iommu/arm-smmu: Report IOMMU_CAP_CACHE_COHERENCY even betterer
[platform/kernel/linux-starfive.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #else
30 #define arm_iommu_create_mapping(...)   NULL
31 #define arm_iommu_attach_device(...)    -ENODEV
32 #define arm_iommu_release_mapping(...)  do {} while (0)
33 #define arm_iommu_detach_device(...)    do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX           16U
37 #define IPMMU_CTX_INVALID       -1
38
39 #define IPMMU_UTLB_MAX          64U
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         unsigned int num_utlbs;
46         bool setup_imbuscr;
47         bool twobit_imttbcr_sl0;
48         bool reserved_context;
49         bool cache_snoop;
50         unsigned int ctx_offset_base;
51         unsigned int ctx_offset_stride;
52         unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56         struct device *dev;
57         void __iomem *base;
58         struct iommu_device iommu;
59         struct ipmmu_vmsa_device *root;
60         const struct ipmmu_features *features;
61         unsigned int num_ctx;
62         spinlock_t lock;                        /* Protects ctx and domains[] */
63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65         s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67         struct iommu_group *group;
68         struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72         struct ipmmu_vmsa_device *mmu;
73         struct iommu_domain io_domain;
74
75         struct io_pgtable_cfg cfg;
76         struct io_pgtable_ops *iop;
77
78         unsigned int context_id;
79         struct mutex mutex;                     /* Protects mappings */
80 };
81
82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89         return dev_iommu_priv_get(dev);
90 }
91
92 #define TLB_LOOP_TIMEOUT                100     /* 100us */
93
94 /* -----------------------------------------------------------------------------
95  * Registers Definition
96  */
97
98 #define IM_NS_ALIAS_OFFSET              0x800
99
100 /* MMU "context" registers */
101 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
102 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
105
106 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
113
114 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
115 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
117
118 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
119 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
120
121 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
122 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
123 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
124 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
125 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
126
127 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
128
129 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
131
132 /* uTLB registers */
133 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
135 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
139
140 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
142 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
143
144 /* -----------------------------------------------------------------------------
145  * Root device handling
146  */
147
148 static struct platform_driver ipmmu_driver;
149
150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152         return mmu->root == mmu;
153 }
154
155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158         struct ipmmu_vmsa_device **rootp = data;
159
160         if (ipmmu_is_root(mmu))
161                 *rootp = mmu;
162
163         return 0;
164 }
165
166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168         struct ipmmu_vmsa_device *root = NULL;
169
170         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171                                       __ipmmu_check_device) == 0 ? root : NULL;
172 }
173
174 /* -----------------------------------------------------------------------------
175  * Read/Write Access
176  */
177
178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180         return ioread32(mmu->base + offset);
181 }
182
183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184                         u32 data)
185 {
186         iowrite32(data, mmu->base + offset);
187 }
188
189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190                                   unsigned int context_id, unsigned int reg)
191 {
192         unsigned int base = mmu->features->ctx_offset_base;
193
194         if (context_id > 7)
195                 base += 0x800 - 8 * 0x40;
196
197         return base + context_id * mmu->features->ctx_offset_stride + reg;
198 }
199
200 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
201                           unsigned int context_id, unsigned int reg)
202 {
203         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
204 }
205
206 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
207                             unsigned int context_id, unsigned int reg, u32 data)
208 {
209         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
210 }
211
212 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
213                                unsigned int reg)
214 {
215         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
216 }
217
218 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
219                                  unsigned int reg, u32 data)
220 {
221         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
222 }
223
224 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
225                                 unsigned int reg, u32 data)
226 {
227         if (domain->mmu != domain->mmu->root)
228                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
229
230         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
231 }
232
233 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
234 {
235         return mmu->features->utlb_offset_base + reg;
236 }
237
238 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
239                                 unsigned int utlb, u32 data)
240 {
241         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
242 }
243
244 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
245                                unsigned int utlb, u32 data)
246 {
247         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
248 }
249
250 /* -----------------------------------------------------------------------------
251  * TLB and microTLB Management
252  */
253
254 /* Wait for any pending TLB invalidations to complete */
255 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
256 {
257         unsigned int count = 0;
258
259         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
260                 cpu_relax();
261                 if (++count == TLB_LOOP_TIMEOUT) {
262                         dev_err_ratelimited(domain->mmu->dev,
263                         "TLB sync timed out -- MMU may be deadlocked\n");
264                         return;
265                 }
266                 udelay(1);
267         }
268 }
269
270 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
271 {
272         u32 reg;
273
274         reg = ipmmu_ctx_read_root(domain, IMCTR);
275         reg |= IMCTR_FLUSH;
276         ipmmu_ctx_write_all(domain, IMCTR, reg);
277
278         ipmmu_tlb_sync(domain);
279 }
280
281 /*
282  * Enable MMU translation for the microTLB.
