2 * Copyright © 2006-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
21 #define pr_fmt(fmt) "DMAR: " fmt
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
53 #include "irq_remapping.h"
55 #define ROOT_SIZE VTD_PAGE_SIZE
56 #define CONTEXT_SIZE VTD_PAGE_SIZE
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
63 #define IOAPIC_RANGE_START (0xfee00000)
64 #define IOAPIC_RANGE_END (0xfeefffff)
65 #define IOVA_START_ADDR (0x1000)
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
72 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN (1)
84 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
110 static inline int agaw_to_level(int agaw)
115 static inline int agaw_to_width(int agaw)
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
120 static inline int width_to_agaw(int width)
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
125 static inline unsigned int level_to_offset_bits(int level)
127 return (level - 1) * LEVEL_STRIDE;
130 static inline int pfn_level_offset(unsigned long pfn, int level)
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
135 static inline unsigned long level_mask(int level)
137 return -1UL << level_to_offset_bits(level);
140 static inline unsigned long level_size(int level)
142 return 1UL << level_to_offset_bits(level);
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
147 return (pfn + level_size(level) - 1) & level_mask(level);
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
168 return mm_to_dma_pfn(page_to_pfn(pg));
170 static inline unsigned long virt_to_dma_pfn(void *p)
172 return page_to_dma_pfn(virt_to_page(p));
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
185 static int force_on = 0;
186 int intel_iommu_tboot_noforce;
191 * 12-63: Context Ptr (12 - (haw-1))
198 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
201 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
204 static phys_addr_t root_entry_lctp(struct root_entry *re)
209 return re->lo & VTD_PAGE_MASK;
213 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
216 static phys_addr_t root_entry_uctp(struct root_entry *re)
221 return re->hi & VTD_PAGE_MASK;
226 * 1: fault processing disable
227 * 2-3: translation type
228 * 12-63: address space root
234 struct context_entry {
239 static inline void context_clear_pasid_enable(struct context_entry *context)
241 context->lo &= ~(1ULL << 11);
244 static inline bool context_pasid_enabled(struct context_entry *context)
246 return !!(context->lo & (1ULL << 11));
249 static inline void context_set_copied(struct context_entry *context)
251 context->hi |= (1ull << 3);
254 static inline bool context_copied(struct context_entry *context)
256 return !!(context->hi & (1ULL << 3));
259 static inline bool __context_present(struct context_entry *context)
261 return (context->lo & 1);
264 static inline bool context_present(struct context_entry *context)
266 return context_pasid_enabled(context) ?
267 __context_present(context) :
268 __context_present(context) && !context_copied(context);
271 static inline void context_set_present(struct context_entry *context)
276 static inline void context_set_fault_enable(struct context_entry *context)
278 context->lo &= (((u64)-1) << 2) | 1;
281 static inline void context_set_translation_type(struct context_entry *context,
284 context->lo &= (((u64)-1) << 4) | 3;
285 context->lo |= (value & 3) << 2;
288 static inline void context_set_address_root(struct context_entry *context,
291 context->lo &= ~VTD_PAGE_MASK;
292 context->lo |= value & VTD_PAGE_MASK;
295 static inline void context_set_address_width(struct context_entry *context,
298 context->hi |= value & 7;
301 static inline void context_set_domain_id(struct context_entry *context,
304 context->hi |= (value & ((1 << 16) - 1)) << 8;
307 static inline int context_domain_id(struct context_entry *c)
309 return((c->hi >> 8) & 0xffff);
312 static inline void context_clear_entry(struct context_entry *context)
325 * 12-63: Host physcial address
331 static inline void dma_clear_pte(struct dma_pte *pte)
336 static inline u64 dma_pte_addr(struct dma_pte *pte)
339 return pte->val & VTD_PAGE_MASK;
341 /* Must have a full atomic 64-bit read */
342 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
346 static inline bool dma_pte_present(struct dma_pte *pte)
348 return (pte->val & 3) != 0;
351 static inline bool dma_pte_superpage(struct dma_pte *pte)
353 return (pte->val & DMA_PTE_LARGE_PAGE);
356 static inline int first_pte_in_page(struct dma_pte *pte)
358 return !((unsigned long)pte & ~VTD_PAGE_MASK);
362 * This domain is a statically identity mapping domain.
363 * 1. This domain creats a static 1:1 mapping to all usable memory.
364 * 2. It maps to each iommu if successful.
365 * 3. Each iommu mapps to this domain if successful.
367 static struct dmar_domain *si_domain;
368 static int hw_pass_through = 1;
371 * Domain represents a virtual machine, more than one devices
372 * across iommus may be owned in one domain, e.g. kvm guest.
374 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
376 /* si_domain contains mulitple devices */
377 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
379 #define for_each_domain_iommu(idx, domain) \
380 for (idx = 0; idx < g_num_of_iommus; idx++) \
381 if (domain->iommu_refcnt[idx])
384 int nid; /* node id */
386 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
387 /* Refcount of devices per iommu */
390 u16 iommu_did[DMAR_UNITS_SUPPORTED];
391 /* Domain ids per IOMMU. Use u16 since
392 * domain ids are 16 bit wide according
393 * to VT-d spec, section 9.3 */
395 bool has_iotlb_device;
396 struct list_head devices; /* all devices' list */
397 struct iova_domain iovad; /* iova's that belong to this domain */
399 struct dma_pte *pgd; /* virtual address */
400 int gaw; /* max guest address width */
402 /* adjusted guest address width, 0 is level 2 30-bit */
405 int flags; /* flags to find out type of domain */
407 int iommu_coherency;/* indicate coherency of iommu access */
408 int iommu_snooping; /* indicate snooping control feature*/
409 int iommu_count; /* reference count of iommu */
410 int iommu_superpage;/* Level of superpages supported:
411 0 == 4KiB (no superpages), 1 == 2MiB,
412 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
413 u64 max_addr; /* maximum mapped address */
415 struct iommu_domain domain; /* generic domain data structure for
419 /* PCI domain-device relationship */
420 struct device_domain_info {
421 struct list_head link; /* link to domain siblings */
422 struct list_head global; /* link to global list */
423 u8 bus; /* PCI bus number */
424 u8 devfn; /* PCI devfn number */
425 u8 pasid_supported:3;
432 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
433 struct intel_iommu *iommu; /* IOMMU used by this device */
434 struct dmar_domain *domain; /* pointer to domain */
437 struct dmar_rmrr_unit {
438 struct list_head list; /* list of rmrr units */
439 struct acpi_dmar_header *hdr; /* ACPI header */
440 u64 base_address; /* reserved base address*/
441 u64 end_address; /* reserved end address */
442 struct dmar_dev_scope *devices; /* target devices */
443 int devices_cnt; /* target device count */
444 struct iommu_resv_region *resv; /* reserved region handle */
447 struct dmar_atsr_unit {
448 struct list_head list; /* list of ATSR units */
449 struct acpi_dmar_header *hdr; /* ACPI header */
450 struct dmar_dev_scope *devices; /* target devices */
451 int devices_cnt; /* target device count */
452 u8 include_all:1; /* include all ports */
455 static LIST_HEAD(dmar_atsr_units);
456 static LIST_HEAD(dmar_rmrr_units);
458 #define for_each_rmrr_units(rmrr) \
459 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
461 /* bitmap for indexing intel_iommus */
462 static int g_num_of_iommus;
464 static void domain_exit(struct dmar_domain *domain);
465 static void domain_remove_dev_info(struct dmar_domain *domain);
466 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
468 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
469 static void domain_context_clear(struct intel_iommu *iommu,
471 static int domain_detach_iommu(struct dmar_domain *domain,
472 struct intel_iommu *iommu);
474 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
475 int dmar_disabled = 0;
477 int dmar_disabled = 1;
478 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
480 int intel_iommu_enabled = 0;
481 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
483 static int dmar_map_gfx = 1;
484 static int dmar_forcedac;
485 static int intel_iommu_strict;
486 static int intel_iommu_superpage = 1;
487 static int intel_iommu_ecs = 1;
488 static int intel_iommu_pasid28;
489 static int iommu_identity_mapping;
491 #define IDENTMAP_ALL 1
492 #define IDENTMAP_GFX 2
493 #define IDENTMAP_AZALIA 4
495 /* Broadwell and Skylake have broken ECS support — normal so-called "second
496 * level" translation of DMA requests-without-PASID doesn't actually happen
497 * unless you also set the NESTE bit in an extended context-entry. Which of
498 * course means that SVM doesn't work because it's trying to do nested
499 * translation of the physical addresses it finds in the process page tables,
500 * through the IOVA->phys mapping found in the "second level" page tables.
502 * The VT-d specification was retroactively changed to change the definition
503 * of the capability bits and pretend that Broadwell/Skylake never happened...
504 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
505 * for some reason it was the PASID capability bit which was redefined (from
506 * bit 28 on BDW/SKL to bit 40 in future).
508 * So our test for ECS needs to eschew those implementations which set the old
509 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
510 * Unless we are working around the 'pasid28' limitations, that is, by putting
511 * the device into passthrough mode for normal DMA and thus masking the bug.
