1 // SPDX-License-Identifier: GPL-2.0
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * Copyright (C) 2014-2020 Renesas Electronics Corporation
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
30 #define arm_iommu_create_mapping(...) NULL
31 #define arm_iommu_attach_device(...) -ENODEV
32 #define arm_iommu_release_mapping(...) do {} while (0)
33 #define arm_iommu_detach_device(...) do {} while (0)
36 #define IPMMU_CTX_MAX 8U
37 #define IPMMU_CTX_INVALID -1
39 #define IPMMU_UTLB_MAX 48U
41 struct ipmmu_features {
42 bool use_ns_alias_offset;
43 bool has_cache_leaf_nodes;
44 unsigned int number_of_contexts;
45 unsigned int num_utlbs;
47 bool twobit_imttbcr_sl0;
48 bool reserved_context;
50 unsigned int ctx_offset_base;
51 unsigned int ctx_offset_stride;
52 unsigned int utlb_offset_base;
55 struct ipmmu_vmsa_device {
58 struct iommu_device iommu;
59 struct ipmmu_vmsa_device *root;
60 const struct ipmmu_features *features;
62 spinlock_t lock; /* Protects ctx and domains[] */
63 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 s8 utlb_ctx[IPMMU_UTLB_MAX];
67 struct iommu_group *group;
68 struct dma_iommu_mapping *mapping;
71 struct ipmmu_vmsa_domain {
72 struct ipmmu_vmsa_device *mmu;
73 struct iommu_domain io_domain;
75 struct io_pgtable_cfg cfg;
76 struct io_pgtable_ops *iop;
78 unsigned int context_id;
79 struct mutex mutex; /* Protects mappings */
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
84 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
89 return dev_iommu_priv_get(dev);
92 #define TLB_LOOP_TIMEOUT 100 /* 100us */
94 /* -----------------------------------------------------------------------------
95 * Registers Definition
98 #define IM_NS_ALIAS_OFFSET 0x800
100 /* MMU "context" registers */
101 #define IMCTR 0x0000 /* R-Car Gen2/3 */
102 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
106 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
114 #define IMBUSCR 0x000c /* R-Car Gen2 only */
115 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
118 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
119 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
121 #define IMSTR 0x0020 /* R-Car Gen2/3 */
122 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
123 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
124 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
125 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
127 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
129 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR 0x0034 /* R-Car Gen3 only */
133 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
135 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
140 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
142 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
144 /* -----------------------------------------------------------------------------
145 * Root device handling
148 static struct platform_driver ipmmu_driver;
150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
152 return mmu->root == mmu;
155 static int __ipmmu_check_device(struct device *dev, void *data)
157 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158 struct ipmmu_vmsa_device **rootp = data;
160 if (ipmmu_is_root(mmu))
166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
168 struct ipmmu_vmsa_device *root = NULL;
170 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171 __ipmmu_check_device) == 0 ? root : NULL;
174 /* -----------------------------------------------------------------------------
178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
180 return ioread32(mmu->base + offset);
183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
186 iowrite32(data, mmu->base + offset);
189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190 unsigned int context_id, unsigned int reg)
192 return mmu->features->ctx_offset_base +
193 context_id * mmu->features->ctx_offset_stride + reg;
196 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
197 unsigned int context_id, unsigned int reg)
199 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
202 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
203 unsigned int context_id, unsigned int reg, u32 data)
205 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
208 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
211 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
214 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
215 unsigned int reg, u32 data)
217 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
220 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
221 unsigned int reg, u32 data)
223 if (domain->mmu != domain->mmu->root)
224 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
226 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
229 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
231 return mmu->features->utlb_offset_base + reg;
234 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
235 unsigned int utlb, u32 data)
237 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
240 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
241 unsigned int utlb, u32 data)
243 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
246 /* -----------------------------------------------------------------------------
247 * TLB and microTLB Management
250 /* Wait for any pending TLB invalidations to complete */
251 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
253 unsigned int count = 0;
255 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
257 if (++count == TLB_LOOP_TIMEOUT) {
258 dev_err_ratelimited(domain->mmu->dev,
259 "TLB sync timed out -- MMU may be deadlocked\n");
266 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
270 reg = ipmmu_ctx_read_root(domain, IMCTR);
272 ipmmu_ctx_write_all(domain, IMCTR, reg);
274 ipmmu_tlb_sync(domain);
278 * Enable MMU translation for the microTLB.
