Merge tag 'soc-newsoc-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[platform/kernel/linux-rpi.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/interrupt.h>
16 #include <linux/iommu.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
46
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
49 #define RDIST_FLAGS_FORCE_NON_SHAREABLE         (1 << 2)
50
51 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
52 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
53 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
54
55 static u32 lpi_id_bits;
56
57 /*
58  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
59  * deal with (one configuration byte per interrupt). PENDBASE has to
60  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
61  */
62 #define LPI_NRBITS              lpi_id_bits
63 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
64 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
65
66 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
67
68 /*
69  * Collection structure - just an ID, and a redistributor address to
70  * ping. We use one per CPU as a bag of interrupts assigned to this
71  * CPU.
72  */
73 struct its_collection {
74         u64                     target_address;
75         u16                     col_id;
76 };
77
78 /*
79  * The ITS_BASER structure - contains memory information, cached
80  * value of BASER register configuration and ITS page size.
81  */
82 struct its_baser {
83         void            *base;
84         u64             val;
85         u32             order;
86         u32             psz;
87 };
88
89 struct its_device;
90
91 /*
92  * The ITS structure - contains most of the infrastructure, with the
93  * top-level MSI domain, the command queue, the collections, and the
94  * list of devices writing to it.
95  *
96  * dev_alloc_lock has to be taken for device allocations, while the
97  * spinlock must be taken to parse data structures such as the device
98  * list.
99  */
100 struct its_node {
101         raw_spinlock_t          lock;
102         struct mutex            dev_alloc_lock;
103         struct list_head        entry;
104         void __iomem            *base;
105         void __iomem            *sgir_base;
106         phys_addr_t             phys_base;
107         struct its_cmd_block    *cmd_base;
108         struct its_cmd_block    *cmd_write;
109         struct its_baser        tables[GITS_BASER_NR_REGS];
110         struct its_collection   *collections;
111         struct fwnode_handle    *fwnode_handle;
112         u64                     (*get_msi_base)(struct its_device *its_dev);
113         u64                     typer;
114         u64                     cbaser_save;
115         u32                     ctlr_save;
116         u32                     mpidr;
117         struct list_head        its_device_list;
118         u64                     flags;
119         unsigned long           list_nr;
120         int                     numa_node;
121         unsigned int            msi_domain_flags;
122         u32                     pre_its_base; /* for Socionext Synquacer */
123         int                     vlpi_redist_offset;
124 };
125
126 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
127 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
128 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
129
130 #define ITS_ITT_ALIGN           SZ_256
131
132 /* The maximum number of VPEID bits supported by VLPI commands */
133 #define ITS_MAX_VPEID_BITS                                              \
134         ({                                                              \
135                 int nvpeid = 16;                                        \
136                 if (gic_rdists->has_rvpeid &&                           \
137                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
138                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
139                                       GICD_TYPER2_VID);                 \
140                                                                         \
141                 nvpeid;                                                 \
142         })
143 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
144
145 /* Convert page order to size in bytes */
146 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
147
148 struct event_lpi_map {
149         unsigned long           *lpi_map;
150         u16                     *col_map;
151         irq_hw_number_t         lpi_base;
152         int                     nr_lpis;
153         raw_spinlock_t          vlpi_lock;
154         struct its_vm           *vm;
155         struct its_vlpi_map     *vlpi_maps;
156         int                     nr_vlpis;
157 };
158
159 /*
160  * The ITS view of a device - belongs to an ITS, owns an interrupt
161  * translation table, and a list of interrupts.  If it some of its
162  * LPIs are injected into a guest (GICv4), the event_map.vm field
163  * indicates which one.
164  */
165 struct its_device {
166         struct list_head        entry;
167         struct its_node         *its;
168         struct event_lpi_map    event_map;
169         void                    *itt;
170         u32                     nr_ites;
171         u32                     device_id;
172         bool                    shared;
173 };
174
175 static struct {
176         raw_spinlock_t          lock;
177         struct its_device       *dev;
178         struct its_vpe          **vpes;
179         int                     next_victim;
180 } vpe_proxy;
181
182 struct cpu_lpi_count {
183         atomic_t        managed;
184         atomic_t        unmanaged;
185 };
186
187 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
188
189 static LIST_HEAD(its_nodes);
190 static DEFINE_RAW_SPINLOCK(its_lock);
191 static struct rdists *gic_rdists;
192 static struct irq_domain *its_parent;
193
194 static unsigned long its_list_map;
195 static u16 vmovp_seq_num;
196 static DEFINE_RAW_SPINLOCK(vmovp_lock);
197
198 static DEFINE_IDA(its_vpeid_ida);
199
200 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
201 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
202 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
203 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
204
205 /*
206  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
207  * always have vSGIs mapped.
208  */
209 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
210 {
211         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
212 }
213
214 static u16 get_its_list(struct its_vm *vm)
215 {
216         struct its_node *its;
217         unsigned long its_list = 0;
218
219         list_for_each_entry(its, &its_nodes, entry) {
220                 if (!is_v4(its))
221                         continue;
222
223                 if (require_its_list_vmovp(vm, its))
224                         __set_bit(its->list_nr, &its_list);
225         }
226
227         return (u16)its_list;
228 }
229
230 static inline u32 its_get_event_id(struct irq_data *d)
231 {
232         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
233         return d->hwirq - its_dev->event_map.lpi_base;
234 }
235
236 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
237                                                u32 event)
238 {
239         struct its_node *its = its_dev->its;
240
241         return its->collections + its_dev->event_map.col_map[event];
242 }
243
244 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
245                                                u32 event)
246 {
247         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
248                 return NULL;
249
250         return &its_dev->event_map.vlpi_maps[event];
251 }
252
253 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
254 {
255         if (irqd_is_forwarded_to_vcpu(d)) {
256                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
257                 u32 event = its_get_event_id(d);
258
259                 return dev_event_to_vlpi_map(its_dev, event);
260         }
261
262         return NULL;
263 }
264
265 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
266 {
267         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
268         return vpe->col_idx;
269 }
270
271 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
272 {
273         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
274 }
275
276 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
277 {
278         struct its_vlpi_map *map = get_vlpi_map(d);
279         int cpu;
280
281         if (map) {
282                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
283         } else {
284                 /* Physical LPIs are already locked via the irq_desc lock */
285                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
286                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
287                 /* Keep GCC quiet... */
288                 *flags = 0;
289         }
290
291         return cpu;
292 }
293
294 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
295 {
296         struct its_vlpi_map *map = get_vlpi_map(d);
297
298         if (map)
299                 vpe_to_cpuid_unlock(map->vpe, flags);
300 }
301
302 static struct its_collection *valid_col(struct its_collection *col)
303 {
304         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
305                 return NULL;
306
307         return col;
308 }
309
310 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
311 {
312         if (valid_col(its->collections + vpe->col_idx))
313                 return vpe;
314
315         return NULL;
316 }
317
318 /*
319  * ITS command descriptors - parameters to be encoded in a command
320  * block.
321  */
322 struct its_cmd_desc {
323         union {
324                 struct {
325                         struct its_device *dev;
326                         u32 event_id;
327                 } its_inv_cmd;
328
329                 struct {
330                         struct its_device *dev;
331                         u32 event_id;
332                 } its_clear_cmd;
333
334                 struct {
335                         struct its_device *dev;
336                         u32 event_id;
337                 } its_int_cmd;
338
339                 struct {
340                         struct its_device *dev;
341                         int valid;
342                 } its_mapd_cmd;
343
344                 struct {
345                         struct its_collection *col;
346                         int valid;
347                 } its_mapc_cmd;
348
349                 struct {
350                         struct its_device *dev;
351                         u32 phys_id;
352                         u32 event_id;
353                 } its_mapti_cmd;
354
355                 struct {
356                         struct its_device *dev;
357                         struct its_collection *col;
358                         u32 event_id;
359                 } its_movi_cmd;
360
361                 struct {
362                         struct its_device *dev;
363                         u32 event_id;
364                 } its_discard_cmd;
365
366                 struct {
367                         struct its_collection *col;
368                 } its_invall_cmd;
369
370                 struct {
371                         struct its_vpe *vpe;
372                 } its_vinvall_cmd;
373
374                 struct {
375                         struct its_vpe *vpe;
376                         struct its_collection *col;
377                         bool valid;
378                 } its_vmapp_cmd;
379
380                 struct {
381                         struct its_vpe *vpe;
382                         struct its_device *dev;
383                         u32 virt_id;
384                         u32 event_id;
385                         bool db_enabled;
386                 } its_vmapti_cmd;
387
388                 struct {
389                         struct its_vpe *vpe;
390                         struct its_device *dev;
391                         u32 event_id;
392                         bool db_enabled;
393                 } its_vmovi_cmd;
394
395                 struct {
396                         struct its_vpe *vpe;
397                         struct its_collection *col;
398                         u16 seq_num;
399                         u16 its_list;
400                 } its_vmovp_cmd;
401
402                 struct {
403                         struct its_vpe *vpe;
404                 } its_invdb_cmd;
405
406                 struct {
407                         struct its_vpe *vpe;
408                         u8 sgi;
409                         u8 priority;
410                         bool enable;
411                         bool group;
412                         bool clear;
413                 } its_vsgi_cmd;
414         };
415 };
416
417 /*
418  * The ITS command block, which is what the ITS actually parses.
419  */
420 struct its_cmd_block {
421         union {
422                 u64     raw_cmd[4];
423                 __le64  raw_cmd_le[4];
424         };
425 };
426
427 #define ITS_CMD_QUEUE_SZ                SZ_64K
428 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
429
430 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
431                                                     struct its_cmd_block *,
432                                                     struct its_cmd_desc *);
433
434 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
435                                               struct its_cmd_block *,
436                                               struct its_cmd_desc *);
437
438 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
439 {
440         u64 mask = GENMASK_ULL(h, l);
441         *raw_cmd &= ~mask;
442         *raw_cmd |= (val << l) & mask;
443 }
444
445 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
446 {
447         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
448 }
449
450 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
451 {
452         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
453 }
454
455 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
456 {
457         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
458 }
459
460 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
461 {
462         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
463 }
464
465 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
466 {
467         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
468 }
469
470 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
471 {
472         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
473 }
474
475 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
476 {
477         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
478 }
479
480 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
481 {
482         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
483 }
484
485 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
486 {
487         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
488 }
489
490 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
491 {
492         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
493 }
494
495 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
496 {
497         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
498 }
499
500 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
501 {
502         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
503 }
504
505 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
506 {
507         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
508 }
509
510 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
511 {
512         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
513 }
514
515 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
516 {
517         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
518 }
519
520 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
521 {
522         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
523 }
524
525 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
526 {
527         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
528 }
529
530 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
531 {
532         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
533 }
534
535 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
536 {
537         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
538 }
539
540 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
541 {
542         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
543 }
544
545 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
546                                         u32 vpe_db_lpi)
547 {
548         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
549 }
550
551 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
552                                         u32 vpe_db_lpi)
553 {
554         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
555 }
556
557 static void its_encode_db(struct its_cmd_block *cmd, bool db)
558 {
559         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
560 }
561
562 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
563 {
564         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
565 }
566
567 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
568 {
569         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
570 }
571
572 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
573 {
574         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
575 }
576
577 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
578 {
579         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
580 }
581
582 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
583 {
584         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
585 }
586
587 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
588 {
589         /* Let's fixup BE commands */
590         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
591         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
592         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
593         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
594 }
595
596 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
597                                                  struct its_cmd_block *cmd,
598                                                  struct its_cmd_desc *desc)
599 {
600         unsigned long itt_addr;
601         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
602
603         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
604         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
605
606         its_encode_cmd(cmd, GITS_CMD_MAPD);
607         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
608         its_encode_size(cmd, size - 1);
609         its_encode_itt(cmd, itt_addr);
610         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
611
612         its_fixup_cmd(cmd);
613
614         return NULL;
615 }
616
617 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
618                                                  struct its_cmd_block *cmd,
619                                                  struct its_cmd_desc *desc)
620 {
621         its_encode_cmd(cmd, GITS_CMD_MAPC);
622         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
623         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
624         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
625
626         its_fixup_cmd(cmd);
627
628         return desc->its_mapc_cmd.col;
629 }
630
631 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
632                                                   struct its_cmd_block *cmd,
633                                                   struct its_cmd_desc *desc)
634 {
635         struct its_collection *col;
636
637         col = dev_event_to_col(desc->its_mapti_cmd.dev,
638                                desc->its_mapti_cmd.event_id);
639
640         its_encode_cmd(cmd, GITS_CMD_MAPTI);
641         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
642         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
643         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
644         its_encode_collection(cmd, col->col_id);
645
646         its_fixup_cmd(cmd);
647
648         return valid_col(col);
649 }
650
651 static struct its_collection *its_build_movi_cmd(struct its_node *its,
652                                                  struct its_cmd_block *cmd,
653                                                  struct its_cmd_desc *desc)
654 {
655         struct its_collection *col;
656
657         col = dev_event_to_col(desc->its_movi_cmd.dev,
658                                desc->its_movi_cmd.event_id);
659
660         its_encode_cmd(cmd, GITS_CMD_MOVI);
661         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
662         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
663         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
664
665         its_fixup_cmd(cmd);
666
667         return valid_col(col);
668 }
669
670 static struct its_collection *its_build_discard_cmd(struct its_node *its,
671                                                     struct its_cmd_block *cmd,
672                                                     struct its_cmd_desc *desc)
673 {
674         struct its_collection *col;
675
676         col = dev_event_to_col(desc->its_discard_cmd.dev,
677                                desc->its_discard_cmd.event_id);
678
679         its_encode_cmd(cmd, GITS_CMD_DISCARD);
680         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
681         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
682
683         its_fixup_cmd(cmd);
684
685         return valid_col(col);
686 }
687
688 static struct its_collection *its_build_inv_cmd(struct its_node *its,
689                                                 struct its_cmd_block *cmd,
690                                                 struct its_cmd_desc *desc)
691 {
692         struct its_collection *col;
693
694         col = dev_event_to_col(desc->its_inv_cmd.dev,
695                                desc->its_inv_cmd.event_id);
696
697         its_encode_cmd(cmd, GITS_CMD_INV);
698         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
699         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
700
701         its_fixup_cmd(cmd);
702
703         return valid_col(col);
704 }
705
706 static struct its_collection *its_build_int_cmd(struct its_node *its,
707                                                 struct its_cmd_block *cmd,
708                                                 struct its_cmd_desc *desc)
709 {
710         struct its_collection *col;
711
712         col = dev_event_to_col(desc->its_int_cmd.dev,
713                                desc->its_int_cmd.event_id);
714
715         its_encode_cmd(cmd, GITS_CMD_INT);
716         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
717         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
718
719         its_fixup_cmd(cmd);
720
721         return valid_col(col);
722 }
723
724 static struct its_collection *its_build_clear_cmd(struct its_node *its,
725                                                   struct its_cmd_block *cmd,
726                                                   struct its_cmd_desc *desc)
727 {
728         struct its_collection *col;
729
730         col = dev_event_to_col(desc->its_clear_cmd.dev,
731                                desc->its_clear_cmd.event_id);
732
733         its_encode_cmd(cmd, GITS_CMD_CLEAR);
734         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
735         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
736
737         its_fixup_cmd(cmd);
738
739         return valid_col(col);
740 }
741
742 static struct its_collection *its_build_invall_cmd(struct its_node *its,
743                                                    struct its_cmd_block *cmd,
744                                                    struct its_cmd_desc *desc)
745 {
746         its_encode_cmd(cmd, GITS_CMD_INVALL);
747         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
748
749         its_fixup_cmd(cmd);
750
751         return desc->its_invall_cmd.col;
752 }
753
754 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
755                                              struct its_cmd_block *cmd,
756                                              struct its_cmd_desc *desc)
757 {
758         its_encode_cmd(cmd, GITS_CMD_VINVALL);
759         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
760
761         its_fixup_cmd(cmd);
762
763         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
764 }
765
766 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
767                                            struct its_cmd_block *cmd,
768                                            struct its_cmd_desc *desc)
769 {
770         unsigned long vpt_addr, vconf_addr;
771         u64 target;
772         bool alloc;
773
774         its_encode_cmd(cmd, GITS_CMD_VMAPP);
775         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
776         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
777
778         if (!desc->its_vmapp_cmd.valid) {
779                 if (is_v4_1(its)) {
780                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
781                         its_encode_alloc(cmd, alloc);
782                 }
783
784                 goto out;
785         }
786
787         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
788         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
789
790         its_encode_target(cmd, target);
791         its_encode_vpt_addr(cmd, vpt_addr);
792         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
793
794         if (!is_v4_1(its))
795                 goto out;
796
797         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
798
799         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
800
801         its_encode_alloc(cmd, alloc);
802
803         /*
804          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
805          * to be unmapped first, and in this case, we may remap the vPE
806          * back while the VPT is not empty. So we can't assume that the
807          * VPT is empty on map. This is why we never advertise PTZ.