283  */
284 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
285                               unsigned int utlb)
286 {
287         struct ipmmu_vmsa_device *mmu = domain->mmu;
288
289         /*
290          * TODO: Reference-count the microTLB as several bus masters can be
291          * connected to the same microTLB.
292          */
293
294         /* TODO: What should we set the ASID to ? */
295         ipmmu_imuasid_write(mmu, utlb, 0);
296         /* TODO: Do we need to flush the microTLB ? */
297         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
298                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
299         mmu->utlb_ctx[utlb] = domain->context_id;
300 }
301
302 /*
303  * Disable MMU translation for the microTLB.
304  */
305 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
306                                unsigned int utlb)
307 {
308         struct ipmmu_vmsa_device *mmu = domain->mmu;
309
310         ipmmu_imuctr_write(mmu, utlb, 0);
311         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
312 }
313
314 static void ipmmu_tlb_flush_all(void *cookie)
315 {
316         struct ipmmu_vmsa_domain *domain = cookie;
317
318         ipmmu_tlb_invalidate(domain);
319 }
320
321 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
322                                 size_t granule, void *cookie)
323 {
324         ipmmu_tlb_flush_all(cookie);
325 }
326
327 static const struct iommu_flush_ops ipmmu_flush_ops = {
328         .tlb_flush_all = ipmmu_tlb_flush_all,
329         .tlb_flush_walk = ipmmu_tlb_flush,
330 };
331
332 /* -----------------------------------------------------------------------------
333  * Domain/Context Management
334  */
335
336 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
337                                          struct ipmmu_vmsa_domain *domain)
338 {
339         unsigned long flags;
340         int ret;
341
342         spin_lock_irqsave(&mmu->lock, flags);
343
344         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
345         if (ret != mmu->num_ctx) {
346                 mmu->domains[ret] = domain;
347                 set_bit(ret, mmu->ctx);
348         } else
349                 ret = -EBUSY;
350
351         spin_unlock_irqrestore(&mmu->lock, flags);
352
353         return ret;
354 }
355
356 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
357                                       unsigned int context_id)
358 {
359         unsigned long flags;
360
361         spin_lock_irqsave(&mmu->lock, flags);
362
363         clear_bit(context_id, mmu->ctx);
364         mmu->domains[context_id] = NULL;
365
366         spin_unlock_irqrestore(&mmu->lock, flags);
367 }
368
369 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
370 {
371         u64 ttbr;
372         u32 tmp;
373
374         /* TTBR0 */
375         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
376         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
377         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
378
379         /*
380          * TTBCR
381          * We use long descriptors and allocate the whole 32-bit VA space to
382          * TTBR0.
383          */
384         if (domain->mmu->features->twobit_imttbcr_sl0)
385                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
386         else
387                 tmp = IMTTBCR_SL0_LVL_1;
388
389         if (domain->mmu->features->cache_snoop)
390                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
391                        IMTTBCR_IRGN0_WB_WA;
392
393         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
394
395         /* MAIR0 */
396         ipmmu_ctx_write_root(domain, IMMAIR0,
397                              domain->cfg.arm_lpae_s1_cfg.mair);
398
399         /* IMBUSCR */
400         if (domain->mmu->features->setup_imbuscr)
401                 ipmmu_ctx_write_root(domain, IMBUSCR,
402                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
403                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
404
405         /*
406          * IMSTR
407          * Clear all interrupt flags.
408          */
409         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
410
411         /*
412          * IMCTR
413          * Enable the MMU and interrupt generation. The long-descriptor
414          * translation table format doesn't use TEX remapping. Don't enable AF
415          * software management as we have no use for it. Flush the TLB as
416          * required when modifying the context registers.
417          */
418         ipmmu_ctx_write_all(domain, IMCTR,
419                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
420 }
421
422 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
423 {
424         int ret;
425
426         /*
427          * Allocate the page table operations.