280 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
283 struct ipmmu_vmsa_device *mmu = domain->mmu;
286 * TODO: Reference-count the microTLB as several bus masters can be
287 * connected to the same microTLB.
290 /* TODO: What should we set the ASID to ? */
291 ipmmu_imuasid_write(mmu, utlb, 0);
292 /* TODO: Do we need to flush the microTLB ? */
293 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
294 IMUCTR_FLUSH | IMUCTR_MMUEN);
295 mmu->utlb_ctx[utlb] = domain->context_id;
299 * Disable MMU translation for the microTLB.
301 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
304 struct ipmmu_vmsa_device *mmu = domain->mmu;
306 ipmmu_imuctr_write(mmu, utlb, 0);
307 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
310 static void ipmmu_tlb_flush_all(void *cookie)
312 struct ipmmu_vmsa_domain *domain = cookie;
314 ipmmu_tlb_invalidate(domain);
317 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
318 size_t granule, void *cookie)
320 ipmmu_tlb_flush_all(cookie);
323 static const struct iommu_flush_ops ipmmu_flush_ops = {
324 .tlb_flush_all = ipmmu_tlb_flush_all,
325 .tlb_flush_walk = ipmmu_tlb_flush,
328 /* -----------------------------------------------------------------------------
329 * Domain/Context Management
332 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
333 struct ipmmu_vmsa_domain *domain)
338 spin_lock_irqsave(&mmu->lock, flags);
340 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
341 if (ret != mmu->num_ctx) {
342 mmu->domains[ret] = domain;
343 set_bit(ret, mmu->ctx);
347 spin_unlock_irqrestore(&mmu->lock, flags);
352 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
353 unsigned int context_id)
357 spin_lock_irqsave(&mmu->lock, flags);
359 clear_bit(context_id, mmu->ctx);
360 mmu->domains[context_id] = NULL;
362 spin_unlock_irqrestore(&mmu->lock, flags);
365 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
371 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
372 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
373 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
377 * We use long descriptors and allocate the whole 32-bit VA space to
380 if (domain->mmu->features->twobit_imttbcr_sl0)
381 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
383 tmp = IMTTBCR_SL0_LVL_1;
385 if (domain->mmu->features->cache_snoop)
386 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
389 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
392 ipmmu_ctx_write_root(domain, IMMAIR0,
393 domain->cfg.arm_lpae_s1_cfg.mair);
396 if (domain->mmu->features->setup_imbuscr)
397 ipmmu_ctx_write_root(domain, IMBUSCR,
398 ipmmu_ctx_read_root(domain, IMBUSCR) &
399 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
403 * Clear all interrupt flags.
405 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
409 * Enable the MMU and interrupt generation. The long-descriptor
410 * translation table format doesn't use TEX remapping. Don't enable AF
411 * software management as we have no use for it. Flush the TLB as
412 * required when modifying the context registers.
414 ipmmu_ctx_write_all(domain, IMCTR,
415 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
418 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
423 * Allocate the page table operations.
425 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
426 * access, Long-descriptor format" that the NStable bit being set in a
427 * table descriptor will result in the NStable and NS bits of all child
428 * entries being ignored and considered as being set. The IPMMU seems
429 * not to comply with this, as it generates a secure access page fault
430 * if any of the NStable and NS bits isn't set when running in
433 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
434 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
435 domain->cfg.ias = 32;
436 domain->cfg.oas = 40;
437 domain->cfg.tlb = &ipmmu_flush_ops;
438 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
439 domain->io_domain.geometry.force_aperture = true;
441 * TODO: Add support for coherent walk through CCI with DVM and remove
442 * cache handling. For now, delegate it to the io-pgtable code.
