl2 table from 'ids'
2427                          * which is reported by ITS hardware times lvl1 table
2428                          * entry size.
2429                          */
2430                         ids -= ilog2(psz / (int)esz);
2431                         esz = GITS_LVL1_ENTRY_SIZE;
2432                 }
2433         }
2434
2435         /*
2436          * Allocate as many entries as required to fit the
2437          * range of device IDs that the ITS can grok... The ID
2438          * space being incredibly sparse, this results in a
2439          * massive waste of memory if two-level device table
2440          * feature is not supported by hardware.
2441          */
2442         new_order = max_t(u32, get_order(esz << ids), new_order);
2443         if (new_order >= MAX_ORDER) {
2444                 new_order = MAX_ORDER - 1;
2445                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2446                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2447                         &its->phys_base, its_base_type_string[type],
2448                         device_ids(its), ids);
2449         }
2450
2451         *order = new_order;
2452
2453         return indirect;
2454 }
2455
2456 static u32 compute_common_aff(u64 val)
2457 {
2458         u32 aff, clpiaff;
2459
2460         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2461         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2462
2463         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2464 }
2465
2466 static u32 compute_its_aff(struct its_node *its)
2467 {
2468         u64 val;
2469         u32 svpet;
2470
2471         /*
2472          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2473          * the resulting affinity. We then use that to see if this match
2474          * our own affinity.
2475          */
2476         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2477         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2478         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2479         return compute_common_aff(val);
2480 }
2481
2482 static struct its_node *find_sibling_its(struct its_node *cur_its)
2483 {
2484         struct its_node *its;
2485         u32 aff;
2486
2487         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2488                 return NULL;
2489
2490         aff = compute_its_aff(cur_its);
2491
2492         list_for_each_entry(its, &its_nodes, entry) {
2493                 u64 baser;
2494
2495                 if (!is_v4_1(its) || its == cur_its)
2496                         continue;
2497
2498                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2499                         continue;
2500
2501                 if (aff != compute_its_aff(its))
2502                         continue;
2503
2504                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2505                 baser = its->tables[2].val;
2506                 if (!(baser & GITS_BASER_VALID))
2507                         continue;
2508
2509                 return its;
2510         }
2511
2512         return NULL;
2513 }
2514
2515 static void its_free_tables(struct its_node *its)
2516 {
2517         int i;
2518
2519         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2520                 if (its->tables[i].base) {
2521                         free_pages((unsigned long)its->tables[i].base,
2522                                    its->tables[i].order);
2523                         its->tables[i].base = NULL;
2524                 }
2525         }
2526 }
2527
2528 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2529 {
2530         u64 psz = SZ_64K;
2531
2532         while (psz) {
2533                 u64 val, gpsz;
2534
2535                 val = its_read_baser(its, baser);
2536                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2537
2538                 switch (psz) {
2539                 case SZ_64K:
2540                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2541                         break;
2542                 case SZ_16K:
2543                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2544                         break;
2545                 case SZ_4K:
2546                 default:
2547                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2548                         break;
2549                 }
2550
2551                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2552
2553                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2554                 its_write_baser(its, baser, val);
2555
2556                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2557                         break;
2558
2559                 switch (psz) {
2560                 case SZ_64K:
2561                         psz = SZ_16K;
2562                         break;
2563                 case SZ_16K:
2564                         psz = SZ_4K;
2565                         break;
2566                 case SZ_4K:
2567                 default:
2568                         return -1;
2569                 }
2570         }
2571
2572         baser->psz = psz;
2573         return 0;
2574 }
2575
2576 static int its_alloc_tables(struct its_node *its)
2577 {
2578         u64 shr = GITS_BASER_InnerShareable;
2579         u64 cache = GITS_BASER_RaWaWb;
2580         int err, i;
2581
2582         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2583                 /* erratum 24313: ignore memory access type */
2584                 cache = GITS_BASER_nCnB;
2585
2586         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2587                 struct its_baser *baser = its->tables + i;
2588                 u64 val = its_read_baser(its, baser);
2589                 u64 type = GITS_BASER_TYPE(val);
2590                 bool indirect = false;
2591                 u32 order;
2592
2593                 if (type == GITS_BASER_TYPE_NONE)
2594                         continue;
2595
2596                 if (its_probe_baser_psz(its, baser)) {
2597                         its_free_tables(its);
2598                         return -ENXIO;
2599                 }
2600
2601                 order = get_order(baser->psz);
2602
2603                 switch (type) {
2604                 case GITS_BASER_TYPE_DEVICE:
2605                         indirect = its_parse_indirect_baser(its, baser, &order,
2606                                                             device_ids(its));
2607                         break;
2608
2609                 case GITS_BASER_TYPE_VCPU:
2610                         if (is_v4_1(its)) {
2611                                 struct its_node *sibling;
2612
2613                                 WARN_ON(i != 2);
2614                                 if ((sibling = find_sibling_its(its))) {
2615                                         *baser = sibling->tables[2];
2616                                         its_write_baser(its, baser, baser->val);
2617                                         continue;
2618                                 }
2619                         }
2620
2621                         indirect = its_parse_indirect_baser(its, baser, &order,
2622                                                             ITS_MAX_VPEID_BITS);
2623                         break;
2624                 }
2625
2626                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2627                 if (err < 0) {
2628                         its_free_tables(its);
2629                         return err;
2630                 }
2631
2632                 /* Update settings which will be used for next BASERn */
2633                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2634                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2635         }
2636
2637         return 0;
2638 }
2639
2640 static u64 inherit_vpe_l1_table_from_its(void)
2641 {
2642         struct its_node *its;
2643         u64 val;
2644         u32 aff;
2645
2646         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2647         aff = compute_common_aff(val);
2648
2649         list_for_each_entry(its, &its_nodes, entry) {
2650                 u64 baser, addr;
2651
2652                 if (!is_v4_1(its))
2653                         continue;
2654
2655                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2656                         continue;
2657
2658                 if (aff != compute_its_aff(its))
2659                         continue;
2660
2661                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2662                 baser = its->tables[2].val;
2663                 if (!(baser & GITS_BASER_VALID))
2664                         continue;
2665
2666                 /* We have a winner! */
2667                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2668
2669                 val  = GICR_VPROPBASER_4_1_VALID;
2670                 if (baser & GITS_BASER_INDIRECT)
2671                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2672                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2673                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2674                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2675                 case GIC_PAGE_SIZE_64K:
2676                         addr = GITS_BASER_ADDR_48_to_52(baser);
2677                         break;
2678                 default:
2679                         addr = baser & GENMASK_ULL(47, 12);
2680                         break;
2681                 }
2682                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2683                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2684                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2685                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2686                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2687                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2688
2689                 return val;
2690         }
2691
2692         return 0;
2693 }
2694
2695 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2696 {
2697         u32 aff;
2698         u64 val;
2699         int cpu;
2700
2701         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2702         aff = compute_common_aff(val);
2703
2704         for_each_possible_cpu(cpu) {
2705                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2706
2707                 if (!base || cpu == smp_processor_id())
2708                         continue;
2709
2710                 val = gic_read_typer(base + GICR_TYPER);
2711                 if (aff != compute_common_aff(val))
2712                         continue;
2713
2714                 /*
2715                  * At this point, we have a victim. This particular CPU
2716                  * has already booted, and has an affinity that matches
2717                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2718                  * Make sure we don't write the Z bit in that case.
2719                  */
2720                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2721                 val &= ~GICR_VPROPBASER_4_1_Z;
2722
2723                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2724                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2725
2726                 return val;
2727         }
2728
2729         return 0;
2730 }
2731
2732 static bool allocate_vpe_l2_table(int cpu, u32 id)
2733 {
2734         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2735         unsigned int psz, esz, idx, npg, gpsz;
2736         u64 val;
2737         struct page *page;
2738         __le64 *table;
2739
2740         if (!gic_rdists->has_rvpeid)
2741                 return true;
2742
2743         /* Skip non-present CPUs */
2744         if (!base)
2745                 return true;
2746
2747         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2748
2749         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2750         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2751         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2752
2753         switch (gpsz) {
2754         default:
2755                 WARN_ON(1);
2756                 fallthrough;
2757         case GIC_PAGE_SIZE_4K:
2758                 psz = SZ_4K;
2759                 break;
2760         case GIC_PAGE_SIZE_16K:
2761                 psz = SZ_16K;
2762                 break;
2763         case GIC_PAGE_SIZE_64K:
2764                 psz = SZ_64K;
2765                 break;
2766         }
2767
2768         /* Don't allow vpe_id that exceeds single, flat table limit */
2769         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2770                 return (id < (npg * psz / (esz * SZ_8)));
2771
2772         /* Compute 1st level table index & check if that exceeds table limit */
2773         idx = id >> ilog2(psz / (esz * SZ_8));
2774         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2775                 return false;
2776
2777         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2778
2779         /* Allocate memory for 2nd level table */
2780         if (!table[idx]) {
2781                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2782                 if (!page)
2783                         return false;
2784
2785                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2786                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787                         gic_flush_dcache_to_poc(page_address(page), psz);
2788
2789                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2790
2791                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2792                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2794
2795                 /* Ensure updated table contents are visible to RD hardware */
2796                 dsb(sy);
2797         }
2798
2799         return true;
2800 }
2801
2802 static int allocate_vpe_l1_table(void)
2803 {
2804         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805         u64 val, gpsz, npg, pa;
2806         unsigned int psz = SZ_64K;
2807         unsigned int np, epp, esz;
2808         struct page *page;
2809
2810         if (!gic_rdists->has_rvpeid)
2811                 return 0;
2812
2813         /*
2814          * if VPENDBASER.Valid is set, disable any previously programmed
2815          * VPE by setting PendingLast while clearing Valid. This has the
2816          * effect of making sure no doorbell will be generated and we can
2817          * then safely clear VPROPBASER.Valid.
2818          */
2819         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2820                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2821                                       vlpi_base + GICR_VPENDBASER);
2822
2823         /*
2824          * If we can inherit the configuration from another RD, let's do
2825          * so. Otherwise, we have to go through the allocation process. We
2826          * assume that all RDs have the exact same requirements, as
2827          * nothing will work otherwise.
2828          */
2829         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2830         if (val & GICR_VPROPBASER_4_1_VALID)
2831                 goto out;
2832
2833         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2834         if (!gic_data_rdist()->vpe_table_mask)
2835                 return -ENOMEM;
2836
2837         val = inherit_vpe_l1_table_from_its();
2838         if (val & GICR_VPROPBASER_4_1_VALID)
2839                 goto out;
2840
2841         /* First probe the page size */
2842         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2843         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2844         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2845         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2846         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2847
2848         switch (gpsz) {
2849         default:
2850                 gpsz = GIC_PAGE_SIZE_4K;
2851                 fallthrough;
2852         case GIC_PAGE_SIZE_4K:
2853                 psz = SZ_4K;
2854                 break;
2855         case GIC_PAGE_SIZE_16K:
2856                 psz = SZ_16K;
2857                 break;
2858         case GIC_PAGE_SIZE_64K:
2859                 psz = SZ_64K;
2860                 break;
2861         }
2862
2863         /*
2864          * Start populating the register from scratch, including RO fields
2865          * (which we want to print in debug cases...)
