1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright The Asahi Linux Contributors
5 * Based on irq-lpc32xx:
6 * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
7 * Based on irq-bcm2836:
8 * Copyright 2015 Broadcom
12 * AIC is a fairly simple interrupt controller with the following features:
14 * - 896 level-triggered hardware IRQs
15 * - Single mask bit per IRQ
16 * - Per-IRQ affinity setting
17 * - Automatic masking on event delivery (auto-ack)
18 * - Software triggering (ORed with hw line)
19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
20 * interchangeable if not symmetric)
21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
23 * - Automatic masking on ack
24 * - Default "this CPU" register view and explicit per-CPU views
26 * In addition, this driver also handles FIQs, as these are routed to the same
27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
28 * performance counters (TODO).
30 * Implementation notes:
32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
35 * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
37 * - DT bindings use 3-cell form (like GIC):
38 * - <0 nr flags> - hwirq #nr
39 * - <1 nr flags> - FIQ #nr
40 * - nr=0 Physical HV timer
41 * - nr=1 Virtual HV timer
42 * - nr=2 Physical guest timer
43 * - nr=3 Virtual guest timer
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 #include <linux/bits.h>
49 #include <linux/bitfield.h>
50 #include <linux/cpuhotplug.h>
52 #include <linux/irqchip.h>
53 #include <linux/irqchip/arm-vgic-info.h>
54 #include <linux/irqdomain.h>
55 #include <linux/jump_label.h>
56 #include <linux/limits.h>
57 #include <linux/of_address.h>
58 #include <linux/slab.h>
59 #include <asm/apple_m1_pmu.h>
60 #include <asm/cputype.h>
61 #include <asm/exception.h>
62 #include <asm/sysreg.h>
65 #include <dt-bindings/interrupt-controller/apple-aic.h>
68 * AIC v1 registers (MMIO)
71 #define AIC_INFO 0x0004
72 #define AIC_INFO_NR_IRQ GENMASK(15, 0)
74 #define AIC_CONFIG 0x0010
76 #define AIC_WHOAMI 0x2000
77 #define AIC_EVENT 0x2004
78 #define AIC_EVENT_DIE GENMASK(31, 24)
79 #define AIC_EVENT_TYPE GENMASK(23, 16)
80 #define AIC_EVENT_NUM GENMASK(15, 0)
82 #define AIC_EVENT_TYPE_FIQ 0 /* Software use */
83 #define AIC_EVENT_TYPE_IRQ 1
84 #define AIC_EVENT_TYPE_IPI 4
85 #define AIC_EVENT_IPI_OTHER 1
86 #define AIC_EVENT_IPI_SELF 2
88 #define AIC_IPI_SEND 0x2008
89 #define AIC_IPI_ACK 0x200c
90 #define AIC_IPI_MASK_SET 0x2024
91 #define AIC_IPI_MASK_CLR 0x2028
93 #define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
95 #define AIC_IPI_OTHER BIT(0)
96 #define AIC_IPI_SELF BIT(31)
98 #define AIC_TARGET_CPU 0x3000
100 #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
101 #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
102 #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
103 #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
105 #define AIC_MAX_IRQ 0x400
108 * AIC v2 registers (MMIO)
111 #define AIC2_VERSION 0x0000
112 #define AIC2_VERSION_VER GENMASK(7, 0)
114 #define AIC2_INFO1 0x0004
115 #define AIC2_INFO1_NR_IRQ GENMASK(15, 0)
116 #define AIC2_INFO1_LAST_DIE GENMASK(27, 24)
118 #define AIC2_INFO2 0x0008
120 #define AIC2_INFO3 0x000c
121 #define AIC2_INFO3_MAX_IRQ GENMASK(15, 0)
122 #define AIC2_INFO3_MAX_DIE GENMASK(27, 24)
124 #define AIC2_RESET 0x0010
125 #define AIC2_RESET_RESET BIT(0)
127 #define AIC2_CONFIG 0x0014
128 #define AIC2_CONFIG_ENABLE BIT(0)
129 #define AIC2_CONFIG_PREFER_PCPU BIT(28)
131 #define AIC2_TIMEOUT 0x0028
132 #define AIC2_CLUSTER_PRIO 0x0030
133 #define AIC2_DELAY_GROUPS 0x0100
135 #define AIC2_IRQ_CFG 0x2000
138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
140 * Repeat for each die:
141 * IRQ_CFG: u32 * MAX_IRQS
142 * SW_SET: u32 * (MAX_IRQS / 32)
143 * SW_CLR: u32 * (MAX_IRQS / 32)
144 * MASK_SET: u32 * (MAX_IRQS / 32)
145 * MASK_CLR: u32 * (MAX_IRQS / 32)
146 * HW_STATE: u32 * (MAX_IRQS / 32)
148 * This is followed by a set of event registers, each 16K page aligned.