428          *
429          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
430          * access, Long-descriptor format" that the NStable bit being set in a
431          * table descriptor will result in the NStable and NS bits of all child
432          * entries being ignored and considered as being set. The IPMMU seems
433          * not to comply with this, as it generates a secure access page fault
434          * if any of the NStable and NS bits isn't set when running in
435          * non-secure mode.
436          */
437         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
438         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
439         domain->cfg.ias = 32;
440         domain->cfg.oas = 40;
441         domain->cfg.tlb = &ipmmu_flush_ops;
442         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
443         domain->io_domain.geometry.force_aperture = true;
444         /*
445          * TODO: Add support for coherent walk through CCI with DVM and remove
446          * cache handling. For now, delegate it to the io-pgtable code.
447          */
448         domain->cfg.coherent_walk = false;
449         domain->cfg.iommu_dev = domain->mmu->root->dev;
450
451         /*
452          * Find an unused context.
453          */
454         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
455         if (ret < 0)
456                 return ret;
457
458         domain->context_id = ret;
459
460         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
461                                            domain);
462         if (!domain->iop) {
463                 ipmmu_domain_free_context(domain->mmu->root,
464                                           domain->context_id);
465                 return -EINVAL;
466         }
467
468         ipmmu_domain_setup_context(domain);
469         return 0;
470 }
471
472 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
473 {
474         if (!domain->mmu)
475                 return;
476
477         /*
478          * Disable the context. Flush the TLB as required when modifying the
479          * context registers.
480          *
481          * TODO: Is TLB flush really needed ?
482          */
483         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
484         ipmmu_tlb_sync(domain);
485         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
486 }
487
488 /* -----------------------------------------------------------------------------
489  * Fault Handling
490  */
491
492 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
493 {
494         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
495         struct ipmmu_vmsa_device *mmu = domain->mmu;
496         unsigned long iova;
497         u32 status;
498
499         status = ipmmu_ctx_read_root(domain, IMSTR);
500         if (!(status & err_mask))
501                 return IRQ_NONE;
502
503         iova = ipmmu_ctx_read_root(domain, IMELAR);
504         if (IS_ENABLED(CONFIG_64BIT))
505                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
506
507         /*
508          * Clear the error status flags. Unlike traditional interrupt flag
509          * registers that must be cleared by writing 1, this status register
510          * seems to require 0. The error address register must be read before,
511          * otherwise its value will be 0.
512          */
513         ipmmu_ctx_write_root(domain, IMSTR, 0);
514
515         /* Log fatal errors. */
516         if (status & IMSTR_MHIT)
517                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
518                                     iova);
519         if (status & IMSTR_ABORT)
520                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
521                                     iova);
522
523         if (!(status & (IMSTR_PF | IMSTR_TF)))
524                 return IRQ_NONE;
525
526         /*
527          * Try to handle page faults and translation faults.
528          *
529          * TODO: We need to look up the faulty device based on the I/O VA. Use
530          * the IOMMU device for now.
531          */
532         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
533                 return IRQ_HANDLED;
534
535         dev_err_ratelimited(mmu->dev,
536                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
537                             status, iova);
538
539         return IRQ_HANDLED;
540 }
541
542 static irqreturn_t ipmmu_irq(int irq, void *dev)
543 {
544         struct ipmmu_vmsa_device *mmu = dev;
545         irqreturn_t status = IRQ_NONE;
546         unsigned int i;
547         unsigned long flags;
548
549         spin_lock_irqsave(&mmu->lock, flags);
550
551         /*
552          * Check interrupts for all active contexts.
553          */
554         for (i = 0; i < mmu->num_ctx; i++) {
555                 if (!mmu->domains[i])
556                         continue;
557                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
558                         status = IRQ_HANDLED;
559         }
560
561         spin_unlock_irqrestore(&mmu->lock, flags);
562
563         return status;
564 }
565
566 /* -----------------------------------------------------------------------------
567  * IOMMU Operations
568  */
569
570 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
571 {
572         struct ipmmu_vmsa_domain *domain;
573
574         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
575                 return NULL;
576
577         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
578         if (!domain)
579                 return NULL;
580
581         mutex_init(&domain->mutex);
582
583         return &domain->io_domain;
584 }
585
586 static void ipmmu_domain_free(struct iommu_domain *io_domain)
587 {
588         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
589
590         /*
591          * Free the domain resources. We assume that all devices have already
592          * been detached.