2866          */
2867         val = 0;
2868         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2869         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2870
2871         /* How many entries per GIC page? */
2872         esz++;
2873         epp = psz / (esz * SZ_8);
2874
2875         /*
2876          * If we need more than just a single L1 page, flag the table
2877          * as indirect and compute the number of required L1 pages.
2878          */
2879         if (epp < ITS_MAX_VPEID) {
2880                 int nl2;
2881
2882                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2883
2884                 /* Number of L2 pages required to cover the VPEID space */
2885                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2886
2887                 /* Number of L1 pages to point to the L2 pages */
2888                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2889         } else {
2890                 npg = 1;
2891         }
2892
2893         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2894
2895         /* Right, that's the number of CPU pages we need for L1 */
2896         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2897
2898         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2899                  np, npg, psz, epp, esz);
2900         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2901         if (!page)
2902                 return -ENOMEM;
2903
2904         gic_data_rdist()->vpe_l1_base = page_address(page);
2905         pa = virt_to_phys(page_address(page));
2906         WARN_ON(!IS_ALIGNED(pa, psz));
2907
2908         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2909         val |= GICR_VPROPBASER_RaWb;
2910         val |= GICR_VPROPBASER_InnerShareable;
2911         val |= GICR_VPROPBASER_4_1_Z;
2912         val |= GICR_VPROPBASER_4_1_VALID;
2913
2914 out:
2915         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2916         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2917
2918         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2919                  smp_processor_id(), val,
2920                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2921
2922         return 0;
2923 }
2924
2925 static int its_alloc_collections(struct its_node *its)
2926 {
2927         int i;
2928
2929         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2930                                    GFP_KERNEL);
2931         if (!its->collections)
2932                 return -ENOMEM;
2933
2934         for (i = 0; i < nr_cpu_ids; i++)
2935                 its->collections[i].target_address = ~0ULL;
2936
2937         return 0;
2938 }
2939
2940 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2941 {
2942         struct page *pend_page;
2943
2944         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2945                                 get_order(LPI_PENDBASE_SZ));
2946         if (!pend_page)
2947                 return NULL;
2948
2949         /* Make sure the GIC will observe the zero-ed page */
2950         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2951
2952         return pend_page;
2953 }
2954
2955 static void its_free_pending_table(struct page *pt)
2956 {
2957         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2958 }
2959
2960 /*
2961  * Booting with kdump and LPIs enabled is generally fine. Any other
2962  * case is wrong in the absence of firmware/EFI support.
2963  */
2964 static bool enabled_lpis_allowed(void)
2965 {
2966         phys_addr_t addr;
2967         u64 val;
2968
2969         /* Check whether the property table is in a reserved region */
2970         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2971         addr = val & GENMASK_ULL(51, 12);
2972
2973         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2974 }
2975
2976 static int __init allocate_lpi_tables(void)
2977 {
2978         u64 val;
2979         int err, cpu;
2980
2981         /*
2982          * If LPIs are enabled while we run this from the boot CPU,
2983          * flag the RD tables as pre-allocated if the stars do align.
2984          */
2985         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2986         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2987                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2988                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2989                 pr_info("GICv3: Using preallocated redistributor tables\n");
2990         }
2991
2992         err = its_setup_lpi_prop_table();
2993         if (err)
2994                 return err;
2995
2996         /*
2997          * We allocate all the pending tables anyway, as we may have a
2998          * mix of RDs that have had LPIs enabled, and some that
2999          * don't. We'll free the unused ones as each CPU comes online.
3000          */
3001         for_each_possible_cpu(cpu) {
3002                 struct page *pend_page;
3003
3004                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3005                 if (!pend_page) {
3006                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3007                         return -ENOMEM;
3008                 }
3009
3010                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3011         }
3012
3013         return 0;
3014 }
3015
3016 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3017 {
3018         u32 count = 1000000;    /* 1s! */
3019         bool clean;
3020         u64 val;
3021
3022         do {
3023                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024                 clean = !(val & GICR_VPENDBASER_Dirty);
3025                 if (!clean) {
3026                         count--;
3027                         cpu_relax();
3028                         udelay(1);
3029                 }
3030         } while (!clean && count);
3031
3032         if (unlikely(!clean))
3033                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034
3035         return val;
3036 }
3037
3038 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3039 {
3040         u64 val;
3041
3042         /* Make sure we wait until the RD is done with the initial scan */
3043         val = read_vpend_dirty_clear(vlpi_base);
3044         val &= ~GICR_VPENDBASER_Valid;
3045         val &= ~clr;
3046         val |= set;
3047         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3048
3049         val = read_vpend_dirty_clear(vlpi_base);
3050         if (unlikely(val & GICR_VPENDBASER_Dirty))
3051                 val |= GICR_VPENDBASER_PendingLast;
3052
3053         return val;
3054 }
3055
3056 static void its_cpu_init_lpis(void)
3057 {
3058         void __iomem *rbase = gic_data_rdist_rd_base();
3059         struct page *pend_page;
3060         phys_addr_t paddr;
3061         u64 val, tmp;
3062
3063         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3064                 return;
3065
3066         val = readl_relaxed(rbase + GICR_CTLR);
3067         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3068             (val & GICR_CTLR_ENABLE_LPIS)) {
3069                 /*
3070                  * Check that we get the same property table on all
3071                  * RDs. If we don't, this is hopeless.
3072                  */
3073                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074                 paddr &= GENMASK_ULL(51, 12);
3075                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3076                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3077
3078                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3079                 paddr &= GENMASK_ULL(51, 16);
3080
3081                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3082                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3083
3084                 goto out;
3085         }
3086
3087         pend_page = gic_data_rdist()->pend_page;
3088         paddr = page_to_phys(pend_page);
3089
3090         /* set PROPBASE */
3091         val = (gic_rdists->prop_table_pa |
3092                GICR_PROPBASER_InnerShareable |
3093                GICR_PROPBASER_RaWaWb |
3094                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3095
3096         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3097         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3098
3099         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3100                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3101                         /*
3102                          * The HW reports non-shareable, we must
3103                          * remove the cacheability attributes as
3104                          * well.
3105                          */
3106                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3107                                  GICR_PROPBASER_CACHEABILITY_MASK);
3108                         val |= GICR_PROPBASER_nC;
3109                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3110                 }
3111                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3112                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3113         }
3114
3115         /* set PENDBASE */
3116         val = (page_to_phys(pend_page) |
3117                GICR_PENDBASER_InnerShareable |
3118                GICR_PENDBASER_RaWaWb);
3119
3120         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3121         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3122
3123         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3124                 /*
3125                  * The HW reports non-shareable, we must remove the
3126                  * cacheability attributes as well.
3127                  */
3128                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3129                          GICR_PENDBASER_CACHEABILITY_MASK);
3130                 val |= GICR_PENDBASER_nC;
3131                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3132         }
3133
3134         /* Enable LPIs */
3135         val = readl_relaxed(rbase + GICR_CTLR);
3136         val |= GICR_CTLR_ENABLE_LPIS;
3137         writel_relaxed(val, rbase + GICR_CTLR);
3138
3139         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3140                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3141
3142                 /*
3143                  * It's possible for CPU to receive VLPIs before it is
3144                  * scheduled as a vPE, especially for the first CPU, and the
3145                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3146                  * as out of range and dropped by GIC.
3147                  * So we initialize IDbits to known value to avoid VLPI drop.
3148                  */
3149                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3150                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3151                         smp_processor_id(), val);
3152                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3153
3154                 /*
3155                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3156                  * ancient programming gets left in and has possibility of
3157                  * corrupting memory.
3158                  */
3159                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3160         }
3161
3162         if (allocate_vpe_l1_table()) {
3163                 /*
3164                  * If the allocation has failed, we're in massive trouble.
3165                  * Disable direct injection, and pray that no VM was
3166                  * already running...
3167                  */
3168                 gic_rdists->has_rvpeid = false;
3169                 gic_rdists->has_vlpis = false;
3170         }
3171
3172         /* Make sure the GIC has seen the above */
3173         dsb(sy);
3174 out:
3175         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3176         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3177                 smp_processor_id(),
3178                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3179                 "reserved" : "allocated",
3180                 &paddr);
3181 }
3182
3183 static void its_cpu_init_collection(struct its_node *its)
3184 {
3185         int cpu = smp_processor_id();
3186         u64 target;
3187
3188         /* avoid cross node collections and its mapping */
3189         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3190                 struct device_node *cpu_node;
3191
3192                 cpu_node = of_get_cpu_node(cpu, NULL);
3193                 if (its->numa_node != NUMA_NO_NODE &&
3194                         its->numa_node != of_node_to_nid(cpu_node))
3195                         return;
3196         }
3197
3198         /*
3199          * We now have to bind each collection to its target
3200          * redistributor.
3201          */
3202         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3203                 /*
3204                  * This ITS wants the physical address of the
3205                  * redistributor.
3206                  */
3207                 target = gic_data_rdist()->phys_base;
3208         } else {
3209                 /* This ITS wants a linear CPU number. */
3210                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3211                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3212         }
3213
3214         /* Perform collection mapping */
3215         its->collections[cpu].target_address = target;
3216         its->collections[cpu].col_id = cpu;
3217
3218         its_send_mapc(its, &its->collections[cpu], 1);
3219         its_send_invall(its, &its->collections[cpu]);
3220 }
3221
3222 static void its_cpu_init_collections(void)
3223 {
3224         struct its_node *its;
3225
3226         raw_spin_lock(&its_lock);
3227
3228         list_for_each_entry(its, &its_nodes, entry)
3229                 its_cpu_init_collection(its);
3230
3231         raw_spin_unlock(&its_lock);
3232 }
3233
3234 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3235 {
3236         struct its_device *its_dev = NULL, *tmp;
3237         unsigned long flags;
3238
3239         raw_spin_lock_irqsave(&its->lock, flags);
3240
3241         list_for_each_entry(tmp, &its->its_device_list, entry) {
3242                 if (tmp->device_id == dev_id) {
3243                         its_dev = tmp;
3244                         break;
3245                 }
3246         }
3247
3248         raw_spin_unlock_irqrestore(&its->lock, flags);
3249
3250         return its_dev;
3251 }
3252
3253 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3254 {
3255         int i;
3256
3257         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3258                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3259                         return &its->tables[i];
3260         }
3261
3262         return NULL;
3263 }
3264
3265 static bool its_alloc_table_entry(struct its_node *its,
3266                                   struct its_baser *baser, u32 id)
3267 {
3268         struct page *page;
3269         u32 esz, idx;
3270         __le64 *table;
3271
3272         /* Don't allow device id that exceeds single, flat table limit */
3273         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3274         if (!(baser->val & GITS_BASER_INDIRECT))
3275                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3276
3277         /* Compute 1st level table index & check if that exceeds table limit */
3278         idx = id >> ilog2(baser->psz / esz);
3279         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3280                 return false;
3281
3282         table = baser->base;
3283
3284         /* Allocate memory for 2nd level table */
3285         if (!table[idx]) {
3286                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3287                                         get_order(baser->psz));
3288                 if (!page)
3289                         return false;
3290
3291                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3292                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3293                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3294
3295                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3296
3297                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3298                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3299                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3300
3301                 /* Ensure updated table contents are visible to ITS hardware */
3302                 dsb(sy);
3303         }
3304
3305         return true;
3306 }
3307
3308 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3309 {
3310         struct its_baser *baser;
3311
3312         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3313
3314         /* Don't allow device id that exceeds ITS hardware limit */
3315         if (!baser)
3316                 return (ilog2(dev_id) < device_ids(its));
3317
3318         return its_alloc_table_entry(its, baser, dev_id);
3319 }
3320
3321 static bool its_alloc_vpe_table(u32 vpe_id)
3322 {
3323         struct its_node *its;
3324         int cpu;
3325
3326         /*
3327          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3328          * could try and only do it on ITSs corresponding to devices
3329          * that have interrupts targeted at this VPE, but the
3330          * complexity becomes crazy (and you have tons of memory
3331          * anyway, right?).