149 * The first one is the AP event register we will use. Unfortunately,
150 * the actual implemented die count is not specified anywhere in the
151 * capability registers, so we have to explicitly specify the event
152 * register as a second reg entry in the device tree to remain
153 * forward-compatible.
156 #define AIC2_IRQ_CFG_TARGET GENMASK(3, 0)
157 #define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5)
159 #define MASK_REG(x) (4 * ((x) >> 5))
160 #define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
163 * IMP-DEF sysregs that control FIQ sources
166 /* IPI request registers */
167 #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
168 #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
169 #define IPI_RR_CPU GENMASK(7, 0)
170 /* Cluster only used for the GLOBAL register */
171 #define IPI_RR_CLUSTER GENMASK(23, 16)
172 #define IPI_RR_TYPE GENMASK(29, 28)
173 #define IPI_RR_IMMEDIATE 0
174 #define IPI_RR_RETRACT 1
175 #define IPI_RR_DEFERRED 2
176 #define IPI_RR_NOWAKE 3
178 /* IPI status register */
179 #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
180 #define IPI_SR_PENDING BIT(0)
182 /* Guest timer FIQ enable register */
183 #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
184 #define VM_TMR_FIQ_ENABLE_V BIT(0)
185 #define VM_TMR_FIQ_ENABLE_P BIT(1)
187 /* Deferred IPI countdown register */
188 #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
190 /* Uncore PMC control register */
191 #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
192 #define UPMCR0_IMODE GENMASK(18, 16)
193 #define UPMCR0_IMODE_OFF 0
194 #define UPMCR0_IMODE_AIC 2
195 #define UPMCR0_IMODE_HALT 3
196 #define UPMCR0_IMODE_FIQ 4
198 /* Uncore PMC status register */
199 #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
200 #define UPMSR_IACT BIT(0)
203 #define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0)
204 #define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1)
206 #define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
207 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
208 FIELD_PREP(AIC_EVENT_NUM, irq))
209 #define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
210 FIELD_PREP(AIC_EVENT_NUM, x))
211 #define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x)
212 #define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x)
214 #define AIC_NR_SWIPI 32
217 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
218 * directly, except that timers are special. At the irqchip level, the
219 * two timer types are represented by their access method: _EL0 registers
220 * or _EL02 registers. In the DT binding, the timers are represented
221 * by their purpose (HV or guest). This mapping is for when the kernel is
222 * running at EL2 (with VHE). When the kernel is running at EL1, the
223 * mapping differs and aic_irq_domain_translate() performs the remapping.
226 #define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS
227 #define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT
228 #define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS
229 #define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT
231 static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
236 /* Register offsets */
251 static const struct aic_info aic1_info = {
255 .target_cpu = AIC_TARGET_CPU,
258 static const struct aic_info aic1_fipi_info = {
262 .target_cpu = AIC_TARGET_CPU,
267 static const struct aic_info aic2_info = {
270 .irq_cfg = AIC2_IRQ_CFG,
275 static const struct of_device_id aic_info_match[] = {
277 .compatible = "apple,t8103-aic",
278 .data = &aic1_fipi_info,
281 .compatible = "apple,aic",
285 .compatible = "apple,aic2",
291 struct aic_irq_chip {
294 struct irq_domain *hw_domain;
295 struct irq_domain *ipi_domain;
298 } *fiq_aff[AIC_NR_FIQ];
305 struct aic_info info;
308 static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
310 static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
311 static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
313 static struct aic_irq_chip *aic_irqc;
315 static void aic_handle_ipi(struct pt_regs *regs);
317 static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
319 return readl_relaxed(ic->base + reg);
322 static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
324 writel_relaxed(val, ic->base + reg);
331 static void aic_irq_mask(struct irq_data *d)
333 irq_hw_number_t hwirq = irqd_to_hwirq(d);
334 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
336 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
337 u32 irq = AIC_HWIRQ_IRQ(hwirq);
339 aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
342 static void aic_irq_unmask(struct irq_data *d)
344 irq_hw_number_t hwirq = irqd_to_hwirq(d);
345 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
347 u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
348 u32 irq = AIC_HWIRQ_IRQ(hwirq);
350 aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
353 static void aic_irq_eoi(struct irq_data *d)
356 * Reading the interrupt reason automatically acknowledges and masks
357 * the IRQ, so we just unmask it here if needed.