593          */
594         ipmmu_domain_destroy_context(domain);
595         free_io_pgtable_ops(domain->iop);
596         kfree(domain);
597 }
598
599 static int ipmmu_attach_device(struct iommu_domain *io_domain,
600                                struct device *dev)
601 {
602         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
603         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
604         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
605         unsigned int i;
606         int ret = 0;
607
608         if (!mmu) {
609                 dev_err(dev, "Cannot attach to IPMMU\n");
610                 return -ENXIO;
611         }
612
613         mutex_lock(&domain->mutex);
614
615         if (!domain->mmu) {
616                 /* The domain hasn't been used yet, initialize it. */
617                 domain->mmu = mmu;
618                 ret = ipmmu_domain_init_context(domain);
619                 if (ret < 0) {
620                         dev_err(dev, "Unable to initialize IPMMU context\n");
621                         domain->mmu = NULL;
622                 } else {
623                         dev_info(dev, "Using IPMMU context %u\n",
624                                  domain->context_id);
625                 }
626         } else if (domain->mmu != mmu) {
627                 /*
628                  * Something is wrong, we can't attach two devices using
629                  * different IOMMUs to the same domain.
630                  */
631                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
632                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
633                 ret = -EINVAL;
634         } else
635                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
636
637         mutex_unlock(&domain->mutex);
638
639         if (ret < 0)
640                 return ret;
641
642         for (i = 0; i < fwspec->num_ids; ++i)
643                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
644
645         return 0;
646 }
647
648 static void ipmmu_detach_device(struct iommu_domain *io_domain,
649                                 struct device *dev)
650 {
651         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
652         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
653         unsigned int i;
654
655         for (i = 0; i < fwspec->num_ids; ++i)
656                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
657
658         /*
659          * TODO: Optimize by disabling the context when no device is attached.
660          */
661 }
662
663 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
664                      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
665 {
666         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
667
668         if (!domain)
669                 return -ENODEV;
670
671         return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
672 }
673
674 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
675                           size_t size, struct iommu_iotlb_gather *gather)
676 {
677         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
678
679         return domain->iop->unmap(domain->iop, iova, size, gather);
680 }
681
682 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
683 {
684         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
685
686         if (domain->mmu)
687                 ipmmu_tlb_flush_all(domain);
688 }
689
690 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
691                              struct iommu_iotlb_gather *gather)
692 {
693         ipmmu_flush_iotlb_all(io_domain);
694 }
695
696 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
697                                       dma_addr_t iova)
698 {
699         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
700
701         /* TODO: Is locking needed ? */
702
703         return domain->iop->iova_to_phys(domain->iop, iova);
704 }
705
706 static int ipmmu_init_platform_device(struct device *dev,
707                                       struct of_phandle_args *args)
708 {
709         struct platform_device *ipmmu_pdev;
710
711         ipmmu_pdev = of_find_device_by_node(args->np);
712         if (!ipmmu_pdev)
713                 return -ENODEV;
714
715         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
716
717         return 0;
718 }
719
720 static const struct soc_device_attribute soc_needs_opt_in[] = {
721         { .family = "R-Car Gen3", },
722         { .family = "R-Car Gen4", },
723         { .family = "RZ/G2", },
724         { /* sentinel */ }
725 };
726
727 static const struct soc_device_attribute soc_denylist[] = {
728         { .soc_id = "r8a774a1", },
729         { .soc_id = "r8a7795", .revision = "ES1.*" },
730         { .soc_id = "r8a7795", .revision = "ES2.*" },
731         { .soc_id = "r8a7796", },
732         { /* sentinel */ }
733 };
734
735 static const char * const devices_allowlist[] = {
736         "ee100000.mmc",
737         "ee120000.mmc",
738         "ee140000.mmc",
739         "ee160000.mmc"
740 };
741
742 static bool ipmmu_device_is_allowed(struct device *dev)
743 {
744         unsigned int i;
745
746         /*
747          * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
748          * For Other SoCs, this returns true anyway.