3332          */
3333         list_for_each_entry(its, &its_nodes, entry) {
3334                 struct its_baser *baser;
3335
3336                 if (!is_v4(its))
3337                         continue;
3338
3339                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3340                 if (!baser)
3341                         return false;
3342
3343                 if (!its_alloc_table_entry(its, baser, vpe_id))
3344                         return false;
3345         }
3346
3347         /* Non v4.1? No need to iterate RDs and go back early. */
3348         if (!gic_rdists->has_rvpeid)
3349                 return true;
3350
3351         /*
3352          * Make sure the L2 tables are allocated for all copies of
3353          * the L1 table on *all* v4.1 RDs.
3354          */
3355         for_each_possible_cpu(cpu) {
3356                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3357                         return false;
3358         }
3359
3360         return true;
3361 }
3362
3363 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3364                                             int nvecs, bool alloc_lpis)
3365 {
3366         struct its_device *dev;
3367         unsigned long *lpi_map = NULL;
3368         unsigned long flags;
3369         u16 *col_map = NULL;
3370         void *itt;
3371         int lpi_base;
3372         int nr_lpis;
3373         int nr_ites;
3374         int sz;
3375
3376         if (!its_alloc_device_table(its, dev_id))
3377                 return NULL;
3378
3379         if (WARN_ON(!is_power_of_2(nvecs)))
3380                 nvecs = roundup_pow_of_two(nvecs);
3381
3382         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3383         /*
3384          * Even if the device wants a single LPI, the ITT must be
3385          * sized as a power of two (and you need at least one bit...).
3386          */
3387         nr_ites = max(2, nvecs);
3388         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3389         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3390         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3391         if (alloc_lpis) {
3392                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3393                 if (lpi_map)
3394                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3395                                           GFP_KERNEL);
3396         } else {
3397                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3398                 nr_lpis = 0;
3399                 lpi_base = 0;
3400         }
3401
3402         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3403                 kfree(dev);
3404                 kfree(itt);
3405                 bitmap_free(lpi_map);
3406                 kfree(col_map);
3407                 return NULL;
3408         }
3409
3410         gic_flush_dcache_to_poc(itt, sz);
3411
3412         dev->its = its;
3413         dev->itt = itt;
3414         dev->nr_ites = nr_ites;
3415         dev->event_map.lpi_map = lpi_map;
3416         dev->event_map.col_map = col_map;
3417         dev->event_map.lpi_base = lpi_base;
3418         dev->event_map.nr_lpis = nr_lpis;
3419         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3420         dev->device_id = dev_id;
3421         INIT_LIST_HEAD(&dev->entry);
3422
3423         raw_spin_lock_irqsave(&its->lock, flags);
3424         list_add(&dev->entry, &its->its_device_list);
3425         raw_spin_unlock_irqrestore(&its->lock, flags);
3426
3427         /* Map device to its ITT */
3428         its_send_mapd(dev, 1);
3429
3430         return dev;
3431 }
3432
3433 static void its_free_device(struct its_device *its_dev)
3434 {
3435         unsigned long flags;
3436
3437         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3438         list_del(&its_dev->entry);
3439         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3440         kfree(its_dev->event_map.col_map);
3441         kfree(its_dev->itt);
3442         kfree(its_dev);
3443 }
3444
3445 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3446 {
3447         int idx;
3448
3449         /* Find a free LPI region in lpi_map and allocate them. */
3450         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3451                                       dev->event_map.nr_lpis,
3452                                       get_count_order(nvecs));
3453         if (idx < 0)
3454                 return -ENOSPC;
3455
3456         *hwirq = dev->event_map.lpi_base + idx;
3457
3458         return 0;
3459 }
3460
3461 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3462                            int nvec, msi_alloc_info_t *info)
3463 {
3464         struct its_node *its;
3465         struct its_device *its_dev;
3466         struct msi_domain_info *msi_info;
3467         u32 dev_id;
3468         int err = 0;
3469
3470         /*
3471          * We ignore "dev" entirely, and rely on the dev_id that has
3472          * been passed via the scratchpad. This limits this domain's
3473          * usefulness to upper layers that definitely know that they
3474          * are built on top of the ITS.
3475          */
3476         dev_id = info->scratchpad[0].ul;
3477
3478         msi_info = msi_get_domain_info(domain);
3479         its = msi_info->data;
3480
3481         if (!gic_rdists->has_direct_lpi &&
3482             vpe_proxy.dev &&
3483             vpe_proxy.dev->its == its &&
3484             dev_id == vpe_proxy.dev->device_id) {
3485                 /* Bad luck. Get yourself a better implementation */
3486                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3487                           dev_id);
3488                 return -EINVAL;
3489         }
3490
3491         mutex_lock(&its->dev_alloc_lock);
3492         its_dev = its_find_device(its, dev_id);
3493         if (its_dev) {
3494                 /*
3495                  * We already have seen this ID, probably through
3496                  * another alias (PCI bridge of some sort). No need to
3497                  * create the device.
3498                  */
3499                 its_dev->shared = true;
3500                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3501                 goto out;
3502         }
3503
3504         its_dev = its_create_device(its, dev_id, nvec, true);
3505         if (!its_dev) {
3506                 err = -ENOMEM;
3507                 goto out;
3508         }
3509
3510         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3511                 its_dev->shared = true;
3512
3513         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3514 out:
3515         mutex_unlock(&its->dev_alloc_lock);
3516         info->scratchpad[0].ptr = its_dev;
3517         return err;
3518 }
3519
3520 static struct msi_domain_ops its_msi_domain_ops = {
3521         .msi_prepare    = its_msi_prepare,
3522 };
3523
3524 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3525                                     unsigned int virq,
3526                                     irq_hw_number_t hwirq)
3527 {
3528         struct irq_fwspec fwspec;
3529
3530         if (irq_domain_get_of_node(domain->parent)) {
3531                 fwspec.fwnode = domain->parent->fwnode;
3532                 fwspec.param_count = 3;
3533                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3534                 fwspec.param[1] = hwirq;
3535                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3536         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3537                 fwspec.fwnode = domain->parent->fwnode;
3538                 fwspec.param_count = 2;
3539                 fwspec.param[0] = hwirq;
3540                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3541         } else {
3542                 return -EINVAL;
3543         }
3544
3545         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3546 }
3547
3548 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3549                                 unsigned int nr_irqs, void *args)
3550 {
3551         msi_alloc_info_t *info = args;
3552         struct its_device *its_dev = info->scratchpad[0].ptr;
3553         struct its_node *its = its_dev->its;
3554         struct irq_data *irqd;
3555         irq_hw_number_t hwirq;
3556         int err;
3557         int i;
3558
3559         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3560         if (err)
3561                 return err;
3562
3563         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3564         if (err)
3565                 return err;
3566
3567         for (i = 0; i < nr_irqs; i++) {
3568                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3569                 if (err)
3570                         return err;
3571
3572                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3573                                               hwirq + i, &its_irq_chip, its_dev);
3574                 irqd = irq_get_irq_data(virq + i);
3575                 irqd_set_single_target(irqd);
3576                 irqd_set_affinity_on_activate(irqd);
3577                 pr_debug("ID:%d pID:%d vID:%d\n",
3578                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3579                          (int)(hwirq + i), virq + i);
3580         }
3581
3582         return 0;
3583 }
3584
3585 static int its_irq_domain_activate(struct irq_domain *domain,
3586                                    struct irq_data *d, bool reserve)
3587 {
3588         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589         u32 event = its_get_event_id(d);
3590         int cpu;
3591
3592         cpu = its_select_cpu(d, cpu_online_mask);
3593         if (cpu < 0 || cpu >= nr_cpu_ids)
3594                 return -EINVAL;
3595
3596         its_inc_lpi_count(d, cpu);
3597         its_dev->event_map.col_map[event] = cpu;
3598         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3599
3600         /* Map the GIC IRQ and event to the device */
3601         its_send_mapti(its_dev, d->hwirq, event);
3602         return 0;
3603 }
3604
3605 static void its_irq_domain_deactivate(struct irq_domain *domain,
3606                                       struct irq_data *d)
3607 {
3608         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609         u32 event = its_get_event_id(d);
3610
3611         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3612         /* Stop the delivery of interrupts */
3613         its_send_discard(its_dev, event);
3614 }
3615
3616 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3617                                 unsigned int nr_irqs)
3618 {
3619         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3620         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621         struct its_node *its = its_dev->its;
3622         int i;
3623
3624         bitmap_release_region(its_dev->event_map.lpi_map,
3625                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3626                               get_count_order(nr_irqs));
3627
3628         for (i = 0; i < nr_irqs; i++) {
3629                 struct irq_data *data = irq_domain_get_irq_data(domain,
3630                                                                 virq + i);
3631                 /* Nuke the entry in the domain */
3632                 irq_domain_reset_irq_data(data);
3633         }
3634
3635         mutex_lock(&its->dev_alloc_lock);
3636
3637         /*
3638          * If all interrupts have been freed, start mopping the
3639          * floor. This is conditioned on the device not being shared.
3640          */
3641         if (!its_dev->shared &&
3642             bitmap_empty(its_dev->event_map.lpi_map,
3643                          its_dev->event_map.nr_lpis)) {
3644                 its_lpi_free(its_dev->event_map.lpi_map,
3645                              its_dev->event_map.lpi_base,
3646                              its_dev->event_map.nr_lpis);
3647
3648                 /* Unmap device/itt */
3649                 its_send_mapd(its_dev, 0);
3650                 its_free_device(its_dev);
3651         }
3652
3653         mutex_unlock(&its->dev_alloc_lock);
3654
3655         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3656 }
3657
3658 static const struct irq_domain_ops its_domain_ops = {
3659         .alloc                  = its_irq_domain_alloc,
3660         .free                   = its_irq_domain_free,
3661         .activate               = its_irq_domain_activate,
3662         .deactivate             = its_irq_domain_deactivate,
3663 };
3664
3665 /*
3666  * This is insane.
