Merge tag 'nfs-for-4.15-3' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-rpi.git] / drivers / iommu / ipmmu-vmsa.c
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/sizes.h>
27 #include <linux/slab.h>
28 #include <linux/sys_soc.h>
29
30 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
31 #include <asm/dma-iommu.h>
32 #include <asm/pgalloc.h>
33 #else
34 #define arm_iommu_create_mapping(...)   NULL
35 #define arm_iommu_attach_device(...)    -ENODEV
36 #define arm_iommu_release_mapping(...)  do {} while (0)
37 #define arm_iommu_detach_device(...)    do {} while (0)
38 #endif
39
40 #include "io-pgtable.h"
41
42 #define IPMMU_CTX_MAX 8
43
44 struct ipmmu_features {
45         bool use_ns_alias_offset;
46         bool has_cache_leaf_nodes;
47         unsigned int number_of_contexts;
48         bool setup_imbuscr;
49         bool twobit_imttbcr_sl0;
50 };
51
52 struct ipmmu_vmsa_device {
53         struct device *dev;
54         void __iomem *base;
55         struct iommu_device iommu;
56         struct ipmmu_vmsa_device *root;
57         const struct ipmmu_features *features;
58         unsigned int num_utlbs;
59         unsigned int num_ctx;
60         spinlock_t lock;                        /* Protects ctx and domains[] */
61         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
62         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
63
64         struct iommu_group *group;
65         struct dma_iommu_mapping *mapping;
66 };
67
68 struct ipmmu_vmsa_domain {
69         struct ipmmu_vmsa_device *mmu;
70         struct iommu_domain io_domain;
71
72         struct io_pgtable_cfg cfg;
73         struct io_pgtable_ops *iop;
74
75         unsigned int context_id;
76         spinlock_t lock;                        /* Protects mappings */
77 };
78
79 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
80 {
81         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
82 }
83
84 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
85 {
86         return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
87 }
88
89 #define TLB_LOOP_TIMEOUT                100     /* 100us */
90
91 /* -----------------------------------------------------------------------------
92  * Registers Definition
93  */
94
95 #define IM_NS_ALIAS_OFFSET              0x800
96
97 #define IM_CTX_SIZE                     0x40
98
99 #define IMCTR                           0x0000
100 #define IMCTR_TRE                       (1 << 17)
101 #define IMCTR_AFE                       (1 << 16)
102 #define IMCTR_RTSEL_MASK                (3 << 4)
103 #define IMCTR_RTSEL_SHIFT               4
104 #define IMCTR_TREN                      (1 << 3)
105 #define IMCTR_INTEN                     (1 << 2)
106 #define IMCTR_FLUSH                     (1 << 1)
107 #define IMCTR_MMUEN                     (1 << 0)
108
109 #define IMCAAR                          0x0004
110
111 #define IMTTBCR                         0x0008
112 #define IMTTBCR_EAE                     (1 << 31)
113 #define IMTTBCR_PMB                     (1 << 30)
114 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
115 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
116 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
117 #define IMTTBCR_SH1_MASK                (3 << 28)
118 #define IMTTBCR_ORGN1_NC                (0 << 26)
119 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
120 #define IMTTBCR_ORGN1_WT                (2 << 26)
121 #define IMTTBCR_ORGN1_WB                (3 << 26)
122 #define IMTTBCR_ORGN1_MASK              (3 << 26)
123 #define IMTTBCR_IRGN1_NC                (0 << 24)
124 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
125 #define IMTTBCR_IRGN1_WT                (2 << 24)
126 #define IMTTBCR_IRGN1_WB                (3 << 24)
127 #define IMTTBCR_IRGN1_MASK              (3 << 24)
128 #define IMTTBCR_TSZ1_MASK               (7 << 16)
129 #define IMTTBCR_TSZ1_SHIFT              16
130 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
131 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
132 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
133 #define IMTTBCR_SH0_MASK                (3 << 12)
134 #define IMTTBCR_ORGN0_NC                (0 << 10)
135 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
136 #define IMTTBCR_ORGN0_WT                (2 << 10)
137 #define IMTTBCR_ORGN0_WB                (3 << 10)
138 #define IMTTBCR_ORGN0_MASK              (3 << 10)
139 #define IMTTBCR_IRGN0_NC                (0 << 8)
140 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
141 #define IMTTBCR_IRGN0_WT                (2 << 8)
142 #define IMTTBCR_IRGN0_WB                (3 << 8)