808          */
809         its_encode_ptz(cmd, false);
810         its_encode_vconf_addr(cmd, vconf_addr);
811         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
812
813 out:
814         its_fixup_cmd(cmd);
815
816         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
817 }
818
819 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
820                                             struct its_cmd_block *cmd,
821                                             struct its_cmd_desc *desc)
822 {
823         u32 db;
824
825         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
826                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
827         else
828                 db = 1023;
829
830         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
831         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
832         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
833         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
834         its_encode_db_phys_id(cmd, db);
835         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
836
837         its_fixup_cmd(cmd);
838
839         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
840 }
841
842 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
843                                            struct its_cmd_block *cmd,
844                                            struct its_cmd_desc *desc)
845 {
846         u32 db;
847
848         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
849                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
850         else
851                 db = 1023;
852
853         its_encode_cmd(cmd, GITS_CMD_VMOVI);
854         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
855         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
856         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
857         its_encode_db_phys_id(cmd, db);
858         its_encode_db_valid(cmd, true);
859
860         its_fixup_cmd(cmd);
861
862         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
863 }
864
865 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
866                                            struct its_cmd_block *cmd,
867                                            struct its_cmd_desc *desc)
868 {
869         u64 target;
870
871         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
872         its_encode_cmd(cmd, GITS_CMD_VMOVP);
873         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
874         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
875         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
876         its_encode_target(cmd, target);
877
878         if (is_v4_1(its)) {
879                 its_encode_db(cmd, true);
880                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
881         }
882
883         its_fixup_cmd(cmd);
884
885         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
886 }
887
888 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
889                                           struct its_cmd_block *cmd,
890                                           struct its_cmd_desc *desc)
891 {
892         struct its_vlpi_map *map;
893
894         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
895                                     desc->its_inv_cmd.event_id);
896
897         its_encode_cmd(cmd, GITS_CMD_INV);
898         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
899         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
900
901         its_fixup_cmd(cmd);
902
903         return valid_vpe(its, map->vpe);
904 }
905
906 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
907                                           struct its_cmd_block *cmd,
908                                           struct its_cmd_desc *desc)
909 {
910         struct its_vlpi_map *map;
911
912         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
913                                     desc->its_int_cmd.event_id);
914
915         its_encode_cmd(cmd, GITS_CMD_INT);
916         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
917         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
918
919         its_fixup_cmd(cmd);
920
921         return valid_vpe(its, map->vpe);
922 }
923
924 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
925                                             struct its_cmd_block *cmd,
926                                             struct its_cmd_desc *desc)
927 {
928         struct its_vlpi_map *map;
929
930         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
931                                     desc->its_clear_cmd.event_id);
932
933         its_encode_cmd(cmd, GITS_CMD_CLEAR);
934         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
935         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
936
937         its_fixup_cmd(cmd);
938
939         return valid_vpe(its, map->vpe);
940 }
941
942 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
943                                            struct its_cmd_block *cmd,
944                                            struct its_cmd_desc *desc)
945 {
946         if (WARN_ON(!is_v4_1(its)))
947                 return NULL;
948
949         its_encode_cmd(cmd, GITS_CMD_INVDB);
950         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
951
952         its_fixup_cmd(cmd);
953
954         return valid_vpe(its, desc->its_invdb_cmd.vpe);
955 }
956
957 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
958                                           struct its_cmd_block *cmd,
959                                           struct its_cmd_desc *desc)
960 {
961         if (WARN_ON(!is_v4_1(its)))
962                 return NULL;
963
964         its_encode_cmd(cmd, GITS_CMD_VSGI);
965         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
966         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
967         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
968         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
969         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
970         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
971
972         its_fixup_cmd(cmd);
973
974         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
975 }
976
977 static u64 its_cmd_ptr_to_offset(struct its_node *its,
978                                  struct its_cmd_block *ptr)
979 {
980         return (ptr - its->cmd_base) * sizeof(*ptr);
981 }
982
983 static int its_queue_full(struct its_node *its)
984 {
985         int widx;
986         int ridx;
987
988         widx = its->cmd_write - its->cmd_base;
989         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
990
991         /* This is incredibly unlikely to happen, unless the ITS locks up. */
992         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
993                 return 1;
994
995         return 0;
996 }
997
998 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
999 {
1000         struct its_cmd_block *cmd;
1001         u32 count = 1000000;    /* 1s! */
1002
1003         while (its_queue_full(its)) {
1004                 count--;
1005                 if (!count) {
1006                         pr_err_ratelimited("ITS queue not draining\n");
1007                         return NULL;
1008                 }
1009                 cpu_relax();
1010                 udelay(1);
1011         }
1012
1013         cmd = its->cmd_write++;
1014
1015         /* Handle queue wrapping */
1016         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1017                 its->cmd_write = its->cmd_base;
1018
1019         /* Clear command  */
1020         cmd->raw_cmd[0] = 0;
1021         cmd->raw_cmd[1] = 0;
1022         cmd->raw_cmd[2] = 0;
1023         cmd->raw_cmd[3] = 0;
1024
1025         return cmd;
1026 }
1027
1028 static struct its_cmd_block *its_post_commands(struct its_node *its)
1029 {
1030         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1031
1032         writel_relaxed(wr, its->base + GITS_CWRITER);
1033
1034         return its->cmd_write;
1035 }
1036
1037 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1038 {
1039         /*
1040          * Make sure the commands written to memory are observable by
1041          * the ITS.
1042          */
1043         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1044                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1045         else
1046                 dsb(ishst);
1047 }
1048
1049 static int its_wait_for_range_completion(struct its_node *its,
1050                                          u64    prev_idx,
1051                                          struct its_cmd_block *to)
1052 {
1053         u64 rd_idx, to_idx, linear_idx;
1054         u32 count = 1000000;    /* 1s! */
1055
1056         /* Linearize to_idx if the command set has wrapped around */
1057         to_idx = its_cmd_ptr_to_offset(its, to);
1058         if (to_idx < prev_idx)
1059                 to_idx += ITS_CMD_QUEUE_SZ;
1060
1061         linear_idx = prev_idx;
1062
1063         while (1) {
1064                 s64 delta;
1065
1066                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1067
1068                 /*
1069                  * Compute the read pointer progress, taking the
1070                  * potential wrap-around into account.
1071                  */
1072                 delta = rd_idx - prev_idx;
1073                 if (rd_idx < prev_idx)
1074                         delta += ITS_CMD_QUEUE_SZ;
1075
1076                 linear_idx += delta;
1077                 if (linear_idx >= to_idx)
1078                         break;
1079
1080                 count--;
1081                 if (!count) {
1082                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1083                                            to_idx, linear_idx);
1084                         return -1;
1085                 }
1086                 prev_idx = rd_idx;
1087                 cpu_relax();
1088                 udelay(1);
1089         }
1090
1091         return 0;
1092 }
1093
1094 /* Warning, macro hell follows */
1095 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1096 void name(struct its_node *its,                                         \
1097           buildtype builder,                                            \
1098           struct its_cmd_desc *desc)                                    \
1099 {                                                                       \
1100         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1101         synctype *sync_obj;                                             \
1102         unsigned long flags;                                            \
1103         u64 rd_idx;                                                     \
1104                                                                         \
1105         raw_spin_lock_irqsave(&its->lock, flags);                       \
1106                                                                         \
1107         cmd = its_allocate_entry(its);                                  \
1108         if (!cmd) {             /* We're soooooo screewed... */         \
1109                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1110                 return;                                                 \
1111         }                                                               \
1112         sync_obj = builder(its, cmd, desc);                             \
1113         its_flush_cmd(its, cmd);                                        \
1114                                                                         \
1115         if (sync_obj) {                                                 \
1116                 sync_cmd = its_allocate_entry(its);                     \
1117                 if (!sync_cmd)                                          \
1118                         goto post;                                      \
1119                                                                         \
1120                 buildfn(its, sync_cmd, sync_obj);                       \
1121                 its_flush_cmd(its, sync_cmd);                           \
1122         }                                                               \
1123                                                                         \
1124 post:                                                                   \
1125         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1126         next_cmd = its_post_commands(its);                              \
1127         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1128                                                                         \
1129         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1130                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1131 }
1132
1133 static void its_build_sync_cmd(struct its_node *its,
1134                                struct its_cmd_block *sync_cmd,
1135                                struct its_collection *sync_col)
1136 {
1137         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1138         its_encode_target(sync_cmd, sync_col->target_address);
1139
1140         its_fixup_cmd(sync_cmd);
1141 }
1142
1143 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1144                              struct its_collection, its_build_sync_cmd)
1145
1146 static void its_build_vsync_cmd(struct its_node *its,
1147                                 struct its_cmd_block *sync_cmd,
1148                                 struct its_vpe *sync_vpe)
1149 {
1150         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1151         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1152
1153         its_fixup_cmd(sync_cmd);
1154 }
1155
1156 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1157                              struct its_vpe, its_build_vsync_cmd)
1158
1159 static void its_send_int(struct its_device *dev, u32 event_id)
1160 {
1161         struct its_cmd_desc desc;
1162
1163         desc.its_int_cmd.dev = dev;
1164         desc.its_int_cmd.event_id = event_id;
1165
1166         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1167 }
1168
1169 static void its_send_clear(struct its_device *dev, u32 event_id)
1170 {
1171         struct its_cmd_desc desc;
1172
1173         desc.its_clear_cmd.dev = dev;
1174         desc.its_clear_cmd.event_id = event_id;
1175
1176         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1177 }
1178
1179 static void its_send_inv(struct its_device *dev, u32 event_id)
1180 {
1181         struct its_cmd_desc desc;
1182
1183         desc.its_inv_cmd.dev = dev;
1184         desc.its_inv_cmd.event_id = event_id;
1185
1186         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1187 }
1188
1189 static void its_send_mapd(struct its_device *dev, int valid)
1190 {
1191         struct its_cmd_desc desc;
1192
1193         desc.its_mapd_cmd.dev = dev;
1194         desc.its_mapd_cmd.valid = !!valid;
1195
1196         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1197 }
1198
1199 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1200                           int valid)
1201 {
1202         struct its_cmd_desc desc;
1203
1204         desc.its_mapc_cmd.col = col;
1205         desc.its_mapc_cmd.valid = !!valid;
1206
1207         its_send_single_command(its, its_build_mapc_cmd, &desc);
1208 }
1209
1210 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1211 {
1212         struct its_cmd_desc desc;
1213
1214         desc.its_mapti_cmd.dev = dev;
1215         desc.its_mapti_cmd.phys_id = irq_id;
1216         desc.its_mapti_cmd.event_id = id;
1217
1218         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1219 }
1220
1221 static void its_send_movi(struct its_device *dev,
1222                           struct its_collection *col, u32 id)
1223 {
1224         struct its_cmd_desc desc;
1225
1226         desc.its_movi_cmd.dev = dev;
1227         desc.its_movi_cmd.col = col;
1228         desc.its_movi_cmd.event_id = id;
1229
1230         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1231 }
1232
1233 static void its_send_discard(struct its_device *dev, u32 id)
1234 {
1235         struct its_cmd_desc desc;
1236
1237         desc.its_discard_cmd.dev = dev;
1238         desc.its_discard_cmd.event_id = id;
1239
1240         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1241 }
1242
1243 static void its_send_invall(struct its_node *its, struct its_collection *col)
1244 {
1245         struct its_cmd_desc desc;
1246
1247         desc.its_invall_cmd.col = col;
1248
1249         its_send_single_command(its, its_build_invall_cmd, &desc);
1250 }
1251
1252 static void its_send_vmapti(struct its_device *dev, u32 id)
1253 {
1254         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1255         struct its_cmd_desc desc;
1256
1257         desc.its_vmapti_cmd.vpe = map->vpe;
1258         desc.its_vmapti_cmd.dev = dev;
1259         desc.its_vmapti_cmd.virt_id = map->vintid;
1260         desc.its_vmapti_cmd.event_id = id;
1261         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1262
1263         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1264 }
1265
1266 static void its_send_vmovi(struct its_device *dev, u32 id)
1267 {
1268         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1269         struct its_cmd_desc desc;
1270
1271         desc.its_vmovi_cmd.vpe = map->vpe;
1272         desc.its_vmovi_cmd.dev = dev;
1273         desc.its_vmovi_cmd.event_id = id;
1274         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1275
1276         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1277 }
1278
1279 static void its_send_vmapp(struct its_node *its,
1280                            struct its_vpe *vpe, bool valid)
1281 {
1282         struct its_cmd_desc desc;
1283
1284         desc.its_vmapp_cmd.vpe = vpe;
1285         desc.its_vmapp_cmd.valid = valid;
1286         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1287
1288         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1289 }
1290
1291 static void its_send_vmovp(struct its_vpe *vpe)
1292 {
1293         struct its_cmd_desc desc = {};
1294         struct its_node *its;
1295         unsigned long flags;
1296         int col_id = vpe->col_idx;
1297
1298         desc.its_vmovp_cmd.vpe = vpe;
1299
1300         if (!its_list_map) {
1301                 its = list_first_entry(&its_nodes, struct its_node, entry);
1302                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1303                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1304                 return;
1305         }
1306
1307         /*
1308          * Yet another marvel of the architecture. If using the
1309          * its_list "feature", we need to make sure that all ITSs
1310          * receive all VMOVP commands in the same order. The only way
1311          * to guarantee this is to make vmovp a serialization point.
1312          *
1313          * Wall <-- Head.
1314          */
1315         raw_spin_lock_irqsave(&vmovp_lock, flags);
1316
1317         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1318         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1319
1320         /* Emit VMOVPs */
1321         list_for_each_entry(its, &its_nodes, entry) {
1322                 if (!is_v4(its))
1323                         continue;
1324
1325                 if (!require_its_list_vmovp(vpe->its_vm, its))
1326                         continue;
1327
1328                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1329                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1330         }
1331
1332         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1333 }
1334
1335 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1336 {
1337         struct its_cmd_desc desc;
1338
1339         desc.its_vinvall_cmd.vpe = vpe;
1340         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1341 }
1342
1343 static void its_send_vinv(struct its_device *dev, u32 event_id)
1344 {
1345         struct its_cmd_desc desc;
1346
1347         /*
1348          * There is no real VINV command. This is just a normal INV,
1349          * with a VSYNC instead of a SYNC.
1350          */
1351         desc.its_inv_cmd.dev = dev;
1352         desc.its_inv_cmd.event_id = event_id;
1353
1354         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1355 }
1356
1357 static void its_send_vint(struct its_device *dev, u32 event_id)
1358 {
1359         struct its_cmd_desc desc;
1360
1361         /*
1362          * There is no real VINT command. This is just a normal INT,
1363          * with a VSYNC instead of a SYNC.
1364          */
1365         desc.its_int_cmd.dev = dev;
1366         desc.its_int_cmd.event_id = event_id;
1367
1368         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1369 }
1370
1371 static void its_send_vclear(struct its_device *dev, u32 event_id)
1372 {
1373         struct its_cmd_desc desc;
1374
1375         /*
1376          * There is no real VCLEAR command. This is just a normal CLEAR,
1377          * with a VSYNC instead of a SYNC.
1378          */
1379         desc.its_clear_cmd.dev = dev;
1380         desc.its_clear_cmd.event_id = event_id;
1381
1382         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1383 }
1384
1385 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1386 {
1387         struct its_cmd_desc desc;
1388
1389         desc.its_invdb_cmd.vpe = vpe;
1390         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1391 }
1392
1393 /*
1394  * irqchip functions - assumes MSI, mostly.
1395  */
1396 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1397 {
1398         struct its_vlpi_map *map = get_vlpi_map(d);
1399         irq_hw_number_t hwirq;
1400         void *va;
1401         u8 *cfg;
1402
1403         if (map) {
1404                 va = page_address(map->vm->vprop_page);
1405                 hwirq = map->vintid;
1406
1407                 /* Remember the updated property */
1408                 map->properties &= ~clr;
1409                 map->properties |= set | LPI_PROP_GROUP1;
1410         } else {
1411                 va = gic_rdists->prop_table_va;
1412                 hwirq = d->hwirq;
1413         }
1414
1415         cfg = va + hwirq - 8192;
1416         *cfg &= ~clr;
1417         *cfg |= set | LPI_PROP_GROUP1;
1418
1419         /*
1420          * Make the above write visible to the redistributors.
1421          * And yes, we're flushing exactly: One. Single. Byte.
1422          * Humpf...
1423          */
1424         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1425                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1426         else
1427                 dsb(ishst);
1428 }
1429
1430 static void wait_for_syncr(void __iomem *rdbase)
1431 {
1432         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1433                 cpu_relax();
1434 }
1435
1436 static void direct_lpi_inv(struct irq_data *d)
1437 {
1438         struct its_vlpi_map *map = get_vlpi_map(d);
1439         void __iomem *rdbase;
1440         unsigned long flags;
1441         u64 val;
1442         int cpu;
1443
1444         if (map) {
1445                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1446
1447                 WARN_ON(!is_v4_1(its_dev->its));
1448
1449                 val  = GICR_INVLPIR_V;
1450                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1451                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1452         } else {
1453                 val = d->hwirq;
1454         }
1455
1456         /* Target the redistributor this LPI is currently routed to */
1457         cpu = irq_to_cpuid_lock(d, &flags);
1458         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1459         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1460         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1461
1462         wait_for_syncr(rdbase);
1463         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464         irq_to_cpuid_unlock(d, flags);
1465 }
1466
1467 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1468 {
1469         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1470
1471         lpi_write_config(d, clr, set);
1472         if (gic_rdists->has_direct_lpi &&
1473             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1474                 direct_lpi_inv(d);
1475         else if (!irqd_is_forwarded_to_vcpu(d))
1476                 its_send_inv(its_dev, its_get_event_id(d));
1477         else
1478                 its_send_vinv(its_dev, its_get_event_id(d));
1479 }
1480
1481 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1482 {
1483         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484         u32 event = its_get_event_id(d);
1485         struct its_vlpi_map *map;
1486
1487         /*
1488          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1489          * here.
1490          */
1491         if (is_v4_1(its_dev->its))
1492                 return;
1493
1494         map = dev_event_to_vlpi_map(its_dev, event);
1495
1496         if (map->db_enabled == enable)
1497                 return;
1498
1499         map->db_enabled = enable;
1500
1501         /*
1502          * More fun with the architecture:
1503          *
1504          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1505          * value or to 1023, depending on the enable bit. But that
1506          * would be issuing a mapping for an /existing/ DevID+EventID
1507          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1508          * to the /same/ vPE, using this opportunity to adjust the
1509          * doorbell. Mouahahahaha. We loves it, Precious.
1510          */
1511         its_send_vmovi(its_dev, event);
1512 }
1513
1514 static void its_mask_irq(struct irq_data *d)
1515 {
1516         if (irqd_is_forwarded_to_vcpu(d))
1517                 its_vlpi_set_doorbell(d, false);
1518
1519         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1520 }
1521
1522 static void its_unmask_irq(struct irq_data *d)
1523 {
1524         if (irqd_is_forwarded_to_vcpu(d))
1525                 its_vlpi_set_doorbell(d, true);
1526
1527         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1528 }
1529
1530 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1531 {
1532         if (irqd_affinity_is_managed(d))
1533                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1534
1535         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1536 }
1537
1538 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1539 {
1540         if (irqd_affinity_is_managed(d))
1541                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1542         else
1543                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1544 }
1545
1546 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1547 {
1548         if (irqd_affinity_is_managed(d))
1549                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1550         else
1551                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1552 }
1553
1554 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1555                                               const struct cpumask *cpu_mask)
1556 {
1557         unsigned int cpu = nr_cpu_ids, tmp;
1558         int count = S32_MAX;
1559
1560         for_each_cpu(tmp, cpu_mask) {
1561                 int this_count = its_read_lpi_count(d, tmp);
1562                 if (this_count < count) {
1563                         cpu = tmp;
1564                         count = this_count;
1565                 }
1566         }
1567
1568         return cpu;
1569 }
1570
1571 /*
1572  * As suggested by Thomas Gleixner in:
1573  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1574  */
1575 static int its_select_cpu(struct irq_data *d,
1576                           const struct cpumask *aff_mask)
1577 {
1578         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1579         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1580         static struct cpumask __tmpmask;
1581         struct cpumask *tmpmask;
1582         unsigned long flags;
1583         int cpu, node;
1584         node = its_dev->its->numa_node;
1585         tmpmask = &__tmpmask;
1586
1587         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1588
1589         if (!irqd_affinity_is_managed(d)) {
1590                 /* First try the NUMA node */
1591                 if (node != NUMA_NO_NODE) {
1592                         /*
1593                          * Try the intersection of the affinity mask and the
1594                          * node mask (and the online mask, just to be safe).