444 domain->cfg.coherent_walk = false;
445 domain->cfg.iommu_dev = domain->mmu->root->dev;
448 * Find an unused context.
450 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
454 domain->context_id = ret;
456 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
459 ipmmu_domain_free_context(domain->mmu->root,
464 ipmmu_domain_setup_context(domain);
468 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
474 * Disable the context. Flush the TLB as required when modifying the
477 * TODO: Is TLB flush really needed ?
479 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
480 ipmmu_tlb_sync(domain);
481 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
484 /* -----------------------------------------------------------------------------
488 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
490 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
491 struct ipmmu_vmsa_device *mmu = domain->mmu;
495 status = ipmmu_ctx_read_root(domain, IMSTR);
496 if (!(status & err_mask))
499 iova = ipmmu_ctx_read_root(domain, IMELAR);
500 if (IS_ENABLED(CONFIG_64BIT))
501 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
504 * Clear the error status flags. Unlike traditional interrupt flag
505 * registers that must be cleared by writing 1, this status register
506 * seems to require 0. The error address register must be read before,
507 * otherwise its value will be 0.
509 ipmmu_ctx_write_root(domain, IMSTR, 0);
511 /* Log fatal errors. */
512 if (status & IMSTR_MHIT)
513 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
515 if (status & IMSTR_ABORT)
516 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
519 if (!(status & (IMSTR_PF | IMSTR_TF)))
523 * Try to handle page faults and translation faults.
525 * TODO: We need to look up the faulty device based on the I/O VA. Use
526 * the IOMMU device for now.
528 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
531 dev_err_ratelimited(mmu->dev,
532 "Unhandled fault: status 0x%08x iova 0x%lx\n",
538 static irqreturn_t ipmmu_irq(int irq, void *dev)
540 struct ipmmu_vmsa_device *mmu = dev;
541 irqreturn_t status = IRQ_NONE;
545 spin_lock_irqsave(&mmu->lock, flags);
548 * Check interrupts for all active contexts.
550 for (i = 0; i < mmu->num_ctx; i++) {
551 if (!mmu->domains[i])
553 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
554 status = IRQ_HANDLED;
557 spin_unlock_irqrestore(&mmu->lock, flags);
562 /* -----------------------------------------------------------------------------
566 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
568 struct ipmmu_vmsa_domain *domain;
570 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
573 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
577 mutex_init(&domain->mutex);
579 return &domain->io_domain;
582 static void ipmmu_domain_free(struct iommu_domain *io_domain)
584 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
587 * Free the domain resources. We assume that all devices have already
590 ipmmu_domain_destroy_context(domain);
591 free_io_pgtable_ops(domain->iop);
595 static int ipmmu_attach_device(struct iommu_domain *io_domain,
598 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
599 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
600 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
605 dev_err(dev, "Cannot attach to IPMMU\n");
609 mutex_lock(&domain->mutex);
612 /* The domain hasn't been used yet, initialize it. */
614 ret = ipmmu_domain_init_context(domain);
616 dev_err(dev, "Unable to initialize IPMMU context\n");
619 dev_info(dev, "Using IPMMU context %u\n",
622 } else if (domain->mmu != mmu) {
624 * Something is wrong, we can't attach two devices using
625 * different IOMMUs to the same domain.
627 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
628 dev_name(mmu->dev), dev_name(domain->mmu->dev));
631 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
633 mutex_unlock(&domain->mutex);
638 for (i = 0; i < fwspec->num_ids; ++i)
639 ipmmu_utlb_enable(domain, fwspec->ids[i]);
644 static void ipmmu_detach_device(struct iommu_domain *io_domain,
647 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
648 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
651 for (i = 0; i < fwspec->num_ids; ++i)
652 ipmmu_utlb_disable(domain, fwspec->ids[i]);
655 * TODO: Optimize by disabling the context when no device is attached.