143 #define IMTTBCR_IRGN0_MASK              (3 << 8)
144 #define IMTTBCR_SL0_LVL_2               (0 << 4)
145 #define IMTTBCR_SL0_LVL_1               (1 << 4)
146 #define IMTTBCR_TSZ0_MASK               (7 << 0)
147 #define IMTTBCR_TSZ0_SHIFT              O
148
149 #define IMTTBCR_SL0_TWOBIT_LVL_3        (0 << 6)
150 #define IMTTBCR_SL0_TWOBIT_LVL_2        (1 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)
152
153 #define IMBUSCR                         0x000c
154 #define IMBUSCR_DVM                     (1 << 2)
155 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
156 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
157 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
158 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
159 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
160
161 #define IMTTLBR0                        0x0010
162 #define IMTTUBR0                        0x0014
163 #define IMTTLBR1                        0x0018
164 #define IMTTUBR1                        0x001c
165
166 #define IMSTR                           0x0020
167 #define IMSTR_ERRLVL_MASK               (3 << 12)
168 #define IMSTR_ERRLVL_SHIFT              12
169 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
170 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
171 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
172 #define IMSTR_ERRCODE_MASK              (7 << 8)
173 #define IMSTR_MHIT                      (1 << 4)
174 #define IMSTR_ABORT                     (1 << 2)
175 #define IMSTR_PF                        (1 << 1)
176 #define IMSTR_TF                        (1 << 0)
177
178 #define IMMAIR0                         0x0028
179 #define IMMAIR1                         0x002c
180 #define IMMAIR_ATTR_MASK                0xff
181 #define IMMAIR_ATTR_DEVICE              0x04
182 #define IMMAIR_ATTR_NC                  0x44
183 #define IMMAIR_ATTR_WBRWA               0xff
184 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
185 #define IMMAIR_ATTR_IDX_NC              0
186 #define IMMAIR_ATTR_IDX_WBRWA           1
187 #define IMMAIR_ATTR_IDX_DEV             2
188
189 #define IMEAR                           0x0030
190
191 #define IMPCTR                          0x0200
192 #define IMPSTR                          0x0208
193 #define IMPEAR                          0x020c
194 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
195 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
196
197 #define IMUCTR(n)                       (0x0300 + ((n) * 16))
198 #define IMUCTR_FIXADDEN                 (1 << 31)
199 #define IMUCTR_FIXADD_MASK              (0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT             16
201 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
202 #define IMUCTR_TTSEL_PMB                (8 << 4)
203 #define IMUCTR_TTSEL_MASK               (15 << 4)
204 #define IMUCTR_FLUSH                    (1 << 1)
205 #define IMUCTR_MMUEN                    (1 << 0)
206
207 #define IMUASID(n)                      (0x0308 + ((n) * 16))
208 #define IMUASID_ASID8_MASK              (0xff << 8)
209 #define IMUASID_ASID8_SHIFT             8
210 #define IMUASID_ASID0_MASK              (0xff << 0)
211 #define IMUASID_ASID0_SHIFT             0
212
213 /* -----------------------------------------------------------------------------
214  * Root device handling
215  */
216
217 static struct platform_driver ipmmu_driver;
218
219 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
220 {
221         return mmu->root == mmu;
222 }
223
224 static int __ipmmu_check_device(struct device *dev, void *data)
225 {
226         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
227         struct ipmmu_vmsa_device **rootp = data;
228
229         if (ipmmu_is_root(mmu))
230                 *rootp = mmu;
231
232         return 0;
233 }
234
235 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
236 {
237         struct ipmmu_vmsa_device *root = NULL;
238
239         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
240                                       __ipmmu_check_device) == 0 ? root : NULL;
241 }
242
243 /* -----------------------------------------------------------------------------
244  * Read/Write Access
245  */
246
247 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
248 {
249         return ioread32(mmu->base + offset);
250 }
251
252 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
253                         u32 data)
254 {
255         iowrite32(data, mmu->base + offset);
256 }
257
258 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
259                                unsigned int reg)
260 {
261         return ipmmu_read(domain->mmu->root,