513 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
514 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
515 /* PASID support is thus enabled if ECS is enabled and *either* of the old
516 * or new capability bits are set. */
517 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
518 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
520 int intel_iommu_gfx_mapped;
521 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
523 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
524 static DEFINE_SPINLOCK(device_domain_lock);
525 static LIST_HEAD(device_domain_list);
527 const struct iommu_ops intel_iommu_ops;
529 static bool translation_pre_enabled(struct intel_iommu *iommu)
531 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
534 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
536 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
539 static void init_translation_status(struct intel_iommu *iommu)
543 gsts = readl(iommu->reg + DMAR_GSTS_REG);
544 if (gsts & DMA_GSTS_TES)
545 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
548 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
549 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
551 return container_of(dom, struct dmar_domain, domain);
554 static int __init intel_iommu_setup(char *str)
559 if (!strncmp(str, "on", 2)) {
561 pr_info("IOMMU enabled\n");
562 } else if (!strncmp(str, "off", 3)) {
564 pr_info("IOMMU disabled\n");
565 } else if (!strncmp(str, "igfx_off", 8)) {
567 pr_info("Disable GFX device mapping\n");
568 } else if (!strncmp(str, "forcedac", 8)) {
569 pr_info("Forcing DAC for PCI devices\n");
571 } else if (!strncmp(str, "strict", 6)) {
572 pr_info("Disable batched IOTLB flush\n");
573 intel_iommu_strict = 1;
574 } else if (!strncmp(str, "sp_off", 6)) {
575 pr_info("Disable supported super page\n");
576 intel_iommu_superpage = 0;
577 } else if (!strncmp(str, "ecs_off", 7)) {
579 "Intel-IOMMU: disable extended context table support\n");
581 } else if (!strncmp(str, "pasid28", 7)) {
583 "Intel-IOMMU: enable pre-production PASID support\n");
584 intel_iommu_pasid28 = 1;
585 iommu_identity_mapping |= IDENTMAP_GFX;
586 } else if (!strncmp(str, "tboot_noforce", 13)) {
588 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
589 intel_iommu_tboot_noforce = 1;
592 str += strcspn(str, ",");
598 __setup("intel_iommu=", intel_iommu_setup);
600 static struct kmem_cache *iommu_domain_cache;
601 static struct kmem_cache *iommu_devinfo_cache;
603 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
605 struct dmar_domain **domains;
608 domains = iommu->domains[idx];
612 return domains[did & 0xff];
615 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
616 struct dmar_domain *domain)
618 struct dmar_domain **domains;
621 if (!iommu->domains[idx]) {
622 size_t size = 256 * sizeof(struct dmar_domain *);
623 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
626 domains = iommu->domains[idx];
627 if (WARN_ON(!domains))
630 domains[did & 0xff] = domain;
633 static inline void *alloc_pgtable_page(int node)
638 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
640 vaddr = page_address(page);
644 static inline void free_pgtable_page(void *vaddr)
646 free_page((unsigned long)vaddr);
649 static inline void *alloc_domain_mem(void)
651 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
654 static void free_domain_mem(void *vaddr)
656 kmem_cache_free(iommu_domain_cache, vaddr);
659 static inline void * alloc_devinfo_mem(void)
661 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
664 static inline void free_devinfo_mem(void *vaddr)
666 kmem_cache_free(iommu_devinfo_cache, vaddr);
669 static inline int domain_type_is_vm(struct dmar_domain *domain)
671 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
674 static inline int domain_type_is_si(struct dmar_domain *domain)
676 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
679 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
681 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
682 DOMAIN_FLAG_STATIC_IDENTITY);
685 static inline int domain_pfn_supported(struct dmar_domain *domain,
688 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
690 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
693 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
698 sagaw = cap_sagaw(iommu->cap);
699 for (agaw = width_to_agaw(max_gaw);
701 if (test_bit(agaw, &sagaw))
709 * Calculate max SAGAW for each iommu.
711 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
713 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
717 * calculate agaw for each iommu.
718 * "SAGAW" may be different across iommus, use a default agaw, and
719 * get a supported less agaw for iommus that don't support the default agaw.
721 int iommu_calculate_agaw(struct intel_iommu *iommu)
723 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
726 /* This functionin only returns single iommu in a domain */
727 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
731 /* si_domain and vm domain should not get here. */
732 BUG_ON(domain_type_is_vm_or_si(domain));
733 for_each_domain_iommu(iommu_id, domain)
736 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
739 return g_iommus[iommu_id];
742 static void domain_update_iommu_coherency(struct dmar_domain *domain)
744 struct dmar_drhd_unit *drhd;
745 struct intel_iommu *iommu;
749 domain->iommu_coherency = 1;
751 for_each_domain_iommu(i, domain) {
753 if (!ecap_coherent(g_iommus[i]->ecap)) {
754 domain->iommu_coherency = 0;
761 /* No hardware attached; use lowest common denominator */
763 for_each_active_iommu(iommu, drhd) {
764 if (!ecap_coherent(iommu->ecap)) {
765 domain->iommu_coherency = 0;
772 static int domain_update_iommu_snooping(struct intel_iommu *skip)
774 struct dmar_drhd_unit *drhd;
775 struct intel_iommu *iommu;
779 for_each_active_iommu(iommu, drhd) {
781 if (!ecap_sc_support(iommu->ecap)) {
792 static int domain_update_iommu_superpage(struct intel_iommu *skip)
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
798 if (!intel_iommu_superpage) {
802 /* set iommu_superpage to the smallest common denominator */
804 for_each_active_iommu(iommu, drhd) {
806 mask &= cap_super_page_val(iommu->cap);
816 /* Some capabilities may be different across iommus */
817 static void domain_update_iommu_cap(struct dmar_domain *domain)
819 domain_update_iommu_coherency(domain);
820 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
821 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
824 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
825 u8 bus, u8 devfn, int alloc)
827 struct root_entry *root = &iommu->root_entry[bus];
828 struct context_entry *context;
832 if (ecs_enabled(iommu)) {
840 context = phys_to_virt(*entry & VTD_PAGE_MASK);
842 unsigned long phy_addr;
846 context = alloc_pgtable_page(iommu->node);
850 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
851 phy_addr = virt_to_phys((void *)context);
852 *entry = phy_addr | 1;
853 __iommu_flush_cache(iommu, entry, sizeof(*entry));
855 return &context[devfn];
858 static int iommu_dummy(struct device *dev)
860 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
863 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
865 struct dmar_drhd_unit *drhd = NULL;
866 struct intel_iommu *iommu;
868 struct pci_dev *ptmp, *pdev = NULL;
872 if (iommu_dummy(dev))
875 if (dev_is_pci(dev)) {
876 struct pci_dev *pf_pdev;
878 pdev = to_pci_dev(dev);
881 /* VMD child devices currently cannot be handled individually */
882 if (is_vmd(pdev->bus))
886 /* VFs aren't listed in scope tables; we need to look up
887 * the PF instead to find the IOMMU. */
888 pf_pdev = pci_physfn(pdev);
890 segment = pci_domain_nr(pdev->bus);
891 } else if (has_acpi_companion(dev))
892 dev = &ACPI_COMPANION(dev)->dev;
895 for_each_active_iommu(iommu, drhd) {
896 if (pdev && segment != drhd->segment)
899 for_each_active_dev_scope(drhd->devices,
900 drhd->devices_cnt, i, tmp) {
902 /* For a VF use its original BDF# not that of the PF
903 * which we used for the IOMMU lookup. Strictly speaking
904 * we could do this for all PCI devices; we only need to
905 * get the BDF# from the scope table for ACPI matches. */
906 if (pdev && pdev->is_virtfn)
909 *bus = drhd->devices[i].bus;
910 *devfn = drhd->devices[i].devfn;
914 if (!pdev || !dev_is_pci(tmp))
917 ptmp = to_pci_dev(tmp);
918 if (ptmp->subordinate &&
919 ptmp->subordinate->number <= pdev->bus->number &&
920 ptmp->subordinate->busn_res.end >= pdev->bus->number)
924 if (pdev && drhd->include_all) {
926 *bus = pdev->bus->number;
927 *devfn = pdev->devfn;
938 static void domain_flush_cache(struct dmar_domain *domain,
939 void *addr, int size)
941 if (!domain->iommu_coherency)
942 clflush_cache_range(addr, size);
945 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
947 struct context_entry *context;
951 spin_lock_irqsave(&iommu->lock, flags);
952 context = iommu_context_addr(iommu, bus, devfn, 0);
954 ret = context_present(context);
955 spin_unlock_irqrestore(&iommu->lock, flags);
959 static void free_context_table(struct intel_iommu *iommu)
963 struct context_entry *context;
965 spin_lock_irqsave(&iommu->lock, flags);
966 if (!iommu->root_entry) {
969 for (i = 0; i < ROOT_ENTRY_NR; i++) {
970 context = iommu_context_addr(iommu, i, 0, 0);
972 free_pgtable_page(context);
974 if (!ecs_enabled(iommu))
977 context = iommu_context_addr(iommu, i, 0x80, 0);
979 free_pgtable_page(context);
982 free_pgtable_page(iommu->root_entry);
983 iommu->root_entry = NULL;
985 spin_unlock_irqrestore(&iommu->lock, flags);
988 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
989 unsigned long pfn, int *target_level)
991 struct dma_pte *parent, *pte = NULL;
992 int level = agaw_to_level(domain->agaw);
995 BUG_ON(!domain->pgd);
997 if (!domain_pfn_supported(domain, pfn))
998 /* Address beyond IOMMU's addressing capabilities. */
1001 parent = domain->pgd;
1006 offset = pfn_level_offset(pfn, level);
1007 pte = &parent[offset];
1008 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1010 if (level == *target_level)
1013 if (!dma_pte_present(pte)) {
1016 tmp_page = alloc_pgtable_page(domain->nid);
1021 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1022 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1023 if (cmpxchg64(&pte->val, 0ULL, pteval))
1024 /* Someone else set it while we were thinking; use theirs. */
1025 free_pgtable_page(tmp_page);
1027 domain_flush_cache(domain, pte, sizeof(*pte));
1032 parent = phys_to_virt(dma_pte_addr(pte));
1037 *target_level = level;
1043 /* return address's pte at specific level */
1044 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1046 int level, int *large_page)
1048 struct dma_pte *parent, *pte = NULL;
1049 int total = agaw_to_level(domain->agaw);
1052 parent = domain->pgd;
1053 while (level <= total) {
1054 offset = pfn_level_offset(pfn, total);
1055 pte = &parent[offset];
1059 if (!dma_pte_present(pte)) {
1060 *large_page = total;
1064 if (dma_pte_superpage(pte)) {
1065 *large_page = total;
1069 parent = phys_to_virt(dma_pte_addr(pte));
1075 /* clear last level pte, a tlb flush should be followed */
1076 static void dma_pte_clear_range(struct dmar_domain *domain,
1077 unsigned long start_pfn,
1078 unsigned long last_pfn)
1080 unsigned int large_page = 1;
1081 struct dma_pte *first_pte, *pte;
1083 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1084 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1085 BUG_ON(start_pfn > last_pfn);
1087 /* we don't need lock here; nobody else touches the iova range */
1090 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1092 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1097 start_pfn += lvl_to_nr_pages(large_page);
1099 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1101 domain_flush_cache(domain, first_pte,
1102 (void *)pte - (void *)first_pte);
1104 } while (start_pfn && start_pfn <= last_pfn);
1107 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1108 int retain_level, struct dma_pte *pte,
1109 unsigned long pfn, unsigned long start_pfn,
1110 unsigned long last_pfn)
1112 pfn = max(start_pfn, pfn);
1113 pte = &pte[pfn_level_offset(pfn, level)];
1116 unsigned long level_pfn;
1117 struct dma_pte *level_pte;
1119 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1122 level_pfn = pfn & level_mask(level);
1123 level_pte = phys_to_virt(dma_pte_addr(pte));
1126 dma_pte_free_level(domain, level - 1, retain_level,
1127 level_pte, level_pfn, start_pfn,
1132 * Free the page table if we're below the level we want to
1133 * retain and the range covers the entire table.