3667  *
3668  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3669  * likely), the only way to perform an invalidate is to use a fake
3670  * device to issue an INV command, implying that the LPI has first
3671  * been mapped to some event on that device. Since this is not exactly
3672  * cheap, we try to keep that mapping around as long as possible, and
3673  * only issue an UNMAP if we're short on available slots.
3674  *
3675  * Broken by design(tm).
3676  *
3677  * GICv4.1, on the other hand, mandates that we're able to invalidate
3678  * by writing to a MMIO register. It doesn't implement the whole of
3679  * DirectLPI, but that's good enough. And most of the time, we don't
3680  * even have to invalidate anything, as the redistributor can be told
3681  * whether to generate a doorbell or not (we thus leave it enabled,
3682  * always).
3683  */
3684 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3685 {
3686         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3687         if (gic_rdists->has_rvpeid)
3688                 return;
3689
3690         /* Already unmapped? */
3691         if (vpe->vpe_proxy_event == -1)
3692                 return;
3693
3694         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3695         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3696
3697         /*
3698          * We don't track empty slots at all, so let's move the
3699          * next_victim pointer if we can quickly reuse that slot
3700          * instead of nuking an existing entry. Not clear that this is
3701          * always a win though, and this might just generate a ripple
3702          * effect... Let's just hope VPEs don't migrate too often.
3703          */
3704         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3705                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3706
3707         vpe->vpe_proxy_event = -1;
3708 }
3709
3710 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3711 {
3712         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3713         if (gic_rdists->has_rvpeid)
3714                 return;
3715
3716         if (!gic_rdists->has_direct_lpi) {
3717                 unsigned long flags;
3718
3719                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3720                 its_vpe_db_proxy_unmap_locked(vpe);
3721                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3722         }
3723 }
3724
3725 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3726 {
3727         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3728         if (gic_rdists->has_rvpeid)
3729                 return;
3730
3731         /* Already mapped? */
3732         if (vpe->vpe_proxy_event != -1)
3733                 return;
3734
3735         /* This slot was already allocated. Kick the other VPE out. */
3736         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3737                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3738
3739         /* Map the new VPE instead */
3740         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3741         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3742         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3743
3744         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3745         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3746 }
3747
3748 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3749 {
3750         unsigned long flags;
3751         struct its_collection *target_col;
3752
3753         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3754         if (gic_rdists->has_rvpeid)
3755                 return;
3756
3757         if (gic_rdists->has_direct_lpi) {
3758                 void __iomem *rdbase;
3759
3760                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3761                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3762                 wait_for_syncr(rdbase);
3763
3764                 return;
3765         }
3766
3767         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3768
3769         its_vpe_db_proxy_map_locked(vpe);
3770
3771         target_col = &vpe_proxy.dev->its->collections[to];
3772         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3773         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3774
3775         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3776 }
3777
3778 static int its_vpe_set_affinity(struct irq_data *d,
3779                                 const struct cpumask *mask_val,
3780                                 bool force)
3781 {
3782         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3783         int from, cpu = cpumask_first(mask_val);
3784         unsigned long flags;
3785
3786         /*
3787          * Changing affinity is mega expensive, so let's be as lazy as
3788          * we can and only do it if we really have to. Also, if mapped
3789          * into the proxy device, we need to move the doorbell
3790          * interrupt to its new location.
3791          *
3792          * Another thing is that changing the affinity of a vPE affects
3793          * *other interrupts* such as all the vLPIs that are routed to
3794          * this vPE. This means that the irq_desc lock is not enough to
3795          * protect us, and that we must ensure nobody samples vpe->col_idx
3796          * during the update, hence the lock below which must also be
3797          * taken on any vLPI handling path that evaluates vpe->col_idx.
3798          */
3799         from = vpe_to_cpuid_lock(vpe, &flags);
3800         if (from == cpu)
3801                 goto out;
3802
3803         vpe->col_idx = cpu;
3804
3805         /*
3806          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3807          * is sharing its VPE table with the current one.
3808          */
3809         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3810             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3811                 goto out;
3812
3813         its_send_vmovp(vpe);
3814         its_vpe_db_proxy_move(vpe, from, cpu);
3815
3816 out:
3817         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3818         vpe_to_cpuid_unlock(vpe, flags);
3819
3820         return IRQ_SET_MASK_OK_DONE;
3821 }
3822
3823 static void its_wait_vpt_parse_complete(void)
3824 {
3825         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3826         u64 val;
3827
3828         if (!gic_rdists->has_vpend_valid_dirty)
3829                 return;
3830
3831         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3832                                                        val,
3833                                                        !(val & GICR_VPENDBASER_Dirty),
3834                                                        1, 500));
3835 }
3836
3837 static void its_vpe_schedule(struct its_vpe *vpe)
3838 {
3839         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3840         u64 val;
3841
3842         /* Schedule the VPE */
3843         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3844                 GENMASK_ULL(51, 12);
3845         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3846         val |= GICR_VPROPBASER_RaWb;
3847         val |= GICR_VPROPBASER_InnerShareable;
3848         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3849
3850         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3851                 GENMASK_ULL(51, 16);
3852         val |= GICR_VPENDBASER_RaWaWb;
3853         val |= GICR_VPENDBASER_InnerShareable;
3854         /*
3855          * There is no good way of finding out if the pending table is
3856          * empty as we can race against the doorbell interrupt very
3857          * easily. So in the end, vpe->pending_last is only an
3858          * indication that the vcpu has something pending, not one
3859          * that the pending table is empty. A good implementation
3860          * would be able to read its coarse map pretty quickly anyway,
3861          * making this a tolerable issue.
3862          */
3863         val |= GICR_VPENDBASER_PendingLast;
3864         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3865         val |= GICR_VPENDBASER_Valid;
3866         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3867 }
3868
3869 static void its_vpe_deschedule(struct its_vpe *vpe)
3870 {
3871         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3872         u64 val;
3873
3874         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3875
3876         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3877         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3878 }
3879
3880 static void its_vpe_invall(struct its_vpe *vpe)
3881 {
3882         struct its_node *its;
3883
3884         list_for_each_entry(its, &its_nodes, entry) {
3885                 if (!is_v4(its))
3886                         continue;
3887
3888                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3889                         continue;
3890
3891                 /*
3892                  * Sending a VINVALL to a single ITS is enough, as all
3893                  * we need is to reach the redistributors.
3894                  */
3895                 its_send_vinvall(its, vpe);
3896                 return;
3897         }
3898 }
3899
3900 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3901 {
3902         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3903         struct its_cmd_info *info = vcpu_info;
3904
3905         switch (info->cmd_type) {
3906         case SCHEDULE_VPE:
3907                 its_vpe_schedule(vpe);
3908                 return 0;
3909
3910         case DESCHEDULE_VPE:
3911                 its_vpe_deschedule(vpe);
3912                 return 0;
3913
3914         case COMMIT_VPE:
3915                 its_wait_vpt_parse_complete();
3916                 return 0;
3917
3918         case INVALL_VPE:
3919                 its_vpe_invall(vpe);
3920                 return 0;
3921
3922         default:
3923                 return -EINVAL;
3924         }
3925 }
3926
3927 static void its_vpe_send_cmd(struct its_vpe *vpe,
3928                              void (*cmd)(struct its_device *, u32))
3929 {
3930         unsigned long flags;
3931
3932         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3933
3934         its_vpe_db_proxy_map_locked(vpe);
3935         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3936
3937         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3938 }
3939
3940 static void its_vpe_send_inv(struct irq_data *d)
3941 {
3942         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3943
3944         if (gic_rdists->has_direct_lpi) {
3945                 void __iomem *rdbase;
3946
3947                 /* Target the redistributor this VPE is currently known on */
3948                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3949                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3950                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3951                 wait_for_syncr(rdbase);
3952                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3953         } else {
3954                 its_vpe_send_cmd(vpe, its_send_inv);
3955         }
3956 }
3957
3958 static void its_vpe_mask_irq(struct irq_data *d)
3959 {
3960         /*
3961          * We need to unmask the LPI, which is described by the parent
3962          * irq_data. Instead of calling into the parent (which won't
3963          * exactly do the right thing, let's simply use the
3964          * parent_data pointer. Yes, I'm naughty.
3965          */
3966         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3967         its_vpe_send_inv(d);
3968 }
3969
3970 static void its_vpe_unmask_irq(struct irq_data *d)
3971 {
3972         /* Same hack as above... */
3973         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3974         its_vpe_send_inv(d);
3975 }
3976
3977 static int its_vpe_set_irqchip_state(struct irq_data *d,
3978                                      enum irqchip_irq_state which,
3979                                      bool state)
3980 {
3981         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3982
3983         if (which != IRQCHIP_STATE_PENDING)
3984                 return -EINVAL;
3985
3986         if (gic_rdists->has_direct_lpi) {
3987                 void __iomem *rdbase;
3988
3989                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3990                 if (state) {
3991                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3992                 } else {
3993                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3994                         wait_for_syncr(rdbase);
3995                 }
3996         } else {
3997                 if (state)
3998                         its_vpe_send_cmd(vpe, its_send_int);
3999                 else
4000                         its_vpe_send_cmd(vpe, its_send_clear);
4001         }
4002
4003         return 0;
4004 }
4005
4006 static int its_vpe_retrigger(struct irq_data *d)
4007 {
4008         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4009 }
4010
4011 static struct irq_chip its_vpe_irq_chip = {
4012         .name                   = "GICv4-vpe",
4013         .irq_mask               = its_vpe_mask_irq,
4014         .irq_unmask             = its_vpe_unmask_irq,
4015         .irq_eoi                = irq_chip_eoi_parent,
4016         .irq_set_affinity       = its_vpe_set_affinity,
4017         .irq_retrigger          = its_vpe_retrigger,
4018         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4019         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4020 };
4021
4022 static struct its_node *find_4_1_its(void)
4023 {
4024         static struct its_node *its = NULL;
4025
4026         if (!its) {
4027                 list_for_each_entry(its, &its_nodes, entry) {
4028                         if (is_v4_1(its))
4029                                 return its;
4030                 }
4031
4032                 /* Oops? */
4033                 its = NULL;
4034         }
4035
4036         return its;
4037 }
4038
4039 static void its_vpe_4_1_send_inv(struct irq_data *d)
4040 {
4041         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4042         struct its_node *its;
4043
4044         /*
4045          * GICv4.1 wants doorbells to be invalidated using the
4046          * INVDB command in order to be broadcast to all RDs. Send
4047          * it to the first valid ITS, and let the HW do its magic.