359 if (!irqd_irq_masked(d))
363 static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
365 struct aic_irq_chip *ic = aic_irqc;
366 u32 event, type, irq;
370 * We cannot use a relaxed read here, as reads from DMA buffers
371 * need to be ordered after the IRQ fires.
373 event = readl(ic->event + ic->info.event);
374 type = FIELD_GET(AIC_EVENT_TYPE, event);
375 irq = FIELD_GET(AIC_EVENT_NUM, event);
377 if (type == AIC_EVENT_TYPE_IRQ)
378 generic_handle_domain_irq(aic_irqc->hw_domain, event);
379 else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
380 aic_handle_ipi(regs);
382 pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
386 * vGIC maintenance interrupts end up here too, so we need to check
387 * for them separately. This should never trigger if KVM is working
388 * properly, because it will have already taken care of clearing it
389 * on guest exit before this handler runs.
391 if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
392 read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
393 pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
394 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
398 static int aic_irq_set_affinity(struct irq_data *d,
399 const struct cpumask *mask_val, bool force)
401 irq_hw_number_t hwirq = irqd_to_hwirq(d);
402 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
405 BUG_ON(!ic->info.target_cpu);
408 cpu = cpumask_first(mask_val);
410 cpu = cpumask_any_and(mask_val, cpu_online_mask);
412 aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
413 irq_data_update_effective_affinity(d, cpumask_of(cpu));
415 return IRQ_SET_MASK_OK;
418 static int aic_irq_set_type(struct irq_data *d, unsigned int type)
421 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
422 * have a way to find out the type of any given IRQ, so just allow both.
424 return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
427 static struct irq_chip aic_chip = {
429 .irq_mask = aic_irq_mask,
430 .irq_unmask = aic_irq_unmask,
431 .irq_eoi = aic_irq_eoi,
432 .irq_set_affinity = aic_irq_set_affinity,
433 .irq_set_type = aic_irq_set_type,
436 static struct irq_chip aic2_chip = {
438 .irq_mask = aic_irq_mask,
439 .irq_unmask = aic_irq_unmask,
440 .irq_eoi = aic_irq_eoi,
441 .irq_set_type = aic_irq_set_type,
448 static unsigned long aic_fiq_get_idx(struct irq_data *d)
450 return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
453 static void aic_fiq_set_mask(struct irq_data *d)
455 /* Only the guest timers have real mask bits, unfortunately. */
456 switch (aic_fiq_get_idx(d)) {
457 case AIC_TMR_EL02_PHYS:
458 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
461 case AIC_TMR_EL02_VIRT:
462 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
470 static void aic_fiq_clear_mask(struct irq_data *d)
472 switch (aic_fiq_get_idx(d)) {
473 case AIC_TMR_EL02_PHYS:
474 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
477 case AIC_TMR_EL02_VIRT:
478 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
486 static void aic_fiq_mask(struct irq_data *d)
489 __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
492 static void aic_fiq_unmask(struct irq_data *d)
494 aic_fiq_clear_mask(d);
495 __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
498 static void aic_fiq_eoi(struct irq_data *d)
500 /* We mask to ack (where we can), so we need to unmask at EOI. */
501 if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
502 aic_fiq_clear_mask(d);
505 #define TIMER_FIRING(x) \
506 (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
507 ARCH_TIMER_CTRL_IT_STAT)) == \
508 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
510 static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
513 * It would be really nice if we had a system register that lets us get
514 * the FIQ source state without having to peek down into sources...
515 * but such a register does not seem to exist.
517 * So, we have these potential sources to test for:
518 * - Fast IPIs (not yet used)
519 * - The 4 timers (CNTP, CNTV for each of HV and guest)
520 * - Per-core PMCs (not yet supported)
521 * - Per-cluster uncore PMCs (not yet supported)
523 * Since not dealing with any of these results in a FIQ storm,
524 * we check for everything here, even things we don't support yet.