1595                          */
1596                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1597                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1598
1599                         /*
1600                          * Ideally, we would check if the mask is empty, and
1601                          * try again on the full node here.
1602                          *
1603                          * But it turns out that the way ACPI describes the
1604                          * affinity for ITSs only deals about memory, and
1605                          * not target CPUs, so it cannot describe a single
1606                          * ITS placed next to two NUMA nodes.
1607                          *
1608                          * Instead, just fallback on the online mask. This
1609                          * diverges from Thomas' suggestion above.
1610                          */
1611                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1612                         if (cpu < nr_cpu_ids)
1613                                 goto out;
1614
1615                         /* If we can't cross sockets, give up */
1616                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1617                                 goto out;
1618
1619                         /* If the above failed, expand the search */
1620                 }
1621
1622                 /* Try the intersection of the affinity and online masks */
1623                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1624
1625                 /* If that doesn't fly, the online mask is the last resort */
1626                 if (cpumask_empty(tmpmask))
1627                         cpumask_copy(tmpmask, cpu_online_mask);
1628
1629                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1630         } else {
1631                 cpumask_copy(tmpmask, aff_mask);
1632
1633                 /* If we cannot cross sockets, limit the search to that node */
1634                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1635                     node != NUMA_NO_NODE)
1636                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1637
1638                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1639         }
1640 out:
1641         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1642
1643         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1644         return cpu;
1645 }
1646
1647 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1648                             bool force)
1649 {
1650         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1651         struct its_collection *target_col;
1652         u32 id = its_get_event_id(d);
1653         int cpu, prev_cpu;
1654
1655         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1656         if (irqd_is_forwarded_to_vcpu(d))
1657                 return -EINVAL;
1658
1659         prev_cpu = its_dev->event_map.col_map[id];
1660         its_dec_lpi_count(d, prev_cpu);
1661
1662         if (!force)
1663                 cpu = its_select_cpu(d, mask_val);
1664         else
1665                 cpu = cpumask_pick_least_loaded(d, mask_val);
1666
1667         if (cpu < 0 || cpu >= nr_cpu_ids)
1668                 goto err;
1669
1670         /* don't set the affinity when the target cpu is same as current one */
1671         if (cpu != prev_cpu) {
1672                 target_col = &its_dev->its->collections[cpu];
1673                 its_send_movi(its_dev, target_col, id);
1674                 its_dev->event_map.col_map[id] = cpu;
1675                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1676         }
1677
1678         its_inc_lpi_count(d, cpu);
1679
1680         return IRQ_SET_MASK_OK_DONE;
1681
1682 err:
1683         its_inc_lpi_count(d, prev_cpu);
1684         return -EINVAL;
1685 }
1686
1687 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1688 {
1689         struct its_node *its = its_dev->its;
1690
1691         return its->phys_base + GITS_TRANSLATER;
1692 }
1693
1694 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1695 {
1696         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1697         struct its_node *its;
1698         u64 addr;
1699
1700         its = its_dev->its;
1701         addr = its->get_msi_base(its_dev);
1702
1703         msg->address_lo         = lower_32_bits(addr);
1704         msg->address_hi         = upper_32_bits(addr);
1705         msg->data               = its_get_event_id(d);
1706
1707         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1708 }
1709
1710 static int its_irq_set_irqchip_state(struct irq_data *d,
1711                                      enum irqchip_irq_state which,
1712                                      bool state)
1713 {
1714         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1715         u32 event = its_get_event_id(d);
1716
1717         if (which != IRQCHIP_STATE_PENDING)
1718                 return -EINVAL;
1719
1720         if (irqd_is_forwarded_to_vcpu(d)) {
1721                 if (state)
1722                         its_send_vint(its_dev, event);
1723                 else
1724                         its_send_vclear(its_dev, event);
1725         } else {
1726                 if (state)
1727                         its_send_int(its_dev, event);
1728                 else
1729                         its_send_clear(its_dev, event);
1730         }
1731
1732         return 0;
1733 }
1734
1735 static int its_irq_retrigger(struct irq_data *d)
1736 {
1737         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1738 }
1739
1740 /*
1741  * Two favourable cases:
1742  *
1743  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1744  *     for vSGI delivery
1745  *
1746  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1747  *     and we're better off mapping all VPEs always
1748  *
1749  * If neither (a) nor (b) is true, then we map vPEs on demand.
1750  *
1751  */
1752 static bool gic_requires_eager_mapping(void)
1753 {
1754         if (!its_list_map || gic_rdists->has_rvpeid)
1755                 return true;
1756
1757         return false;
1758 }
1759
1760 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1761 {
1762         unsigned long flags;
1763
1764         if (gic_requires_eager_mapping())
1765                 return;
1766
1767         raw_spin_lock_irqsave(&vmovp_lock, flags);
1768
1769         /*
1770          * If the VM wasn't mapped yet, iterate over the vpes and get
1771          * them mapped now.
1772          */
1773         vm->vlpi_count[its->list_nr]++;
1774
1775         if (vm->vlpi_count[its->list_nr] == 1) {
1776                 int i;
1777
1778                 for (i = 0; i < vm->nr_vpes; i++) {
1779                         struct its_vpe *vpe = vm->vpes[i];
1780                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1781
1782                         /* Map the VPE to the first possible CPU */
1783                         vpe->col_idx = cpumask_first(cpu_online_mask);
1784                         its_send_vmapp(its, vpe, true);
1785                         its_send_vinvall(its, vpe);
1786                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1787                 }
1788         }
1789
1790         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1791 }
1792
1793 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1794 {
1795         unsigned long flags;
1796
1797         /* Not using the ITS list? Everything is always mapped. */
1798         if (gic_requires_eager_mapping())
1799                 return;
1800
1801         raw_spin_lock_irqsave(&vmovp_lock, flags);
1802
1803         if (!--vm->vlpi_count[its->list_nr]) {
1804                 int i;
1805
1806                 for (i = 0; i < vm->nr_vpes; i++)
1807                         its_send_vmapp(its, vm->vpes[i], false);
1808         }
1809
1810         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1811 }
1812
1813 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1814 {
1815         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1816         u32 event = its_get_event_id(d);
1817         int ret = 0;
1818
1819         if (!info->map)
1820                 return -EINVAL;
1821
1822         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1823
1824         if (!its_dev->event_map.vm) {
1825                 struct its_vlpi_map *maps;
1826
1827                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1828                                GFP_ATOMIC);
1829                 if (!maps) {
1830                         ret = -ENOMEM;
1831                         goto out;
1832                 }
1833
1834                 its_dev->event_map.vm = info->map->vm;
1835                 its_dev->event_map.vlpi_maps = maps;
1836         } else if (its_dev->event_map.vm != info->map->vm) {
1837                 ret = -EINVAL;
1838                 goto out;
1839         }
1840
1841         /* Get our private copy of the mapping information */
1842         its_dev->event_map.vlpi_maps[event] = *info->map;
1843
1844         if (irqd_is_forwarded_to_vcpu(d)) {
1845                 /* Already mapped, move it around */
1846                 its_send_vmovi(its_dev, event);
1847         } else {
1848                 /* Ensure all the VPEs are mapped on this ITS */
1849                 its_map_vm(its_dev->its, info->map->vm);
1850
1851                 /*
1852                  * Flag the interrupt as forwarded so that we can
1853                  * start poking the virtual property table.
1854                  */
1855                 irqd_set_forwarded_to_vcpu(d);
1856
1857                 /* Write out the property to the prop table */
1858                 lpi_write_config(d, 0xff, info->map->properties);
1859
1860                 /* Drop the physical mapping */
1861                 its_send_discard(its_dev, event);
1862
1863                 /* and install the virtual one */
1864                 its_send_vmapti(its_dev, event);
1865
1866                 /* Increment the number of VLPIs */
1867                 its_dev->event_map.nr_vlpis++;
1868         }
1869
1870 out:
1871         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1872         return ret;
1873 }
1874
1875 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1876 {
1877         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1878         struct its_vlpi_map *map;
1879         int ret = 0;
1880
1881         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1882
1883         map = get_vlpi_map(d);
1884
1885         if (!its_dev->event_map.vm || !map) {
1886                 ret = -EINVAL;
1887                 goto out;
1888         }
1889
1890         /* Copy our mapping information to the incoming request */
1891         *info->map = *map;
1892
1893 out:
1894         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1895         return ret;
1896 }
1897
1898 static int its_vlpi_unmap(struct irq_data *d)
1899 {
1900         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1901         u32 event = its_get_event_id(d);
1902         int ret = 0;
1903
1904         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1905
1906         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1907                 ret = -EINVAL;
1908                 goto out;
1909         }
1910
1911         /* Drop the virtual mapping */
1912         its_send_discard(its_dev, event);
1913
1914         /* and restore the physical one */
1915         irqd_clr_forwarded_to_vcpu(d);
1916         its_send_mapti(its_dev, d->hwirq, event);
1917         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1918                                     LPI_PROP_ENABLED |
1919                                     LPI_PROP_GROUP1));
1920
1921         /* Potentially unmap the VM from this ITS */
1922         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1923
1924         /*
1925          * Drop the refcount and make the device available again if
1926          * this was the last VLPI.
1927          */
1928         if (!--its_dev->event_map.nr_vlpis) {
1929                 its_dev->event_map.vm = NULL;
1930                 kfree(its_dev->event_map.vlpi_maps);
1931         }
1932
1933 out:
1934         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1935         return ret;
1936 }
1937
1938 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1939 {
1940         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1941
1942         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1943                 return -EINVAL;
1944
1945         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1946                 lpi_update_config(d, 0xff, info->config);
1947         else
1948                 lpi_write_config(d, 0xff, info->config);
1949         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1950
1951         return 0;
1952 }
1953
1954 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1955 {
1956         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1957         struct its_cmd_info *info = vcpu_info;
1958
1959         /* Need a v4 ITS */
1960         if (!is_v4(its_dev->its))
1961                 return -EINVAL;
1962
1963         /* Unmap request? */
1964         if (!info)
1965                 return its_vlpi_unmap(d);
1966
1967         switch (info->cmd_type) {
1968         case MAP_VLPI:
1969                 return its_vlpi_map(d, info);
1970
1971         case GET_VLPI:
1972                 return its_vlpi_get(d, info);
1973
1974         case PROP_UPDATE_VLPI:
1975         case PROP_UPDATE_AND_INV_VLPI:
1976                 return its_vlpi_prop_update(d, info);
1977
1978         default:
1979                 return -EINVAL;
1980         }
1981 }
1982
1983 static struct irq_chip its_irq_chip = {
1984         .name                   = "ITS",
1985         .irq_mask               = its_mask_irq,
1986         .irq_unmask             = its_unmask_irq,
1987         .irq_eoi                = irq_chip_eoi_parent,
1988         .irq_set_affinity       = its_set_affinity,
1989         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1990         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1991         .irq_retrigger          = its_irq_retrigger,
1992         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1993 };
1994
1995
1996 /*
1997  * How we allocate LPIs:
1998  *
1999  * lpi_range_list contains ranges of LPIs that are to available to
2000  * allocate from. To allocate LPIs, just pick the first range that
2001  * fits the required allocation, and reduce it by the required
2002  * amount. Once empty, remove the range from the list.
2003  *
2004  * To free a range of LPIs, add a free range to the list, sort it and
2005  * merge the result if the new range happens to be adjacent to an
2006  * already free block.
2007  *
2008  * The consequence of the above is that allocation is cost is low, but
2009  * freeing is expensive. We assumes that freeing rarely occurs.
2010  */
2011 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2012
2013 static DEFINE_MUTEX(lpi_range_lock);
2014 static LIST_HEAD(lpi_range_list);
2015
2016 struct lpi_range {
2017         struct list_head        entry;
2018         u32                     base_id;
2019         u32                     span;
2020 };
2021
2022 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2023 {
2024         struct lpi_range *range;
2025
2026         range = kmalloc(sizeof(*range), GFP_KERNEL);
2027         if (range) {
2028                 range->base_id = base;
2029                 range->span = span;
2030         }
2031
2032         return range;
2033 }
2034
2035 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2036 {
2037         struct lpi_range *range, *tmp;
2038         int err = -ENOSPC;
2039
2040         mutex_lock(&lpi_range_lock);
2041
2042         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2043                 if (range->span >= nr_lpis) {
2044                         *base = range->base_id;
2045                         range->base_id += nr_lpis;
2046                         range->span -= nr_lpis;
2047
2048                         if (range->span == 0) {
2049                                 list_del(&range->entry);
2050                                 kfree(range);
2051                         }
2052
2053                         err = 0;
2054                         break;
2055                 }
2056         }
2057
2058         mutex_unlock(&lpi_range_lock);
2059
2060         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2061         return err;
2062 }
2063
2064 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2065 {
2066         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2067                 return;
2068         if (a->base_id + a->span != b->base_id)
2069                 return;
2070         b->base_id = a->base_id;
2071         b->span += a->span;
2072         list_del(&a->entry);
2073         kfree(a);
2074 }
2075
2076 static int free_lpi_range(u32 base, u32 nr_lpis)
2077 {
2078         struct lpi_range *new, *old;
2079
2080         new = mk_lpi_range(base, nr_lpis);
2081         if (!new)
2082                 return -ENOMEM;
2083
2084         mutex_lock(&lpi_range_lock);
2085
2086         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2087                 if (old->base_id < base)
2088                         break;
2089         }
2090         /*
2091          * old is the last element with ->base_id smaller than base,
2092          * so new goes right after it. If there are no elements with
2093          * ->base_id smaller than base, &old->entry ends up pointing
2094          * at the head of the list, and inserting new it the start of
2095          * the list is the right thing to do in that case as well.
2096          */
2097         list_add(&new->entry, &old->entry);
2098         /*
2099          * Now check if we can merge with the preceding and/or
2100          * following ranges.
2101          */
2102         merge_lpi_ranges(old, new);
2103         merge_lpi_ranges(new, list_next_entry(new, entry));
2104
2105         mutex_unlock(&lpi_range_lock);
2106         return 0;
2107 }
2108
2109 static int __init its_lpi_init(u32 id_bits)
2110 {
2111         u32 lpis = (1UL << id_bits) - 8192;
2112         u32 numlpis;
2113         int err;
2114
2115         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2116
2117         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2118                 lpis = numlpis;
2119                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2120                         lpis);
2121         }
2122
2123         /*
2124          * Initializing the allocator is just the same as freeing the
2125          * full range of LPIs.
2126          */
2127         err = free_lpi_range(8192, lpis);
2128         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2129         return err;
2130 }
2131
2132 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2133 {
2134         unsigned long *bitmap = NULL;
2135         int err = 0;
2136
2137         do {
2138                 err = alloc_lpi_range(nr_irqs, base);
2139                 if (!err)
2140                         break;
2141
2142                 nr_irqs /= 2;
2143         } while (nr_irqs > 0);
2144
2145         if (!nr_irqs)
2146                 err = -ENOSPC;
2147
2148         if (err)
2149                 goto out;
2150
2151         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2152         if (!bitmap)
2153                 goto out;
2154
2155         *nr_ids = nr_irqs;
2156
2157 out:
2158         if (!bitmap)
2159                 *base = *nr_ids = 0;
2160
2161         return bitmap;
2162 }
2163
2164 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2165 {
2166         WARN_ON(free_lpi_range(base, nr_ids));
2167         bitmap_free(bitmap);
2168 }
2169
2170 static void gic_reset_prop_table(void *va)
2171 {
2172         /* Priority 0xa0, Group-1, disabled */
2173         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2174
2175         /* Make sure the GIC will observe the written configuration */
2176         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2177 }
2178
2179 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2180 {
2181         struct page *prop_page;
2182
2183         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2184         if (!prop_page)
2185                 return NULL;
2186
2187         gic_reset_prop_table(page_address(prop_page));
2188
2189         return prop_page;
2190 }
2191
2192 static void its_free_prop_table(struct page *prop_page)
2193 {
2194         free_pages((unsigned long)page_address(prop_page),
2195                    get_order(LPI_PROPBASE_SZ));
2196 }
2197
2198 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2199 {
2200         phys_addr_t start, end, addr_end;
2201         u64 i;
2202
2203         /*
2204          * We don't bother checking for a kdump kernel as by
2205          * construction, the LPI tables are out of this kernel's
2206          * memory map.