4048          */
4049         its = find_4_1_its();
4050         if (its)
4051                 its_send_invdb(its, vpe);
4052 }
4053
4054 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4055 {
4056         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4057         its_vpe_4_1_send_inv(d);
4058 }
4059
4060 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4061 {
4062         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4063         its_vpe_4_1_send_inv(d);
4064 }
4065
4066 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4067                                  struct its_cmd_info *info)
4068 {
4069         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070         u64 val = 0;
4071
4072         /* Schedule the VPE */
4073         val |= GICR_VPENDBASER_Valid;
4074         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4075         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4076         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4077
4078         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4079 }
4080
4081 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4082                                    struct its_cmd_info *info)
4083 {
4084         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4085         u64 val;
4086
4087         if (info->req_db) {
4088                 unsigned long flags;
4089
4090                 /*
4091                  * vPE is going to block: make the vPE non-resident with
4092                  * PendingLast clear and DB set. The GIC guarantees that if
4093                  * we read-back PendingLast clear, then a doorbell will be
4094                  * delivered when an interrupt comes.
4095                  *
4096                  * Note the locking to deal with the concurrent update of
4097                  * pending_last from the doorbell interrupt handler that can
4098                  * run concurrently.
4099                  */
4100                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4101                 val = its_clear_vpend_valid(vlpi_base,
4102                                             GICR_VPENDBASER_PendingLast,
4103                                             GICR_VPENDBASER_4_1_DB);
4104                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4105                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4106         } else {
4107                 /*
4108                  * We're not blocking, so just make the vPE non-resident
4109                  * with PendingLast set, indicating that we'll be back.
4110                  */
4111                 val = its_clear_vpend_valid(vlpi_base,
4112                                             0,
4113                                             GICR_VPENDBASER_PendingLast);
4114                 vpe->pending_last = true;
4115         }
4116 }
4117
4118 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4119 {
4120         void __iomem *rdbase;
4121         unsigned long flags;
4122         u64 val;
4123         int cpu;
4124
4125         val  = GICR_INVALLR_V;
4126         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4127
4128         /* Target the redistributor this vPE is currently known on */
4129         cpu = vpe_to_cpuid_lock(vpe, &flags);
4130         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4132         gic_write_lpir(val, rdbase + GICR_INVALLR);
4133
4134         wait_for_syncr(rdbase);
4135         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4136         vpe_to_cpuid_unlock(vpe, flags);
4137 }
4138
4139 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4140 {
4141         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4142         struct its_cmd_info *info = vcpu_info;
4143
4144         switch (info->cmd_type) {
4145         case SCHEDULE_VPE:
4146                 its_vpe_4_1_schedule(vpe, info);
4147                 return 0;
4148
4149         case DESCHEDULE_VPE:
4150                 its_vpe_4_1_deschedule(vpe, info);
4151                 return 0;
4152
4153         case COMMIT_VPE:
4154                 its_wait_vpt_parse_complete();
4155                 return 0;
4156
4157         case INVALL_VPE:
4158                 its_vpe_4_1_invall(vpe);
4159                 return 0;
4160
4161         default:
4162                 return -EINVAL;
4163         }
4164 }
4165
4166 static struct irq_chip its_vpe_4_1_irq_chip = {
4167         .name                   = "GICv4.1-vpe",
4168         .irq_mask               = its_vpe_4_1_mask_irq,
4169         .irq_unmask             = its_vpe_4_1_unmask_irq,
4170         .irq_eoi                = irq_chip_eoi_parent,
4171         .irq_set_affinity       = its_vpe_set_affinity,
4172         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4173 };
4174
4175 static void its_configure_sgi(struct irq_data *d, bool clear)
4176 {
4177         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178         struct its_cmd_desc desc;
4179
4180         desc.its_vsgi_cmd.vpe = vpe;
4181         desc.its_vsgi_cmd.sgi = d->hwirq;
4182         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4183         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4184         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4185         desc.its_vsgi_cmd.clear = clear;
4186
4187         /*
4188          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4189          * destination VPE is mapped there. Since we map them eagerly at
4190          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4191          */
4192         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4193 }
4194
4195 static void its_sgi_mask_irq(struct irq_data *d)
4196 {
4197         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198
4199         vpe->sgi_config[d->hwirq].enabled = false;
4200         its_configure_sgi(d, false);
4201 }
4202
4203 static void its_sgi_unmask_irq(struct irq_data *d)
4204 {
4205         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206
4207         vpe->sgi_config[d->hwirq].enabled = true;
4208         its_configure_sgi(d, false);
4209 }
4210
4211 static int its_sgi_set_affinity(struct irq_data *d,
4212                                 const struct cpumask *mask_val,
4213                                 bool force)
4214 {
4215         /*
4216          * There is no notion of affinity for virtual SGIs, at least
4217          * not on the host (since they can only be targeting a vPE).
4218          * Tell the kernel we've done whatever it asked for.
4219          */
4220         irq_data_update_effective_affinity(d, mask_val);
4221         return IRQ_SET_MASK_OK;
4222 }
4223
4224 static int its_sgi_set_irqchip_state(struct irq_data *d,
4225                                      enum irqchip_irq_state which,
4226                                      bool state)
4227 {
4228         if (which != IRQCHIP_STATE_PENDING)
4229                 return -EINVAL;
4230
4231         if (state) {
4232                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233                 struct its_node *its = find_4_1_its();
4234                 u64 val;
4235
4236                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4237                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4238                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4239         } else {
4240                 its_configure_sgi(d, true);
4241         }
4242
4243         return 0;
4244 }
4245
4246 static int its_sgi_get_irqchip_state(struct irq_data *d,
4247                                      enum irqchip_irq_state which, bool *val)
4248 {
4249         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250         void __iomem *base;
4251         unsigned long flags;
4252         u32 count = 1000000;    /* 1s! */
4253         u32 status;
4254         int cpu;
4255
4256         if (which != IRQCHIP_STATE_PENDING)
4257                 return -EINVAL;
4258
4259         /*
4260          * Locking galore! We can race against two different events:
4261          *
4262          * - Concurrent vPE affinity change: we must make sure it cannot
4263          *   happen, or we'll talk to the wrong redistributor. This is
4264          *   identical to what happens with vLPIs.
4265          *
4266          * - Concurrent VSGIPENDR access: As it involves accessing two
4267          *   MMIO registers, this must be made atomic one way or another.
4268          */
4269         cpu = vpe_to_cpuid_lock(vpe, &flags);
4270         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4271         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4272         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4273         do {
4274                 status = readl_relaxed(base + GICR_VSGIPENDR);
4275                 if (!(status & GICR_VSGIPENDR_BUSY))
4276                         goto out;
4277
4278                 count--;
4279                 if (!count) {
4280                         pr_err_ratelimited("Unable to get SGI status\n");
4281                         goto out;
4282                 }
4283                 cpu_relax();
4284                 udelay(1);
4285         } while (count);
4286
4287 out:
4288         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4289         vpe_to_cpuid_unlock(vpe, flags);
4290
4291         if (!count)
4292                 return -ENXIO;
4293
4294         *val = !!(status & (1 << d->hwirq));
4295
4296         return 0;
4297 }
4298
4299 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4300 {
4301         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302         struct its_cmd_info *info = vcpu_info;
4303
4304         switch (info->cmd_type) {
4305         case PROP_UPDATE_VSGI:
4306                 vpe->sgi_config[d->hwirq].priority = info->priority;
4307                 vpe->sgi_config[d->hwirq].group = info->group;
4308                 its_configure_sgi(d, false);
4309                 return 0;
4310
4311         default:
4312                 return -EINVAL;
4313         }
4314 }
4315
4316 static struct irq_chip its_sgi_irq_chip = {
4317         .name                   = "GICv4.1-sgi",
4318         .irq_mask               = its_sgi_mask_irq,
4319         .irq_unmask             = its_sgi_unmask_irq,
4320         .irq_set_affinity       = its_sgi_set_affinity,
4321         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4322         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4323         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4324 };
4325
4326 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4327                                     unsigned int virq, unsigned int nr_irqs,
4328                                     void *args)
4329 {
4330         struct its_vpe *vpe = args;
4331         int i;
4332
4333         /* Yes, we do want 16 SGIs */
4334         WARN_ON(nr_irqs != 16);
4335
4336         for (i = 0; i < 16; i++) {
4337                 vpe->sgi_config[i].priority = 0;
4338                 vpe->sgi_config[i].enabled = false;
4339                 vpe->sgi_config[i].group = false;
4340
4341                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4342                                               &its_sgi_irq_chip, vpe);
4343                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4344         }
4345
4346         return 0;
4347 }
4348
4349 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4350                                     unsigned int virq,
4351                                     unsigned int nr_irqs)
4352 {
4353         /* Nothing to do */
4354 }
4355
4356 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4357                                        struct irq_data *d, bool reserve)
4358 {
4359         /* Write out the initial SGI configuration */
4360         its_configure_sgi(d, false);
4361         return 0;
4362 }
4363
4364 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4365                                           struct irq_data *d)
4366 {
4367         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4368
4369         /*
4370          * The VSGI command is awkward:
4371          *
4372          * - To change the configuration, CLEAR must be set to false,
4373          *   leaving the pending bit unchanged.
4374          * - To clear the pending bit, CLEAR must be set to true, leaving
4375          *   the configuration unchanged.
4376          *
4377          * You just can't do both at once, hence the two commands below.