1135 if (level < retain_level && !(start_pfn > level_pfn ||
1136 last_pfn < level_pfn + level_size(level) - 1)) {
1138 domain_flush_cache(domain, pte, sizeof(*pte));
1139 free_pgtable_page(level_pte);
1142 pfn += level_size(level);
1143 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1147 * clear last level (leaf) ptes and free page table pages below the
1148 * level we wish to keep intact.
1150 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1151 unsigned long start_pfn,
1152 unsigned long last_pfn,
1155 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1156 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1157 BUG_ON(start_pfn > last_pfn);
1159 dma_pte_clear_range(domain, start_pfn, last_pfn);
1161 /* We don't need lock here; nobody else touches the iova range */
1162 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1163 domain->pgd, 0, start_pfn, last_pfn);
1166 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1167 free_pgtable_page(domain->pgd);
1172 /* When a page at a given level is being unlinked from its parent, we don't
1173 need to *modify* it at all. All we need to do is make a list of all the
1174 pages which can be freed just as soon as we've flushed the IOTLB and we
1175 know the hardware page-walk will no longer touch them.
1176 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1178 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1179 int level, struct dma_pte *pte,
1180 struct page *freelist)
1184 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1185 pg->freelist = freelist;
1191 pte = page_address(pg);
1193 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1194 freelist = dma_pte_list_pagetables(domain, level - 1,
1197 } while (!first_pte_in_page(pte));
1202 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1203 struct dma_pte *pte, unsigned long pfn,
1204 unsigned long start_pfn,
1205 unsigned long last_pfn,
1206 struct page *freelist)
1208 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1210 pfn = max(start_pfn, pfn);
1211 pte = &pte[pfn_level_offset(pfn, level)];
1214 unsigned long level_pfn;
1216 if (!dma_pte_present(pte))
1219 level_pfn = pfn & level_mask(level);
1221 /* If range covers entire pagetable, free it */
1222 if (start_pfn <= level_pfn &&
1223 last_pfn >= level_pfn + level_size(level) - 1) {
1224 /* These suborbinate page tables are going away entirely. Don't
1225 bother to clear them; we're just going to *free* them. */
1226 if (level > 1 && !dma_pte_superpage(pte))
1227 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1233 } else if (level > 1) {
1234 /* Recurse down into a level that isn't *entirely* obsolete */
1235 freelist = dma_pte_clear_level(domain, level - 1,
1236 phys_to_virt(dma_pte_addr(pte)),
1237 level_pfn, start_pfn, last_pfn,
1241 pfn += level_size(level);
1242 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1245 domain_flush_cache(domain, first_pte,
1246 (void *)++last_pte - (void *)first_pte);
1251 /* We can't just free the pages because the IOMMU may still be walking
1252 the page tables, and may have cached the intermediate levels. The
1253 pages can only be freed after the IOTLB flush has been done. */
1254 static struct page *domain_unmap(struct dmar_domain *domain,
1255 unsigned long start_pfn,
1256 unsigned long last_pfn)
1258 struct page *freelist = NULL;
1260 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1261 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1262 BUG_ON(start_pfn > last_pfn);
1264 /* we don't need lock here; nobody else touches the iova range */
1265 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1266 domain->pgd, 0, start_pfn, last_pfn, NULL);
1269 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1270 struct page *pgd_page = virt_to_page(domain->pgd);
1271 pgd_page->freelist = freelist;
1272 freelist = pgd_page;
1280 static void dma_free_pagelist(struct page *freelist)
1284 while ((pg = freelist)) {
1285 freelist = pg->freelist;
1286 free_pgtable_page(page_address(pg));
1290 static void iova_entry_free(unsigned long data)
1292 struct page *freelist = (struct page *)data;
1294 dma_free_pagelist(freelist);
1297 /* iommu handling */
1298 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1300 struct root_entry *root;
1301 unsigned long flags;
1303 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1305 pr_err("Allocating root entry for %s failed\n",
1310 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1312 spin_lock_irqsave(&iommu->lock, flags);
1313 iommu->root_entry = root;
1314 spin_unlock_irqrestore(&iommu->lock, flags);
1319 static void iommu_set_root_entry(struct intel_iommu *iommu)
1325 addr = virt_to_phys(iommu->root_entry);
1326 if (ecs_enabled(iommu))
1327 addr |= DMA_RTADDR_RTT;
1329 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1330 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1332 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1334 /* Make sure hardware complete it */
1335 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1336 readl, (sts & DMA_GSTS_RTPS), sts);
1338 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1341 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1346 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1349 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1350 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1352 /* Make sure hardware complete it */
1353 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1354 readl, (!(val & DMA_GSTS_WBFS)), val);
1356 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1359 /* return value determine if we need a write buffer flush */
1360 static void __iommu_flush_context(struct intel_iommu *iommu,
1361 u16 did, u16 source_id, u8 function_mask,
1368 case DMA_CCMD_GLOBAL_INVL:
1369 val = DMA_CCMD_GLOBAL_INVL;
1371 case DMA_CCMD_DOMAIN_INVL:
1372 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1374 case DMA_CCMD_DEVICE_INVL:
1375 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1376 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1381 val |= DMA_CCMD_ICC;
1383 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1384 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1386 /* Make sure hardware complete it */
1387 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1388 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1390 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1393 /* return value determine if we need a write buffer flush */
1394 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1395 u64 addr, unsigned int size_order, u64 type)
1397 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1398 u64 val = 0, val_iva = 0;
1402 case DMA_TLB_GLOBAL_FLUSH:
1403 /* global flush doesn't need set IVA_REG */
1404 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1406 case DMA_TLB_DSI_FLUSH:
1407 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1409 case DMA_TLB_PSI_FLUSH:
1410 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1411 /* IH bit is passed in as part of address */
1412 val_iva = size_order | addr;
1417 /* Note: set drain read/write */
1420 * This is probably to be super secure.. Looks like we can
1421 * ignore it without any impact.
1423 if (cap_read_drain(iommu->cap))
1424 val |= DMA_TLB_READ_DRAIN;
1426 if (cap_write_drain(iommu->cap))
1427 val |= DMA_TLB_WRITE_DRAIN;
1429 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1430 /* Note: Only uses first TLB reg currently */
1432 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1433 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1435 /* Make sure hardware complete it */
1436 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1437 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1439 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1441 /* check IOTLB invalidation granularity */
1442 if (DMA_TLB_IAIG(val) == 0)
1443 pr_err("Flush IOTLB failed\n");
1444 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1445 pr_debug("TLB flush request %Lx, actual %Lx\n",
1446 (unsigned long long)DMA_TLB_IIRG(type),
1447 (unsigned long long)DMA_TLB_IAIG(val));
1450 static struct device_domain_info *
1451 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1454 struct device_domain_info *info;
1456 assert_spin_locked(&device_domain_lock);
1461 list_for_each_entry(info, &domain->devices, link)
1462 if (info->iommu == iommu && info->bus == bus &&
1463 info->devfn == devfn) {
1464 if (info->ats_supported && info->dev)
1472 static void domain_update_iotlb(struct dmar_domain *domain)
1474 struct device_domain_info *info;
1475 bool has_iotlb_device = false;
1477 assert_spin_locked(&device_domain_lock);
1479 list_for_each_entry(info, &domain->devices, link) {
1480 struct pci_dev *pdev;
1482 if (!info->dev || !dev_is_pci(info->dev))
1485 pdev = to_pci_dev(info->dev);
1486 if (pdev->ats_enabled) {
1487 has_iotlb_device = true;
1492 domain->has_iotlb_device = has_iotlb_device;
1495 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1497 struct pci_dev *pdev;
1499 assert_spin_locked(&device_domain_lock);
1501 if (!info || !dev_is_pci(info->dev))
1504 pdev = to_pci_dev(info->dev);
1506 #ifdef CONFIG_INTEL_IOMMU_SVM
1507 /* The PCIe spec, in its wisdom, declares that the behaviour of
1508 the device if you enable PASID support after ATS support is
1509 undefined. So always enable PASID support on devices which
1510 have it, even if we can't yet know if we're ever going to
1512 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1513 info->pasid_enabled = 1;
1515 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1516 info->pri_enabled = 1;
1518 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1519 info->ats_enabled = 1;
1520 domain_update_iotlb(info->domain);
1521 info->ats_qdep = pci_ats_queue_depth(pdev);
1525 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1527 struct pci_dev *pdev;
1529 assert_spin_locked(&device_domain_lock);
1531 if (!dev_is_pci(info->dev))
1534 pdev = to_pci_dev(info->dev);
1536 if (info->ats_enabled) {
1537 pci_disable_ats(pdev);
1538 info->ats_enabled = 0;
1539 domain_update_iotlb(info->domain);
1541 #ifdef CONFIG_INTEL_IOMMU_SVM
1542 if (info->pri_enabled) {
1543 pci_disable_pri(pdev);
1544 info->pri_enabled = 0;
1546 if (info->pasid_enabled) {
1547 pci_disable_pasid(pdev);
1548 info->pasid_enabled = 0;
1553 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1554 u64 addr, unsigned mask)
1557 unsigned long flags;
1558 struct device_domain_info *info;
1560 if (!domain->has_iotlb_device)
1563 spin_lock_irqsave(&device_domain_lock, flags);
1564 list_for_each_entry(info, &domain->devices, link) {
1565 if (!info->ats_enabled)
1568 sid = info->bus << 8 | info->devfn;
1569 qdep = info->ats_qdep;
1570 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1572 spin_unlock_irqrestore(&device_domain_lock, flags);
1575 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1576 struct dmar_domain *domain,
1577 unsigned long pfn, unsigned int pages,
1580 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1581 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1582 u16 did = domain->iommu_did[iommu->seq_id];
1589 * Fallback to domain selective flush if no PSI support or the size is
1591 * PSI requires page size to be 2 ^ x, and the base address is naturally
1592 * aligned to the size
1594 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1595 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1598 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1602 * In caching mode, changes of pages from non-present to present require
1603 * flush. However, device IOTLB doesn't need to be flushed in this case.