527 if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
528 if (static_branch_likely(&use_fast_ipi)) {
529 aic_handle_ipi(regs);
531 pr_err_ratelimited("Fast IPI fired. Acking.\n");
532 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
536 if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
537 generic_handle_domain_irq(aic_irqc->hw_domain,
538 AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
540 if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
541 generic_handle_domain_irq(aic_irqc->hw_domain,
542 AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
544 if (is_kernel_in_hyp_mode()) {
545 uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
547 if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
548 TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
549 generic_handle_domain_irq(aic_irqc->hw_domain,
550 AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
552 if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
553 TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
554 generic_handle_domain_irq(aic_irqc->hw_domain,
555 AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
558 if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
560 if (cpumask_test_cpu(smp_processor_id(),
561 &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
565 generic_handle_domain_irq(aic_irqc->hw_domain,
569 if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
570 (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
571 /* Same story with uncore PMCs */
572 pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
573 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
574 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
578 static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
580 return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
583 static struct irq_chip fiq_chip = {
585 .irq_mask = aic_fiq_mask,
586 .irq_unmask = aic_fiq_unmask,
587 .irq_ack = aic_fiq_set_mask,
588 .irq_eoi = aic_fiq_eoi,
589 .irq_set_type = aic_fiq_set_type,
596 static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
599 struct aic_irq_chip *ic = id->host_data;
600 u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
601 struct irq_chip *chip = &aic_chip;
603 if (ic->info.version == 2)
606 if (type == AIC_EVENT_TYPE_IRQ) {
607 irq_domain_set_info(id, irq, hw, chip, id->host_data,
608 handle_fasteoi_irq, NULL, NULL);
609 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
611 int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
616 irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
619 irq_set_percpu_devid(irq);
623 irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
624 handle_percpu_devid_irq, NULL, NULL);
630 static int aic_irq_domain_translate(struct irq_domain *id,
631 struct irq_fwspec *fwspec,
632 unsigned long *hwirq,
635 struct aic_irq_chip *ic = id->host_data;
639 if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
640 !is_of_node(fwspec->fwnode))
643 args = &fwspec->param[1];
645 if (fwspec->param_count == 4) {
650 switch (fwspec->param[0]) {
652 if (die >= ic->nr_die)
654 if (args[0] >= ic->nr_irq)
656 *hwirq = AIC_IRQ_HWIRQ(die, args[0]);
661 if (args[0] >= AIC_NR_FIQ)
663 *hwirq = AIC_FIQ_HWIRQ(args[0]);
666 * In EL1 the non-redirected registers are the guest's,
667 * not EL2's, so remap the hwirqs to match.
669 if (!is_kernel_in_hyp_mode()) {
671 case AIC_TMR_GUEST_PHYS:
672 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
674 case AIC_TMR_GUEST_VIRT:
675 *hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
677 case AIC_TMR_HV_PHYS:
678 case AIC_TMR_HV_VIRT:
689 *type = args[1] & IRQ_TYPE_SENSE_MASK;
694 static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
695 unsigned int nr_irqs, void *arg)
697 unsigned int type = IRQ_TYPE_NONE;
698 struct irq_fwspec *fwspec = arg;
699 irq_hw_number_t hwirq;
702 ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
706 for (i = 0; i < nr_irqs; i++) {
707 ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
715 static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
716 unsigned int nr_irqs)
720 for (i = 0; i < nr_irqs; i++) {
721 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
723 irq_set_handler(virq + i, NULL);
724 irq_domain_reset_irq_data(d);
728 static const struct irq_domain_ops aic_irq_domain_ops = {
729 .translate = aic_irq_domain_translate,
730 .alloc = aic_irq_domain_alloc,
731 .free = aic_irq_domain_free,
738 static void aic_ipi_send_fast(int cpu)
740 u64 mpidr = cpu_logical_map(cpu);
741 u64 my_mpidr = read_cpuid_mpidr();
742 u64 cluster = MPIDR_CLUSTER(mpidr);
743 u64 idx = MPIDR_CPU(mpidr);
745 if (MPIDR_CLUSTER(my_mpidr) == cluster)
746 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
747 SYS_IMP_APL_IPI_RR_LOCAL_EL1);
749 write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
750 SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
754 static void aic_ipi_mask(struct irq_data *d)
756 u32 irq_bit = BIT(irqd_to_hwirq(d));
758 /* No specific ordering requirements needed here. */
759 atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
762 static void aic_ipi_unmask(struct irq_data *d)
764 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
765 u32 irq_bit = BIT(irqd_to_hwirq(d));
767 atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
770 * The atomic_or() above must complete before the atomic_read()
771 * below to avoid racing aic_ipi_send_mask().