2207          */
2208         if (is_kdump_kernel())
2209                 return true;
2210
2211         addr_end = addr + size - 1;
2212
2213         for_each_reserved_mem_range(i, &start, &end) {
2214                 if (addr >= start && addr_end <= end)
2215                         return true;
2216         }
2217
2218         /* Not found, not a good sign... */
2219         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2220                 &addr, &addr_end);
2221         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2222         return false;
2223 }
2224
2225 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2226 {
2227         if (efi_enabled(EFI_CONFIG_TABLES))
2228                 return efi_mem_reserve_persistent(addr, size);
2229
2230         return 0;
2231 }
2232
2233 static int __init its_setup_lpi_prop_table(void)
2234 {
2235         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2236                 u64 val;
2237
2238                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2239                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2240
2241                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2242                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2243                                                      LPI_PROPBASE_SZ,
2244                                                      MEMREMAP_WB);
2245                 gic_reset_prop_table(gic_rdists->prop_table_va);
2246         } else {
2247                 struct page *page;
2248
2249                 lpi_id_bits = min_t(u32,
2250                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2251                                     ITS_MAX_LPI_NRBITS);
2252                 page = its_allocate_prop_table(GFP_NOWAIT);
2253                 if (!page) {
2254                         pr_err("Failed to allocate PROPBASE\n");
2255                         return -ENOMEM;
2256                 }
2257
2258                 gic_rdists->prop_table_pa = page_to_phys(page);
2259                 gic_rdists->prop_table_va = page_address(page);
2260                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2261                                           LPI_PROPBASE_SZ));
2262         }
2263
2264         pr_info("GICv3: using LPI property table @%pa\n",
2265                 &gic_rdists->prop_table_pa);
2266
2267         return its_lpi_init(lpi_id_bits);
2268 }
2269
2270 static const char *its_base_type_string[] = {
2271         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2272         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2273         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2274         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2275         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2276         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2277         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2278 };
2279
2280 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2281 {
2282         u32 idx = baser - its->tables;
2283
2284         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2285 }
2286
2287 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2288                             u64 val)
2289 {
2290         u32 idx = baser - its->tables;
2291
2292         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2293         baser->val = its_read_baser(its, baser);
2294 }
2295
2296 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2297                            u64 cache, u64 shr, u32 order, bool indirect)
2298 {
2299         u64 val = its_read_baser(its, baser);
2300         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2301         u64 type = GITS_BASER_TYPE(val);
2302         u64 baser_phys, tmp;
2303         u32 alloc_pages, psz;
2304         struct page *page;
2305         void *base;
2306
2307         psz = baser->psz;
2308         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2309         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2310                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2311                         &its->phys_base, its_base_type_string[type],
2312                         alloc_pages, GITS_BASER_PAGES_MAX);
2313                 alloc_pages = GITS_BASER_PAGES_MAX;
2314                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2315         }
2316
2317         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2318         if (!page)
2319                 return -ENOMEM;
2320
2321         base = (void *)page_address(page);
2322         baser_phys = virt_to_phys(base);
2323
2324         /* Check if the physical address of the memory is above 48bits */
2325         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2326
2327                 /* 52bit PA is supported only when PageSize=64K */
2328                 if (psz != SZ_64K) {
2329                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2330                         free_pages((unsigned long)base, order);
2331                         return -ENXIO;
2332                 }
2333
2334                 /* Convert 52bit PA to 48bit field */
2335                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2336         }
2337
2338 retry_baser:
2339         val = (baser_phys                                        |
2340                 (type << GITS_BASER_TYPE_SHIFT)                  |
2341                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2342                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2343                 cache                                            |
2344                 shr                                              |
2345                 GITS_BASER_VALID);
2346
2347         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2348
2349         switch (psz) {
2350         case SZ_4K:
2351                 val |= GITS_BASER_PAGE_SIZE_4K;
2352                 break;
2353         case SZ_16K:
2354                 val |= GITS_BASER_PAGE_SIZE_16K;
2355                 break;
2356         case SZ_64K:
2357                 val |= GITS_BASER_PAGE_SIZE_64K;
2358                 break;
2359         }
2360
2361         its_write_baser(its, baser, val);
2362         tmp = baser->val;
2363
2364         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
2365                 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2366
2367         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2368                 /*
2369                  * Shareability didn't stick. Just use
2370                  * whatever the read reported, which is likely
2371                  * to be the only thing this redistributor
2372                  * supports. If that's zero, make it
2373                  * non-cacheable as well.
2374                  */
2375                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2376                 if (!shr) {
2377                         cache = GITS_BASER_nC;
2378                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2379                 }
2380                 goto retry_baser;
2381         }
2382
2383         if (val != tmp) {
2384                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2385                        &its->phys_base, its_base_type_string[type],
2386                        val, tmp);
2387                 free_pages((unsigned long)base, order);
2388                 return -ENXIO;
2389         }
2390
2391         baser->order = order;
2392         baser->base = base;
2393         baser->psz = psz;
2394         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2395
2396         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2397                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2398                 its_base_type_string[type],
2399                 (unsigned long)virt_to_phys(base),
2400                 indirect ? "indirect" : "flat", (int)esz,
2401                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2402
2403         return 0;
2404 }
2405
2406 static bool its_parse_indirect_baser(struct its_node *its,
2407                                      struct its_baser *baser,
2408                                      u32 *order, u32 ids)
2409 {
2410         u64 tmp = its_read_baser(its, baser);
2411         u64 type = GITS_BASER_TYPE(tmp);
2412         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2413         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2414         u32 new_order = *order;
2415         u32 psz = baser->psz;
2416         bool indirect = false;
2417
2418         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2419         if ((esz << ids) > (psz * 2)) {
2420                 /*
2421                  * Find out whether hw supports a single or two-level table by
2422                  * table by reading bit at offset '62' after writing '1' to it.
2423                  */
2424                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2425                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2426
2427                 if (indirect) {
2428                         /*
2429                          * The size of the lvl2 table is equal to ITS page size
2430                          * which is 'psz'. For computing lvl1 table size,
2431                          * subtract ID bits that sparse lvl2 table from 'ids'
2432                          * which is reported by ITS hardware times lvl1 table
2433                          * entry size.
2434                          */
2435                         ids -= ilog2(psz / (int)esz);
2436                         esz = GITS_LVL1_ENTRY_SIZE;
2437                 }
2438         }
2439
2440         /*
2441          * Allocate as many entries as required to fit the
2442          * range of device IDs that the ITS can grok... The ID
2443          * space being incredibly sparse, this results in a
2444          * massive waste of memory if two-level device table
2445          * feature is not supported by hardware.
2446          */
2447         new_order = max_t(u32, get_order(esz << ids), new_order);
2448         if (new_order > MAX_ORDER) {
2449                 new_order = MAX_ORDER;
2450                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2451                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2452                         &its->phys_base, its_base_type_string[type],
2453                         device_ids(its), ids);
2454         }
2455
2456         *order = new_order;
2457
2458         return indirect;
2459 }
2460
2461 static u32 compute_common_aff(u64 val)
2462 {
2463         u32 aff, clpiaff;
2464
2465         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2466         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2467
2468         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2469 }
2470
2471 static u32 compute_its_aff(struct its_node *its)
2472 {
2473         u64 val;
2474         u32 svpet;
2475
2476         /*
2477          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2478          * the resulting affinity. We then use that to see if this match
2479          * our own affinity.
2480          */
2481         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2482         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2483         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2484         return compute_common_aff(val);
2485 }
2486
2487 static struct its_node *find_sibling_its(struct its_node *cur_its)
2488 {
2489         struct its_node *its;
2490         u32 aff;
2491
2492         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2493                 return NULL;
2494
2495         aff = compute_its_aff(cur_its);
2496
2497         list_for_each_entry(its, &its_nodes, entry) {
2498                 u64 baser;
2499
2500                 if (!is_v4_1(its) || its == cur_its)
2501                         continue;
2502
2503                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2504                         continue;
2505
2506                 if (aff != compute_its_aff(its))
2507                         continue;
2508
2509                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2510                 baser = its->tables[2].val;
2511                 if (!(baser & GITS_BASER_VALID))
2512                         continue;
2513
2514                 return its;
2515         }
2516
2517         return NULL;
2518 }
2519
2520 static void its_free_tables(struct its_node *its)
2521 {
2522         int i;
2523
2524         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2525                 if (its->tables[i].base) {
2526                         free_pages((unsigned long)its->tables[i].base,
2527                                    its->tables[i].order);
2528                         its->tables[i].base = NULL;
2529                 }
2530         }
2531 }
2532
2533 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2534 {
2535         u64 psz = SZ_64K;
2536
2537         while (psz) {
2538                 u64 val, gpsz;
2539
2540                 val = its_read_baser(its, baser);
2541                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2542
2543                 switch (psz) {
2544                 case SZ_64K:
2545                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2546                         break;
2547                 case SZ_16K:
2548                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2549                         break;
2550                 case SZ_4K:
2551                 default:
2552                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2553                         break;
2554                 }
2555
2556                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2557
2558                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2559                 its_write_baser(its, baser, val);
2560
2561                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2562                         break;
2563
2564                 switch (psz) {
2565                 case SZ_64K:
2566                         psz = SZ_16K;
2567                         break;
2568                 case SZ_16K:
2569                         psz = SZ_4K;
2570                         break;
2571                 case SZ_4K:
2572                 default:
2573                         return -1;
2574                 }
2575         }
2576
2577         baser->psz = psz;
2578         return 0;
2579 }
2580
2581 static int its_alloc_tables(struct its_node *its)
2582 {
2583         u64 shr = GITS_BASER_InnerShareable;
2584         u64 cache = GITS_BASER_RaWaWb;
2585         int err, i;
2586
2587         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2588                 /* erratum 24313: ignore memory access type */
2589                 cache = GITS_BASER_nCnB;
2590
2591         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2592                 struct its_baser *baser = its->tables + i;
2593                 u64 val = its_read_baser(its, baser);
2594                 u64 type = GITS_BASER_TYPE(val);
2595                 bool indirect = false;
2596                 u32 order;
2597
2598                 if (type == GITS_BASER_TYPE_NONE)
2599                         continue;
2600
2601                 if (its_probe_baser_psz(its, baser)) {
2602                         its_free_tables(its);
2603                         return -ENXIO;
2604                 }
2605
2606                 order = get_order(baser->psz);
2607
2608                 switch (type) {
2609                 case GITS_BASER_TYPE_DEVICE:
2610                         indirect = its_parse_indirect_baser(its, baser, &order,
2611                                                             device_ids(its));
2612                         break;
2613
2614                 case GITS_BASER_TYPE_VCPU:
2615                         if (is_v4_1(its)) {
2616                                 struct its_node *sibling;
2617
2618                                 WARN_ON(i != 2);
2619                                 if ((sibling = find_sibling_its(its))) {
2620                                         *baser = sibling->tables[2];
2621                                         its_write_baser(its, baser, baser->val);
2622                                         continue;
2623                                 }
2624                         }
2625
2626                         indirect = its_parse_indirect_baser(its, baser, &order,
2627                                                             ITS_MAX_VPEID_BITS);
2628                         break;
2629                 }
2630
2631                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2632                 if (err < 0) {
2633                         its_free_tables(its);
2634                         return err;
2635                 }
2636
2637                 /* Update settings which will be used for next BASERn */
2638                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2639                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2640         }
2641
2642         return 0;
2643 }
2644
2645 static u64 inherit_vpe_l1_table_from_its(void)
2646 {
2647         struct its_node *its;
2648         u64 val;
2649         u32 aff;
2650
2651         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2652         aff = compute_common_aff(val);
2653
2654         list_for_each_entry(its, &its_nodes, entry) {
2655                 u64 baser, addr;
2656
2657                 if (!is_v4_1(its))
2658                         continue;
2659
2660                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2661                         continue;
2662
2663                 if (aff != compute_its_aff(its))
2664                         continue;
2665
2666                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2667                 baser = its->tables[2].val;
2668                 if (!(baser & GITS_BASER_VALID))
2669                         continue;
2670
2671                 /* We have a winner! */
2672                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2673
2674                 val  = GICR_VPROPBASER_4_1_VALID;
2675                 if (baser & GITS_BASER_INDIRECT)
2676                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2677                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2678                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2679                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2680                 case GIC_PAGE_SIZE_64K:
2681                         addr = GITS_BASER_ADDR_48_to_52(baser);
2682                         break;
2683                 default:
2684                         addr = baser & GENMASK_ULL(47, 12);
2685                         break;
2686                 }
2687                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2688                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2689                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2690                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2691                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2692                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2693
2694                 return val;
2695         }
2696
2697         return 0;
2698 }
2699
2700 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2701 {
2702         u32 aff;
2703         u64 val;
2704         int cpu;
2705
2706         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2707         aff = compute_common_aff(val);
2708
2709         for_each_possible_cpu(cpu) {
2710                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2711
2712                 if (!base || cpu == smp_processor_id())
2713                         continue;
2714
2715                 val = gic_read_typer(base + GICR_TYPER);
2716                 if (aff != compute_common_aff(val))
2717                         continue;
2718
2719                 /*
2720                  * At this point, we have a victim. This particular CPU
2721                  * has already booted, and has an affinity that matches
2722                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2723                  * Make sure we don't write the Z bit in that case.
2724                  */
2725                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2726                 val &= ~GICR_VPROPBASER_4_1_Z;
2727
2728                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2729                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2730
2731                 return val;
2732         }
2733
2734         return 0;
2735 }
2736
2737 static bool allocate_vpe_l2_table(int cpu, u32 id)
2738 {
2739         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2740         unsigned int psz, esz, idx, npg, gpsz;
2741         u64 val;
2742         struct page *page;
2743         __le64 *table;
2744
2745         if (!gic_rdists->has_rvpeid)
2746                 return true;
2747
2748         /* Skip non-present CPUs */
2749         if (!base)
2750                 return true;
2751
2752         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2753
2754         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2755         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2756         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2757
2758         switch (gpsz) {
2759         default:
2760                 WARN_ON(1);
2761                 fallthrough;
2762         case GIC_PAGE_SIZE_4K:
2763                 psz = SZ_4K;
2764                 break;
2765         case GIC_PAGE_SIZE_16K:
2766                 psz = SZ_16K;
2767                 break;
2768         case GIC_PAGE_SIZE_64K:
2769                 psz = SZ_64K;
2770                 break;
2771         }
2772
2773         /* Don't allow vpe_id that exceeds single, flat table limit */
2774         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2775                 return (id < (npg * psz / (esz * SZ_8)));
2776
2777         /* Compute 1st level table index & check if that exceeds table limit */
2778         idx = id >> ilog2(psz / (esz * SZ_8));
2779         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2780                 return false;
2781
2782         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2783
2784         /* Allocate memory for 2nd level table */
2785         if (!table[idx]) {
2786                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2787                 if (!page)
2788                         return false;
2789
2790                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2791                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2792                         gic_flush_dcache_to_poc(page_address(page), psz);
2793
2794                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2795
2796                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2797                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2798                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2799
2800                 /* Ensure updated table contents are visible to RD hardware */
2801                 dsb(sy);
2802         }
2803
2804         return true;
2805 }
2806
2807 static int allocate_vpe_l1_table(void)
2808 {
2809         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2810         u64 val, gpsz, npg, pa;
2811         unsigned int psz = SZ_64K;
2812         unsigned int np, epp, esz;
2813         struct page *page;
2814
2815         if (!gic_rdists->has_rvpeid)
2816                 return 0;
2817
2818         /*
2819          * if VPENDBASER.Valid is set, disable any previously programmed
2820          * VPE by setting PendingLast while clearing Valid. This has the
2821          * effect of making sure no doorbell will be generated and we can
2822          * then safely clear VPROPBASER.Valid.
2823          */
2824         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2825                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2826                                       vlpi_base + GICR_VPENDBASER);
2827
2828         /*
2829          * If we can inherit the configuration from another RD, let's do
2830          * so. Otherwise, we have to go through the allocation process. We
2831          * assume that all RDs have the exact same requirements, as
2832          * nothing will work otherwise.
2833          */
2834         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2835         if (val & GICR_VPROPBASER_4_1_VALID)
2836                 goto out;
2837
2838         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2839         if (!gic_data_rdist()->vpe_table_mask)
2840                 return -ENOMEM;
2841
2842         val = inherit_vpe_l1_table_from_its();
2843         if (val & GICR_VPROPBASER_4_1_VALID)
2844                 goto out;
2845
2846         /* First probe the page size */
2847         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2848         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2849         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2850         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2851         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2852
2853         switch (gpsz) {
2854         default:
2855                 gpsz = GIC_PAGE_SIZE_4K;
2856                 fallthrough;
2857         case GIC_PAGE_SIZE_4K:
2858                 psz = SZ_4K;
2859                 break;
2860         case GIC_PAGE_SIZE_16K:
2861                 psz = SZ_16K;
2862                 break;
2863         case GIC_PAGE_SIZE_64K:
2864                 psz = SZ_64K;
2865                 break;
2866         }
2867
2868         /*
2869          * Start populating the register from scratch, including RO fields
2870          * (which we want to print in debug cases...)
2871          */
2872         val = 0;
2873         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2874         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2875
2876         /* How many entries per GIC page? */
2877         esz++;
2878         epp = psz / (esz * SZ_8);
2879
2880         /*
2881          * If we need more than just a single L1 page, flag the table
2882          * as indirect and compute the number of required L1 pages.
2883          */
2884         if (epp < ITS_MAX_VPEID) {
2885                 int nl2;
2886
2887                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2888
2889                 /* Number of L2 pages required to cover the VPEID space */
2890                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2891
2892                 /* Number of L1 pages to point to the L2 pages */
2893                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2894         } else {
2895                 npg = 1;
2896         }
2897
2898         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2899
2900         /* Right, that's the number of CPU pages we need for L1 */
2901         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2902
2903         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2904                  np, npg, psz, epp, esz);
2905         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2906         if (!page)
2907                 return -ENOMEM;
2908
2909         gic_data_rdist()->vpe_l1_base = page_address(page);
2910         pa = virt_to_phys(page_address(page));
2911         WARN_ON(!IS_ALIGNED(pa, psz));
2912
2913         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2914         val |= GICR_VPROPBASER_RaWb;
2915         val |= GICR_VPROPBASER_InnerShareable;
2916         val |= GICR_VPROPBASER_4_1_Z;
2917         val |= GICR_VPROPBASER_4_1_VALID;
2918
2919 out:
2920         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2921         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2922
2923         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2924                  smp_processor_id(), val,
2925                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2926
2927         return 0;
2928 }
2929
2930 static int its_alloc_collections(struct its_node *its)
2931 {
2932         int i;
2933
2934         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2935                                    GFP_KERNEL);
2936         if (!its->collections)
2937                 return -ENOMEM;
2938
2939         for (i = 0; i < nr_cpu_ids; i++)
2940                 its->collections[i].target_address = ~0ULL;
2941
2942         return 0;
2943 }
2944
2945 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2946 {
2947         struct page *pend_page;
2948
2949         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2950                                 get_order(LPI_PENDBASE_SZ));
2951         if (!pend_page)
2952                 return NULL;
2953
2954         /* Make sure the GIC will observe the zero-ed page */
2955         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2956
2957         return pend_page;
2958 }
2959
2960 static void its_free_pending_table(struct page *pt)
2961 {
2962         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2963 }
2964
2965 /*
2966  * Booting with kdump and LPIs enabled is generally fine. Any other
2967  * case is wrong in the absence of firmware/EFI support.
2968  */
2969 static bool enabled_lpis_allowed(void)
2970 {
2971         phys_addr_t addr;
2972         u64 val;
2973
2974         /* Check whether the property table is in a reserved region */
2975         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2976         addr = val & GENMASK_ULL(51, 12);
2977
2978         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2979 }
2980
2981 static int __init allocate_lpi_tables(void)
2982 {
2983         u64 val;
2984         int err, cpu;
2985
2986         /*
2987          * If LPIs are enabled while we run this from the boot CPU,
2988          * flag the RD tables as pre-allocated if the stars do align.