262                           domain->context_id * IM_CTX_SIZE + reg);
263 }
264
265 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
266                                  unsigned int reg, u32 data)
267 {
268         ipmmu_write(domain->mmu->root,
269                     domain->context_id * IM_CTX_SIZE + reg, data);
270 }
271
272 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
273                                 unsigned int reg, u32 data)
274 {
275         if (domain->mmu != domain->mmu->root)
276                 ipmmu_write(domain->mmu,
277                             domain->context_id * IM_CTX_SIZE + reg, data);
278
279         ipmmu_write(domain->mmu->root,
280                     domain->context_id * IM_CTX_SIZE + reg, data);
281 }
282
283 /* -----------------------------------------------------------------------------
284  * TLB and microTLB Management
285  */
286
287 /* Wait for any pending TLB invalidations to complete */
288 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
289 {
290         unsigned int count = 0;
291
292         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
293                 cpu_relax();
294                 if (++count == TLB_LOOP_TIMEOUT) {
295                         dev_err_ratelimited(domain->mmu->dev,
296                         "TLB sync timed out -- MMU may be deadlocked\n");
297                         return;
298                 }
299                 udelay(1);
300         }
301 }
302
303 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
304 {
305         u32 reg;
306
307         reg = ipmmu_ctx_read_root(domain, IMCTR);
308         reg |= IMCTR_FLUSH;
309         ipmmu_ctx_write_all(domain, IMCTR, reg);
310
311         ipmmu_tlb_sync(domain);
312 }
313
314 /*
315  * Enable MMU translation for the microTLB.
316  */
317 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
318                               unsigned int utlb)
319 {
320         struct ipmmu_vmsa_device *mmu = domain->mmu;
321
322         /*
323          * TODO: Reference-count the microTLB as several bus masters can be
324          * connected to the same microTLB.
325          */
326
327         /* TODO: What should we set the ASID to ? */
328         ipmmu_write(mmu, IMUASID(utlb), 0);
329         /* TODO: Do we need to flush the microTLB ? */
330         ipmmu_write(mmu, IMUCTR(utlb),
331                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
332                     IMUCTR_MMUEN);
333 }
334
335 /*
336  * Disable MMU translation for the microTLB.
337  */
338 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
339                                unsigned int utlb)
340 {
341         struct ipmmu_vmsa_device *mmu = domain->mmu;
342
343         ipmmu_write(mmu, IMUCTR(utlb), 0);
344 }
345
346 static void ipmmu_tlb_flush_all(void *cookie)
347 {
348         struct ipmmu_vmsa_domain *domain = cookie;
349
350         ipmmu_tlb_invalidate(domain);
351 }
352
353 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
354                                 size_t granule, bool leaf, void *cookie)
355 {
356         /* The hardware doesn't support selective TLB flush. */
357 }
358
359 static const struct iommu_gather_ops ipmmu_gather_ops = {
360         .tlb_flush_all = ipmmu_tlb_flush_all,
361         .tlb_add_flush = ipmmu_tlb_add_flush,
362         .tlb_sync = ipmmu_tlb_flush_all,
363 };
364
365 /* -----------------------------------------------------------------------------
366  * Domain/Context Management
367  */
368
369 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
370                                          struct ipmmu_vmsa_domain *domain)
371 {
372         unsigned long flags;
373         int ret;
374
375         spin_lock_irqsave(&mmu->lock, flags);
376
377         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
378         if (ret != mmu->num_ctx) {
379                 mmu->domains[ret] = domain;
380                 set_bit(ret, mmu->ctx);
381         } else
382                 ret = -EBUSY;
383
384         spin_unlock_irqrestore(&mmu->lock, flags);
385
386         return ret;
387 }
388
389 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
390                                       unsigned int context_id)
391 {
392         unsigned long flags;
393
394         spin_lock_irqsave(&mmu->lock, flags);
395
396         clear_bit(context_id, mmu->ctx);
397         mmu->domains[context_id] = NULL;
398
399         spin_unlock_irqrestore(&mmu->lock, flags);
400 }
401
402 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
403 {
404         u64 ttbr;
405         u32 tmp;
406         int ret;
407
408         /*
409          * Allocate the page table operations.