659 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
660 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
662 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
667 return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
670 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
671 size_t size, struct iommu_iotlb_gather *gather)
673 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
675 return domain->iop->unmap(domain->iop, iova, size, gather);
678 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
680 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
683 ipmmu_tlb_flush_all(domain);
686 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
687 struct iommu_iotlb_gather *gather)
689 ipmmu_flush_iotlb_all(io_domain);
692 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
695 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
697 /* TODO: Is locking needed ? */
699 return domain->iop->iova_to_phys(domain->iop, iova);
702 static int ipmmu_init_platform_device(struct device *dev,
703 struct of_phandle_args *args)
705 struct platform_device *ipmmu_pdev;
707 ipmmu_pdev = of_find_device_by_node(args->np);
711 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
716 static const struct soc_device_attribute soc_needs_opt_in[] = {
717 { .family = "R-Car Gen3", },
718 { .family = "RZ/G2", },
722 static const struct soc_device_attribute soc_denylist[] = {
723 { .soc_id = "r8a774a1", },
724 { .soc_id = "r8a7795", .revision = "ES1.*" },
725 { .soc_id = "r8a7795", .revision = "ES2.*" },
726 { .soc_id = "r8a7796", },
730 static const char * const devices_allowlist[] = {
737 static bool ipmmu_device_is_allowed(struct device *dev)
742 * R-Car Gen3 and RZ/G2 use the allow list to opt-in devices.
743 * For Other SoCs, this returns true anyway.
745 if (!soc_device_match(soc_needs_opt_in))
748 /* Check whether this SoC can use the IPMMU correctly or not */
749 if (soc_device_match(soc_denylist))
752 /* Check whether this device can work with the IPMMU */
753 for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
754 if (!strcmp(dev_name(dev), devices_allowlist[i]))
758 /* Otherwise, do not allow use of IPMMU */
762 static int ipmmu_of_xlate(struct device *dev,
763 struct of_phandle_args *spec)
765 if (!ipmmu_device_is_allowed(dev))
768 iommu_fwspec_add_ids(dev, spec->args, 1);
770 /* Initialize once - xlate() will call multiple times */
774 return ipmmu_init_platform_device(dev, spec);
777 static int ipmmu_init_arm_mapping(struct device *dev)
779 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
783 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
784 * VAs. This will allocate a corresponding IOMMU domain.
787 * - Create one mapping per context (TLB).
788 * - Make the mapping size configurable ? We currently use a 2GB mapping
789 * at a 1GB offset to ensure that NULL VAs will fault.
792 struct dma_iommu_mapping *mapping;
794 mapping = arm_iommu_create_mapping(&platform_bus_type,
796 if (IS_ERR(mapping)) {
797 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
798 ret = PTR_ERR(mapping);
802 mmu->mapping = mapping;
805 /* Attach the ARM VA mapping to the device. */
806 ret = arm_iommu_attach_device(dev, mmu->mapping);
808 dev_err(dev, "Failed to attach device to VA mapping\n");
816 arm_iommu_release_mapping(mmu->mapping);
821 static struct iommu_device *ipmmu_probe_device(struct device *dev)
823 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
826 * Only let through devices that have been verified in xlate()
829 return ERR_PTR(-ENODEV);
834 static void ipmmu_probe_finalize(struct device *dev)
838 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
839 ret = ipmmu_init_arm_mapping(dev);
842 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
845 static void ipmmu_release_device(struct device *dev)