1605 if (!cap_caching_mode(iommu->cap) || !map)
1606 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1610 static void iommu_flush_iova(struct iova_domain *iovad)
1612 struct dmar_domain *domain;
1615 domain = container_of(iovad, struct dmar_domain, iovad);
1617 for_each_domain_iommu(idx, domain) {
1618 struct intel_iommu *iommu = g_iommus[idx];
1619 u16 did = domain->iommu_did[iommu->seq_id];
1621 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1623 if (!cap_caching_mode(iommu->cap))
1624 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1625 0, MAX_AGAW_PFN_WIDTH);
1629 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1632 unsigned long flags;
1634 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1635 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1636 pmen &= ~DMA_PMEN_EPM;
1637 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1639 /* wait for the protected region status bit to clear */
1640 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1641 readl, !(pmen & DMA_PMEN_PRS), pmen);
1643 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1646 static void iommu_enable_translation(struct intel_iommu *iommu)
1649 unsigned long flags;
1651 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1652 iommu->gcmd |= DMA_GCMD_TE;
1653 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1655 /* Make sure hardware complete it */
1656 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1657 readl, (sts & DMA_GSTS_TES), sts);
1659 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1662 static void iommu_disable_translation(struct intel_iommu *iommu)
1667 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1668 iommu->gcmd &= ~DMA_GCMD_TE;
1669 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1671 /* Make sure hardware complete it */
1672 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1673 readl, (!(sts & DMA_GSTS_TES)), sts);
1675 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1679 static int iommu_init_domains(struct intel_iommu *iommu)
1681 u32 ndomains, nlongs;
1684 ndomains = cap_ndoms(iommu->cap);
1685 pr_debug("%s: Number of Domains supported <%d>\n",
1686 iommu->name, ndomains);
1687 nlongs = BITS_TO_LONGS(ndomains);
1689 spin_lock_init(&iommu->lock);
1691 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1692 if (!iommu->domain_ids) {
1693 pr_err("%s: Allocating domain id array failed\n",
1698 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1699 iommu->domains = kzalloc(size, GFP_KERNEL);
1701 if (iommu->domains) {
1702 size = 256 * sizeof(struct dmar_domain *);
1703 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1706 if (!iommu->domains || !iommu->domains[0]) {
1707 pr_err("%s: Allocating domain array failed\n",
1709 kfree(iommu->domain_ids);
1710 kfree(iommu->domains);
1711 iommu->domain_ids = NULL;
1712 iommu->domains = NULL;
1719 * If Caching mode is set, then invalid translations are tagged
1720 * with domain-id 0, hence we need to pre-allocate it. We also
1721 * use domain-id 0 as a marker for non-allocated domain-id, so
1722 * make sure it is not used for a real domain.
1724 set_bit(0, iommu->domain_ids);
1729 static void disable_dmar_iommu(struct intel_iommu *iommu)
1731 struct device_domain_info *info, *tmp;
1732 unsigned long flags;
1734 if (!iommu->domains || !iommu->domain_ids)
1738 spin_lock_irqsave(&device_domain_lock, flags);
1739 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1740 struct dmar_domain *domain;
1742 if (info->iommu != iommu)
1745 if (!info->dev || !info->domain)
1748 domain = info->domain;
1750 __dmar_remove_one_dev_info(info);
1752 if (!domain_type_is_vm_or_si(domain)) {
1754 * The domain_exit() function can't be called under
1755 * device_domain_lock, as it takes this lock itself.
1756 * So release the lock here and re-run the loop
1759 spin_unlock_irqrestore(&device_domain_lock, flags);
1760 domain_exit(domain);
1764 spin_unlock_irqrestore(&device_domain_lock, flags);
1766 if (iommu->gcmd & DMA_GCMD_TE)
1767 iommu_disable_translation(iommu);
1770 static void free_dmar_iommu(struct intel_iommu *iommu)
1772 if ((iommu->domains) && (iommu->domain_ids)) {
1773 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1776 for (i = 0; i < elems; i++)
1777 kfree(iommu->domains[i]);
1778 kfree(iommu->domains);
1779 kfree(iommu->domain_ids);
1780 iommu->domains = NULL;
1781 iommu->domain_ids = NULL;
1784 g_iommus[iommu->seq_id] = NULL;
1786 /* free context mapping */
1787 free_context_table(iommu);
1789 #ifdef CONFIG_INTEL_IOMMU_SVM
1790 if (pasid_enabled(iommu)) {
1791 if (ecap_prs(iommu->ecap))
1792 intel_svm_finish_prq(iommu);
1793 intel_svm_free_pasid_tables(iommu);
1798 static struct dmar_domain *alloc_domain(int flags)
1800 struct dmar_domain *domain;
1802 domain = alloc_domain_mem();
1806 memset(domain, 0, sizeof(*domain));
1808 domain->flags = flags;
1809 domain->has_iotlb_device = false;
1810 INIT_LIST_HEAD(&domain->devices);
1815 /* Must be called with iommu->lock */
1816 static int domain_attach_iommu(struct dmar_domain *domain,
1817 struct intel_iommu *iommu)
1819 unsigned long ndomains;
1822 assert_spin_locked(&device_domain_lock);
1823 assert_spin_locked(&iommu->lock);
1825 domain->iommu_refcnt[iommu->seq_id] += 1;
1826 domain->iommu_count += 1;
1827 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1828 ndomains = cap_ndoms(iommu->cap);
1829 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1831 if (num >= ndomains) {
1832 pr_err("%s: No free domain ids\n", iommu->name);
1833 domain->iommu_refcnt[iommu->seq_id] -= 1;
1834 domain->iommu_count -= 1;
1838 set_bit(num, iommu->domain_ids);
1839 set_iommu_domain(iommu, num, domain);
1841 domain->iommu_did[iommu->seq_id] = num;
1842 domain->nid = iommu->node;
1844 domain_update_iommu_cap(domain);
1850 static int domain_detach_iommu(struct dmar_domain *domain,
1851 struct intel_iommu *iommu)
1853 int num, count = INT_MAX;
1855 assert_spin_locked(&device_domain_lock);
1856 assert_spin_locked(&iommu->lock);
1858 domain->iommu_refcnt[iommu->seq_id] -= 1;
1859 count = --domain->iommu_count;
1860 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1861 num = domain->iommu_did[iommu->seq_id];
1862 clear_bit(num, iommu->domain_ids);
1863 set_iommu_domain(iommu, num, NULL);
1865 domain_update_iommu_cap(domain);
1866 domain->iommu_did[iommu->seq_id] = 0;
1872 static struct iova_domain reserved_iova_list;
1873 static struct lock_class_key reserved_rbtree_key;
1875 static int dmar_init_reserved_ranges(void)
1877 struct pci_dev *pdev = NULL;
1881 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1884 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1885 &reserved_rbtree_key);
1887 /* IOAPIC ranges shouldn't be accessed by DMA */
1888 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1889 IOVA_PFN(IOAPIC_RANGE_END));
1891 pr_err("Reserve IOAPIC range failed\n");
1895 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1896 for_each_pci_dev(pdev) {
1899 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1900 r = &pdev->resource[i];
1901 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1903 iova = reserve_iova(&reserved_iova_list,
1907 pr_err("Reserve iova failed\n");
1915 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1917 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1920 static inline int guestwidth_to_adjustwidth(int gaw)
1923 int r = (gaw - 12) % 9;
1934 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1937 int adjust_width, agaw;
1938 unsigned long sagaw;
1941 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1944 err = init_iova_flush_queue(&domain->iovad,
1945 iommu_flush_iova, iova_entry_free);
1949 domain_reserve_special_ranges(domain);
1951 /* calculate AGAW */
1952 if (guest_width > cap_mgaw(iommu->cap))
1953 guest_width = cap_mgaw(iommu->cap);
1954 domain->gaw = guest_width;
1955 adjust_width = guestwidth_to_adjustwidth(guest_width);
1956 agaw = width_to_agaw(adjust_width);
1957 sagaw = cap_sagaw(iommu->cap);
1958 if (!test_bit(agaw, &sagaw)) {
1959 /* hardware doesn't support it, choose a bigger one */
1960 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1961 agaw = find_next_bit(&sagaw, 5, agaw);
1965 domain->agaw = agaw;
1967 if (ecap_coherent(iommu->ecap))
1968 domain->iommu_coherency = 1;
1970 domain->iommu_coherency = 0;
1972 if (ecap_sc_support(iommu->ecap))
1973 domain->iommu_snooping = 1;
1975 domain->iommu_snooping = 0;
1977 if (intel_iommu_superpage)
1978 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1980 domain->iommu_superpage = 0;
1982 domain->nid = iommu->node;
1984 /* always allocate the top pgd */
1985 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1988 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1992 static void domain_exit(struct dmar_domain *domain)
1994 struct page *freelist = NULL;
1996 /* Domain 0 is reserved, so dont process it */
2000 /* Remove associated devices and clear attached or cached domains */
2002 domain_remove_dev_info(domain);
2006 put_iova_domain(&domain->iovad);
2008 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2010 dma_free_pagelist(freelist);
2012 free_domain_mem(domain);
2015 static int domain_context_mapping_one(struct dmar_domain *domain,
2016 struct intel_iommu *iommu,
2019 u16 did = domain->iommu_did[iommu->seq_id];
2020 int translation = CONTEXT_TT_MULTI_LEVEL;
2021 struct device_domain_info *info = NULL;
2022 struct context_entry *context;
2023 unsigned long flags;
2024 struct dma_pte *pgd;
2029 if (hw_pass_through && domain_type_is_si(domain))
2030 translation = CONTEXT_TT_PASS_THROUGH;
2032 pr_debug("Set context mapping for %02x:%02x.%d\n",
2033 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2035 BUG_ON(!domain->pgd);
2037 spin_lock_irqsave(&device_domain_lock, flags);
2038 spin_lock(&iommu->lock);
2041 context = iommu_context_addr(iommu, bus, devfn, 1);
2046 if (context_present(context))
2050 * For kdump cases, old valid entries may be cached due to the
2051 * in-flight DMA and copied pgtable, but there is no unmapping
2052 * behaviour for them, thus we need an explicit cache flush for
2053 * the newly-mapped device. For kdump, at this point, the device
2054 * is supposed to finish reset at its driver probe stage, so no
2055 * in-flight DMA will exist, and we don't need to worry anymore
2058 if (context_copied(context)) {
2059 u16 did_old = context_domain_id(context);
2061 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap)) {
2062 iommu->flush.flush_context(iommu, did_old,
2063 (((u16)bus) << 8) | devfn,
2064 DMA_CCMD_MASK_NOBIT,
2065 DMA_CCMD_DEVICE_INVL);
2066 iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2073 context_clear_entry(context);
2074 context_set_domain_id(context, did);
2077 * Skip top levels of page tables for iommu which has less agaw
2078 * than default. Unnecessary for PT mode.