4378          */
4379         vpe->sgi_config[d->hwirq].enabled = false;
4380         its_configure_sgi(d, false);
4381         its_configure_sgi(d, true);
4382 }
4383
4384 static const struct irq_domain_ops its_sgi_domain_ops = {
4385         .alloc          = its_sgi_irq_domain_alloc,
4386         .free           = its_sgi_irq_domain_free,
4387         .activate       = its_sgi_irq_domain_activate,
4388         .deactivate     = its_sgi_irq_domain_deactivate,
4389 };
4390
4391 static int its_vpe_id_alloc(void)
4392 {
4393         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4394 }
4395
4396 static void its_vpe_id_free(u16 id)
4397 {
4398         ida_simple_remove(&its_vpeid_ida, id);
4399 }
4400
4401 static int its_vpe_init(struct its_vpe *vpe)
4402 {
4403         struct page *vpt_page;
4404         int vpe_id;
4405
4406         /* Allocate vpe_id */
4407         vpe_id = its_vpe_id_alloc();
4408         if (vpe_id < 0)
4409                 return vpe_id;
4410
4411         /* Allocate VPT */
4412         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4413         if (!vpt_page) {
4414                 its_vpe_id_free(vpe_id);
4415                 return -ENOMEM;
4416         }
4417
4418         if (!its_alloc_vpe_table(vpe_id)) {
4419                 its_vpe_id_free(vpe_id);
4420                 its_free_pending_table(vpt_page);
4421                 return -ENOMEM;
4422         }
4423
4424         raw_spin_lock_init(&vpe->vpe_lock);
4425         vpe->vpe_id = vpe_id;
4426         vpe->vpt_page = vpt_page;
4427         if (gic_rdists->has_rvpeid)
4428                 atomic_set(&vpe->vmapp_count, 0);
4429         else
4430                 vpe->vpe_proxy_event = -1;
4431
4432         return 0;
4433 }
4434
4435 static void its_vpe_teardown(struct its_vpe *vpe)
4436 {
4437         its_vpe_db_proxy_unmap(vpe);
4438         its_vpe_id_free(vpe->vpe_id);
4439         its_free_pending_table(vpe->vpt_page);
4440 }
4441
4442 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4443                                     unsigned int virq,
4444                                     unsigned int nr_irqs)
4445 {
4446         struct its_vm *vm = domain->host_data;
4447         int i;
4448
4449         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4450
4451         for (i = 0; i < nr_irqs; i++) {
4452                 struct irq_data *data = irq_domain_get_irq_data(domain,
4453                                                                 virq + i);
4454                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4455
4456                 BUG_ON(vm != vpe->its_vm);
4457
4458                 clear_bit(data->hwirq, vm->db_bitmap);
4459                 its_vpe_teardown(vpe);
4460                 irq_domain_reset_irq_data(data);
4461         }
4462
4463         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4464                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4465                 its_free_prop_table(vm->vprop_page);
4466         }
4467 }
4468
4469 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4470                                     unsigned int nr_irqs, void *args)
4471 {
4472         struct irq_chip *irqchip = &its_vpe_irq_chip;
4473         struct its_vm *vm = args;
4474         unsigned long *bitmap;
4475         struct page *vprop_page;
4476         int base, nr_ids, i, err = 0;
4477
4478         BUG_ON(!vm);
4479
4480         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4481         if (!bitmap)
4482                 return -ENOMEM;
4483
4484         if (nr_ids < nr_irqs) {
4485                 its_lpi_free(bitmap, base, nr_ids);
4486                 return -ENOMEM;
4487         }
4488
4489         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4490         if (!vprop_page) {
4491                 its_lpi_free(bitmap, base, nr_ids);
4492                 return -ENOMEM;
4493         }
4494
4495         vm->db_bitmap = bitmap;
4496         vm->db_lpi_base = base;
4497         vm->nr_db_lpis = nr_ids;
4498         vm->vprop_page = vprop_page;
4499
4500         if (gic_rdists->has_rvpeid)
4501                 irqchip = &its_vpe_4_1_irq_chip;
4502
4503         for (i = 0; i < nr_irqs; i++) {
4504                 vm->vpes[i]->vpe_db_lpi = base + i;
4505                 err = its_vpe_init(vm->vpes[i]);
4506                 if (err)
4507                         break;
4508                 err = its_irq_gic_domain_alloc(domain, virq + i,
4509                                                vm->vpes[i]->vpe_db_lpi);
4510                 if (err)
4511                         break;
4512                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4513                                               irqchip, vm->vpes[i]);
4514                 set_bit(i, bitmap);
4515         }
4516
4517         if (err) {
4518                 if (i > 0)
4519                         its_vpe_irq_domain_free(domain, virq, i);
4520
4521                 its_lpi_free(bitmap, base, nr_ids);
4522                 its_free_prop_table(vprop_page);
4523         }
4524
4525         return err;
4526 }
4527
4528 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4529                                        struct irq_data *d, bool reserve)
4530 {
4531         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4532         struct its_node *its;
4533
4534         /*
4535          * If we use the list map, we issue VMAPP on demand... Unless
4536          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4537          * so that VSGIs can work.
4538          */
4539         if (!gic_requires_eager_mapping())
4540                 return 0;
4541
4542         /* Map the VPE to the first possible CPU */
4543         vpe->col_idx = cpumask_first(cpu_online_mask);
4544
4545         list_for_each_entry(its, &its_nodes, entry) {
4546                 if (!is_v4(its))
4547                         continue;
4548
4549                 its_send_vmapp(its, vpe, true);
4550                 its_send_vinvall(its, vpe);
4551         }
4552
4553         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4554
4555         return 0;
4556 }
4557
4558 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4559                                           struct irq_data *d)
4560 {
4561         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562         struct its_node *its;
4563
4564         /*
4565          * If we use the list map on GICv4.0, we unmap the VPE once no
4566          * VLPIs are associated with the VM.
4567          */
4568         if (!gic_requires_eager_mapping())
4569                 return;
4570
4571         list_for_each_entry(its, &its_nodes, entry) {
4572                 if (!is_v4(its))
4573                         continue;
4574
4575                 its_send_vmapp(its, vpe, false);
4576         }
4577
4578         /*
4579          * There may be a direct read to the VPT after unmapping the
4580          * vPE, to guarantee the validity of this, we make the VPT
4581          * memory coherent with the CPU caches here.
4582          */
4583         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4584                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4585                                         LPI_PENDBASE_SZ);
4586 }
4587
4588 static const struct irq_domain_ops its_vpe_domain_ops = {
4589         .alloc                  = its_vpe_irq_domain_alloc,
4590         .free                   = its_vpe_irq_domain_free,
4591         .activate               = its_vpe_irq_domain_activate,
4592         .deactivate             = its_vpe_irq_domain_deactivate,
4593 };
4594
4595 static int its_force_quiescent(void __iomem *base)
4596 {
4597         u32 count = 1000000;    /* 1s */
4598         u32 val;
4599
4600         val = readl_relaxed(base + GITS_CTLR);
4601         /*
4602          * GIC architecture specification requires the ITS to be both
4603          * disabled and quiescent for writes to GITS_BASER<n> or
4604          * GITS_CBASER to not have UNPREDICTABLE results.
4605          */
4606         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4607                 return 0;
4608
4609         /* Disable the generation of all interrupts to this ITS */
4610         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4611         writel_relaxed(val, base + GITS_CTLR);
4612
4613         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4614         while (1) {
4615                 val = readl_relaxed(base + GITS_CTLR);
4616                 if (val & GITS_CTLR_QUIESCENT)
4617                         return 0;
4618
4619                 count--;
4620                 if (!count)
4621                         return -EBUSY;
4622
4623                 cpu_relax();
4624                 udelay(1);
4625         }
4626 }
4627
4628 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4629 {
4630         struct its_node *its = data;
4631
4632         /* erratum 22375: only alloc 8MB table size (20 bits) */
4633         its->typer &= ~GITS_TYPER_DEVBITS;
4634         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4635         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4636
4637         return true;
4638 }
4639
4640 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4641 {
4642         struct its_node *its = data;
4643
4644         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4645
4646         return true;
4647 }
4648
4649 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4650 {
4651         struct its_node *its = data;
4652
4653         /* On QDF2400, the size of the ITE is 16Bytes */
4654         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4655         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4656
4657         return true;
4658 }
4659
4660 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4661 {
4662         struct its_node *its = its_dev->its;
4663
4664         /*
4665          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4666          * which maps 32-bit writes targeted at a separate window of
4667          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4668          * with device ID taken from bits [device_id_bits + 1:2] of
4669          * the window offset.
4670          */
4671         return its->pre_its_base + (its_dev->device_id << 2);
4672 }
4673
4674 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4675 {
4676         struct its_node *its = data;
4677         u32 pre_its_window[2];
4678         u32 ids;
4679
4680         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4681                                            "socionext,synquacer-pre-its",
4682                                            pre_its_window,
4683                                            ARRAY_SIZE(pre_its_window))) {
4684
4685                 its->pre_its_base = pre_its_window[0];
4686                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4687
4688                 ids = ilog2(pre_its_window[1]) - 2;
4689                 if (device_ids(its) > ids) {
4690                         its->typer &= ~GITS_TYPER_DEVBITS;
4691                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4692                 }
4693
4694                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4695                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4696                 return true;
4697         }
4698         return false;
4699 }
4700
4701 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4702 {
4703         struct its_node *its = data;
4704
4705         /*
4706          * Hip07 insists on using the wrong address for the VLPI
4707          * page. Trick it into doing the right thing...
4708          */
4709         its->vlpi_redist_offset = SZ_128K;
4710         return true;
4711 }
4712
4713 static const struct gic_quirk its_quirks[] = {
4714 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4715         {
4716                 .desc   = "ITS: Cavium errata 22375, 24313",
4717                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4718                 .mask   = 0xffff0fff,
4719                 .init   = its_enable_quirk_cavium_22375,
4720         },
4721 #endif
4722 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4723         {
4724                 .desc   = "ITS: Cavium erratum 23144",
4725                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4726                 .mask   = 0xffff0fff,
4727                 .init   = its_enable_quirk_cavium_23144,
4728         },
4729 #endif
4730 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4731         {
4732                 .desc   = "ITS: QDF2400 erratum 0065",
4733                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4734                 .mask   = 0xffffffff,
4735                 .init   = its_enable_quirk_qdf2400_e0065,
4736         },
4737 #endif
4738 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4739         {
4740                 /*
4741                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4742                  * implementation, but with a 'pre-ITS' added that requires
4743                  * special handling in software.
4744                  */
4745                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4746                 .iidr   = 0x0001143b,
4747                 .mask   = 0xffffffff,
4748                 .init   = its_enable_quirk_socionext_synquacer,
4749         },
4750 #endif
4751 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4752         {
4753                 .desc   = "ITS: Hip07 erratum 161600802",
4754                 .iidr   = 0x00000004,
4755                 .mask   = 0xffffffff,
4756                 .init   = its_enable_quirk_hip07_161600802,
4757         },
4758 #endif
4759         {
4760         }
4761 };
4762
4763 static void its_enable_quirks(struct its_node *its)
4764 {
4765         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4766
4767         gic_enable_quirks(iidr, its_quirks, its);
4768 }
4769
4770 static int its_save_disable(void)
4771 {
4772         struct its_node *its;
4773         int err = 0;
4774
4775         raw_spin_lock(&its_lock);
4776         list_for_each_entry(its, &its_nodes, entry) {
4777                 void __iomem *base;
4778
4779                 base = its->base;
4780                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4781                 err = its_force_quiescent(base);
4782                 if (err) {
4783                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4784                                &its->phys_base, err);
4785                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786                         goto err;
4787                 }
4788
4789                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4790         }
4791
4792 err:
4793         if (err) {
4794                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4795                         void __iomem *base;
4796
4797                         base = its->base;
4798                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4799                 }
4800         }
4801         raw_spin_unlock(&its_lock);
4802
4803         return err;
4804 }
4805
4806 static void its_restore_enable(void)
4807 {
4808         struct its_node *its;
4809         int ret;
4810
4811         raw_spin_lock(&its_lock);
4812         list_for_each_entry(its, &its_nodes, entry) {
4813                 void __iomem *base;
4814                 int i;
4815
4816                 base = its->base;
4817
4818                 /*
4819                  * Make sure that the ITS is disabled. If it fails to quiesce,
4820                  * don't restore it since writing to CBASER or BASER<n>
4821                  * registers is undefined according to the GIC v3 ITS
4822                  * Specification.
4823                  *
4824                  * Firmware resuming with the ITS enabled is terminally broken.