2989          */
2990         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2991         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2992                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2993                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2994                 pr_info("GICv3: Using preallocated redistributor tables\n");
2995         }
2996
2997         err = its_setup_lpi_prop_table();
2998         if (err)
2999                 return err;
3000
3001         /*
3002          * We allocate all the pending tables anyway, as we may have a
3003          * mix of RDs that have had LPIs enabled, and some that
3004          * don't. We'll free the unused ones as each CPU comes online.
3005          */
3006         for_each_possible_cpu(cpu) {
3007                 struct page *pend_page;
3008
3009                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3010                 if (!pend_page) {
3011                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3012                         return -ENOMEM;
3013                 }
3014
3015                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3016         }
3017
3018         return 0;
3019 }
3020
3021 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3022 {
3023         u32 count = 1000000;    /* 1s! */
3024         bool clean;
3025         u64 val;
3026
3027         do {
3028                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3029                 clean = !(val & GICR_VPENDBASER_Dirty);
3030                 if (!clean) {
3031                         count--;
3032                         cpu_relax();
3033                         udelay(1);
3034                 }
3035         } while (!clean && count);
3036
3037         if (unlikely(!clean))
3038                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3039
3040         return val;
3041 }
3042
3043 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3044 {
3045         u64 val;
3046
3047         /* Make sure we wait until the RD is done with the initial scan */
3048         val = read_vpend_dirty_clear(vlpi_base);
3049         val &= ~GICR_VPENDBASER_Valid;
3050         val &= ~clr;
3051         val |= set;
3052         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3053
3054         val = read_vpend_dirty_clear(vlpi_base);
3055         if (unlikely(val & GICR_VPENDBASER_Dirty))
3056                 val |= GICR_VPENDBASER_PendingLast;
3057
3058         return val;
3059 }
3060
3061 static void its_cpu_init_lpis(void)
3062 {
3063         void __iomem *rbase = gic_data_rdist_rd_base();
3064         struct page *pend_page;
3065         phys_addr_t paddr;
3066         u64 val, tmp;
3067
3068         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3069                 return;
3070
3071         val = readl_relaxed(rbase + GICR_CTLR);
3072         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3073             (val & GICR_CTLR_ENABLE_LPIS)) {
3074                 /*
3075                  * Check that we get the same property table on all
3076                  * RDs. If we don't, this is hopeless.
3077                  */
3078                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3079                 paddr &= GENMASK_ULL(51, 12);
3080                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3081                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3082
3083                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3084                 paddr &= GENMASK_ULL(51, 16);
3085
3086                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3087                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3088
3089                 goto out;
3090         }
3091
3092         pend_page = gic_data_rdist()->pend_page;
3093         paddr = page_to_phys(pend_page);
3094
3095         /* set PROPBASE */
3096         val = (gic_rdists->prop_table_pa |
3097                GICR_PROPBASER_InnerShareable |
3098                GICR_PROPBASER_RaWaWb |
3099                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3100
3101         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3102         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3103
3104         if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3105                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3106
3107         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3108                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3109                         /*
3110                          * The HW reports non-shareable, we must
3111                          * remove the cacheability attributes as
3112                          * well.
3113                          */
3114                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3115                                  GICR_PROPBASER_CACHEABILITY_MASK);
3116                         val |= GICR_PROPBASER_nC;
3117                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3118                 }
3119                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3120                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3121         }
3122
3123         /* set PENDBASE */
3124         val = (page_to_phys(pend_page) |
3125                GICR_PENDBASER_InnerShareable |
3126                GICR_PENDBASER_RaWaWb);
3127
3128         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3129         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3130
3131         if (gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE)
3132                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3133
3134         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3135                 /*
3136                  * The HW reports non-shareable, we must remove the
3137                  * cacheability attributes as well.
3138                  */
3139                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3140                          GICR_PENDBASER_CACHEABILITY_MASK);
3141                 val |= GICR_PENDBASER_nC;
3142                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3143         }
3144
3145         /* Enable LPIs */
3146         val = readl_relaxed(rbase + GICR_CTLR);
3147         val |= GICR_CTLR_ENABLE_LPIS;
3148         writel_relaxed(val, rbase + GICR_CTLR);
3149
3150         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3151                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3152
3153                 /*
3154                  * It's possible for CPU to receive VLPIs before it is
3155                  * scheduled as a vPE, especially for the first CPU, and the
3156                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3157                  * as out of range and dropped by GIC.
3158                  * So we initialize IDbits to known value to avoid VLPI drop.
3159                  */
3160                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3161                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3162                         smp_processor_id(), val);
3163                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3164
3165                 /*
3166                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3167                  * ancient programming gets left in and has possibility of
3168                  * corrupting memory.
3169                  */
3170                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3171         }
3172
3173         if (allocate_vpe_l1_table()) {
3174                 /*
3175                  * If the allocation has failed, we're in massive trouble.
3176                  * Disable direct injection, and pray that no VM was
3177                  * already running...
3178                  */
3179                 gic_rdists->has_rvpeid = false;
3180                 gic_rdists->has_vlpis = false;
3181         }
3182
3183         /* Make sure the GIC has seen the above */
3184         dsb(sy);
3185 out:
3186         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3187         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3188                 smp_processor_id(),
3189                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3190                 "reserved" : "allocated",
3191                 &paddr);
3192 }
3193
3194 static void its_cpu_init_collection(struct its_node *its)
3195 {
3196         int cpu = smp_processor_id();
3197         u64 target;
3198
3199         /* avoid cross node collections and its mapping */
3200         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3201                 struct device_node *cpu_node;
3202
3203                 cpu_node = of_get_cpu_node(cpu, NULL);
3204                 if (its->numa_node != NUMA_NO_NODE &&
3205                         its->numa_node != of_node_to_nid(cpu_node))
3206                         return;
3207         }
3208
3209         /*
3210          * We now have to bind each collection to its target
3211          * redistributor.
3212          */
3213         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3214                 /*
3215                  * This ITS wants the physical address of the
3216                  * redistributor.
3217                  */
3218                 target = gic_data_rdist()->phys_base;
3219         } else {
3220                 /* This ITS wants a linear CPU number. */
3221                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3222                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3223         }
3224
3225         /* Perform collection mapping */
3226         its->collections[cpu].target_address = target;
3227         its->collections[cpu].col_id = cpu;
3228
3229         its_send_mapc(its, &its->collections[cpu], 1);
3230         its_send_invall(its, &its->collections[cpu]);
3231 }
3232
3233 static void its_cpu_init_collections(void)
3234 {
3235         struct its_node *its;
3236
3237         raw_spin_lock(&its_lock);
3238
3239         list_for_each_entry(its, &its_nodes, entry)
3240                 its_cpu_init_collection(its);
3241
3242         raw_spin_unlock(&its_lock);
3243 }
3244
3245 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3246 {
3247         struct its_device *its_dev = NULL, *tmp;
3248         unsigned long flags;
3249
3250         raw_spin_lock_irqsave(&its->lock, flags);
3251
3252         list_for_each_entry(tmp, &its->its_device_list, entry) {
3253                 if (tmp->device_id == dev_id) {
3254                         its_dev = tmp;
3255                         break;
3256                 }
3257         }
3258
3259         raw_spin_unlock_irqrestore(&its->lock, flags);
3260
3261         return its_dev;
3262 }
3263
3264 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3265 {
3266         int i;
3267
3268         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3269                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3270                         return &its->tables[i];
3271         }
3272
3273         return NULL;
3274 }
3275
3276 static bool its_alloc_table_entry(struct its_node *its,
3277                                   struct its_baser *baser, u32 id)
3278 {
3279         struct page *page;
3280         u32 esz, idx;
3281         __le64 *table;
3282
3283         /* Don't allow device id that exceeds single, flat table limit */
3284         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3285         if (!(baser->val & GITS_BASER_INDIRECT))
3286                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3287
3288         /* Compute 1st level table index & check if that exceeds table limit */
3289         idx = id >> ilog2(baser->psz / esz);
3290         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3291                 return false;
3292
3293         table = baser->base;
3294
3295         /* Allocate memory for 2nd level table */
3296         if (!table[idx]) {
3297                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3298                                         get_order(baser->psz));
3299                 if (!page)
3300                         return false;
3301
3302                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3303                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3304                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3305
3306                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3307
3308                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3309                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3310                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3311
3312                 /* Ensure updated table contents are visible to ITS hardware */
3313                 dsb(sy);
3314         }
3315
3316         return true;
3317 }
3318
3319 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3320 {
3321         struct its_baser *baser;
3322
3323         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3324
3325         /* Don't allow device id that exceeds ITS hardware limit */
3326         if (!baser)
3327                 return (ilog2(dev_id) < device_ids(its));
3328
3329         return its_alloc_table_entry(its, baser, dev_id);
3330 }
3331
3332 static bool its_alloc_vpe_table(u32 vpe_id)
3333 {
3334         struct its_node *its;
3335         int cpu;
3336
3337         /*
3338          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3339          * could try and only do it on ITSs corresponding to devices
3340          * that have interrupts targeted at this VPE, but the
3341          * complexity becomes crazy (and you have tons of memory
3342          * anyway, right?).
3343          */
3344         list_for_each_entry(its, &its_nodes, entry) {
3345                 struct its_baser *baser;
3346
3347                 if (!is_v4(its))
3348                         continue;
3349
3350                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3351                 if (!baser)
3352                         return false;
3353
3354                 if (!its_alloc_table_entry(its, baser, vpe_id))
3355                         return false;
3356         }
3357
3358         /* Non v4.1? No need to iterate RDs and go back early. */
3359         if (!gic_rdists->has_rvpeid)
3360                 return true;
3361
3362         /*
3363          * Make sure the L2 tables are allocated for all copies of
3364          * the L1 table on *all* v4.1 RDs.
3365          */
3366         for_each_possible_cpu(cpu) {
3367                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3368                         return false;
3369         }
3370
3371         return true;
3372 }
3373
3374 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3375                                             int nvecs, bool alloc_lpis)
3376 {
3377         struct its_device *dev;
3378         unsigned long *lpi_map = NULL;
3379         unsigned long flags;
3380         u16 *col_map = NULL;
3381         void *itt;
3382         int lpi_base;
3383         int nr_lpis;
3384         int nr_ites;
3385         int sz;
3386
3387         if (!its_alloc_device_table(its, dev_id))
3388                 return NULL;
3389
3390         if (WARN_ON(!is_power_of_2(nvecs)))
3391                 nvecs = roundup_pow_of_two(nvecs);
3392
3393         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3394         /*
3395          * Even if the device wants a single LPI, the ITT must be
3396          * sized as a power of two (and you need at least one bit...).
3397          */
3398         nr_ites = max(2, nvecs);
3399         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3400         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3401         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3402         if (alloc_lpis) {
3403                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3404                 if (lpi_map)
3405                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3406                                           GFP_KERNEL);
3407         } else {
3408                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3409                 nr_lpis = 0;
3410                 lpi_base = 0;
3411         }
3412
3413         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3414                 kfree(dev);
3415                 kfree(itt);
3416                 bitmap_free(lpi_map);
3417                 kfree(col_map);
3418                 return NULL;
3419         }
3420
3421         gic_flush_dcache_to_poc(itt, sz);
3422
3423         dev->its = its;
3424         dev->itt = itt;
3425         dev->nr_ites = nr_ites;
3426         dev->event_map.lpi_map = lpi_map;
3427         dev->event_map.col_map = col_map;
3428         dev->event_map.lpi_base = lpi_base;
3429         dev->event_map.nr_lpis = nr_lpis;
3430         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3431         dev->device_id = dev_id;
3432         INIT_LIST_HEAD(&dev->entry);
3433
3434         raw_spin_lock_irqsave(&its->lock, flags);
3435         list_add(&dev->entry, &its->its_device_list);
3436         raw_spin_unlock_irqrestore(&its->lock, flags);
3437
3438         /* Map device to its ITT */
3439         its_send_mapd(dev, 1);
3440
3441         return dev;
3442 }
3443
3444 static void its_free_device(struct its_device *its_dev)
3445 {
3446         unsigned long flags;
3447
3448         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3449         list_del(&its_dev->entry);
3450         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3451         kfree(its_dev->event_map.col_map);
3452         kfree(its_dev->itt);
3453         kfree(its_dev);
3454 }
3455
3456 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3457 {
3458         int idx;
3459
3460         /* Find a free LPI region in lpi_map and allocate them. */
3461         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3462                                       dev->event_map.nr_lpis,
3463                                       get_count_order(nvecs));
3464         if (idx < 0)
3465                 return -ENOSPC;
3466
3467         *hwirq = dev->event_map.lpi_base + idx;
3468
3469         return 0;
3470 }
3471
3472 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3473                            int nvec, msi_alloc_info_t *info)
3474 {
3475         struct its_node *its;
3476         struct its_device *its_dev;
3477         struct msi_domain_info *msi_info;
3478         u32 dev_id;
3479         int err = 0;
3480
3481         /*
3482          * We ignore "dev" entirely, and rely on the dev_id that has
3483          * been passed via the scratchpad. This limits this domain's
3484          * usefulness to upper layers that definitely know that they
3485          * are built on top of the ITS.
3486          */
3487         dev_id = info->scratchpad[0].ul;
3488
3489         msi_info = msi_get_domain_info(domain);
3490         its = msi_info->data;
3491
3492         if (!gic_rdists->has_direct_lpi &&
3493             vpe_proxy.dev &&
3494             vpe_proxy.dev->its == its &&
3495             dev_id == vpe_proxy.dev->device_id) {
3496                 /* Bad luck. Get yourself a better implementation */
3497                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3498                           dev_id);
3499                 return -EINVAL;
3500         }
3501
3502         mutex_lock(&its->dev_alloc_lock);
3503         its_dev = its_find_device(its, dev_id);
3504         if (its_dev) {
3505                 /*
3506                  * We already have seen this ID, probably through
3507                  * another alias (PCI bridge of some sort). No need to
3508                  * create the device.
3509                  */
3510                 its_dev->shared = true;
3511                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3512                 goto out;
3513         }
3514
3515         its_dev = its_create_device(its, dev_id, nvec, true);
3516         if (!its_dev) {
3517                 err = -ENOMEM;
3518                 goto out;
3519         }
3520
3521         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3522                 its_dev->shared = true;
3523
3524         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3525 out:
3526         mutex_unlock(&its->dev_alloc_lock);
3527         info->scratchpad[0].ptr = its_dev;
3528         return err;
3529 }
3530
3531 static struct msi_domain_ops its_msi_domain_ops = {
3532         .msi_prepare    = its_msi_prepare,
3533 };
3534
3535 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3536                                     unsigned int virq,
3537                                     irq_hw_number_t hwirq)
3538 {
3539         struct irq_fwspec fwspec;
3540
3541         if (irq_domain_get_of_node(domain->parent)) {
3542                 fwspec.fwnode = domain->parent->fwnode;
3543                 fwspec.param_count = 3;
3544                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3545                 fwspec.param[1] = hwirq;
3546                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3547         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3548                 fwspec.fwnode = domain->parent->fwnode;
3549                 fwspec.param_count = 2;
3550                 fwspec.param[0] = hwirq;
3551                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3552         } else {
3553                 return -EINVAL;
3554         }
3555
3556         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3557 }
3558
3559 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3560                                 unsigned int nr_irqs, void *args)
3561 {
3562         msi_alloc_info_t *info = args;
3563         struct its_device *its_dev = info->scratchpad[0].ptr;
3564         struct its_node *its = its_dev->its;
3565         struct irq_data *irqd;
3566         irq_hw_number_t hwirq;
3567         int err;
3568         int i;
3569
3570         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3571         if (err)
3572                 return err;
3573
3574         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3575         if (err)
3576                 return err;
3577
3578         for (i = 0; i < nr_irqs; i++) {
3579                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3580                 if (err)
3581                         return err;
3582
3583                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3584                                               hwirq + i, &its_irq_chip, its_dev);
3585                 irqd = irq_get_irq_data(virq + i);
3586                 irqd_set_single_target(irqd);
3587                 irqd_set_affinity_on_activate(irqd);
3588                 irqd_set_resend_when_in_progress(irqd);
3589                 pr_debug("ID:%d pID:%d vID:%d\n",
3590                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3591                          (int)(hwirq + i), virq + i);
3592         }
3593
3594         return 0;
3595 }
3596
3597 static int its_irq_domain_activate(struct irq_domain *domain,
3598                                    struct irq_data *d, bool reserve)
3599 {
3600         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3601         u32 event = its_get_event_id(d);
3602         int cpu;
3603
3604         cpu = its_select_cpu(d, cpu_online_mask);
3605         if (cpu < 0 || cpu >= nr_cpu_ids)
3606                 return -EINVAL;
3607
3608         its_inc_lpi_count(d, cpu);
3609         its_dev->event_map.col_map[event] = cpu;
3610         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3611
3612         /* Map the GIC IRQ and event to the device */
3613         its_send_mapti(its_dev, d->hwirq, event);
3614         return 0;
3615 }
3616
3617 static void its_irq_domain_deactivate(struct irq_domain *domain,
3618                                       struct irq_data *d)
3619 {
3620         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621         u32 event = its_get_event_id(d);
3622
3623         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3624         /* Stop the delivery of interrupts */
3625         its_send_discard(its_dev, event);
3626 }
3627
3628 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3629                                 unsigned int nr_irqs)
3630 {
3631         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3632         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3633         struct its_node *its = its_dev->its;
3634         int i;
3635
3636         bitmap_release_region(its_dev->event_map.lpi_map,
3637                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3638                               get_count_order(nr_irqs));
3639
3640         for (i = 0; i < nr_irqs; i++) {
3641                 struct irq_data *data = irq_domain_get_irq_data(domain,
3642                                                                 virq + i);
3643                 /* Nuke the entry in the domain */
3644                 irq_domain_reset_irq_data(data);
3645         }
3646
3647         mutex_lock(&its->dev_alloc_lock);
3648
3649         /*
3650          * If all interrupts have been freed, start mopping the
3651          * floor. This is conditioned on the device not being shared.