749          */
750         if (!soc_device_match(soc_needs_opt_in))
751                 return true;
752
753         /* Check whether this SoC can use the IPMMU correctly or not */
754         if (soc_device_match(soc_denylist))
755                 return false;
756
757         /* Check whether this device can work with the IPMMU */
758         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
759                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
760                         return true;
761         }
762
763         /* Otherwise, do not allow use of IPMMU */
764         return false;
765 }
766
767 static int ipmmu_of_xlate(struct device *dev,
768                           struct of_phandle_args *spec)
769 {
770         if (!ipmmu_device_is_allowed(dev))
771                 return -ENODEV;
772
773         iommu_fwspec_add_ids(dev, spec->args, 1);
774
775         /* Initialize once - xlate() will call multiple times */
776         if (to_ipmmu(dev))
777                 return 0;
778
779         return ipmmu_init_platform_device(dev, spec);
780 }
781
782 static int ipmmu_init_arm_mapping(struct device *dev)
783 {
784         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
785         int ret;
786
787         /*
788          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
789          * VAs. This will allocate a corresponding IOMMU domain.
790          *
791          * TODO:
792          * - Create one mapping per context (TLB).
793          * - Make the mapping size configurable ? We currently use a 2GB mapping
794          *   at a 1GB offset to ensure that NULL VAs will fault.
795          */
796         if (!mmu->mapping) {
797                 struct dma_iommu_mapping *mapping;
798
799                 mapping = arm_iommu_create_mapping(&platform_bus_type,
800                                                    SZ_1G, SZ_2G);
801                 if (IS_ERR(mapping)) {
802                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
803                         ret = PTR_ERR(mapping);
804                         goto error;
805                 }
806
807                 mmu->mapping = mapping;
808         }
809
810         /* Attach the ARM VA mapping to the device. */
811         ret = arm_iommu_attach_device(dev, mmu->mapping);
812         if (ret < 0) {
813                 dev_err(dev, "Failed to attach device to VA mapping\n");
814                 goto error;
815         }
816
817         return 0;
818
819 error:
820         if (mmu->mapping)
821                 arm_iommu_release_mapping(mmu->mapping);
822
823         return ret;
824 }
825
826 static struct iommu_device *ipmmu_probe_device(struct device *dev)
827 {
828         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
829
830         /*
831          * Only let through devices that have been verified in xlate()
832          */
833         if (!mmu)
834                 return ERR_PTR(-ENODEV);
835
836         return &mmu->iommu;
837 }
838
839 static void ipmmu_probe_finalize(struct device *dev)
840 {
841         int ret = 0;
842
843         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
844                 ret = ipmmu_init_arm_mapping(dev);
845
846         if (ret)
847                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
848 }
849
850 static void ipmmu_release_device(struct device *dev)
851 {
852         arm_iommu_detach_device(dev);
853 }
854
855 static struct iommu_group *ipmmu_find_group(struct device *dev)
856 {
857         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
858         struct iommu_group *group;
859
860         if (mmu->group)
861                 return iommu_group_ref_get(mmu->group);
862
863         group = iommu_group_alloc();
864         if (!IS_ERR(group))
865                 mmu->group = group;
866
867         return group;
868 }
869
870 static const struct iommu_ops ipmmu_ops = {
871         .domain_alloc = ipmmu_domain_alloc,
872         .probe_device = ipmmu_probe_device,
873         .release_device = ipmmu_release_device,
874         .probe_finalize = ipmmu_probe_finalize,
875         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
876                         ? generic_device_group : ipmmu_find_group,
877         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
878         .of_xlate = ipmmu_of_xlate,
879         .default_domain_ops = &(const struct iommu_domain_ops) {
880                 .attach_dev     = ipmmu_attach_device,
881                 .detach_dev     = ipmmu_detach_device,
882                 .map            = ipmmu_map,
883                 .unmap          = ipmmu_unmap,
884                 .flush_iotlb_all = ipmmu_flush_iotlb_all,
885                 .iotlb_sync     = ipmmu_iotlb_sync,
886                 .iova_to_phys   = ipmmu_iova_to_phys,
887                 .free           = ipmmu_domain_free,
888         }
889 };
890
891 /* -----------------------------------------------------------------------------
892  * Probe/remove and init
893  */
894