773 smp_mb__after_atomic();
776 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
777 * No barriers needed here since this is a self-IPI.
779 if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
780 if (static_branch_likely(&use_fast_ipi))
781 aic_ipi_send_fast(smp_processor_id());
783 aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
787 static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
789 struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
790 u32 irq_bit = BIT(irqd_to_hwirq(d));
793 unsigned long pending;
795 for_each_cpu(cpu, mask) {
797 * This sequence is the mirror of the one in aic_ipi_unmask();
798 * see the comment there. Additionally, release semantics
799 * ensure that the vIPI flag set is ordered after any shared
800 * memory accesses that precede it. This therefore also pairs
801 * with the atomic_fetch_andnot in aic_handle_ipi().
803 pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
806 * The atomic_fetch_or_release() above must complete before the
807 * atomic_read() below to avoid racing aic_ipi_unmask().
809 smp_mb__after_atomic();
811 if (!(pending & irq_bit) &&
812 (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
813 if (static_branch_likely(&use_fast_ipi))
814 aic_ipi_send_fast(cpu);
816 send |= AIC_IPI_SEND_CPU(cpu);
821 * The flag writes must complete before the physical IPI is issued
822 * to another CPU. This is implied by the control dependency on
823 * the result of atomic_read_acquire() above, which is itself
824 * already ordered after the vIPI flag write.
827 aic_ic_write(ic, AIC_IPI_SEND, send);
830 static struct irq_chip ipi_chip = {
832 .irq_mask = aic_ipi_mask,
833 .irq_unmask = aic_ipi_unmask,
834 .ipi_send_mask = aic_ipi_send_mask,
841 static void aic_handle_ipi(struct pt_regs *regs)
844 unsigned long enabled, firing;
847 * Ack the IPI. We need to order this after the AIC event read, but
848 * that is enforced by normal MMIO ordering guarantees.
850 * For the Fast IPI case, this needs to be ordered before the vIPI
851 * handling below, so we need to isb();
853 if (static_branch_likely(&use_fast_ipi)) {
854 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
857 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
861 * The mask read does not need to be ordered. Only we can change
862 * our own mask anyway, so no races are possible here, as long as
863 * we are properly in the interrupt handler (which is covered by
864 * the barrier that is part of the top-level AIC handler's readl()).
866 enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
869 * Clear the IPIs we are about to handle. This pairs with the
870 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
871 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
872 * before IPI handling code (to avoid races handling vIPIs before they
873 * are signaled). The former is taken care of by the release semantics
874 * of the write portion, while the latter is taken care of by the
875 * acquire semantics of the read portion.
877 firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
879 for_each_set_bit(i, &firing, AIC_NR_SWIPI)
880 generic_handle_domain_irq(aic_irqc->ipi_domain, i);
883 * No ordering needed here; at worst this just changes the timing of
884 * when the next IPI will be delivered.
886 if (!static_branch_likely(&use_fast_ipi))
887 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
890 static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
891 unsigned int nr_irqs, void *args)
895 for (i = 0; i < nr_irqs; i++) {
896 irq_set_percpu_devid(virq + i);
897 irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
898 handle_percpu_devid_irq, NULL, NULL);
904 static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
906 /* Not freeing IPIs */
909 static const struct irq_domain_ops aic_ipi_domain_ops = {
910 .alloc = aic_ipi_alloc,
911 .free = aic_ipi_free,
914 static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
916 struct irq_domain *ipi_domain;
919 ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
920 &aic_ipi_domain_ops, irqc);
921 if (WARN_ON(!ipi_domain))
924 ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
925 irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
927 base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
928 NUMA_NO_NODE, NULL, false, NULL);
930 if (WARN_ON(!base_ipi)) {
931 irq_domain_remove(ipi_domain);
935 set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
937 irqc->ipi_domain = ipi_domain;
942 static int aic_init_cpu(unsigned int cpu)
944 /* Mask all hard-wired per-CPU IRQ/FIQ sources */
946 /* Pending Fast IPI FIQs */
947 write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
950 sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
951 sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
953 /* EL2-only (VHE mode) IRQ sources */
954 if (is_kernel_in_hyp_mode()) {
956 sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
957 VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
959 /* vGIC maintenance IRQ */
960 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
964 sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
965 FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
968 sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
969 FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
971 /* Commit all of the above */
974 if (aic_irqc->info.version == 1) {
976 * Make sure the kernel's idea of logical CPU order is the same as AIC's
977 * If we ever end up with a mismatch here, we will have to introduce
978 * a mapping table similar to what other irqchip drivers do.