410          *
411          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
412          * access, Long-descriptor format" that the NStable bit being set in a
413          * table descriptor will result in the NStable and NS bits of all child
414          * entries being ignored and considered as being set. The IPMMU seems
415          * not to comply with this, as it generates a secure access page fault
416          * if any of the NStable and NS bits isn't set when running in
417          * non-secure mode.
418          */
419         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
420         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
421         domain->cfg.ias = 32;
422         domain->cfg.oas = 40;
423         domain->cfg.tlb = &ipmmu_gather_ops;
424         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
425         domain->io_domain.geometry.force_aperture = true;
426         /*
427          * TODO: Add support for coherent walk through CCI with DVM and remove
428          * cache handling. For now, delegate it to the io-pgtable code.
429          */
430         domain->cfg.iommu_dev = domain->mmu->root->dev;
431
432         /*
433          * Find an unused context.
434          */
435         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
436         if (ret < 0)
437                 return ret;
438
439         domain->context_id = ret;
440
441         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
442                                            domain);
443         if (!domain->iop) {
444                 ipmmu_domain_free_context(domain->mmu->root,
445                                           domain->context_id);
446                 return -EINVAL;
447         }
448
449         /* TTBR0 */
450         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
451         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
452         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
453
454         /*
455          * TTBCR
456          * We use long descriptors with inner-shareable WBWA tables and allocate
457          * the whole 32-bit VA space to TTBR0.
458          */
459         if (domain->mmu->features->twobit_imttbcr_sl0)
460                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
461         else
462                 tmp = IMTTBCR_SL0_LVL_1;
463
464         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
465                              IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
466                              IMTTBCR_IRGN0_WB_WA | tmp);
467
468         /* MAIR0 */
469         ipmmu_ctx_write_root(domain, IMMAIR0,
470                              domain->cfg.arm_lpae_s1_cfg.mair[0]);
471
472         /* IMBUSCR */
473         if (domain->mmu->features->setup_imbuscr)
474                 ipmmu_ctx_write_root(domain, IMBUSCR,
475                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
476                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
477
478         /*
479          * IMSTR
480          * Clear all interrupt flags.
481          */
482         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
483
484         /*
485          * IMCTR
486          * Enable the MMU and interrupt generation. The long-descriptor
487          * translation table format doesn't use TEX remapping. Don't enable AF
488          * software management as we have no use for it. Flush the TLB as
489          * required when modifying the context registers.
490          */
491         ipmmu_ctx_write_all(domain, IMCTR,
492                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
493
494         return 0;
495 }
496
497 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
498 {
499         /*
500          * Disable the context. Flush the TLB as required when modifying the
501          * context registers.
502          *
503          * TODO: Is TLB flush really needed ?
504          */
505         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
506         ipmmu_tlb_sync(domain);
507         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
508 }
509
510 /* -----------------------------------------------------------------------------
511  * Fault Handling
512  */
513
514 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
515 {
516         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
517         struct ipmmu_vmsa_device *mmu = domain->mmu;
518         u32 status;
519         u32 iova;
520
521         status = ipmmu_ctx_read_root(domain, IMSTR);
522         if (!(status & err_mask))
523                 return IRQ_NONE;
524
525         iova = ipmmu_ctx_read_root(domain, IMEAR);
526
527         /*
528          * Clear the error status flags. Unlike traditional interrupt flag
529          * registers that must be cleared by writing 1, this status register
530          * seems to require 0. The error address register must be read before,
531          * otherwise its value will be 0.
532          */
533         ipmmu_ctx_write_root(domain, IMSTR, 0);
534
535         /* Log fatal errors. */
536         if (status & IMSTR_MHIT)
537                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
538                                     iova);
539         if (status & IMSTR_ABORT)
540                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
541                                     iova);
542
543         if (!(status & (IMSTR_PF | IMSTR_TF)))
544                 return IRQ_NONE;
545
546         /*
547          * Try to handle page faults and translation faults.