3652          */
3653         if (!its_dev->shared &&
3654             bitmap_empty(its_dev->event_map.lpi_map,
3655                          its_dev->event_map.nr_lpis)) {
3656                 its_lpi_free(its_dev->event_map.lpi_map,
3657                              its_dev->event_map.lpi_base,
3658                              its_dev->event_map.nr_lpis);
3659
3660                 /* Unmap device/itt */
3661                 its_send_mapd(its_dev, 0);
3662                 its_free_device(its_dev);
3663         }
3664
3665         mutex_unlock(&its->dev_alloc_lock);
3666
3667         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3668 }
3669
3670 static const struct irq_domain_ops its_domain_ops = {
3671         .alloc                  = its_irq_domain_alloc,
3672         .free                   = its_irq_domain_free,
3673         .activate               = its_irq_domain_activate,
3674         .deactivate             = its_irq_domain_deactivate,
3675 };
3676
3677 /*
3678  * This is insane.
3679  *
3680  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3681  * likely), the only way to perform an invalidate is to use a fake
3682  * device to issue an INV command, implying that the LPI has first
3683  * been mapped to some event on that device. Since this is not exactly
3684  * cheap, we try to keep that mapping around as long as possible, and
3685  * only issue an UNMAP if we're short on available slots.
3686  *
3687  * Broken by design(tm).
3688  *
3689  * GICv4.1, on the other hand, mandates that we're able to invalidate
3690  * by writing to a MMIO register. It doesn't implement the whole of
3691  * DirectLPI, but that's good enough. And most of the time, we don't
3692  * even have to invalidate anything, as the redistributor can be told
3693  * whether to generate a doorbell or not (we thus leave it enabled,
3694  * always).
3695  */
3696 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3697 {
3698         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3699         if (gic_rdists->has_rvpeid)
3700                 return;
3701
3702         /* Already unmapped? */
3703         if (vpe->vpe_proxy_event == -1)
3704                 return;
3705
3706         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3707         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3708
3709         /*
3710          * We don't track empty slots at all, so let's move the
3711          * next_victim pointer if we can quickly reuse that slot
3712          * instead of nuking an existing entry. Not clear that this is
3713          * always a win though, and this might just generate a ripple
3714          * effect... Let's just hope VPEs don't migrate too often.
3715          */
3716         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3717                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3718
3719         vpe->vpe_proxy_event = -1;
3720 }
3721
3722 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3723 {
3724         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3725         if (gic_rdists->has_rvpeid)
3726                 return;
3727
3728         if (!gic_rdists->has_direct_lpi) {
3729                 unsigned long flags;
3730
3731                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3732                 its_vpe_db_proxy_unmap_locked(vpe);
3733                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3734         }
3735 }
3736
3737 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3738 {
3739         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3740         if (gic_rdists->has_rvpeid)
3741                 return;
3742
3743         /* Already mapped? */
3744         if (vpe->vpe_proxy_event != -1)
3745                 return;
3746
3747         /* This slot was already allocated. Kick the other VPE out. */
3748         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3749                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3750
3751         /* Map the new VPE instead */
3752         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3753         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3754         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3755
3756         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3757         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3758 }
3759
3760 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3761 {
3762         unsigned long flags;
3763         struct its_collection *target_col;
3764
3765         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3766         if (gic_rdists->has_rvpeid)
3767                 return;
3768
3769         if (gic_rdists->has_direct_lpi) {
3770                 void __iomem *rdbase;
3771
3772                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3773                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3774                 wait_for_syncr(rdbase);
3775
3776                 return;
3777         }
3778
3779         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3780
3781         its_vpe_db_proxy_map_locked(vpe);
3782
3783         target_col = &vpe_proxy.dev->its->collections[to];
3784         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3785         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3786
3787         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3788 }
3789
3790 static int its_vpe_set_affinity(struct irq_data *d,
3791                                 const struct cpumask *mask_val,
3792                                 bool force)
3793 {
3794         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3795         int from, cpu = cpumask_first(mask_val);
3796         unsigned long flags;
3797
3798         /*
3799          * Changing affinity is mega expensive, so let's be as lazy as
3800          * we can and only do it if we really have to. Also, if mapped
3801          * into the proxy device, we need to move the doorbell
3802          * interrupt to its new location.
3803          *
3804          * Another thing is that changing the affinity of a vPE affects
3805          * *other interrupts* such as all the vLPIs that are routed to
3806          * this vPE. This means that the irq_desc lock is not enough to
3807          * protect us, and that we must ensure nobody samples vpe->col_idx
3808          * during the update, hence the lock below which must also be
3809          * taken on any vLPI handling path that evaluates vpe->col_idx.
3810          */
3811         from = vpe_to_cpuid_lock(vpe, &flags);
3812         if (from == cpu)
3813                 goto out;
3814
3815         vpe->col_idx = cpu;
3816
3817         /*
3818          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3819          * is sharing its VPE table with the current one.
3820          */
3821         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3822             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3823                 goto out;
3824
3825         its_send_vmovp(vpe);
3826         its_vpe_db_proxy_move(vpe, from, cpu);
3827
3828 out:
3829         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3830         vpe_to_cpuid_unlock(vpe, flags);
3831
3832         return IRQ_SET_MASK_OK_DONE;
3833 }
3834
3835 static void its_wait_vpt_parse_complete(void)
3836 {
3837         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3838         u64 val;
3839
3840         if (!gic_rdists->has_vpend_valid_dirty)
3841                 return;
3842
3843         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3844                                                        val,
3845                                                        !(val & GICR_VPENDBASER_Dirty),
3846                                                        1, 500));
3847 }
3848
3849 static void its_vpe_schedule(struct its_vpe *vpe)
3850 {
3851         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3852         u64 val;
3853
3854         /* Schedule the VPE */
3855         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3856                 GENMASK_ULL(51, 12);
3857         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3858         val |= GICR_VPROPBASER_RaWb;
3859         val |= GICR_VPROPBASER_InnerShareable;
3860         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3861
3862         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3863                 GENMASK_ULL(51, 16);
3864         val |= GICR_VPENDBASER_RaWaWb;
3865         val |= GICR_VPENDBASER_InnerShareable;
3866         /*
3867          * There is no good way of finding out if the pending table is
3868          * empty as we can race against the doorbell interrupt very
3869          * easily. So in the end, vpe->pending_last is only an
3870          * indication that the vcpu has something pending, not one
3871          * that the pending table is empty. A good implementation
3872          * would be able to read its coarse map pretty quickly anyway,
3873          * making this a tolerable issue.
3874          */
3875         val |= GICR_VPENDBASER_PendingLast;
3876         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3877         val |= GICR_VPENDBASER_Valid;
3878         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3879 }
3880
3881 static void its_vpe_deschedule(struct its_vpe *vpe)
3882 {
3883         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3884         u64 val;
3885
3886         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3887
3888         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3889         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3890 }
3891
3892 static void its_vpe_invall(struct its_vpe *vpe)
3893 {
3894         struct its_node *its;
3895
3896         list_for_each_entry(its, &its_nodes, entry) {
3897                 if (!is_v4(its))
3898                         continue;
3899
3900                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3901                         continue;
3902
3903                 /*
3904                  * Sending a VINVALL to a single ITS is enough, as all
3905                  * we need is to reach the redistributors.
3906                  */
3907                 its_send_vinvall(its, vpe);
3908                 return;
3909         }
3910 }
3911
3912 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3913 {
3914         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3915         struct its_cmd_info *info = vcpu_info;
3916
3917         switch (info->cmd_type) {
3918         case SCHEDULE_VPE:
3919                 its_vpe_schedule(vpe);
3920                 return 0;
3921
3922         case DESCHEDULE_VPE:
3923                 its_vpe_deschedule(vpe);
3924                 return 0;
3925
3926         case COMMIT_VPE:
3927                 its_wait_vpt_parse_complete();
3928                 return 0;
3929
3930         case INVALL_VPE:
3931                 its_vpe_invall(vpe);
3932                 return 0;
3933
3934         default:
3935                 return -EINVAL;
3936         }
3937 }
3938
3939 static void its_vpe_send_cmd(struct its_vpe *vpe,
3940                              void (*cmd)(struct its_device *, u32))
3941 {
3942         unsigned long flags;
3943
3944         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3945
3946         its_vpe_db_proxy_map_locked(vpe);
3947         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3948
3949         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3950 }
3951
3952 static void its_vpe_send_inv(struct irq_data *d)
3953 {
3954         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3955
3956         if (gic_rdists->has_direct_lpi) {
3957                 void __iomem *rdbase;
3958
3959                 /* Target the redistributor this VPE is currently known on */
3960                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3961                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3962                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3963                 wait_for_syncr(rdbase);
3964                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3965         } else {
3966                 its_vpe_send_cmd(vpe, its_send_inv);
3967         }
3968 }
3969
3970 static void its_vpe_mask_irq(struct irq_data *d)
3971 {
3972         /*
3973          * We need to unmask the LPI, which is described by the parent
3974          * irq_data. Instead of calling into the parent (which won't
3975          * exactly do the right thing, let's simply use the
3976          * parent_data pointer. Yes, I'm naughty.
3977          */
3978         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3979         its_vpe_send_inv(d);
3980 }
3981
3982 static void its_vpe_unmask_irq(struct irq_data *d)
3983 {
3984         /* Same hack as above... */
3985         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3986         its_vpe_send_inv(d);
3987 }
3988
3989 static int its_vpe_set_irqchip_state(struct irq_data *d,
3990                                      enum irqchip_irq_state which,
3991                                      bool state)
3992 {
3993         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3994
3995         if (which != IRQCHIP_STATE_PENDING)
3996                 return -EINVAL;
3997
3998         if (gic_rdists->has_direct_lpi) {
3999                 void __iomem *rdbase;
4000
4001                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4002                 if (state) {
4003                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4004                 } else {
4005                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4006                         wait_for_syncr(rdbase);
4007                 }
4008         } else {
4009                 if (state)
4010                         its_vpe_send_cmd(vpe, its_send_int);
4011                 else
4012                         its_vpe_send_cmd(vpe, its_send_clear);
4013         }
4014
4015         return 0;
4016 }
4017
4018 static int its_vpe_retrigger(struct irq_data *d)
4019 {
4020         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4021 }
4022
4023 static struct irq_chip its_vpe_irq_chip = {
4024         .name                   = "GICv4-vpe",
4025         .irq_mask               = its_vpe_mask_irq,
4026         .irq_unmask             = its_vpe_unmask_irq,
4027         .irq_eoi                = irq_chip_eoi_parent,
4028         .irq_set_affinity       = its_vpe_set_affinity,
4029         .irq_retrigger          = its_vpe_retrigger,
4030         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4031         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4032 };
4033
4034 static struct its_node *find_4_1_its(void)
4035 {
4036         static struct its_node *its = NULL;
4037
4038         if (!its) {
4039                 list_for_each_entry(its, &its_nodes, entry) {
4040                         if (is_v4_1(its))
4041                                 return its;
4042                 }
4043
4044                 /* Oops? */
4045                 its = NULL;
4046         }
4047
4048         return its;
4049 }
4050
4051 static void its_vpe_4_1_send_inv(struct irq_data *d)
4052 {
4053         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4054         struct its_node *its;
4055
4056         /*
4057          * GICv4.1 wants doorbells to be invalidated using the
4058          * INVDB command in order to be broadcast to all RDs. Send
4059          * it to the first valid ITS, and let the HW do its magic.
4060          */
4061         its = find_4_1_its();
4062         if (its)
4063                 its_send_invdb(its, vpe);
4064 }
4065
4066 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4067 {
4068         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4069         its_vpe_4_1_send_inv(d);
4070 }
4071
4072 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4073 {
4074         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4075         its_vpe_4_1_send_inv(d);
4076 }
4077
4078 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4079                                  struct its_cmd_info *info)
4080 {
4081         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4082         u64 val = 0;
4083
4084         /* Schedule the VPE */
4085         val |= GICR_VPENDBASER_Valid;
4086         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4087         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4088         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4089
4090         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4091 }
4092
4093 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4094                                    struct its_cmd_info *info)
4095 {
4096         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4097         u64 val;
4098
4099         if (info->req_db) {
4100                 unsigned long flags;
4101
4102                 /*
4103                  * vPE is going to block: make the vPE non-resident with
4104                  * PendingLast clear and DB set. The GIC guarantees that if
4105                  * we read-back PendingLast clear, then a doorbell will be
4106                  * delivered when an interrupt comes.
4107                  *
4108                  * Note the locking to deal with the concurrent update of
4109                  * pending_last from the doorbell interrupt handler that can
4110                  * run concurrently.
4111                  */
4112                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4113                 val = its_clear_vpend_valid(vlpi_base,
4114                                             GICR_VPENDBASER_PendingLast,
4115                                             GICR_VPENDBASER_4_1_DB);
4116                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4117                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4118         } else {
4119                 /*
4120                  * We're not blocking, so just make the vPE non-resident
4121                  * with PendingLast set, indicating that we'll be back.
4122                  */
4123                 val = its_clear_vpend_valid(vlpi_base,
4124                                             0,
4125                                             GICR_VPENDBASER_PendingLast);
4126                 vpe->pending_last = true;
4127         }
4128 }
4129
4130 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4131 {
4132         void __iomem *rdbase;
4133         unsigned long flags;
4134         u64 val;
4135         int cpu;
4136
4137         val  = GICR_INVALLR_V;
4138         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4139
4140         /* Target the redistributor this vPE is currently known on */
4141         cpu = vpe_to_cpuid_lock(vpe, &flags);
4142         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4143         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4144         gic_write_lpir(val, rdbase + GICR_INVALLR);
4145
4146         wait_for_syncr(rdbase);
4147         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4148         vpe_to_cpuid_unlock(vpe, flags);
4149 }
4150
4151 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4152 {
4153         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4154         struct its_cmd_info *info = vcpu_info;
4155
4156         switch (info->cmd_type) {
4157         case SCHEDULE_VPE:
4158                 its_vpe_4_1_schedule(vpe, info);
4159                 return 0;
4160
4161         case DESCHEDULE_VPE:
4162                 its_vpe_4_1_deschedule(vpe, info);
4163                 return 0;
4164
4165         case COMMIT_VPE:
4166                 its_wait_vpt_parse_complete();
4167                 return 0;
4168
4169         case INVALL_VPE:
4170                 its_vpe_4_1_invall(vpe);
4171                 return 0;
4172
4173         default:
4174                 return -EINVAL;
4175         }
4176 }
4177
4178 static struct irq_chip its_vpe_4_1_irq_chip = {
4179         .name                   = "GICv4.1-vpe",
4180         .irq_mask               = its_vpe_4_1_mask_irq,
4181         .irq_unmask             = its_vpe_4_1_unmask_irq,
4182         .irq_eoi                = irq_chip_eoi_parent,
4183         .irq_set_affinity       = its_vpe_set_affinity,
4184         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4185 };
4186
4187 static void its_configure_sgi(struct irq_data *d, bool clear)
4188 {
4189         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4190         struct its_cmd_desc desc;
4191
4192         desc.its_vsgi_cmd.vpe = vpe;
4193         desc.its_vsgi_cmd.sgi = d->hwirq;
4194         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4195         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4196         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4197         desc.its_vsgi_cmd.clear = clear;
4198
4199         /*
4200          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4201          * destination VPE is mapped there. Since we map them eagerly at
4202          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4203          */
4204         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4205 }
4206
4207 static void its_sgi_mask_irq(struct irq_data *d)
4208 {
4209         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4210
4211         vpe->sgi_config[d->hwirq].enabled = false;
4212         its_configure_sgi(d, false);
4213 }
4214
4215 static void its_sgi_unmask_irq(struct irq_data *d)
4216 {
4217         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218
4219         vpe->sgi_config[d->hwirq].enabled = true;
4220         its_configure_sgi(d, false);
4221 }
4222
4223 static int its_sgi_set_affinity(struct irq_data *d,
4224                                 const struct cpumask *mask_val,
4225                                 bool force)
4226 {
4227         /*
4228          * There is no notion of affinity for virtual SGIs, at least
4229          * not on the host (since they can only be targeting a vPE).
4230          * Tell the kernel we've done whatever it asked for.
4231          */
4232         irq_data_update_effective_affinity(d, mask_val);
4233         return IRQ_SET_MASK_OK;
4234 }
4235
4236 static int its_sgi_set_irqchip_state(struct irq_data *d,
4237                                      enum irqchip_irq_state which,
4238                                      bool state)
4239 {
4240         if (which != IRQCHIP_STATE_PENDING)
4241                 return -EINVAL;
4242
4243         if (state) {
4244                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4245                 struct its_node *its = find_4_1_its();
4246                 u64 val;
4247
4248                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4249                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4250                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4251         } else {
4252                 its_configure_sgi(d, true);
4253         }
4254
4255         return 0;
4256 }
4257
4258 static int its_sgi_get_irqchip_state(struct irq_data *d,
4259                                      enum irqchip_irq_state which, bool *val)
4260 {
4261         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4262         void __iomem *base;
4263         unsigned long flags;
4264         u32 count = 1000000;    /* 1s! */
4265         u32 status;
4266         int cpu;
4267
4268         if (which != IRQCHIP_STATE_PENDING)
4269                 return -EINVAL;
4270
4271         /*
4272          * Locking galore! We can race against two different events:
4273          *
4274          * - Concurrent vPE affinity change: we must make sure it cannot
4275          *   happen, or we'll talk to the wrong redistributor. This is
4276          *   identical to what happens with vLPIs.
4277          *
4278          * - Concurrent VSGIPENDR access: As it involves accessing two
4279          *   MMIO registers, this must be made atomic one way or another.