4825                  */
4826                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4827                 ret = its_force_quiescent(base);
4828                 if (ret) {
4829                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4830                                &its->phys_base, ret);
4831                         continue;
4832                 }
4833
4834                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4835
4836                 /*
4837                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4838                  * cmd_write line up with it.
4839                  */
4840                 its->cmd_write = its->cmd_base;
4841                 gits_write_cwriter(0, base + GITS_CWRITER);
4842
4843                 /* Restore GITS_BASER from the value cache. */
4844                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4845                         struct its_baser *baser = &its->tables[i];
4846
4847                         if (!(baser->val & GITS_BASER_VALID))
4848                                 continue;
4849
4850                         its_write_baser(its, baser, baser->val);
4851                 }
4852                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853
4854                 /*
4855                  * Reinit the collection if it's stored in the ITS. This is
4856                  * indicated by the col_id being less than the HCC field.
4857                  * CID < HCC as specified in the GIC v3 Documentation.
4858                  */
4859                 if (its->collections[smp_processor_id()].col_id <
4860                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4861                         its_cpu_init_collection(its);
4862         }
4863         raw_spin_unlock(&its_lock);
4864 }
4865
4866 static struct syscore_ops its_syscore_ops = {
4867         .suspend = its_save_disable,
4868         .resume = its_restore_enable,
4869 };
4870
4871 static void __init __iomem *its_map_one(struct resource *res, int *err)
4872 {
4873         void __iomem *its_base;
4874         u32 val;
4875
4876         its_base = ioremap(res->start, SZ_64K);
4877         if (!its_base) {
4878                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4879                 *err = -ENOMEM;
4880                 return NULL;
4881         }
4882
4883         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4884         if (val != 0x30 && val != 0x40) {
4885                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4886                 *err = -ENODEV;
4887                 goto out_unmap;
4888         }
4889
4890         *err = its_force_quiescent(its_base);
4891         if (*err) {
4892                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4893                 goto out_unmap;
4894         }
4895
4896         return its_base;
4897
4898 out_unmap:
4899         iounmap(its_base);
4900         return NULL;
4901 }
4902
4903 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4904 {
4905         struct irq_domain *inner_domain;
4906         struct msi_domain_info *info;
4907
4908         info = kzalloc(sizeof(*info), GFP_KERNEL);
4909         if (!info)
4910                 return -ENOMEM;
4911
4912         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4913         if (!inner_domain) {
4914                 kfree(info);
4915                 return -ENOMEM;
4916         }
4917
4918         inner_domain->parent = its_parent;
4919         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4920         inner_domain->flags |= its->msi_domain_flags;
4921         info->ops = &its_msi_domain_ops;
4922         info->data = its;
4923         inner_domain->host_data = info;
4924
4925         return 0;
4926 }
4927
4928 static int its_init_vpe_domain(void)
4929 {
4930         struct its_node *its;
4931         u32 devid;
4932         int entries;
4933
4934         if (gic_rdists->has_direct_lpi) {
4935                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4936                 return 0;
4937         }
4938
4939         /* Any ITS will do, even if not v4 */
4940         its = list_first_entry(&its_nodes, struct its_node, entry);
4941
4942         entries = roundup_pow_of_two(nr_cpu_ids);
4943         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4944                                  GFP_KERNEL);
4945         if (!vpe_proxy.vpes)
4946                 return -ENOMEM;
4947
4948         /* Use the last possible DevID */
4949         devid = GENMASK(device_ids(its) - 1, 0);
4950         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4951         if (!vpe_proxy.dev) {
4952                 kfree(vpe_proxy.vpes);
4953                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4954                 return -ENOMEM;
4955         }
4956
4957         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4958
4959         raw_spin_lock_init(&vpe_proxy.lock);
4960         vpe_proxy.next_victim = 0;
4961         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4962                 devid, vpe_proxy.dev->nr_ites);
4963
4964         return 0;
4965 }
4966
4967 static int __init its_compute_its_list_map(struct resource *res,
4968                                            void __iomem *its_base)
4969 {
4970         int its_number;
4971         u32 ctlr;
4972
4973         /*
4974          * This is assumed to be done early enough that we're
4975          * guaranteed to be single-threaded, hence no
4976          * locking. Should this change, we should address
4977          * this.
4978          */
4979         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4980         if (its_number >= GICv4_ITS_LIST_MAX) {
4981                 pr_err("ITS@%pa: No ITSList entry available!\n",
4982                        &res->start);
4983                 return -EINVAL;
4984         }
4985
4986         ctlr = readl_relaxed(its_base + GITS_CTLR);
4987         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4988         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4989         writel_relaxed(ctlr, its_base + GITS_CTLR);
4990         ctlr = readl_relaxed(its_base + GITS_CTLR);
4991         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4992                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4993                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4994         }
4995
4996         if (test_and_set_bit(its_number, &its_list_map)) {
4997                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4998                        &res->start, its_number);
4999                 return -EINVAL;
5000         }
5001
5002         return its_number;
5003 }
5004
5005 static int __init its_probe_one(struct resource *res,
5006                                 struct fwnode_handle *handle, int numa_node)
5007 {
5008         struct its_node *its;
5009         void __iomem *its_base;
5010         u64 baser, tmp, typer;
5011         struct page *page;
5012         u32 ctlr;
5013         int err;
5014
5015         its_base = its_map_one(res, &err);
5016         if (!its_base)
5017                 return err;
5018
5019         pr_info("ITS %pR\n", res);
5020
5021         its = kzalloc(sizeof(*its), GFP_KERNEL);
5022         if (!its) {
5023                 err = -ENOMEM;
5024                 goto out_unmap;
5025         }
5026
5027         raw_spin_lock_init(&its->lock);
5028         mutex_init(&its->dev_alloc_lock);
5029         INIT_LIST_HEAD(&its->entry);
5030         INIT_LIST_HEAD(&its->its_device_list);
5031         typer = gic_read_typer(its_base + GITS_TYPER);
5032         its->typer = typer;
5033         its->base = its_base;
5034         its->phys_base = res->start;
5035         if (is_v4(its)) {
5036                 if (!(typer & GITS_TYPER_VMOVP)) {
5037                         err = its_compute_its_list_map(res, its_base);
5038                         if (err < 0)
5039                                 goto out_free_its;
5040
5041                         its->list_nr = err;
5042
5043                         pr_info("ITS@%pa: Using ITS number %d\n",
5044                                 &res->start, err);
5045                 } else {
5046                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5047                 }
5048
5049                 if (is_v4_1(its)) {
5050                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5051
5052                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5053                         if (!its->sgir_base) {
5054                                 err = -ENOMEM;
5055                                 goto out_free_its;
5056                         }
5057
5058                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5059
5060                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5061                                 &res->start, its->mpidr, svpet);
5062                 }
5063         }
5064
5065         its->numa_node = numa_node;
5066
5067         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5068                                 get_order(ITS_CMD_QUEUE_SZ));
5069         if (!page) {
5070                 err = -ENOMEM;
5071                 goto out_unmap_sgir;
5072         }
5073         its->cmd_base = (void *)page_address(page);
5074         its->cmd_write = its->cmd_base;
5075         its->fwnode_handle = handle;
5076         its->get_msi_base = its_irq_get_msi_base;
5077         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5078
5079         its_enable_quirks(its);
5080
5081         err = its_alloc_tables(its);
5082         if (err)
5083                 goto out_free_cmd;
5084
5085         err = its_alloc_collections(its);
5086         if (err)
5087                 goto out_free_tables;
5088
5089         baser = (virt_to_phys(its->cmd_base)    |
5090                  GITS_CBASER_RaWaWb             |
5091                  GITS_CBASER_InnerShareable     |
5092                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5093                  GITS_CBASER_VALID);
5094
5095         gits_write_cbaser(baser, its->base + GITS_CBASER);
5096         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5097
5098         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5099                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5100                         /*
5101                          * The HW reports non-shareable, we must
5102                          * remove the cacheability attributes as
5103                          * well.
5104                          */
5105                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5106                                    GITS_CBASER_CACHEABILITY_MASK);
5107                         baser |= GITS_CBASER_nC;
5108                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5109                 }
5110                 pr_info("ITS: using cache flushing for cmd queue\n");
5111                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5112         }
5113
5114         gits_write_cwriter(0, its->base + GITS_CWRITER);
5115         ctlr = readl_relaxed(its->base + GITS_CTLR);
5116         ctlr |= GITS_CTLR_ENABLE;
5117         if (is_v4(its))
5118                 ctlr |= GITS_CTLR_ImDe;
5119         writel_relaxed(ctlr, its->base + GITS_CTLR);
5120
5121         err = its_init_domain(handle, its);
5122         if (err)
5123                 goto out_free_tables;
5124
5125         raw_spin_lock(&its_lock);
5126         list_add(&its->entry, &its_nodes);
5127         raw_spin_unlock(&its_lock);
5128
5129         return 0;
5130
5131 out_free_tables:
5132         its_free_tables(its);
5133 out_free_cmd:
5134         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5135 out_unmap_sgir:
5136         if (its->sgir_base)
5137                 iounmap(its->sgir_base);
5138 out_free_its:
5139         kfree(its);
5140 out_unmap:
5141         iounmap(its_base);
5142         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5143         return err;
5144 }
5145
5146 static bool gic_rdists_supports_plpis(void)
5147 {
5148         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5149 }
5150
5151 static int redist_disable_lpis(void)
5152 {
5153         void __iomem *rbase = gic_data_rdist_rd_base();
5154         u64 timeout = USEC_PER_SEC;
5155         u64 val;
5156
5157         if (!gic_rdists_supports_plpis()) {
5158                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5159                 return -ENXIO;
5160         }
5161
5162         val = readl_relaxed(rbase + GICR_CTLR);
5163         if (!(val & GICR_CTLR_ENABLE_LPIS))
5164                 return 0;
5165
5166         /*
5167          * If coming via a CPU hotplug event, we don't need to disable
5168          * LPIs before trying to re-enable them. They are already
5169          * configured and all is well in the world.
5170          *
5171          * If running with preallocated tables, there is nothing to do.
5172          */
5173         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5174             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5175                 return 0;
5176
5177         /*
5178          * From that point on, we only try to do some damage control.
5179          */
5180         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5181                 smp_processor_id());
5182         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5183
5184         /* Disable LPIs */
5185         val &= ~GICR_CTLR_ENABLE_LPIS;
5186         writel_relaxed(val, rbase + GICR_CTLR);
5187
5188         /* Make sure any change to GICR_CTLR is observable by the GIC */
5189         dsb(sy);
5190
5191         /*
5192          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5193          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5194          * Error out if we time out waiting for RWP to clear.
5195          */
5196         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5197                 if (!timeout) {
5198                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5199                                smp_processor_id());
5200                         return -ETIMEDOUT;
5201                 }
5202                 udelay(1);
5203                 timeout--;
5204         }
5205
5206         /*
5207          * After it has been written to 1, it is IMPLEMENTATION
5208          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5209          * cleared to 0. Error out if clearing the bit failed.