548          *
549          * TODO: We need to look up the faulty device based on the I/O VA. Use
550          * the IOMMU device for now.
551          */
552         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
553                 return IRQ_HANDLED;
554
555         dev_err_ratelimited(mmu->dev,
556                             "Unhandled fault: status 0x%08x iova 0x%08x\n",
557                             status, iova);
558
559         return IRQ_HANDLED;
560 }
561
562 static irqreturn_t ipmmu_irq(int irq, void *dev)
563 {
564         struct ipmmu_vmsa_device *mmu = dev;
565         irqreturn_t status = IRQ_NONE;
566         unsigned int i;
567         unsigned long flags;
568
569         spin_lock_irqsave(&mmu->lock, flags);
570
571         /*
572          * Check interrupts for all active contexts.
573          */
574         for (i = 0; i < mmu->num_ctx; i++) {
575                 if (!mmu->domains[i])
576                         continue;
577                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
578                         status = IRQ_HANDLED;
579         }
580
581         spin_unlock_irqrestore(&mmu->lock, flags);
582
583         return status;
584 }
585
586 /* -----------------------------------------------------------------------------
587  * IOMMU Operations
588  */
589
590 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
591 {
592         struct ipmmu_vmsa_domain *domain;
593
594         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
595         if (!domain)
596                 return NULL;
597
598         spin_lock_init(&domain->lock);
599
600         return &domain->io_domain;
601 }
602
603 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
604 {
605         struct iommu_domain *io_domain = NULL;
606
607         switch (type) {
608         case IOMMU_DOMAIN_UNMANAGED:
609                 io_domain = __ipmmu_domain_alloc(type);
610                 break;
611
612         case IOMMU_DOMAIN_DMA:
613                 io_domain = __ipmmu_domain_alloc(type);
614                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
615                         kfree(io_domain);
616                         io_domain = NULL;
617                 }
618                 break;
619         }
620
621         return io_domain;
622 }
623
624 static void ipmmu_domain_free(struct iommu_domain *io_domain)
625 {
626         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
627
628         /*
629          * Free the domain resources. We assume that all devices have already
630          * been detached.
631          */
632         iommu_put_dma_cookie(io_domain);
633         ipmmu_domain_destroy_context(domain);
634         free_io_pgtable_ops(domain->iop);
635         kfree(domain);
636 }
637
638 static int ipmmu_attach_device(struct iommu_domain *io_domain,
639                                struct device *dev)
640 {
641         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
642         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
643         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
644         unsigned long flags;
645         unsigned int i;
646         int ret = 0;
647
648         if (!mmu) {
649                 dev_err(dev, "Cannot attach to IPMMU\n");
650                 return -ENXIO;
651         }
652
653         spin_lock_irqsave(&domain->lock, flags);
654
655         if (!domain->mmu) {
656                 /* The domain hasn't been used yet, initialize it. */
657                 domain->mmu = mmu;
658                 ret = ipmmu_domain_init_context(domain);
659                 if (ret < 0) {
660                         dev_err(dev, "Unable to initialize IPMMU context\n");
661                         domain->mmu = NULL;
662                 } else {
663                         dev_info(dev, "Using IPMMU context %u\n",
664                                  domain->context_id);
665                 }
666         } else if (domain->mmu != mmu) {
667                 /*
668                  * Something is wrong, we can't attach two devices using
669                  * different IOMMUs to the same domain.
670                  */
671                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
672                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
673                 ret = -EINVAL;
674         } else
675                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
676
677         spin_unlock_irqrestore(&domain->lock, flags);
678
679         if (ret < 0)
680                 return ret;
681
682         for (i = 0; i < fwspec->num_ids; ++i)
683                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
684
685         return 0;
686 }
687
688 static void ipmmu_detach_device(struct iommu_domain *io_domain,
689                                 struct device *dev)
690 {
691         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
692         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
693         unsigned int i;
694
695         for (i = 0; i < fwspec->num_ids; ++i)
696                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
697
698         /*
699          * TODO: Optimize by disabling the context when no device is attached.