2080 if (translation != CONTEXT_TT_PASS_THROUGH) {
2081 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2083 pgd = phys_to_virt(dma_pte_addr(pgd));
2084 if (!dma_pte_present(pgd))
2088 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2089 if (info && info->ats_supported)
2090 translation = CONTEXT_TT_DEV_IOTLB;
2092 translation = CONTEXT_TT_MULTI_LEVEL;
2094 context_set_address_root(context, virt_to_phys(pgd));
2095 context_set_address_width(context, iommu->agaw);
2098 * In pass through mode, AW must be programmed to
2099 * indicate the largest AGAW value supported by
2100 * hardware. And ASR is ignored by hardware.
2102 context_set_address_width(context, iommu->msagaw);
2105 context_set_translation_type(context, translation);
2106 context_set_fault_enable(context);
2107 context_set_present(context);
2108 domain_flush_cache(domain, context, sizeof(*context));
2111 * It's a non-present to present mapping. If hardware doesn't cache
2112 * non-present entry we only need to flush the write-buffer. If the
2113 * _does_ cache non-present entries, then it does so in the special
2114 * domain #0, which we have to flush:
2116 if (cap_caching_mode(iommu->cap)) {
2117 iommu->flush.flush_context(iommu, 0,
2118 (((u16)bus) << 8) | devfn,
2119 DMA_CCMD_MASK_NOBIT,
2120 DMA_CCMD_DEVICE_INVL);
2121 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2123 iommu_flush_write_buffer(iommu);
2125 iommu_enable_dev_iotlb(info);
2130 spin_unlock(&iommu->lock);
2131 spin_unlock_irqrestore(&device_domain_lock, flags);
2136 struct domain_context_mapping_data {
2137 struct dmar_domain *domain;
2138 struct intel_iommu *iommu;
2141 static int domain_context_mapping_cb(struct pci_dev *pdev,
2142 u16 alias, void *opaque)
2144 struct domain_context_mapping_data *data = opaque;
2146 return domain_context_mapping_one(data->domain, data->iommu,
2147 PCI_BUS_NUM(alias), alias & 0xff);
2151 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2153 struct intel_iommu *iommu;
2155 struct domain_context_mapping_data data;
2157 iommu = device_to_iommu(dev, &bus, &devfn);
2161 if (!dev_is_pci(dev))
2162 return domain_context_mapping_one(domain, iommu, bus, devfn);
2164 data.domain = domain;
2167 return pci_for_each_dma_alias(to_pci_dev(dev),
2168 &domain_context_mapping_cb, &data);
2171 static int domain_context_mapped_cb(struct pci_dev *pdev,
2172 u16 alias, void *opaque)
2174 struct intel_iommu *iommu = opaque;
2176 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2179 static int domain_context_mapped(struct device *dev)
2181 struct intel_iommu *iommu;
2184 iommu = device_to_iommu(dev, &bus, &devfn);
2188 if (!dev_is_pci(dev))
2189 return device_context_mapped(iommu, bus, devfn);
2191 return !pci_for_each_dma_alias(to_pci_dev(dev),
2192 domain_context_mapped_cb, iommu);
2195 /* Returns a number of VTD pages, but aligned to MM page size */
2196 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2199 host_addr &= ~PAGE_MASK;
2200 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2203 /* Return largest possible superpage level for a given mapping */
2204 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2205 unsigned long iov_pfn,
2206 unsigned long phy_pfn,
2207 unsigned long pages)
2209 int support, level = 1;
2210 unsigned long pfnmerge;
2212 support = domain->iommu_superpage;
2214 /* To use a large page, the virtual *and* physical addresses
2215 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2216 of them will mean we have to use smaller pages. So just
2217 merge them and check both at once. */
2218 pfnmerge = iov_pfn | phy_pfn;
2220 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2221 pages >>= VTD_STRIDE_SHIFT;
2224 pfnmerge >>= VTD_STRIDE_SHIFT;
2231 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2232 struct scatterlist *sg, unsigned long phys_pfn,
2233 unsigned long nr_pages, int prot)
2235 struct dma_pte *first_pte = NULL, *pte = NULL;
2236 phys_addr_t uninitialized_var(pteval);
2237 unsigned long sg_res = 0;
2238 unsigned int largepage_lvl = 0;
2239 unsigned long lvl_pages = 0;
2241 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2243 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2246 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2250 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2253 while (nr_pages > 0) {
2257 sg_res = aligned_nrpages(sg->offset, sg->length);
2258 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2259 sg->dma_length = sg->length;
2260 pteval = page_to_phys(sg_page(sg)) | prot;
2261 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2265 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2267 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2270 /* It is large page*/
2271 if (largepage_lvl > 1) {
2272 unsigned long nr_superpages, end_pfn;
2274 pteval |= DMA_PTE_LARGE_PAGE;
2275 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2277 nr_superpages = sg_res / lvl_pages;
2278 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2281 * Ensure that old small page tables are
2282 * removed to make room for superpage(s).
2283 * We're adding new large pages, so make sure
2284 * we don't remove their parent tables.
2286 dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2289 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2293 /* We don't need lock here, nobody else
2294 * touches the iova range
2296 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2298 static int dumps = 5;
2299 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2300 iov_pfn, tmp, (unsigned long long)pteval);
2303 debug_dma_dump_mappings(NULL);
2308 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2310 BUG_ON(nr_pages < lvl_pages);
2311 BUG_ON(sg_res < lvl_pages);
2313 nr_pages -= lvl_pages;
2314 iov_pfn += lvl_pages;
2315 phys_pfn += lvl_pages;
2316 pteval += lvl_pages * VTD_PAGE_SIZE;
2317 sg_res -= lvl_pages;
2319 /* If the next PTE would be the first in a new page, then we
2320 need to flush the cache on the entries we've just written.
2321 And then we'll need to recalculate 'pte', so clear it and
2322 let it get set again in the if (!pte) block above.