895 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
896 {
897         unsigned int i;
898
899         /* Disable all contexts. */
900         for (i = 0; i < mmu->num_ctx; ++i)
901                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
902 }
903
904 static const struct ipmmu_features ipmmu_features_default = {
905         .use_ns_alias_offset = true,
906         .has_cache_leaf_nodes = false,
907         .number_of_contexts = 1, /* software only tested with one context */
908         .num_utlbs = 32,
909         .setup_imbuscr = true,
910         .twobit_imttbcr_sl0 = false,
911         .reserved_context = false,
912         .cache_snoop = true,
913         .ctx_offset_base = 0,
914         .ctx_offset_stride = 0x40,
915         .utlb_offset_base = 0,
916 };
917
918 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
919         .use_ns_alias_offset = false,
920         .has_cache_leaf_nodes = true,
921         .number_of_contexts = 8,
922         .num_utlbs = 48,
923         .setup_imbuscr = false,
924         .twobit_imttbcr_sl0 = true,
925         .reserved_context = true,
926         .cache_snoop = false,
927         .ctx_offset_base = 0,
928         .ctx_offset_stride = 0x40,
929         .utlb_offset_base = 0,
930 };
931
932 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
933         .use_ns_alias_offset = false,
934         .has_cache_leaf_nodes = true,
935         .number_of_contexts = 16,
936         .num_utlbs = 64,
937         .setup_imbuscr = false,
938         .twobit_imttbcr_sl0 = true,
939         .reserved_context = true,
940         .cache_snoop = false,
941         .ctx_offset_base = 0x10000,
942         .ctx_offset_stride = 0x1040,
943         .utlb_offset_base = 0x3000,
944 };
945
946 static const struct of_device_id ipmmu_of_ids[] = {
947         {
948                 .compatible = "renesas,ipmmu-vmsa",
949                 .data = &ipmmu_features_default,
950         }, {
951                 .compatible = "renesas,ipmmu-r8a774a1",
952                 .data = &ipmmu_features_rcar_gen3,
953         }, {
954                 .compatible = "renesas,ipmmu-r8a774b1",
955                 .data = &ipmmu_features_rcar_gen3,
956         }, {
957                 .compatible = "renesas,ipmmu-r8a774c0",
958                 .data = &ipmmu_features_rcar_gen3,
959         }, {
960                 .compatible = "renesas,ipmmu-r8a774e1",
961                 .data = &ipmmu_features_rcar_gen3,
962         }, {
963                 .compatible = "renesas,ipmmu-r8a7795",
964                 .data = &ipmmu_features_rcar_gen3,
965         }, {
966                 .compatible = "renesas,ipmmu-r8a7796",
967                 .data = &ipmmu_features_rcar_gen3,
968         }, {
969                 .compatible = "renesas,ipmmu-r8a77961",
970                 .data = &ipmmu_features_rcar_gen3,
971         }, {
972                 .compatible = "renesas,ipmmu-r8a77965",
973                 .data = &ipmmu_features_rcar_gen3,
974         }, {
975                 .compatible = "renesas,ipmmu-r8a77970",
976                 .data = &ipmmu_features_rcar_gen3,
977         }, {
978                 .compatible = "renesas,ipmmu-r8a77980",
979                 .data = &ipmmu_features_rcar_gen3,
980         }, {
981                 .compatible = "renesas,ipmmu-r8a77990",
982                 .data = &ipmmu_features_rcar_gen3,
983         }, {
984                 .compatible = "renesas,ipmmu-r8a77995",
985                 .data = &ipmmu_features_rcar_gen3,
986         }, {
987                 .compatible = "renesas,ipmmu-r8a779a0",
988                 .data = &ipmmu_features_rcar_gen4,
989         }, {
990                 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
991                 .data = &ipmmu_features_rcar_gen4,
992         }, {
993                 /* Terminator */
994         },
995 };
996
997 static int ipmmu_probe(struct platform_device *pdev)
998 {
999         struct ipmmu_vmsa_device *mmu;
1000         struct resource *res;
1001         int irq;
1002         int ret;
1003
1004         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1005         if (!mmu) {
1006                 dev_err(&pdev->dev, "cannot allocate device data\n");
1007                 return -ENOMEM;
1008         }
1009
1010         mmu->dev = &pdev->dev;
1011         spin_lock_init(&mmu->lock);
1012         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1013         mmu->features = of_device_get_match_data(&pdev->dev);
1014         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1015         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1016         if (ret)
1017                 return ret;
1018
1019         /* Map I/O memory and request IRQ. */
1020         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1021         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1022         if (IS_ERR(mmu->base))
1023                 return PTR_ERR(mmu->base);
1024
1025         /*
1026          * The IPMMU has two register banks, for secure and non-secure modes.