4280          */
4281         cpu = vpe_to_cpuid_lock(vpe, &flags);
4282         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4283         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4284         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4285         do {
4286                 status = readl_relaxed(base + GICR_VSGIPENDR);
4287                 if (!(status & GICR_VSGIPENDR_BUSY))
4288                         goto out;
4289
4290                 count--;
4291                 if (!count) {
4292                         pr_err_ratelimited("Unable to get SGI status\n");
4293                         goto out;
4294                 }
4295                 cpu_relax();
4296                 udelay(1);
4297         } while (count);
4298
4299 out:
4300         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4301         vpe_to_cpuid_unlock(vpe, flags);
4302
4303         if (!count)
4304                 return -ENXIO;
4305
4306         *val = !!(status & (1 << d->hwirq));
4307
4308         return 0;
4309 }
4310
4311 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4312 {
4313         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4314         struct its_cmd_info *info = vcpu_info;
4315
4316         switch (info->cmd_type) {
4317         case PROP_UPDATE_VSGI:
4318                 vpe->sgi_config[d->hwirq].priority = info->priority;
4319                 vpe->sgi_config[d->hwirq].group = info->group;
4320                 its_configure_sgi(d, false);
4321                 return 0;
4322
4323         default:
4324                 return -EINVAL;
4325         }
4326 }
4327
4328 static struct irq_chip its_sgi_irq_chip = {
4329         .name                   = "GICv4.1-sgi",
4330         .irq_mask               = its_sgi_mask_irq,
4331         .irq_unmask             = its_sgi_unmask_irq,
4332         .irq_set_affinity       = its_sgi_set_affinity,
4333         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4334         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4335         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4336 };
4337
4338 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4339                                     unsigned int virq, unsigned int nr_irqs,
4340                                     void *args)
4341 {
4342         struct its_vpe *vpe = args;
4343         int i;
4344
4345         /* Yes, we do want 16 SGIs */
4346         WARN_ON(nr_irqs != 16);
4347
4348         for (i = 0; i < 16; i++) {
4349                 vpe->sgi_config[i].priority = 0;
4350                 vpe->sgi_config[i].enabled = false;
4351                 vpe->sgi_config[i].group = false;
4352
4353                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4354                                               &its_sgi_irq_chip, vpe);
4355                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4356         }
4357
4358         return 0;
4359 }
4360
4361 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4362                                     unsigned int virq,
4363                                     unsigned int nr_irqs)
4364 {
4365         /* Nothing to do */
4366 }
4367
4368 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4369                                        struct irq_data *d, bool reserve)
4370 {
4371         /* Write out the initial SGI configuration */
4372         its_configure_sgi(d, false);
4373         return 0;
4374 }
4375
4376 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4377                                           struct irq_data *d)
4378 {
4379         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4380
4381         /*
4382          * The VSGI command is awkward:
4383          *
4384          * - To change the configuration, CLEAR must be set to false,
4385          *   leaving the pending bit unchanged.
4386          * - To clear the pending bit, CLEAR must be set to true, leaving
4387          *   the configuration unchanged.
4388          *
4389          * You just can't do both at once, hence the two commands below.
4390          */
4391         vpe->sgi_config[d->hwirq].enabled = false;
4392         its_configure_sgi(d, false);
4393         its_configure_sgi(d, true);
4394 }
4395
4396 static const struct irq_domain_ops its_sgi_domain_ops = {
4397         .alloc          = its_sgi_irq_domain_alloc,
4398         .free           = its_sgi_irq_domain_free,
4399         .activate       = its_sgi_irq_domain_activate,
4400         .deactivate     = its_sgi_irq_domain_deactivate,
4401 };
4402
4403 static int its_vpe_id_alloc(void)
4404 {
4405         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4406 }
4407
4408 static void its_vpe_id_free(u16 id)
4409 {
4410         ida_simple_remove(&its_vpeid_ida, id);
4411 }
4412
4413 static int its_vpe_init(struct its_vpe *vpe)
4414 {
4415         struct page *vpt_page;
4416         int vpe_id;
4417
4418         /* Allocate vpe_id */
4419         vpe_id = its_vpe_id_alloc();
4420         if (vpe_id < 0)
4421                 return vpe_id;
4422
4423         /* Allocate VPT */
4424         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4425         if (!vpt_page) {
4426                 its_vpe_id_free(vpe_id);
4427                 return -ENOMEM;
4428         }
4429
4430         if (!its_alloc_vpe_table(vpe_id)) {
4431                 its_vpe_id_free(vpe_id);
4432                 its_free_pending_table(vpt_page);
4433                 return -ENOMEM;
4434         }
4435
4436         raw_spin_lock_init(&vpe->vpe_lock);
4437         vpe->vpe_id = vpe_id;
4438         vpe->vpt_page = vpt_page;
4439         if (gic_rdists->has_rvpeid)
4440                 atomic_set(&vpe->vmapp_count, 0);
4441         else
4442                 vpe->vpe_proxy_event = -1;
4443
4444         return 0;
4445 }
4446
4447 static void its_vpe_teardown(struct its_vpe *vpe)
4448 {
4449         its_vpe_db_proxy_unmap(vpe);
4450         its_vpe_id_free(vpe->vpe_id);
4451         its_free_pending_table(vpe->vpt_page);
4452 }
4453
4454 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4455                                     unsigned int virq,
4456                                     unsigned int nr_irqs)
4457 {
4458         struct its_vm *vm = domain->host_data;
4459         int i;
4460
4461         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4462
4463         for (i = 0; i < nr_irqs; i++) {
4464                 struct irq_data *data = irq_domain_get_irq_data(domain,
4465                                                                 virq + i);
4466                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4467
4468                 BUG_ON(vm != vpe->its_vm);
4469
4470                 clear_bit(data->hwirq, vm->db_bitmap);
4471                 its_vpe_teardown(vpe);
4472                 irq_domain_reset_irq_data(data);
4473         }
4474
4475         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4476                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4477                 its_free_prop_table(vm->vprop_page);
4478         }
4479 }
4480
4481 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4482                                     unsigned int nr_irqs, void *args)
4483 {
4484         struct irq_chip *irqchip = &its_vpe_irq_chip;
4485         struct its_vm *vm = args;
4486         unsigned long *bitmap;
4487         struct page *vprop_page;
4488         int base, nr_ids, i, err = 0;
4489
4490         BUG_ON(!vm);
4491
4492         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4493         if (!bitmap)
4494                 return -ENOMEM;
4495
4496         if (nr_ids < nr_irqs) {
4497                 its_lpi_free(bitmap, base, nr_ids);
4498                 return -ENOMEM;
4499         }
4500
4501         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4502         if (!vprop_page) {
4503                 its_lpi_free(bitmap, base, nr_ids);
4504                 return -ENOMEM;
4505         }
4506
4507         vm->db_bitmap = bitmap;
4508         vm->db_lpi_base = base;
4509         vm->nr_db_lpis = nr_ids;
4510         vm->vprop_page = vprop_page;
4511
4512         if (gic_rdists->has_rvpeid)
4513                 irqchip = &its_vpe_4_1_irq_chip;
4514
4515         for (i = 0; i < nr_irqs; i++) {
4516                 vm->vpes[i]->vpe_db_lpi = base + i;
4517                 err = its_vpe_init(vm->vpes[i]);
4518                 if (err)
4519                         break;
4520                 err = its_irq_gic_domain_alloc(domain, virq + i,
4521                                                vm->vpes[i]->vpe_db_lpi);
4522                 if (err)
4523                         break;
4524                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4525                                               irqchip, vm->vpes[i]);
4526                 set_bit(i, bitmap);
4527                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4528         }
4529
4530         if (err) {
4531                 if (i > 0)
4532                         its_vpe_irq_domain_free(domain, virq, i);
4533
4534                 its_lpi_free(bitmap, base, nr_ids);
4535                 its_free_prop_table(vprop_page);
4536         }
4537
4538         return err;
4539 }
4540
4541 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4542                                        struct irq_data *d, bool reserve)
4543 {
4544         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4545         struct its_node *its;
4546
4547         /*
4548          * If we use the list map, we issue VMAPP on demand... Unless
4549          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4550          * so that VSGIs can work.
4551          */
4552         if (!gic_requires_eager_mapping())
4553                 return 0;
4554
4555         /* Map the VPE to the first possible CPU */
4556         vpe->col_idx = cpumask_first(cpu_online_mask);
4557
4558         list_for_each_entry(its, &its_nodes, entry) {
4559                 if (!is_v4(its))
4560                         continue;
4561
4562                 its_send_vmapp(its, vpe, true);
4563                 its_send_vinvall(its, vpe);
4564         }
4565
4566         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4567
4568         return 0;
4569 }
4570
4571 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4572                                           struct irq_data *d)
4573 {
4574         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4575         struct its_node *its;
4576
4577         /*
4578          * If we use the list map on GICv4.0, we unmap the VPE once no
4579          * VLPIs are associated with the VM.
4580          */
4581         if (!gic_requires_eager_mapping())
4582                 return;
4583
4584         list_for_each_entry(its, &its_nodes, entry) {
4585                 if (!is_v4(its))
4586                         continue;
4587
4588                 its_send_vmapp(its, vpe, false);
4589         }
4590
4591         /*
4592          * There may be a direct read to the VPT after unmapping the
4593          * vPE, to guarantee the validity of this, we make the VPT
4594          * memory coherent with the CPU caches here.
4595          */
4596         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4597                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4598                                         LPI_PENDBASE_SZ);
4599 }
4600
4601 static const struct irq_domain_ops its_vpe_domain_ops = {
4602         .alloc                  = its_vpe_irq_domain_alloc,
4603         .free                   = its_vpe_irq_domain_free,
4604         .activate               = its_vpe_irq_domain_activate,
4605         .deactivate             = its_vpe_irq_domain_deactivate,
4606 };
4607
4608 static int its_force_quiescent(void __iomem *base)
4609 {
4610         u32 count = 1000000;    /* 1s */
4611         u32 val;
4612
4613         val = readl_relaxed(base + GITS_CTLR);
4614         /*
4615          * GIC architecture specification requires the ITS to be both
4616          * disabled and quiescent for writes to GITS_BASER<n> or
4617          * GITS_CBASER to not have UNPREDICTABLE results.
4618          */
4619         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4620                 return 0;
4621
4622         /* Disable the generation of all interrupts to this ITS */
4623         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4624         writel_relaxed(val, base + GITS_CTLR);
4625
4626         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4627         while (1) {
4628                 val = readl_relaxed(base + GITS_CTLR);
4629                 if (val & GITS_CTLR_QUIESCENT)
4630                         return 0;
4631
4632                 count--;
4633                 if (!count)
4634                         return -EBUSY;
4635
4636                 cpu_relax();
4637                 udelay(1);
4638         }
4639 }
4640
4641 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4642 {
4643         struct its_node *its = data;
4644
4645         /* erratum 22375: only alloc 8MB table size (20 bits) */
4646         its->typer &= ~GITS_TYPER_DEVBITS;
4647         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4648         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4649
4650         return true;
4651 }
4652
4653 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4654 {
4655         struct its_node *its = data;
4656
4657         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4658
4659         return true;
4660 }
4661
4662 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4663 {
4664         struct its_node *its = data;
4665
4666         /* On QDF2400, the size of the ITE is 16Bytes */
4667         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4668         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4669
4670         return true;
4671 }
4672
4673 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4674 {
4675         struct its_node *its = its_dev->its;
4676
4677         /*
4678          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4679          * which maps 32-bit writes targeted at a separate window of
4680          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4681          * with device ID taken from bits [device_id_bits + 1:2] of
4682          * the window offset.
4683          */
4684         return its->pre_its_base + (its_dev->device_id << 2);
4685 }
4686
4687 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4688 {
4689         struct its_node *its = data;
4690         u32 pre_its_window[2];
4691         u32 ids;
4692
4693         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4694                                            "socionext,synquacer-pre-its",
4695                                            pre_its_window,
4696                                            ARRAY_SIZE(pre_its_window))) {
4697
4698                 its->pre_its_base = pre_its_window[0];
4699                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4700
4701                 ids = ilog2(pre_its_window[1]) - 2;
4702                 if (device_ids(its) > ids) {
4703                         its->typer &= ~GITS_TYPER_DEVBITS;
4704                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4705                 }
4706
4707                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4708                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4709                 return true;
4710         }
4711         return false;
4712 }
4713
4714 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4715 {
4716         struct its_node *its = data;
4717
4718         /*
4719          * Hip07 insists on using the wrong address for the VLPI
4720          * page. Trick it into doing the right thing...
4721          */
4722         its->vlpi_redist_offset = SZ_128K;
4723         return true;
4724 }
4725
4726 static bool __maybe_unused its_enable_rk3588001(void *data)
4727 {
4728         struct its_node *its = data;
4729
4730         if (!of_machine_is_compatible("rockchip,rk3588"))
4731                 return false;
4732
4733         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4734         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4735
4736         return true;
4737 }
4738
4739 static const struct gic_quirk its_quirks[] = {
4740 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4741         {
4742                 .desc   = "ITS: Cavium errata 22375, 24313",
4743                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4744                 .mask   = 0xffff0fff,
4745                 .init   = its_enable_quirk_cavium_22375,
4746         },
4747 #endif
4748 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4749         {
4750                 .desc   = "ITS: Cavium erratum 23144",
4751                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4752                 .mask   = 0xffff0fff,
4753                 .init   = its_enable_quirk_cavium_23144,
4754         },
4755 #endif
4756 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4757         {
4758                 .desc   = "ITS: QDF2400 erratum 0065",
4759                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4760                 .mask   = 0xffffffff,
4761                 .init   = its_enable_quirk_qdf2400_e0065,
4762         },
4763 #endif
4764 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4765         {
4766                 /*
4767                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4768                  * implementation, but with a 'pre-ITS' added that requires
4769                  * special handling in software.
4770                  */
4771                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4772                 .iidr   = 0x0001143b,
4773                 .mask   = 0xffffffff,
4774                 .init   = its_enable_quirk_socionext_synquacer,
4775         },
4776 #endif
4777 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4778         {
4779                 .desc   = "ITS: Hip07 erratum 161600802",
4780                 .iidr   = 0x00000004,
4781                 .mask   = 0xffffffff,
4782                 .init   = its_enable_quirk_hip07_161600802,
4783         },
4784 #endif
4785 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4786         {
4787                 .desc   = "ITS: Rockchip erratum RK3588001",
4788                 .iidr   = 0x0201743b,
4789                 .mask   = 0xffffffff,
4790                 .init   = its_enable_rk3588001,
4791         },
4792 #endif
4793         {
4794         }
4795 };
4796
4797 static void its_enable_quirks(struct its_node *its)
4798 {
4799         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4800
4801         gic_enable_quirks(iidr, its_quirks, its);
4802 }
4803
4804 static int its_save_disable(void)
4805 {
4806         struct its_node *its;
4807         int err = 0;
4808
4809         raw_spin_lock(&its_lock);
4810         list_for_each_entry(its, &its_nodes, entry) {
4811                 void __iomem *base;
4812
4813                 base = its->base;
4814                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4815                 err = its_force_quiescent(base);
4816                 if (err) {
4817                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4818                                &its->phys_base, err);
4819                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4820                         goto err;
4821                 }
4822
4823                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4824         }
4825
4826 err:
4827         if (err) {
4828                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4829                         void __iomem *base;
4830
4831                         base = its->base;
4832                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4833                 }
4834         }
4835         raw_spin_unlock(&its_lock);
4836
4837         return err;
4838 }
4839
4840 static void its_restore_enable(void)
4841 {
4842         struct its_node *its;
4843         int ret;
4844
4845         raw_spin_lock(&its_lock);
4846         list_for_each_entry(its, &its_nodes, entry) {
4847                 void __iomem *base;
4848                 int i;
4849
4850                 base = its->base;
4851
4852                 /*
4853                  * Make sure that the ITS is disabled. If it fails to quiesce,
4854                  * don't restore it since writing to CBASER or BASER<n>
4855                  * registers is undefined according to the GIC v3 ITS
4856                  * Specification.
4857                  *
4858                  * Firmware resuming with the ITS enabled is terminally broken.
4859                  */
4860                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4861                 ret = its_force_quiescent(base);
4862                 if (ret) {
4863                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4864                                &its->phys_base, ret);
4865                         continue;
4866                 }
4867
4868                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4869
4870                 /*
4871                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4872                  * cmd_write line up with it.
4873                  */
4874                 its->cmd_write = its->cmd_base;
4875                 gits_write_cwriter(0, base + GITS_CWRITER);
4876
4877                 /* Restore GITS_BASER from the value cache. */
4878                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4879                         struct its_baser *baser = &its->tables[i];
4880
4881                         if (!(baser->val & GITS_BASER_VALID))
4882                                 continue;
4883
4884                         its_write_baser(its, baser, baser->val);
4885                 }
4886                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4887
4888                 /*
4889                  * Reinit the collection if it's stored in the ITS. This is
4890                  * indicated by the col_id being less than the HCC field.
4891                  * CID < HCC as specified in the GIC v3 Documentation.
4892                  */
4893                 if (its->collections[smp_processor_id()].col_id <
4894                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4895                         its_cpu_init_collection(its);
4896         }
4897         raw_spin_unlock(&its_lock);
4898 }
4899
4900 static struct syscore_ops its_syscore_ops = {
4901         .suspend = its_save_disable,
4902         .resume = its_restore_enable,
4903 };
4904
4905 static void __init __iomem *its_map_one(struct resource *res, int *err)
4906 {
4907         void __iomem *its_base;
4908         u32 val;
4909
4910         its_base = ioremap(res->start, SZ_64K);
4911         if (!its_base) {
4912                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4913                 *err = -ENOMEM;
4914                 return NULL;
4915         }
4916
4917         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4918         if (val != 0x30 && val != 0x40) {
4919                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4920                 *err = -ENODEV;
4921                 goto out_unmap;
4922         }
4923
4924         *err = its_force_quiescent(its_base);
4925         if (*err) {
4926                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4927                 goto out_unmap;
4928         }
4929
4930         return its_base;
4931
4932 out_unmap:
4933         iounmap(its_base);
4934         return NULL;
4935 }
4936
4937 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4938 {
4939         struct irq_domain *inner_domain;
4940         struct msi_domain_info *info;
4941
4942         info = kzalloc(sizeof(*info), GFP_KERNEL);
4943         if (!info)
4944                 return -ENOMEM;
4945
4946         info->ops = &its_msi_domain_ops;
4947         info->data = its;
4948
4949         inner_domain = irq_domain_create_hierarchy(its_parent,
4950                                                    its->msi_domain_flags, 0,
4951                                                    handle, &its_domain_ops,
4952                                                    info);
4953         if (!inner_domain) {
4954                 kfree(info);
4955                 return -ENOMEM;
4956         }
4957
4958         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4959
4960         return 0;
4961 }
4962
4963 static int its_init_vpe_domain(void)
4964 {
4965         struct its_node *its;
4966         u32 devid;
4967         int entries;
4968
4969         if (gic_rdists->has_direct_lpi) {
4970                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4971                 return 0;
4972         }
4973
4974         /* Any ITS will do, even if not v4 */
4975         its = list_first_entry(&its_nodes, struct its_node, entry);
4976
4977         entries = roundup_pow_of_two(nr_cpu_ids);
4978         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4979                                  GFP_KERNEL);
4980         if (!vpe_proxy.vpes)
4981                 return -ENOMEM;
4982
4983         /* Use the last possible DevID */
4984         devid = GENMASK(device_ids(its) - 1, 0);
4985         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4986         if (!vpe_proxy.dev) {
4987                 kfree(vpe_proxy.vpes);
4988                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4989                 return -ENOMEM;
4990         }
4991
4992         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4993
4994         raw_spin_lock_init(&vpe_proxy.lock);
4995         vpe_proxy.next_victim = 0;
4996         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4997                 devid, vpe_proxy.dev->nr_ites);
4998
4999         return 0;
5000 }
5001
5002 static int __init its_compute_its_list_map(struct resource *res,
5003                                            void __iomem *its_base)
5004 {
5005         int its_number;
5006         u32 ctlr;
5007
5008         /*
5009          * This is assumed to be done early enough that we're
5010          * guaranteed to be single-threaded, hence no
5011          * locking. Should this change, we should address
5012          * this.