2324 If we're done (!nr_pages) we need to flush the cache too.
2326 Also if we've been setting superpages, we may need to
2327 recalculate 'pte' and switch back to smaller pages for the
2328 end of the mapping, if the trailing size is not enough to
2329 use another superpage (i.e. sg_res < lvl_pages). */
2331 if (!nr_pages || first_pte_in_page(pte) ||
2332 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2333 domain_flush_cache(domain, first_pte,
2334 (void *)pte - (void *)first_pte);
2338 if (!sg_res && nr_pages)
2344 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2345 struct scatterlist *sg, unsigned long nr_pages,
2348 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2351 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2352 unsigned long phys_pfn, unsigned long nr_pages,
2355 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2358 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2360 unsigned long flags;
2361 struct context_entry *context;
2367 spin_lock_irqsave(&iommu->lock, flags);
2368 context = iommu_context_addr(iommu, bus, devfn, 0);
2370 spin_unlock_irqrestore(&iommu->lock, flags);
2373 did_old = context_domain_id(context);
2374 context_clear_entry(context);
2375 __iommu_flush_cache(iommu, context, sizeof(*context));
2376 spin_unlock_irqrestore(&iommu->lock, flags);
2377 iommu->flush.flush_context(iommu,
2379 (((u16)bus) << 8) | devfn,
2380 DMA_CCMD_MASK_NOBIT,
2381 DMA_CCMD_DEVICE_INVL);
2382 iommu->flush.flush_iotlb(iommu,
2389 static inline void unlink_domain_info(struct device_domain_info *info)
2391 assert_spin_locked(&device_domain_lock);
2392 list_del(&info->link);
2393 list_del(&info->global);
2395 info->dev->archdata.iommu = NULL;
2398 static void domain_remove_dev_info(struct dmar_domain *domain)
2400 struct device_domain_info *info, *tmp;
2401 unsigned long flags;
2403 spin_lock_irqsave(&device_domain_lock, flags);
2404 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2405 __dmar_remove_one_dev_info(info);
2406 spin_unlock_irqrestore(&device_domain_lock, flags);
2411 * Note: we use struct device->archdata.iommu stores the info
2413 static struct dmar_domain *find_domain(struct device *dev)
2415 struct device_domain_info *info;
2417 /* No lock here, assumes no domain exit in normal case */
2418 info = dev->archdata.iommu;
2420 return info->domain;
2424 static inline struct device_domain_info *
2425 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2427 struct device_domain_info *info;
2429 list_for_each_entry(info, &device_domain_list, global)
2430 if (info->iommu->segment == segment && info->bus == bus &&
2431 info->devfn == devfn)
2437 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2440 struct dmar_domain *domain)
2442 struct dmar_domain *found = NULL;
2443 struct device_domain_info *info;
2444 unsigned long flags;
2447 info = alloc_devinfo_mem();
2452 info->devfn = devfn;
2453 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2454 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2457 info->domain = domain;
2458 info->iommu = iommu;
2460 if (dev && dev_is_pci(dev)) {
2461 struct pci_dev *pdev = to_pci_dev(info->dev);
2463 if (ecap_dev_iotlb_support(iommu->ecap) &&
2464 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2465 dmar_find_matched_atsr_unit(pdev))
2466 info->ats_supported = 1;
2468 if (ecs_enabled(iommu)) {
2469 if (pasid_enabled(iommu)) {
2470 int features = pci_pasid_features(pdev);
2472 info->pasid_supported = features | 1;
2475 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2476 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2477 info->pri_supported = 1;
2481 spin_lock_irqsave(&device_domain_lock, flags);
2483 found = find_domain(dev);
2486 struct device_domain_info *info2;
2487 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2489 found = info2->domain;
2495 spin_unlock_irqrestore(&device_domain_lock, flags);
2496 free_devinfo_mem(info);
2497 /* Caller must free the original domain */
2501 spin_lock(&iommu->lock);
2502 ret = domain_attach_iommu(domain, iommu);
2503 spin_unlock(&iommu->lock);
2506 spin_unlock_irqrestore(&device_domain_lock, flags);
2507 free_devinfo_mem(info);
2511 list_add(&info->link, &domain->devices);
2512 list_add(&info->global, &device_domain_list);
2514 dev->archdata.iommu = info;
2515 spin_unlock_irqrestore(&device_domain_lock, flags);
2517 if (dev && domain_context_mapping(domain, dev)) {
2518 pr_err("Domain context map for %s failed\n", dev_name(dev));
2519 dmar_remove_one_dev_info(domain, dev);
2526 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2528 *(u16 *)opaque = alias;
2532 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2534 struct device_domain_info *info = NULL;
2535 struct dmar_domain *domain = NULL;
2536 struct intel_iommu *iommu;
2537 u16 req_id, dma_alias;
2538 unsigned long flags;
2541 iommu = device_to_iommu(dev, &bus, &devfn);
2545 req_id = ((u16)bus << 8) | devfn;
2547 if (dev_is_pci(dev)) {
2548 struct pci_dev *pdev = to_pci_dev(dev);
2550 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2552 spin_lock_irqsave(&device_domain_lock, flags);
2553 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2554 PCI_BUS_NUM(dma_alias),
2557 iommu = info->iommu;
2558 domain = info->domain;
2560 spin_unlock_irqrestore(&device_domain_lock, flags);
2562 /* DMA alias already has a domain, use it */
2567 /* Allocate and initialize new domain for the device */
2568 domain = alloc_domain(0);
2571 if (domain_init(domain, iommu, gaw)) {
2572 domain_exit(domain);
2581 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2582 struct dmar_domain *domain)
2584 struct intel_iommu *iommu;
2585 struct dmar_domain *tmp;
2586 u16 req_id, dma_alias;
2589 iommu = device_to_iommu(dev, &bus, &devfn);
2593 req_id = ((u16)bus << 8) | devfn;
2595 if (dev_is_pci(dev)) {
2596 struct pci_dev *pdev = to_pci_dev(dev);
2598 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2600 /* register PCI DMA alias device */
2601 if (req_id != dma_alias) {
2602 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2603 dma_alias & 0xff, NULL, domain);
2605 if (!tmp || tmp != domain)
2610 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2611 if (!tmp || tmp != domain)
2617 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2619 struct dmar_domain *domain, *tmp;
2621 domain = find_domain(dev);
2625 domain = find_or_alloc_domain(dev, gaw);
2629 tmp = set_domain_for_dev(dev, domain);
2630 if (!tmp || domain != tmp) {
2631 domain_exit(domain);
2640 static int iommu_domain_identity_map(struct dmar_domain *domain,
2641 unsigned long long start,
2642 unsigned long long end)
2644 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2645 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2647 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2648 dma_to_mm_pfn(last_vpfn))) {
2649 pr_err("Reserving iova failed\n");
2653 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2655 * RMRR range might have overlap with physical memory range,
2658 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2660 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2661 last_vpfn - first_vpfn + 1,
2662 DMA_PTE_READ|DMA_PTE_WRITE);
2665 static int domain_prepare_identity_map(struct device *dev,
2666 struct dmar_domain *domain,
2667 unsigned long long start,
2668 unsigned long long end)
2670 /* For _hardware_ passthrough, don't bother. But for software
2671 passthrough, we do it anyway -- it may indicate a memory
2672 range which is reserved in E820, so which didn't get set
2673 up to start with in si_domain */
2674 if (domain == si_domain && hw_pass_through) {
2675 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2676 dev_name(dev), start, end);
2680 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2681 dev_name(dev), start, end);
2684 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2685 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2686 dmi_get_system_info(DMI_BIOS_VENDOR),
2687 dmi_get_system_info(DMI_BIOS_VERSION),
2688 dmi_get_system_info(DMI_PRODUCT_VERSION));
2692 if (end >> agaw_to_width(domain->agaw)) {
2693 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2694 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2695 agaw_to_width(domain->agaw),
2696 dmi_get_system_info(DMI_BIOS_VENDOR),
2697 dmi_get_system_info(DMI_BIOS_VERSION),
2698 dmi_get_system_info(DMI_PRODUCT_VERSION));
2702 return iommu_domain_identity_map(domain, start, end);
2705 static int iommu_prepare_identity_map(struct device *dev,
2706 unsigned long long start,
2707 unsigned long long end)
2709 struct dmar_domain *domain;
2712 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2716 ret = domain_prepare_identity_map(dev, domain, start, end);
2718 domain_exit(domain);
2723 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2726 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2728 return iommu_prepare_identity_map(dev, rmrr->base_address,
2732 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2733 static inline void iommu_prepare_isa(void)
2735 struct pci_dev *pdev;
2738 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2742 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2743 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2746 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2751 static inline void iommu_prepare_isa(void)
2755 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2757 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2759 static int __init si_domain_init(int hw)
2763 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2767 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2768 domain_exit(si_domain);
2772 pr_debug("Identity mapping domain allocated\n");
2777 for_each_online_node(nid) {
2778 unsigned long start_pfn, end_pfn;
2781 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2782 ret = iommu_domain_identity_map(si_domain,
2783 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2792 static int identity_mapping(struct device *dev)
2794 struct device_domain_info *info;
2796 if (likely(!iommu_identity_mapping))
2799 info = dev->archdata.iommu;
2800 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2801 return (info->domain == si_domain);
2806 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2808 struct dmar_domain *ndomain;
2809 struct intel_iommu *iommu;
2812 iommu = device_to_iommu(dev, &bus, &devfn);
2816 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2817 if (ndomain != domain)
2823 static bool device_has_rmrr(struct device *dev)
2825 struct dmar_rmrr_unit *rmrr;
2830 for_each_rmrr_units(rmrr) {
2832 * Return TRUE if this RMRR contains the device that
2835 for_each_active_dev_scope(rmrr->devices,
2836 rmrr->devices_cnt, i, tmp)
2847 * There are a couple cases where we need to restrict the functionality of
2848 * devices associated with RMRRs. The first is when evaluating a device for
2849 * identity mapping because problems exist when devices are moved in and out
2850 * of domains and their respective RMRR information is lost. This means that
2851 * a device with associated RMRRs will never be in a "passthrough" domain.
2852 * The second is use of the device through the IOMMU API. This interface
2853 * expects to have full control of the IOVA space for the device. We cannot
2854 * satisfy both the requirement that RMRR access is maintained and have an
2855 * unencumbered IOVA space. We also have no ability to quiesce the device's
2856 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2857 * We therefore prevent devices associated with an RMRR from participating in
2858 * the IOMMU API, which eliminates them from device assignment.
2860 * In both cases we assume that PCI USB devices with RMRRs have them largely
2861 * for historical reasons and that the RMRR space is not actively used post
2862 * boot. This exclusion may change if vendors begin to abuse it.
2864 * The same exception is made for graphics devices, with the requirement that
2865 * any use of the RMRR regions will be torn down before assigning the device
2868 static bool device_is_rmrr_locked(struct device *dev)
2870 if (!device_has_rmrr(dev))
2873 if (dev_is_pci(dev)) {
2874 struct pci_dev *pdev = to_pci_dev(dev);
2876 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2883 static int iommu_should_identity_map(struct device *dev, int startup)
2886 if (dev_is_pci(dev)) {
2887 struct pci_dev *pdev = to_pci_dev(dev);
2889 if (device_is_rmrr_locked(dev))
2892 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2895 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2898 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2902 * We want to start off with all devices in the 1:1 domain, and
2903 * take them out later if we find they can't access all of memory.
2905 * However, we can't do this for PCI devices behind bridges,
2906 * because all PCI devices behind the same bridge will end up
2907 * with the same source-id on their transactions.
2909 * Practically speaking, we can't change things around for these
2910 * devices at run-time, because we can't be sure there'll be no
2911 * DMA transactions in flight for any of their siblings.
2913 * So PCI devices (unless they're on the root bus) as well as
2914 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2915 * the 1:1 domain, just in _case_ one of their siblings turns out
2916 * not to be able to map all of memory.