700          */
701 }
702
703 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
704                      phys_addr_t paddr, size_t size, int prot)
705 {
706         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
707
708         if (!domain)
709                 return -ENODEV;
710
711         return domain->iop->map(domain->iop, iova, paddr, size, prot);
712 }
713
714 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
715                           size_t size)
716 {
717         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
718
719         return domain->iop->unmap(domain->iop, iova, size);
720 }
721
722 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
723 {
724         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
725
726         if (domain->mmu)
727                 ipmmu_tlb_flush_all(domain);
728 }
729
730 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
731                                       dma_addr_t iova)
732 {
733         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
734
735         /* TODO: Is locking needed ? */
736
737         return domain->iop->iova_to_phys(domain->iop, iova);
738 }
739
740 static int ipmmu_init_platform_device(struct device *dev,
741                                       struct of_phandle_args *args)
742 {
743         struct platform_device *ipmmu_pdev;
744
745         ipmmu_pdev = of_find_device_by_node(args->np);
746         if (!ipmmu_pdev)
747                 return -ENODEV;
748
749         dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
750         return 0;
751 }
752
753 static bool ipmmu_slave_whitelist(struct device *dev)
754 {
755         /* By default, do not allow use of IPMMU */
756         return false;
757 }
758
759 static const struct soc_device_attribute soc_r8a7795[] = {
760         { .soc_id = "r8a7795", },
761         { /* sentinel */ }
762 };
763
764 static int ipmmu_of_xlate(struct device *dev,
765                           struct of_phandle_args *spec)
766 {
767         /* For R-Car Gen3 use a white list to opt-in slave devices */
768         if (soc_device_match(soc_r8a7795) && !ipmmu_slave_whitelist(dev))
769                 return -ENODEV;
770
771         iommu_fwspec_add_ids(dev, spec->args, 1);
772
773         /* Initialize once - xlate() will call multiple times */
774         if (to_ipmmu(dev))
775                 return 0;
776
777         return ipmmu_init_platform_device(dev, spec);
778 }
779
780 static int ipmmu_init_arm_mapping(struct device *dev)
781 {
782         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
783         struct iommu_group *group;
784         int ret;
785
786         /* Create a device group and add the device to it. */
787         group = iommu_group_alloc();
788         if (IS_ERR(group)) {
789                 dev_err(dev, "Failed to allocate IOMMU group\n");
790                 return PTR_ERR(group);
791         }
792
793         ret = iommu_group_add_device(group, dev);
794         iommu_group_put(group);
795
796         if (ret < 0) {
797                 dev_err(dev, "Failed to add device to IPMMU group\n");
798                 return ret;
799         }
800
801         /*
802          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
803          * VAs. This will allocate a corresponding IOMMU domain.
804          *
805          * TODO:
806          * - Create one mapping per context (TLB).
807          * - Make the mapping size configurable ? We currently use a 2GB mapping
808          *   at a 1GB offset to ensure that NULL VAs will fault.
809          */
810         if (!mmu->mapping) {
811                 struct dma_iommu_mapping *mapping;
812
813                 mapping = arm_iommu_create_mapping(&platform_bus_type,
814                                                    SZ_1G, SZ_2G);
815                 if (IS_ERR(mapping)) {
816                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
817                         ret = PTR_ERR(mapping);
818                         goto error;
819                 }
820
821                 mmu->mapping = mapping;
822         }
823
824         /* Attach the ARM VA mapping to the device. */
825         ret = arm_iommu_attach_device(dev, mmu->mapping);
826         if (ret < 0) {
827                 dev_err(dev, "Failed to attach device to VA mapping\n");
828                 goto error;
829         }
830
831         return 0;
832
833 error:
834         iommu_group_remove_device(dev);
835         if (mmu->mapping)
836                 arm_iommu_release_mapping(mmu->mapping);
837
838         return ret;
839 }
840
841 static int ipmmu_add_device(struct device *dev)
842 {
843         struct iommu_group *group;
844
845         /*
846          * Only let through devices that have been verified in xlate()
847          */
848         if (!to_ipmmu(dev))