1027          * The bank mapped at the beginning of the IPMMU address space
1028          * corresponds to the running mode of the CPU. When running in secure
1029          * mode the non-secure register bank is also available at an offset.
1030          *
1031          * Secure mode operation isn't clearly documented and is thus currently
1032          * not implemented in the driver. Furthermore, preliminary tests of
1033          * non-secure operation with the main register bank were not successful.
1034          * Offset the registers base unconditionally to point to the non-secure
1035          * alias space for now.
1036          */
1037         if (mmu->features->use_ns_alias_offset)
1038                 mmu->base += IM_NS_ALIAS_OFFSET;
1039
1040         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1041
1042         /*
1043          * Determine if this IPMMU instance is a root device by checking for
1044          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1045          */
1046         if (!mmu->features->has_cache_leaf_nodes ||
1047             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1048                 mmu->root = mmu;
1049         else
1050                 mmu->root = ipmmu_find_root();
1051
1052         /*
1053          * Wait until the root device has been registered for sure.
1054          */
1055         if (!mmu->root)
1056                 return -EPROBE_DEFER;
1057
1058         /* Root devices have mandatory IRQs */
1059         if (ipmmu_is_root(mmu)) {
1060                 irq = platform_get_irq(pdev, 0);
1061                 if (irq < 0)
1062                         return irq;
1063
1064                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1065                                        dev_name(&pdev->dev), mmu);
1066                 if (ret < 0) {
1067                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1068                         return ret;
1069                 }
1070
1071                 ipmmu_device_reset(mmu);
1072
1073                 if (mmu->features->reserved_context) {
1074                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1075                         set_bit(0, mmu->ctx);
1076                 }
1077         }
1078
1079         /*
1080          * Register the IPMMU to the IOMMU subsystem in the following cases:
1081          * - R-Car Gen2 IPMMU (all devices registered)
1082          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1083          */
1084         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1085                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1086                                              dev_name(&pdev->dev));
1087                 if (ret)
1088                         return ret;
1089
1090                 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1091                 if (ret)
1092                         return ret;
1093         }
1094
1095         /*
1096          * We can't create the ARM mapping here as it requires the bus to have
1097          * an IOMMU, which only happens when bus_set_iommu() is called in
1098          * ipmmu_init() after the probe function returns.
1099          */
1100
1101         platform_set_drvdata(pdev, mmu);
1102
1103         return 0;
1104 }
1105
1106 static int ipmmu_remove(struct platform_device *pdev)
1107 {
1108         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1109
1110         iommu_device_sysfs_remove(&mmu->iommu);
1111         iommu_device_unregister(&mmu->iommu);
1112
1113         arm_iommu_release_mapping(mmu->mapping);
1114
1115         ipmmu_device_reset(mmu);
1116
1117         return 0;
1118 }
1119
1120 #ifdef CONFIG_PM_SLEEP
1121 static int ipmmu_resume_noirq(struct device *dev)
1122 {
1123         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1124         unsigned int i;
1125
1126         /* Reset root MMU and restore contexts */
1127         if (ipmmu_is_root(mmu)) {
1128                 ipmmu_device_reset(mmu);
1129
1130                 for (i = 0; i < mmu->num_ctx; i++) {
1131                         if (!mmu->domains[i])
1132                                 continue;
1133
1134                         ipmmu_domain_setup_context(mmu->domains[i]);
1135                 }
1136         }
1137
1138         /* Re-enable active micro-TLBs */
1139         for (i = 0; i < mmu->features->num_utlbs; i++) {
1140                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1141                         continue;
1142
1143                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1144         }
1145
1146         return 0;
1147 }
1148
1149 static const struct dev_pm_ops ipmmu_pm  = {
1150         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1151 };
1152 #define DEV_PM_OPS      &ipmmu_pm
1153 #else
1154 #define DEV_PM_OPS      NULL
1155 #endif /* CONFIG_PM_SLEEP */
1156
1157 static struct platform_driver ipmmu_driver = {
1158         .driver = {
1159                 .name = "ipmmu-vmsa",
1160                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1161                 .pm = DEV_PM_OPS,
1162         },
1163         .probe = ipmmu_probe,
1164         .remove = ipmmu_remove,
1165 };
1166 builtin_platform_driver(ipmmu_driver);