2918 if (!pci_is_pcie(pdev)) {
2919 if (!pci_is_root_bus(pdev->bus))
2921 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2923 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2926 if (device_has_rmrr(dev))
2931 * At boot time, we don't yet know if devices will be 64-bit capable.
2932 * Assume that they will — if they turn out not to be, then we can
2933 * take them out of the 1:1 domain later.
2937 * If the device's dma_mask is less than the system's memory
2938 * size then this is not a candidate for identity mapping.
2940 u64 dma_mask = *dev->dma_mask;
2942 if (dev->coherent_dma_mask &&
2943 dev->coherent_dma_mask < dma_mask)
2944 dma_mask = dev->coherent_dma_mask;
2946 return dma_mask >= dma_get_required_mask(dev);
2952 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2956 if (!iommu_should_identity_map(dev, 1))
2959 ret = domain_add_dev_info(si_domain, dev);
2961 pr_info("%s identity mapping for device %s\n",
2962 hw ? "Hardware" : "Software", dev_name(dev));
2963 else if (ret == -ENODEV)
2964 /* device not associated with an iommu */
2971 static int __init iommu_prepare_static_identity_mapping(int hw)
2973 struct pci_dev *pdev = NULL;
2974 struct dmar_drhd_unit *drhd;
2975 struct intel_iommu *iommu;
2980 for_each_pci_dev(pdev) {
2981 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2986 for_each_active_iommu(iommu, drhd)
2987 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2988 struct acpi_device_physical_node *pn;
2989 struct acpi_device *adev;
2991 if (dev->bus != &acpi_bus_type)
2994 adev= to_acpi_device(dev);
2995 mutex_lock(&adev->physical_node_lock);
2996 list_for_each_entry(pn, &adev->physical_node_list, node) {
2997 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
3001 mutex_unlock(&adev->physical_node_lock);
3009 static void intel_iommu_init_qi(struct intel_iommu *iommu)
3012 * Start from the sane iommu hardware state.
3013 * If the queued invalidation is already initialized by us
3014 * (for example, while enabling interrupt-remapping) then
3015 * we got the things already rolling from a sane state.
3019 * Clear any previous faults.
3021 dmar_fault(-1, iommu);
3023 * Disable queued invalidation if supported and already enabled
3024 * before OS handover.
3026 dmar_disable_qi(iommu);
3029 if (dmar_enable_qi(iommu)) {
3031 * Queued Invalidate not enabled, use Register Based Invalidate
3033 iommu->flush.flush_context = __iommu_flush_context;
3034 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3035 pr_info("%s: Using Register based invalidation\n",
3038 iommu->flush.flush_context = qi_flush_context;
3039 iommu->flush.flush_iotlb = qi_flush_iotlb;
3040 pr_info("%s: Using Queued invalidation\n", iommu->name);
3044 static int copy_context_table(struct intel_iommu *iommu,
3045 struct root_entry *old_re,
3046 struct context_entry **tbl,
3049 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3050 struct context_entry *new_ce = NULL, ce;
3051 struct context_entry *old_ce = NULL;
3052 struct root_entry re;
3053 phys_addr_t old_ce_phys;
3055 tbl_idx = ext ? bus * 2 : bus;
3056 memcpy(&re, old_re, sizeof(re));
3058 for (devfn = 0; devfn < 256; devfn++) {
3059 /* First calculate the correct index */
3060 idx = (ext ? devfn * 2 : devfn) % 256;
3063 /* First save what we may have and clean up */
3065 tbl[tbl_idx] = new_ce;
3066 __iommu_flush_cache(iommu, new_ce,
3076 old_ce_phys = root_entry_lctp(&re);
3078 old_ce_phys = root_entry_uctp(&re);
3081 if (ext && devfn == 0) {
3082 /* No LCTP, try UCTP */
3091 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3096 new_ce = alloc_pgtable_page(iommu->node);
3103 /* Now copy the context entry */
3104 memcpy(&ce, old_ce + idx, sizeof(ce));
3106 if (!__context_present(&ce))
3109 did = context_domain_id(&ce);
3110 if (did >= 0 && did < cap_ndoms(iommu->cap))
3111 set_bit(did, iommu->domain_ids);
3114 * We need a marker for copied context entries. This
3115 * marker needs to work for the old format as well as
3116 * for extended context entries.
3118 * Bit 67 of the context entry is used. In the old
3119 * format this bit is available to software, in the
3120 * extended format it is the PGE bit, but PGE is ignored
3121 * by HW if PASIDs are disabled (and thus still
3124 * So disable PASIDs first and then mark the entry
3125 * copied. This means that we don't copy PASID
3126 * translations from the old kernel, but this is fine as
3127 * faults there are not fatal.
3129 context_clear_pasid_enable(&ce);
3130 context_set_copied(&ce);
3135 tbl[tbl_idx + pos] = new_ce;
3137 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3146 static int copy_translation_tables(struct intel_iommu *iommu)
3148 struct context_entry **ctxt_tbls;
3149 struct root_entry *old_rt;
3150 phys_addr_t old_rt_phys;
3151 int ctxt_table_entries;
3152 unsigned long flags;
3157 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3158 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3159 new_ext = !!ecap_ecs(iommu->ecap);
3162 * The RTT bit can only be changed when translation is disabled,
3163 * but disabling translation means to open a window for data
3164 * corruption. So bail out and don't copy anything if we would
3165 * have to change the bit.
3170 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3174 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3178 /* This is too big for the stack - allocate it from slab */
3179 ctxt_table_entries = ext ? 512 : 256;
3181 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3185 for (bus = 0; bus < 256; bus++) {
3186 ret = copy_context_table(iommu, &old_rt[bus],
3187 ctxt_tbls, bus, ext);
3189 pr_err("%s: Failed to copy context table for bus %d\n",
3195 spin_lock_irqsave(&iommu->lock, flags);
3197 /* Context tables are copied, now write them to the root_entry table */
3198 for (bus = 0; bus < 256; bus++) {
3199 int idx = ext ? bus * 2 : bus;
3202 if (ctxt_tbls[idx]) {
3203 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3204 iommu->root_entry[bus].lo = val;
3207 if (!ext || !ctxt_tbls[idx + 1])
3210 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3211 iommu->root_entry[bus].hi = val;
3214 spin_unlock_irqrestore(&iommu->lock, flags);
3218 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3228 static int __init init_dmars(void)
3230 struct dmar_drhd_unit *drhd;
3231 struct dmar_rmrr_unit *rmrr;
3232 bool copied_tables = false;
3234 struct intel_iommu *iommu;
3240 * initialize and program root entry to not present
3243 for_each_drhd_unit(drhd) {
3245 * lock not needed as this is only incremented in the single
3246 * threaded kernel __init code path all other access are read
3249 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3253 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3256 /* Preallocate enough resources for IOMMU hot-addition */
3257 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3258 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3260 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3263 pr_err("Allocating global iommu array failed\n");
3268 for_each_active_iommu(iommu, drhd) {
3269 g_iommus[iommu->seq_id] = iommu;
3271 intel_iommu_init_qi(iommu);
3273 ret = iommu_init_domains(iommu);
3277 init_translation_status(iommu);
3279 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3280 iommu_disable_translation(iommu);
3281 clear_translation_pre_enabled(iommu);
3282 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3288 * we could share the same root & context tables
3289 * among all IOMMU's. Need to Split it later.
3291 ret = iommu_alloc_root_entry(iommu);
3295 if (translation_pre_enabled(iommu)) {
3296 pr_info("Translation already enabled - trying to copy translation structures\n");
3298 ret = copy_translation_tables(iommu);
3301 * We found the IOMMU with translation
3302 * enabled - but failed to copy over the
3303 * old root-entry table. Try to proceed
3304 * by disabling translation now and
3305 * allocating a clean root-entry table.
3306 * This might cause DMAR faults, but
3307 * probably the dump will still succeed.
3309 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3311 iommu_disable_translation(iommu);
3312 clear_translation_pre_enabled(iommu);
3314 pr_info("Copied translation tables from previous kernel for %s\n",
3316 copied_tables = true;
3320 if (!ecap_pass_through(iommu->ecap))
3321 hw_pass_through = 0;
3322 #ifdef CONFIG_INTEL_IOMMU_SVM
3323 if (pasid_enabled(iommu))
3324 intel_svm_alloc_pasid_tables(iommu);
3329 * Now that qi is enabled on all iommus, set the root entry and flush
3330 * caches. This is required on some Intel X58 chipsets, otherwise the
3331 * flush_context function will loop forever and the boot hangs.
3333 for_each_active_iommu(iommu, drhd) {
3334 iommu_flush_write_buffer(iommu);
3335 iommu_set_root_entry(iommu);
3336 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3337 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3340 if (iommu_pass_through)
3341 iommu_identity_mapping |= IDENTMAP_ALL;
3343 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3344 iommu_identity_mapping |= IDENTMAP_GFX;
3347 check_tylersburg_isoch();
3349 if (iommu_identity_mapping) {
3350 ret = si_domain_init(hw_pass_through);
3357 * If we copied translations from a previous kernel in the kdump
3358 * case, we can not assign the devices to domains now, as that
3359 * would eliminate the old mappings. So skip this part and defer
3360 * the assignment to device driver initialization time.
3366 * If pass through is not set or not enabled, setup context entries for
3367 * identity mappings for rmrr, gfx, and isa and may fall back to static
3368 * identity mapping if iommu_identity_mapping is set.