849                 return -ENODEV;
850
851         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
852                 return ipmmu_init_arm_mapping(dev);
853
854         group = iommu_group_get_for_dev(dev);
855         if (IS_ERR(group))
856                 return PTR_ERR(group);
857
858         iommu_group_put(group);
859         return 0;
860 }
861
862 static void ipmmu_remove_device(struct device *dev)
863 {
864         arm_iommu_detach_device(dev);
865         iommu_group_remove_device(dev);
866 }
867
868 static struct iommu_group *ipmmu_find_group(struct device *dev)
869 {
870         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
871         struct iommu_group *group;
872
873         if (mmu->group)
874                 return iommu_group_ref_get(mmu->group);
875
876         group = iommu_group_alloc();
877         if (!IS_ERR(group))
878                 mmu->group = group;
879
880         return group;
881 }
882
883 static const struct iommu_ops ipmmu_ops = {
884         .domain_alloc = ipmmu_domain_alloc,
885         .domain_free = ipmmu_domain_free,
886         .attach_dev = ipmmu_attach_device,
887         .detach_dev = ipmmu_detach_device,
888         .map = ipmmu_map,
889         .unmap = ipmmu_unmap,
890         .flush_iotlb_all = ipmmu_iotlb_sync,
891         .iotlb_sync = ipmmu_iotlb_sync,
892         .map_sg = default_iommu_map_sg,
893         .iova_to_phys = ipmmu_iova_to_phys,
894         .add_device = ipmmu_add_device,
895         .remove_device = ipmmu_remove_device,
896         .device_group = ipmmu_find_group,
897         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
898         .of_xlate = ipmmu_of_xlate,
899 };
900
901 /* -----------------------------------------------------------------------------
902  * Probe/remove and init
903  */
904
905 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
906 {
907         unsigned int i;
908
909         /* Disable all contexts. */
910         for (i = 0; i < mmu->num_ctx; ++i)
911                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
912 }
913
914 static const struct ipmmu_features ipmmu_features_default = {
915         .use_ns_alias_offset = true,
916         .has_cache_leaf_nodes = false,
917         .number_of_contexts = 1, /* software only tested with one context */
918         .setup_imbuscr = true,
919         .twobit_imttbcr_sl0 = false,
920 };
921
922 static const struct ipmmu_features ipmmu_features_r8a7795 = {
923         .use_ns_alias_offset = false,
924         .has_cache_leaf_nodes = true,
925         .number_of_contexts = 8,
926         .setup_imbuscr = false,
927         .twobit_imttbcr_sl0 = true,
928 };
929
930 static const struct of_device_id ipmmu_of_ids[] = {
931         {
932                 .compatible = "renesas,ipmmu-vmsa",
933                 .data = &ipmmu_features_default,
934         }, {
935                 .compatible = "renesas,ipmmu-r8a7795",
936                 .data = &ipmmu_features_r8a7795,
937         }, {
938                 /* Terminator */
939         },
940 };
941
942 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
943
944 static int ipmmu_probe(struct platform_device *pdev)
945 {
946         struct ipmmu_vmsa_device *mmu;
947         struct resource *res;
948         int irq;
949         int ret;
950
951         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
952         if (!mmu) {
953                 dev_err(&pdev->dev, "cannot allocate device data\n");
954                 return -ENOMEM;
955         }
956
957         mmu->dev = &pdev->dev;
958         mmu->num_utlbs = 32;
959         spin_lock_init(&mmu->lock);
960         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
961         mmu->features = of_device_get_match_data(&pdev->dev);
962         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
963
964         /* Map I/O memory and request IRQ. */
965         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
966         mmu->base = devm_ioremap_resource(&pdev->dev, res);
967         if (IS_ERR(mmu->base))
968                 return PTR_ERR(mmu->base);
969
970         /*
971          * The IPMMU has two register banks, for secure and non-secure modes.
972          * The bank mapped at the beginning of the IPMMU address space
973          * corresponds to the running mode of the CPU. When running in secure
974          * mode the non-secure register bank is also available at an offset.
975          *
976          * Secure mode operation isn't clearly documented and is thus currently
977          * not implemented in the driver. Furthermore, preliminary tests of
978          * non-secure operation with the main register bank were not successful.
979          * Offset the registers base unconditionally to point to the non-secure
980          * alias space for now.