980 WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
983 * Always keep IPIs unmasked at the hardware level (except auto-masking
984 * by AIC during processing). We manage masks at the vIPI level.
985 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
987 aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
988 if (static_branch_likely(&use_fast_ipi)) {
989 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
991 aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
992 aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
996 /* Initialize the local mask state */
997 __this_cpu_write(aic_fiq_unmasked, 0);
1002 static struct gic_kvm_info vgic_info __initdata = {
1004 .no_maint_irq_mask = true,
1005 .no_hw_deactivation = true,
1008 static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
1013 if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
1014 WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
1017 n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
1021 ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
1022 if (!ic->fiq_aff[fiq])
1025 for (i = 0; i < n; i++) {
1026 struct device_node *cpu_node;
1030 if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
1033 cpu_node = of_find_node_by_phandle(cpu_phandle);
1034 if (WARN_ON(!cpu_node))
1037 cpu = of_cpu_node_to_id(cpu_node);
1038 of_node_put(cpu_node);
1039 if (WARN_ON(cpu < 0))
1042 cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
1046 static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
1051 struct aic_irq_chip *irqc;
1052 struct device_node *affs;
1053 const struct of_device_id *match;
1055 regs = of_iomap(node, 0);
1059 irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
1067 match = of_match_node(aic_info_match, node);
1071 irqc->info = *(struct aic_info *)match->data;
1075 switch (irqc->info.version) {
1079 info = aic_ic_read(irqc, AIC_INFO);
1080 irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
1081 irqc->max_irq = AIC_MAX_IRQ;
1082 irqc->nr_die = irqc->max_die = 1;
1084 off = start_off = irqc->info.target_cpu;
1085 off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
1087 irqc->event = irqc->base;
1094 info1 = aic_ic_read(irqc, AIC2_INFO1);
1095 info3 = aic_ic_read(irqc, AIC2_INFO3);
1097 irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
1098 irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
1099 irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
1100 irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
1102 off = start_off = irqc->info.irq_cfg;
1103 off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
1105 irqc->event = of_iomap(node, 1);
1106 if (WARN_ON(!irqc->event))
1113 irqc->info.sw_set = off;
1114 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
1115 irqc->info.sw_clr = off;
1116 off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
1117 irqc->info.mask_set = off;
1118 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
1119 irqc->info.mask_clr = off;
1120 off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
1121 off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
1123 if (irqc->info.fast_ipi)
1124 static_branch_enable(&use_fast_ipi);
1126 static_branch_disable(&use_fast_ipi);
1128 irqc->info.die_stride = off - start_off;
1130 irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
1131 &aic_irq_domain_ops, irqc);
1132 if (WARN_ON(!irqc->hw_domain))
1135 irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1137 if (aic_init_smp(irqc, node))
1138 goto err_remove_domain;
1140 affs = of_get_child_by_name(node, "affinities");
1142 struct device_node *chld;
1144 for_each_child_of_node(affs, chld)
1145 build_fiq_affinity(irqc, chld);
1149 set_handle_irq(aic_handle_irq);
1150 set_handle_fiq(aic_handle_fiq);
1153 for (die = 0; die < irqc->nr_die; die++) {
1154 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1155 aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1156 for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1157 aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1158 if (irqc->info.target_cpu)
1159 for (i = 0; i < irqc->nr_irq; i++)
1160 aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1161 off += irqc->info.die_stride;
1164 if (irqc->info.version == 2) {
1165 u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1167 config |= AIC2_CONFIG_ENABLE;
1168 aic_ic_write(irqc, AIC2_CONFIG, config);
1171 if (!is_kernel_in_hyp_mode())
1172 pr_info("Kernel running in EL1, mapping interrupts");
1174 if (static_branch_likely(&use_fast_ipi))
1175 pr_info("Using Fast IPIs");
1177 cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1178 "irqchip/apple-aic/ipi:starting",
1179 aic_init_cpu, NULL);
1181 vgic_set_kvm_info(&vgic_info);
1183 pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1184 irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1189 irq_domain_remove(irqc->hw_domain);
1191 if (irqc->event && irqc->event != irqc->base)
1192 iounmap(irqc->event);
1193 iounmap(irqc->base);
1198 IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1199 IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);