5013          */
5014         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5015         if (its_number >= GICv4_ITS_LIST_MAX) {
5016                 pr_err("ITS@%pa: No ITSList entry available!\n",
5017                        &res->start);
5018                 return -EINVAL;
5019         }
5020
5021         ctlr = readl_relaxed(its_base + GITS_CTLR);
5022         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5023         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5024         writel_relaxed(ctlr, its_base + GITS_CTLR);
5025         ctlr = readl_relaxed(its_base + GITS_CTLR);
5026         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5027                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5028                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5029         }
5030
5031         if (test_and_set_bit(its_number, &its_list_map)) {
5032                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5033                        &res->start, its_number);
5034                 return -EINVAL;
5035         }
5036
5037         return its_number;
5038 }
5039
5040 static int __init its_probe_one(struct resource *res,
5041                                 struct fwnode_handle *handle, int numa_node)
5042 {
5043         struct its_node *its;
5044         void __iomem *its_base;
5045         u64 baser, tmp, typer;
5046         struct page *page;
5047         u32 ctlr;
5048         int err;
5049
5050         its_base = its_map_one(res, &err);
5051         if (!its_base)
5052                 return err;
5053
5054         pr_info("ITS %pR\n", res);
5055
5056         its = kzalloc(sizeof(*its), GFP_KERNEL);
5057         if (!its) {
5058                 err = -ENOMEM;
5059                 goto out_unmap;
5060         }
5061
5062         raw_spin_lock_init(&its->lock);
5063         mutex_init(&its->dev_alloc_lock);
5064         INIT_LIST_HEAD(&its->entry);
5065         INIT_LIST_HEAD(&its->its_device_list);
5066         typer = gic_read_typer(its_base + GITS_TYPER);
5067         its->typer = typer;
5068         its->base = its_base;
5069         its->phys_base = res->start;
5070         if (is_v4(its)) {
5071                 if (!(typer & GITS_TYPER_VMOVP)) {
5072                         err = its_compute_its_list_map(res, its_base);
5073                         if (err < 0)
5074                                 goto out_free_its;
5075
5076                         its->list_nr = err;
5077
5078                         pr_info("ITS@%pa: Using ITS number %d\n",
5079                                 &res->start, err);
5080                 } else {
5081                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5082                 }
5083
5084                 if (is_v4_1(its)) {
5085                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5086
5087                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5088                         if (!its->sgir_base) {
5089                                 err = -ENOMEM;
5090                                 goto out_free_its;
5091                         }
5092
5093                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5094
5095                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5096                                 &res->start, its->mpidr, svpet);
5097                 }
5098         }
5099
5100         its->numa_node = numa_node;
5101
5102         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5103                                 get_order(ITS_CMD_QUEUE_SZ));
5104         if (!page) {
5105                 err = -ENOMEM;
5106                 goto out_unmap_sgir;
5107         }
5108         its->cmd_base = (void *)page_address(page);
5109         its->cmd_write = its->cmd_base;
5110         its->fwnode_handle = handle;
5111         its->get_msi_base = its_irq_get_msi_base;
5112         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5113
5114         its_enable_quirks(its);
5115
5116         err = its_alloc_tables(its);
5117         if (err)
5118                 goto out_free_cmd;
5119
5120         err = its_alloc_collections(its);
5121         if (err)
5122                 goto out_free_tables;
5123
5124         baser = (virt_to_phys(its->cmd_base)    |
5125                  GITS_CBASER_RaWaWb             |
5126                  GITS_CBASER_InnerShareable     |
5127                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5128                  GITS_CBASER_VALID);
5129
5130         gits_write_cbaser(baser, its->base + GITS_CBASER);
5131         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5132
5133         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5134                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5135
5136         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5137                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5138                         /*
5139                          * The HW reports non-shareable, we must
5140                          * remove the cacheability attributes as
5141                          * well.
5142                          */
5143                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5144                                    GITS_CBASER_CACHEABILITY_MASK);
5145                         baser |= GITS_CBASER_nC;
5146                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5147                 }
5148                 pr_info("ITS: using cache flushing for cmd queue\n");
5149                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5150         }
5151
5152         gits_write_cwriter(0, its->base + GITS_CWRITER);
5153         ctlr = readl_relaxed(its->base + GITS_CTLR);
5154         ctlr |= GITS_CTLR_ENABLE;
5155         if (is_v4(its))
5156                 ctlr |= GITS_CTLR_ImDe;
5157         writel_relaxed(ctlr, its->base + GITS_CTLR);
5158
5159         err = its_init_domain(handle, its);
5160         if (err)
5161                 goto out_free_tables;
5162
5163         raw_spin_lock(&its_lock);
5164         list_add(&its->entry, &its_nodes);
5165         raw_spin_unlock(&its_lock);
5166
5167         return 0;
5168
5169 out_free_tables:
5170         its_free_tables(its);
5171 out_free_cmd:
5172         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5173 out_unmap_sgir:
5174         if (its->sgir_base)
5175                 iounmap(its->sgir_base);
5176 out_free_its:
5177         kfree(its);
5178 out_unmap:
5179         iounmap(its_base);
5180         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5181         return err;
5182 }
5183
5184 static bool gic_rdists_supports_plpis(void)
5185 {
5186         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5187 }
5188
5189 static int redist_disable_lpis(void)
5190 {
5191         void __iomem *rbase = gic_data_rdist_rd_base();
5192         u64 timeout = USEC_PER_SEC;
5193         u64 val;
5194
5195         if (!gic_rdists_supports_plpis()) {
5196                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5197                 return -ENXIO;
5198         }
5199
5200         val = readl_relaxed(rbase + GICR_CTLR);
5201         if (!(val & GICR_CTLR_ENABLE_LPIS))
5202                 return 0;
5203
5204         /*
5205          * If coming via a CPU hotplug event, we don't need to disable
5206          * LPIs before trying to re-enable them. They are already
5207          * configured and all is well in the world.
5208          *
5209          * If running with preallocated tables, there is nothing to do.
5210          */
5211         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5212             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5213                 return 0;
5214
5215         /*
5216          * From that point on, we only try to do some damage control.
5217          */
5218         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5219                 smp_processor_id());
5220         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5221
5222         /* Disable LPIs */
5223         val &= ~GICR_CTLR_ENABLE_LPIS;
5224         writel_relaxed(val, rbase + GICR_CTLR);
5225
5226         /* Make sure any change to GICR_CTLR is observable by the GIC */
5227         dsb(sy);
5228
5229         /*
5230          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5231          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5232          * Error out if we time out waiting for RWP to clear.
5233          */
5234         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5235                 if (!timeout) {
5236                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5237                                smp_processor_id());
5238                         return -ETIMEDOUT;
5239                 }
5240                 udelay(1);
5241                 timeout--;
5242         }
5243
5244         /*
5245          * After it has been written to 1, it is IMPLEMENTATION
5246          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5247          * cleared to 0. Error out if clearing the bit failed.
5248          */
5249         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5250                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5251                 return -EBUSY;
5252         }
5253
5254         return 0;
5255 }
5256
5257 int its_cpu_init(void)
5258 {
5259         if (!list_empty(&its_nodes)) {
5260                 int ret;
5261
5262                 ret = redist_disable_lpis();
5263                 if (ret)
5264                         return ret;
5265
5266                 its_cpu_init_lpis();
5267                 its_cpu_init_collections();
5268         }
5269
5270         return 0;
5271 }
5272
5273 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5274 {
5275         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5276         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5277 }
5278
5279 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5280                     rdist_memreserve_cpuhp_cleanup_workfn);
5281
5282 static int its_cpu_memreserve_lpi(unsigned int cpu)
5283 {
5284         struct page *pend_page;
5285         int ret = 0;
5286
5287         /* This gets to run exactly once per CPU */
5288         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5289                 return 0;
5290
5291         pend_page = gic_data_rdist()->pend_page;
5292         if (WARN_ON(!pend_page)) {
5293                 ret = -ENOMEM;
5294                 goto out;
5295         }
5296         /*
5297          * If the pending table was pre-programmed, free the memory we
5298          * preemptively allocated. Otherwise, reserve that memory for
5299          * later kexecs.
5300          */
5301         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5302                 its_free_pending_table(pend_page);
5303                 gic_data_rdist()->pend_page = NULL;
5304         } else {
5305                 phys_addr_t paddr = page_to_phys(pend_page);
5306                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5307         }
5308
5309 out:
5310         /* Last CPU being brought up gets to issue the cleanup */
5311         if (!IS_ENABLED(CONFIG_SMP) ||
5312             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5313                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5314
5315         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5316         return ret;
5317 }
5318
5319 /* Mark all the BASER registers as invalid before they get reprogrammed */
5320 static int __init its_reset_one(struct resource *res)
5321 {
5322         void __iomem *its_base;
5323         int err, i;
5324
5325         its_base = its_map_one(res, &err);
5326         if (!its_base)
5327                 return err;
5328
5329         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5330                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5331
5332         iounmap(its_base);
5333         return 0;
5334 }
5335
5336 static const struct of_device_id its_device_id[] = {
5337         {       .compatible     = "arm,gic-v3-its",     },
5338         {},
5339 };
5340
5341 static int __init its_of_probe(struct device_node *node)
5342 {
5343         struct device_node *np;
5344         struct resource res;
5345
5346         /*
5347          * Make sure *all* the ITS are reset before we probe any, as
5348          * they may be sharing memory. If any of the ITS fails to
5349          * reset, don't even try to go any further, as this could
5350          * result in something even worse.
5351          */
5352         for (np = of_find_matching_node(node, its_device_id); np;
5353              np = of_find_matching_node(np, its_device_id)) {
5354                 int err;
5355
5356                 if (!of_device_is_available(np) ||
5357                     !of_property_read_bool(np, "msi-controller") ||
5358                     of_address_to_resource(np, 0, &res))
5359                         continue;
5360
5361                 err = its_reset_one(&res);
5362                 if (err)
5363                         return err;
5364         }
5365
5366         for (np = of_find_matching_node(node, its_device_id); np;
5367              np = of_find_matching_node(np, its_device_id)) {
5368                 if (!of_device_is_available(np))
5369                         continue;
5370                 if (!of_property_read_bool(np, "msi-controller")) {
5371                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5372                                 np);
5373                         continue;
5374                 }
5375
5376                 if (of_address_to_resource(np, 0, &res)) {
5377                         pr_warn("%pOF: no regs?\n", np);
5378                         continue;
5379                 }
5380
5381                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5382         }
5383         return 0;
5384 }
5385
5386 #ifdef CONFIG_ACPI
5387
5388 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5389
5390 #ifdef CONFIG_ACPI_NUMA
5391 struct its_srat_map {
5392         /* numa node id */
5393         u32     numa_node;
5394         /* GIC ITS ID */
5395         u32     its_id;
5396 };
5397
5398 static struct its_srat_map *its_srat_maps __initdata;
5399 static int its_in_srat __initdata;
5400
5401 static int __init acpi_get_its_numa_node(u32 its_id)
5402 {
5403         int i;
5404
5405         for (i = 0; i < its_in_srat; i++) {
5406                 if (its_id == its_srat_maps[i].its_id)
5407                         return its_srat_maps[i].numa_node;
5408         }
5409         return NUMA_NO_NODE;
5410 }
5411
5412 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5413                                           const unsigned long end)
5414 {
5415         return 0;
5416 }
5417
5418 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5419                          const unsigned long end)
5420 {
5421         int node;
5422         struct acpi_srat_gic_its_affinity *its_affinity;
5423
5424         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5425         if (!its_affinity)
5426                 return -EINVAL;
5427
5428         if (its_affinity->header.length < sizeof(*its_affinity)) {
5429                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5430                         its_affinity->header.length);
5431                 return -EINVAL;
5432         }
5433
5434         /*
5435          * Note that in theory a new proximity node could be created by this
5436          * entry as it is an SRAT resource allocation structure.
5437          * We do not currently support doing so.
5438          */
5439         node = pxm_to_node(its_affinity->proximity_domain);
5440
5441         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5442                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5443                 return 0;
5444         }
5445
5446         its_srat_maps[its_in_srat].numa_node = node;
5447         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5448         its_in_srat++;
5449         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5450                 its_affinity->proximity_domain, its_affinity->its_id, node);
5451
5452         return 0;
5453 }
5454
5455 static void __init acpi_table_parse_srat_its(void)
5456 {
5457         int count;
5458
5459         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5460                         sizeof(struct acpi_table_srat),
5461                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5462                         gic_acpi_match_srat_its, 0);
5463         if (count <= 0)
5464                 return;
5465
5466         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5467                                       GFP_KERNEL);
5468         if (!its_srat_maps)
5469                 return;
5470
5471         acpi_table_parse_entries(ACPI_SIG_SRAT,
5472                         sizeof(struct acpi_table_srat),
5473                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5474                         gic_acpi_parse_srat_its, 0);
5475 }
5476
5477 /* free the its_srat_maps after ITS probing */
5478 static void __init acpi_its_srat_maps_free(void)
5479 {
5480         kfree(its_srat_maps);
5481 }
5482 #else
5483 static void __init acpi_table_parse_srat_its(void)      { }
5484 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5485 static void __init acpi_its_srat_maps_free(void) { }
5486 #endif
5487
5488 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5489                                           const unsigned long end)
5490 {
5491         struct acpi_madt_generic_translator *its_entry;
5492         struct fwnode_handle *dom_handle;
5493         struct resource res;
5494         int err;
5495
5496         its_entry = (struct acpi_madt_generic_translator *)header;
5497         memset(&res, 0, sizeof(res));
5498         res.start = its_entry->base_address;
5499         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5500         res.flags = IORESOURCE_MEM;
5501
5502         dom_handle = irq_domain_alloc_fwnode(&res.start);
5503         if (!dom_handle) {
5504                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5505                        &res.start);
5506                 return -ENOMEM;
5507         }
5508
5509         err = iort_register_domain_token(its_entry->translation_id, res.start,
5510                                          dom_handle);
5511         if (err) {
5512                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5513                        &res.start, its_entry->translation_id);
5514                 goto dom_err;
5515         }
5516
5517         err = its_probe_one(&res, dom_handle,
5518                         acpi_get_its_numa_node(its_entry->translation_id));
5519         if (!err)
5520                 return 0;
5521
5522         iort_deregister_domain_token(its_entry->translation_id);
5523 dom_err:
5524         irq_domain_free_fwnode(dom_handle);
5525         return err;
5526 }
5527
5528 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5529                                  const unsigned long end)
5530 {
5531         struct acpi_madt_generic_translator *its_entry;
5532         struct resource res;
5533
5534         its_entry = (struct acpi_madt_generic_translator *)header;
5535         res = (struct resource) {
5536                 .start  = its_entry->base_address,
5537                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5538                 .flags  = IORESOURCE_MEM,
5539         };
5540
5541         return its_reset_one(&res);
5542 }
5543
5544 static void __init its_acpi_probe(void)
5545 {
5546         acpi_table_parse_srat_its();
5547         /*
5548          * Make sure *all* the ITS are reset before we probe any, as
5549          * they may be sharing memory. If any of the ITS fails to
5550          * reset, don't even try to go any further, as this could
5551          * result in something even worse.
5552          */
5553         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5554                                   its_acpi_reset, 0) > 0)
5555                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5556                                       gic_acpi_parse_madt_its, 0);
5557         acpi_its_srat_maps_free();
5558 }
5559 #else
5560 static void __init its_acpi_probe(void) { }
5561 #endif
5562
5563 int __init its_lpi_memreserve_init(void)
5564 {
5565         int state;
5566
5567         if (!efi_enabled(EFI_CONFIG_TABLES))
5568                 return 0;
5569
5570         if (list_empty(&its_nodes))
5571                 return 0;
5572
5573         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5574         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5575                                   "irqchip/arm/gicv3/memreserve:online",
5576                                   its_cpu_memreserve_lpi,
5577                                   NULL);
5578         if (state < 0)
5579                 return state;
5580
5581         gic_rdists->cpuhp_memreserve_state = state;
5582
5583         return 0;
5584 }
5585
5586 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5587                     struct irq_domain *parent_domain)
5588 {
5589         struct device_node *of_node;
5590         struct its_node *its;
5591         bool has_v4 = false;
5592         bool has_v4_1 = false;
5593         int err;
5594
5595         gic_rdists = rdists;
5596
5597         its_parent = parent_domain;
5598         of_node = to_of_node(handle);
5599         if (of_node)
5600                 its_of_probe(of_node);
5601         else
5602                 its_acpi_probe();
5603
5604         if (list_empty(&its_nodes)) {
5605                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5606                 return -ENXIO;
5607         }
5608
5609         err = allocate_lpi_tables();
5610         if (err)
5611                 return err;
5612
5613         list_for_each_entry(its, &its_nodes, entry) {
5614                 has_v4 |= is_v4(its);
5615                 has_v4_1 |= is_v4_1(its);
5616         }
5617
5618         /* Don't bother with inconsistent systems */
5619         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5620                 rdists->has_rvpeid = false;
5621
5622         if (has_v4 & rdists->has_vlpis) {
5623                 const struct irq_domain_ops *sgi_ops;
5624
5625                 if (has_v4_1)
5626                         sgi_ops = &its_sgi_domain_ops;
5627                 else
5628                         sgi_ops = NULL;
5629
5630                 if (its_init_vpe_domain() ||
5631                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5632                         rdists->has_vlpis = false;
5633                         pr_err("ITS: Disabling GICv4 support\n");
5634                 }
5635         }
5636
5637         register_syscore_ops(&its_syscore_ops);
5638
5639         return 0;
5640 }