981          */
982         if (mmu->features->use_ns_alias_offset)
983                 mmu->base += IM_NS_ALIAS_OFFSET;
984
985         mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
986                              mmu->features->number_of_contexts);
987
988         irq = platform_get_irq(pdev, 0);
989
990         /*
991          * Determine if this IPMMU instance is a root device by checking for
992          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
993          */
994         if (!mmu->features->has_cache_leaf_nodes ||
995             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
996                 mmu->root = mmu;
997         else
998                 mmu->root = ipmmu_find_root();
999
1000         /*
1001          * Wait until the root device has been registered for sure.
1002          */
1003         if (!mmu->root)
1004                 return -EPROBE_DEFER;
1005
1006         /* Root devices have mandatory IRQs */
1007         if (ipmmu_is_root(mmu)) {
1008                 if (irq < 0) {
1009                         dev_err(&pdev->dev, "no IRQ found\n");
1010                         return irq;
1011                 }
1012
1013                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1014                                        dev_name(&pdev->dev), mmu);
1015                 if (ret < 0) {
1016                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1017                         return ret;
1018                 }
1019
1020                 ipmmu_device_reset(mmu);
1021         }
1022
1023         /*
1024          * Register the IPMMU to the IOMMU subsystem in the following cases:
1025          * - R-Car Gen2 IPMMU (all devices registered)
1026          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1027          */
1028         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1029                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1030                                              dev_name(&pdev->dev));
1031                 if (ret)
1032                         return ret;
1033
1034                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1035                 iommu_device_set_fwnode(&mmu->iommu,
1036                                         &pdev->dev.of_node->fwnode);
1037
1038                 ret = iommu_device_register(&mmu->iommu);
1039                 if (ret)
1040                         return ret;
1041
1042 #if defined(CONFIG_IOMMU_DMA)
1043                 if (!iommu_present(&platform_bus_type))
1044                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1045 #endif
1046         }
1047
1048         /*
1049          * We can't create the ARM mapping here as it requires the bus to have
1050          * an IOMMU, which only happens when bus_set_iommu() is called in
1051          * ipmmu_init() after the probe function returns.
1052          */
1053
1054         platform_set_drvdata(pdev, mmu);
1055
1056         return 0;
1057 }
1058
1059 static int ipmmu_remove(struct platform_device *pdev)
1060 {
1061         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1062
1063         iommu_device_sysfs_remove(&mmu->iommu);
1064         iommu_device_unregister(&mmu->iommu);
1065
1066         arm_iommu_release_mapping(mmu->mapping);
1067
1068         ipmmu_device_reset(mmu);
1069
1070         return 0;
1071 }
1072
1073 static struct platform_driver ipmmu_driver = {
1074         .driver = {
1075                 .name = "ipmmu-vmsa",
1076                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1077         },
1078         .probe = ipmmu_probe,
1079         .remove = ipmmu_remove,
1080 };
1081
1082 static int __init ipmmu_init(void)
1083 {
1084         static bool setup_done;
1085         int ret;
1086
1087         if (setup_done)
1088                 return 0;
1089
1090         ret = platform_driver_register(&ipmmu_driver);
1091         if (ret < 0)
1092                 return ret;
1093
1094 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1095         if (!iommu_present(&platform_bus_type))
1096                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1097 #endif
1098
1099         setup_done = true;
1100         return 0;
1101 }
1102
1103 static void __exit ipmmu_exit(void)
1104 {
1105         return platform_driver_unregister(&ipmmu_driver);
1106 }
1107
1108 subsys_initcall(ipmmu_init);
1109 module_exit(ipmmu_exit);
1110
1111 #ifdef CONFIG_IOMMU_DMA
1112 static int __init ipmmu_vmsa_iommu_of_setup(struct device_node *np)
1113 {
1114         ipmmu_init();
1115         return 0;
1116 }
1117
1118 IOMMU_OF_DECLARE(ipmmu_vmsa_iommu_of, "renesas,ipmmu-vmsa",
1119                  ipmmu_vmsa_iommu_of_setup);
1120 IOMMU_OF_DECLARE(ipmmu_r8a7795_iommu_of, "renesas,ipmmu-r8a7795",
1121                  ipmmu_vmsa_iommu_of_setup);
1122 #endif
1123
1124 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1125 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1126 MODULE_LICENSE("GPL v2");