5210          */
5211         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5212                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5213                 return -EBUSY;
5214         }
5215
5216         return 0;
5217 }
5218
5219 int its_cpu_init(void)
5220 {
5221         if (!list_empty(&its_nodes)) {
5222                 int ret;
5223
5224                 ret = redist_disable_lpis();
5225                 if (ret)
5226                         return ret;
5227
5228                 its_cpu_init_lpis();
5229                 its_cpu_init_collections();
5230         }
5231
5232         return 0;
5233 }
5234
5235 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5236 {
5237         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5238         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5239 }
5240
5241 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5242                     rdist_memreserve_cpuhp_cleanup_workfn);
5243
5244 static int its_cpu_memreserve_lpi(unsigned int cpu)
5245 {
5246         struct page *pend_page;
5247         int ret = 0;
5248
5249         /* This gets to run exactly once per CPU */
5250         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5251                 return 0;
5252
5253         pend_page = gic_data_rdist()->pend_page;
5254         if (WARN_ON(!pend_page)) {
5255                 ret = -ENOMEM;
5256                 goto out;
5257         }
5258         /*
5259          * If the pending table was pre-programmed, free the memory we
5260          * preemptively allocated. Otherwise, reserve that memory for
5261          * later kexecs.
5262          */
5263         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5264                 its_free_pending_table(pend_page);
5265                 gic_data_rdist()->pend_page = NULL;
5266         } else {
5267                 phys_addr_t paddr = page_to_phys(pend_page);
5268                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5269         }
5270
5271 out:
5272         /* Last CPU being brought up gets to issue the cleanup */
5273         if (!IS_ENABLED(CONFIG_SMP) ||
5274             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5275                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5276
5277         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5278         return ret;
5279 }
5280
5281 /* Mark all the BASER registers as invalid before they get reprogrammed */
5282 static int __init its_reset_one(struct resource *res)
5283 {
5284         void __iomem *its_base;
5285         int err, i;
5286
5287         its_base = its_map_one(res, &err);
5288         if (!its_base)
5289                 return err;
5290
5291         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5292                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5293
5294         iounmap(its_base);
5295         return 0;
5296 }
5297
5298 static const struct of_device_id its_device_id[] = {
5299         {       .compatible     = "arm,gic-v3-its",     },
5300         {},
5301 };
5302
5303 static int __init its_of_probe(struct device_node *node)
5304 {
5305         struct device_node *np;
5306         struct resource res;
5307
5308         /*
5309          * Make sure *all* the ITS are reset before we probe any, as
5310          * they may be sharing memory. If any of the ITS fails to
5311          * reset, don't even try to go any further, as this could
5312          * result in something even worse.
5313          */
5314         for (np = of_find_matching_node(node, its_device_id); np;
5315              np = of_find_matching_node(np, its_device_id)) {
5316                 int err;
5317
5318                 if (!of_device_is_available(np) ||
5319                     !of_property_read_bool(np, "msi-controller") ||
5320                     of_address_to_resource(np, 0, &res))
5321                         continue;
5322
5323                 err = its_reset_one(&res);
5324                 if (err)
5325                         return err;
5326         }
5327
5328         for (np = of_find_matching_node(node, its_device_id); np;
5329              np = of_find_matching_node(np, its_device_id)) {
5330                 if (!of_device_is_available(np))
5331                         continue;
5332                 if (!of_property_read_bool(np, "msi-controller")) {
5333                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5334                                 np);
5335                         continue;
5336                 }
5337
5338                 if (of_address_to_resource(np, 0, &res)) {
5339                         pr_warn("%pOF: no regs?\n", np);
5340                         continue;
5341                 }
5342
5343                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5344         }
5345         return 0;
5346 }
5347
5348 #ifdef CONFIG_ACPI
5349
5350 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5351
5352 #ifdef CONFIG_ACPI_NUMA
5353 struct its_srat_map {
5354         /* numa node id */
5355         u32     numa_node;
5356         /* GIC ITS ID */
5357         u32     its_id;
5358 };
5359
5360 static struct its_srat_map *its_srat_maps __initdata;
5361 static int its_in_srat __initdata;
5362
5363 static int __init acpi_get_its_numa_node(u32 its_id)
5364 {
5365         int i;
5366
5367         for (i = 0; i < its_in_srat; i++) {
5368                 if (its_id == its_srat_maps[i].its_id)
5369                         return its_srat_maps[i].numa_node;
5370         }
5371         return NUMA_NO_NODE;
5372 }
5373
5374 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5375                                           const unsigned long end)
5376 {
5377         return 0;
5378 }
5379
5380 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5381                          const unsigned long end)
5382 {
5383         int node;
5384         struct acpi_srat_gic_its_affinity *its_affinity;
5385
5386         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5387         if (!its_affinity)
5388                 return -EINVAL;
5389
5390         if (its_affinity->header.length < sizeof(*its_affinity)) {
5391                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5392                         its_affinity->header.length);
5393                 return -EINVAL;
5394         }
5395
5396         /*
5397          * Note that in theory a new proximity node could be created by this
5398          * entry as it is an SRAT resource allocation structure.
5399          * We do not currently support doing so.
5400          */
5401         node = pxm_to_node(its_affinity->proximity_domain);
5402
5403         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5404                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5405                 return 0;
5406         }
5407
5408         its_srat_maps[its_in_srat].numa_node = node;
5409         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5410         its_in_srat++;
5411         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5412                 its_affinity->proximity_domain, its_affinity->its_id, node);
5413
5414         return 0;
5415 }
5416
5417 static void __init acpi_table_parse_srat_its(void)
5418 {
5419         int count;
5420
5421         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5422                         sizeof(struct acpi_table_srat),
5423                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5424                         gic_acpi_match_srat_its, 0);
5425         if (count <= 0)
5426                 return;
5427
5428         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5429                                       GFP_KERNEL);
5430         if (!its_srat_maps)
5431                 return;
5432
5433         acpi_table_parse_entries(ACPI_SIG_SRAT,
5434                         sizeof(struct acpi_table_srat),
5435                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5436                         gic_acpi_parse_srat_its, 0);
5437 }
5438
5439 /* free the its_srat_maps after ITS probing */
5440 static void __init acpi_its_srat_maps_free(void)
5441 {
5442         kfree(its_srat_maps);
5443 }
5444 #else
5445 static void __init acpi_table_parse_srat_its(void)      { }
5446 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5447 static void __init acpi_its_srat_maps_free(void) { }
5448 #endif
5449
5450 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5451                                           const unsigned long end)
5452 {
5453         struct acpi_madt_generic_translator *its_entry;
5454         struct fwnode_handle *dom_handle;
5455         struct resource res;
5456         int err;
5457
5458         its_entry = (struct acpi_madt_generic_translator *)header;
5459         memset(&res, 0, sizeof(res));
5460         res.start = its_entry->base_address;
5461         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5462         res.flags = IORESOURCE_MEM;
5463
5464         dom_handle = irq_domain_alloc_fwnode(&res.start);
5465         if (!dom_handle) {
5466                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5467                        &res.start);
5468                 return -ENOMEM;
5469         }
5470
5471         err = iort_register_domain_token(its_entry->translation_id, res.start,
5472                                          dom_handle);
5473         if (err) {
5474                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5475                        &res.start, its_entry->translation_id);
5476                 goto dom_err;
5477         }
5478
5479         err = its_probe_one(&res, dom_handle,
5480                         acpi_get_its_numa_node(its_entry->translation_id));
5481         if (!err)
5482                 return 0;
5483
5484         iort_deregister_domain_token(its_entry->translation_id);
5485 dom_err:
5486         irq_domain_free_fwnode(dom_handle);
5487         return err;
5488 }
5489
5490 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5491                                  const unsigned long end)
5492 {
5493         struct acpi_madt_generic_translator *its_entry;
5494         struct resource res;
5495
5496         its_entry = (struct acpi_madt_generic_translator *)header;
5497         res = (struct resource) {
5498                 .start  = its_entry->base_address,
5499                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5500                 .flags  = IORESOURCE_MEM,
5501         };
5502
5503         return its_reset_one(&res);
5504 }
5505
5506 static void __init its_acpi_probe(void)
5507 {
5508         acpi_table_parse_srat_its();
5509         /*
5510          * Make sure *all* the ITS are reset before we probe any, as
5511          * they may be sharing memory. If any of the ITS fails to
5512          * reset, don't even try to go any further, as this could
5513          * result in something even worse.
5514          */
5515         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5516                                   its_acpi_reset, 0) > 0)
5517                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5518                                       gic_acpi_parse_madt_its, 0);
5519         acpi_its_srat_maps_free();
5520 }
5521 #else
5522 static void __init its_acpi_probe(void) { }
5523 #endif
5524
5525 int __init its_lpi_memreserve_init(void)
5526 {
5527         int state;
5528
5529         if (!efi_enabled(EFI_CONFIG_TABLES))
5530                 return 0;
5531
5532         if (list_empty(&its_nodes))
5533                 return 0;
5534
5535         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5536         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5537                                   "irqchip/arm/gicv3/memreserve:online",
5538                                   its_cpu_memreserve_lpi,
5539                                   NULL);
5540         if (state < 0)
5541                 return state;
5542
5543         gic_rdists->cpuhp_memreserve_state = state;
5544
5545         return 0;
5546 }
5547
5548 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5549                     struct irq_domain *parent_domain)
5550 {
5551         struct device_node *of_node;
5552         struct its_node *its;
5553         bool has_v4 = false;
5554         bool has_v4_1 = false;
5555         int err;
5556
5557         gic_rdists = rdists;
5558
5559         its_parent = parent_domain;
5560         of_node = to_of_node(handle);
5561         if (of_node)
5562                 its_of_probe(of_node);
5563         else
5564                 its_acpi_probe();
5565
5566         if (list_empty(&its_nodes)) {
5567                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5568                 return -ENXIO;
5569         }
5570
5571         err = allocate_lpi_tables();
5572         if (err)
5573                 return err;
5574
5575         list_for_each_entry(its, &its_nodes, entry) {
5576                 has_v4 |= is_v4(its);
5577                 has_v4_1 |= is_v4_1(its);
5578         }
5579
5580         /* Don't bother with inconsistent systems */
5581         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5582                 rdists->has_rvpeid = false;
5583
5584         if (has_v4 & rdists->has_vlpis) {
5585                 const struct irq_domain_ops *sgi_ops;
5586
5587                 if (has_v4_1)
5588                         sgi_ops = &its_sgi_domain_ops;
5589                 else
5590                         sgi_ops = NULL;
5591
5592                 if (its_init_vpe_domain() ||
5593                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5594                         rdists->has_vlpis = false;
5595                         pr_err("ITS: Disabling GICv4 support\n");
5596                 }
5597         }
5598
5599         register_syscore_ops(&its_syscore_ops);
5600
5601         return 0;
5602 }