847 arm_iommu_detach_device(dev);
850 static struct iommu_group *ipmmu_find_group(struct device *dev)
852 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
853 struct iommu_group *group;
856 return iommu_group_ref_get(mmu->group);
858 group = iommu_group_alloc();
865 static const struct iommu_ops ipmmu_ops = {
866 .domain_alloc = ipmmu_domain_alloc,
867 .domain_free = ipmmu_domain_free,
868 .attach_dev = ipmmu_attach_device,
869 .detach_dev = ipmmu_detach_device,
871 .unmap = ipmmu_unmap,
872 .flush_iotlb_all = ipmmu_flush_iotlb_all,
873 .iotlb_sync = ipmmu_iotlb_sync,
874 .iova_to_phys = ipmmu_iova_to_phys,
875 .probe_device = ipmmu_probe_device,
876 .release_device = ipmmu_release_device,
877 .probe_finalize = ipmmu_probe_finalize,
878 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
879 ? generic_device_group : ipmmu_find_group,
880 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
881 .of_xlate = ipmmu_of_xlate,
884 /* -----------------------------------------------------------------------------
885 * Probe/remove and init
888 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
892 /* Disable all contexts. */
893 for (i = 0; i < mmu->num_ctx; ++i)
894 ipmmu_ctx_write(mmu, i, IMCTR, 0);
897 static const struct ipmmu_features ipmmu_features_default = {
898 .use_ns_alias_offset = true,
899 .has_cache_leaf_nodes = false,
900 .number_of_contexts = 1, /* software only tested with one context */
902 .setup_imbuscr = true,
903 .twobit_imttbcr_sl0 = false,
904 .reserved_context = false,
906 .ctx_offset_base = 0,
907 .ctx_offset_stride = 0x40,
908 .utlb_offset_base = 0,
911 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
912 .use_ns_alias_offset = false,
913 .has_cache_leaf_nodes = true,
914 .number_of_contexts = 8,
916 .setup_imbuscr = false,
917 .twobit_imttbcr_sl0 = true,
918 .reserved_context = true,
919 .cache_snoop = false,
920 .ctx_offset_base = 0,
921 .ctx_offset_stride = 0x40,
922 .utlb_offset_base = 0,
925 static const struct of_device_id ipmmu_of_ids[] = {
927 .compatible = "renesas,ipmmu-vmsa",
928 .data = &ipmmu_features_default,
930 .compatible = "renesas,ipmmu-r8a774a1",
931 .data = &ipmmu_features_rcar_gen3,
933 .compatible = "renesas,ipmmu-r8a774b1",
934 .data = &ipmmu_features_rcar_gen3,
936 .compatible = "renesas,ipmmu-r8a774c0",
937 .data = &ipmmu_features_rcar_gen3,
939 .compatible = "renesas,ipmmu-r8a774e1",
940 .data = &ipmmu_features_rcar_gen3,
942 .compatible = "renesas,ipmmu-r8a7795",
943 .data = &ipmmu_features_rcar_gen3,
945 .compatible = "renesas,ipmmu-r8a7796",
946 .data = &ipmmu_features_rcar_gen3,
948 .compatible = "renesas,ipmmu-r8a77961",
949 .data = &ipmmu_features_rcar_gen3,
951 .compatible = "renesas,ipmmu-r8a77965",
952 .data = &ipmmu_features_rcar_gen3,
954 .compatible = "renesas,ipmmu-r8a77970",
955 .data = &ipmmu_features_rcar_gen3,
957 .compatible = "renesas,ipmmu-r8a77990",
958 .data = &ipmmu_features_rcar_gen3,
960 .compatible = "renesas,ipmmu-r8a77995",
961 .data = &ipmmu_features_rcar_gen3,
967 static int ipmmu_probe(struct platform_device *pdev)
969 struct ipmmu_vmsa_device *mmu;
970 struct resource *res;
974 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
976 dev_err(&pdev->dev, "cannot allocate device data\n");
980 mmu->dev = &pdev->dev;
981 spin_lock_init(&mmu->lock);
982 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
983 mmu->features = of_device_get_match_data(&pdev->dev);
984 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
985 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
987 /* Map I/O memory and request IRQ. */
988 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
989 mmu->base = devm_ioremap_resource(&pdev->dev, res);
990 if (IS_ERR(mmu->base))
991 return PTR_ERR(mmu->base);
994 * The IPMMU has two register banks, for secure and non-secure modes.
995 * The bank mapped at the beginning of the IPMMU address space
996 * corresponds to the running mode of the CPU. When running in secure
997 * mode the non-secure register bank is also available at an offset.
999 * Secure mode operation isn't clearly documented and is thus currently
1000 * not implemented in the driver. Furthermore, preliminary tests of
1001 * non-secure operation with the main register bank were not successful.
1002 * Offset the registers base unconditionally to point to the non-secure
1003 * alias space for now.
1005 if (mmu->features->use_ns_alias_offset)
1006 mmu->base += IM_NS_ALIAS_OFFSET;
1008 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1011 * Determine if this IPMMU instance is a root device by checking for
1012 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1014 if (!mmu->features->has_cache_leaf_nodes ||
1015 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1018 mmu->root = ipmmu_find_root();
1021 * Wait until the root device has been registered for sure.
1024 return -EPROBE_DEFER;
1026 /* Root devices have mandatory IRQs */
1027 if (ipmmu_is_root(mmu)) {
1028 irq = platform_get_irq(pdev, 0);
1032 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1033 dev_name(&pdev->dev), mmu);
1035 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1039 ipmmu_device_reset(mmu);
1041 if (mmu->features->reserved_context) {
1042 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1043 set_bit(0, mmu->ctx);
1048 * Register the IPMMU to the IOMMU subsystem in the following cases:
1049 * - R-Car Gen2 IPMMU (all devices registered)
1050 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1052 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1053 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1054 dev_name(&pdev->dev));
1058 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1062 #if defined(CONFIG_IOMMU_DMA)
1063 if (!iommu_present(&platform_bus_type))
1064 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1069 * We can't create the ARM mapping here as it requires the bus to have
1070 * an IOMMU, which only happens when bus_set_iommu() is called in
1071 * ipmmu_init() after the probe function returns.
1074 platform_set_drvdata(pdev, mmu);
1079 static int ipmmu_remove(struct platform_device *pdev)
1081 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1083 iommu_device_sysfs_remove(&mmu->iommu);
1084 iommu_device_unregister(&mmu->iommu);
1086 arm_iommu_release_mapping(mmu->mapping);
1088 ipmmu_device_reset(mmu);
1093 #ifdef CONFIG_PM_SLEEP
1094 static int ipmmu_resume_noirq(struct device *dev)
1096 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1099 /* Reset root MMU and restore contexts */
1100 if (ipmmu_is_root(mmu)) {
1101 ipmmu_device_reset(mmu);
1103 for (i = 0; i < mmu->num_ctx; i++) {
1104 if (!mmu->domains[i])
1107 ipmmu_domain_setup_context(mmu->domains[i]);
1111 /* Re-enable active micro-TLBs */
1112 for (i = 0; i < mmu->features->num_utlbs; i++) {
1113 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1116 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1122 static const struct dev_pm_ops ipmmu_pm = {
1123 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1125 #define DEV_PM_OPS &ipmmu_pm
1127 #define DEV_PM_OPS NULL
1128 #endif /* CONFIG_PM_SLEEP */
1130 static struct platform_driver ipmmu_driver = {
1132 .name = "ipmmu-vmsa",
1133 .of_match_table = of_match_ptr(ipmmu_of_ids),
1136 .probe = ipmmu_probe,
1137 .remove = ipmmu_remove,
1140 static int __init ipmmu_init(void)
1142 struct device_node *np;
1143 static bool setup_done;
1149 np = of_find_matching_node(NULL, ipmmu_of_ids);
1155 ret = platform_driver_register(&ipmmu_driver);
1159 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1160 if (!iommu_present(&platform_bus_type))
1161 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1167 subsys_initcall(ipmmu_init);