3370 if (iommu_identity_mapping) {
3371 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3373 pr_crit("Failed to setup IOMMU pass-through\n");
3379 * for each dev attached to rmrr
3381 * locate drhd for dev, alloc domain for dev
3382 * allocate free domain
3383 * allocate page table entries for rmrr
3384 * if context not allocated for bus
3385 * allocate and init context
3386 * set present in root table for this bus
3387 * init context with domain, translation etc
3391 pr_info("Setting RMRR:\n");
3392 for_each_rmrr_units(rmrr) {
3393 /* some BIOS lists non-exist devices in DMAR table. */
3394 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3396 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3398 pr_err("Mapping reserved region failed\n");
3402 iommu_prepare_isa();
3409 * global invalidate context cache
3410 * global invalidate iotlb
3411 * enable translation
3413 for_each_iommu(iommu, drhd) {
3414 if (drhd->ignored) {
3416 * we always have to disable PMRs or DMA may fail on
3420 iommu_disable_protect_mem_regions(iommu);
3424 iommu_flush_write_buffer(iommu);
3426 #ifdef CONFIG_INTEL_IOMMU_SVM
3427 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3428 ret = intel_svm_enable_prq(iommu);
3433 ret = dmar_set_interrupt(iommu);
3437 if (!translation_pre_enabled(iommu))
3438 iommu_enable_translation(iommu);
3440 iommu_disable_protect_mem_regions(iommu);
3446 for_each_active_iommu(iommu, drhd) {
3447 disable_dmar_iommu(iommu);
3448 free_dmar_iommu(iommu);
3457 /* This takes a number of _MM_ pages, not VTD pages */
3458 static unsigned long intel_alloc_iova(struct device *dev,
3459 struct dmar_domain *domain,
3460 unsigned long nrpages, uint64_t dma_mask)
3462 unsigned long iova_pfn = 0;
3464 /* Restrict dma_mask to the width that the iommu can handle */
3465 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3466 /* Ensure we reserve the whole size-aligned region */
3467 nrpages = __roundup_pow_of_two(nrpages);
3469 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3471 * First try to allocate an io virtual address in
3472 * DMA_BIT_MASK(32) and if that fails then try allocating
3475 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3476 IOVA_PFN(DMA_BIT_MASK(32)));
3480 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3481 if (unlikely(!iova_pfn)) {
3482 pr_err("Allocating %ld-page iova for %s failed",
3483 nrpages, dev_name(dev));
3490 static struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3492 struct dmar_domain *domain, *tmp;
3493 struct dmar_rmrr_unit *rmrr;
3494 struct device *i_dev;
3497 domain = find_domain(dev);
3501 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3505 /* We have a new domain - setup possible RMRRs for the device */
3507 for_each_rmrr_units(rmrr) {
3508 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3513 ret = domain_prepare_identity_map(dev, domain,
3517 dev_err(dev, "Mapping reserved region failed\n");
3522 tmp = set_domain_for_dev(dev, domain);
3523 if (!tmp || domain != tmp) {
3524 domain_exit(domain);
3531 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3537 /* Check if the dev needs to go through non-identity map and unmap process.*/
3538 static int iommu_no_mapping(struct device *dev)
3542 if (iommu_dummy(dev))
3545 if (!iommu_identity_mapping)
3548 found = identity_mapping(dev);
3550 if (iommu_should_identity_map(dev, 0))
3554 * 32 bit DMA is removed from si_domain and fall back
3555 * to non-identity mapping.
3557 dmar_remove_one_dev_info(si_domain, dev);
3558 pr_info("32bit %s uses non-identity mapping\n",
3564 * In case of a detached 64 bit DMA device from vm, the device
3565 * is put into si_domain for identity mapping.
3567 if (iommu_should_identity_map(dev, 0)) {
3569 ret = domain_add_dev_info(si_domain, dev);
3571 pr_info("64bit %s uses identity mapping\n",
3581 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3582 size_t size, int dir, u64 dma_mask)
3584 struct dmar_domain *domain;
3585 phys_addr_t start_paddr;
3586 unsigned long iova_pfn;
3589 struct intel_iommu *iommu;
3590 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3592 BUG_ON(dir == DMA_NONE);
3594 if (iommu_no_mapping(dev))
3597 domain = get_valid_domain_for_dev(dev);
3601 iommu = domain_get_iommu(domain);
3602 size = aligned_nrpages(paddr, size);
3604 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3609 * Check if DMAR supports zero-length reads on write only
3612 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3613 !cap_zlr(iommu->cap))
3614 prot |= DMA_PTE_READ;
3615 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3616 prot |= DMA_PTE_WRITE;
3618 * paddr - (paddr + size) might be partial page, we should map the whole
3619 * page. Note: if two part of one page are separately mapped, we
3620 * might have two guest_addr mapping to the same host paddr, but this
3621 * is not a big problem
3623 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3624 mm_to_dma_pfn(paddr_pfn), size, prot);
3628 /* it's a non-present to present mapping. Only flush if caching mode */
3629 if (cap_caching_mode(iommu->cap))
3630 iommu_flush_iotlb_psi(iommu, domain,
3631 mm_to_dma_pfn(iova_pfn),
3634 iommu_flush_write_buffer(iommu);
3636 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3637 start_paddr += paddr & ~PAGE_MASK;
3642 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3643 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3644 dev_name(dev), size, (unsigned long long)paddr, dir);
3648 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3649 unsigned long offset, size_t size,
3650 enum dma_data_direction dir,
3651 unsigned long attrs)
3653 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3654 dir, *dev->dma_mask);
3657 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3659 struct dmar_domain *domain;
3660 unsigned long start_pfn, last_pfn;
3661 unsigned long nrpages;
3662 unsigned long iova_pfn;
3663 struct intel_iommu *iommu;
3664 struct page *freelist;
3666 if (iommu_no_mapping(dev))
3669 domain = find_domain(dev);
3672 iommu = domain_get_iommu(domain);
3674 iova_pfn = IOVA_PFN(dev_addr);
3676 nrpages = aligned_nrpages(dev_addr, size);
3677 start_pfn = mm_to_dma_pfn(iova_pfn);
3678 last_pfn = start_pfn + nrpages - 1;
3680 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3681 dev_name(dev), start_pfn, last_pfn);
3683 freelist = domain_unmap(domain, start_pfn, last_pfn);
3685 if (intel_iommu_strict) {
3686 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3687 nrpages, !freelist, 0);
3689 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3690 dma_free_pagelist(freelist);
3692 queue_iova(&domain->iovad, iova_pfn, nrpages,
3693 (unsigned long)freelist);
3695 * queue up the release of the unmap to save the 1/6th of the
3696 * cpu used up by the iotlb flush operation...
3701 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3702 size_t size, enum dma_data_direction dir,
3703 unsigned long attrs)
3705 intel_unmap(dev, dev_addr, size);
3708 static void *intel_alloc_coherent(struct device *dev, size_t size,
3709 dma_addr_t *dma_handle, gfp_t flags,
3710 unsigned long attrs)
3712 struct page *page = NULL;
3715 size = PAGE_ALIGN(size);
3716 order = get_order(size);
3718 if (!iommu_no_mapping(dev))
3719 flags &= ~(GFP_DMA | GFP_DMA32);
3720 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3721 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3727 if (gfpflags_allow_blocking(flags)) {
3728 unsigned int count = size >> PAGE_SHIFT;
3730 page = dma_alloc_from_contiguous(dev, count, order, flags);
3731 if (page && iommu_no_mapping(dev) &&
3732 page_to_phys(page) + size > dev->coherent_dma_mask) {
3733 dma_release_from_contiguous(dev, page, count);
3739 page = alloc_pages(flags, order);
3742 memset(page_address(page), 0, size);
3744 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3746 dev->coherent_dma_mask);
3748 return page_address(page);
3749 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3750 __free_pages(page, order);
3755 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3756 dma_addr_t dma_handle, unsigned long attrs)
3759 struct page *page = virt_to_page(vaddr);
3761 size = PAGE_ALIGN(size);
3762 order = get_order(size);
3764 intel_unmap(dev, dma_handle, size);
3765 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3766 __free_pages(page, order);
3769 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3770 int nelems, enum dma_data_direction dir,
3771 unsigned long attrs)
3773 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3774 unsigned long nrpages = 0;
3775 struct scatterlist *sg;
3778 for_each_sg(sglist, sg, nelems, i) {
3779 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3782 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3785 static int intel_nontranslate_map_sg(struct device *hddev,
3786 struct scatterlist *sglist, int nelems, int dir)
3789 struct scatterlist *sg;
3791 for_each_sg(sglist, sg, nelems, i) {
3792 BUG_ON(!sg_page(sg));
3793 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3794 sg->dma_length = sg->length;
3799 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3800 enum dma_data_direction dir, unsigned long attrs)
3803 struct dmar_domain *domain;
3806 unsigned long iova_pfn;
3808 struct scatterlist *sg;
3809 unsigned long start_vpfn;
3810 struct intel_iommu *iommu;
3812 BUG_ON(dir == DMA_NONE);
3813 if (iommu_no_mapping(dev))
3814 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3816 domain = get_valid_domain_for_dev(dev);
3820 iommu = domain_get_iommu(domain);
3822 for_each_sg(sglist, sg, nelems, i)
3823 size += aligned_nrpages(sg->offset, sg->length);
3825 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3828 sglist->dma_length = 0;
3833 * Check if DMAR supports zero-length reads on write only
3836 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3837 !cap_zlr(iommu->cap))
3838 prot |= DMA_PTE_READ;
3839 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3840 prot |= DMA_PTE_WRITE;
3842 start_vpfn = mm_to_dma_pfn(iova_pfn);
3844 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3845 if (unlikely(ret)) {
3846 dma_pte_free_pagetable(domain, start_vpfn,
3847 start_vpfn + size - 1,
3848 agaw_to_level(domain->agaw) + 1);
3849 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3853 /* it's a non-present to present mapping. Only flush if caching mode */
3854 if (cap_caching_mode(iommu->cap))
3855 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3857 iommu_flush_write_buffer(iommu);
3862 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3867 const struct dma_map_ops intel_dma_ops = {
3868 .alloc = intel_alloc_coherent,
3869 .free = intel_free_coherent,
3870 .map_sg = intel_map_sg,
3871 .unmap_sg = intel_unmap_sg,
3872 .map_page = intel_map_page,
3873 .unmap_page = intel_unmap_page,
3874 .mapping_error = intel_mapping_error,
3876 .dma_supported = x86_dma_supported,
3880 static inline int iommu_domain_cache_init(void)
3884 iommu_domain_cache = kmem_cache_create("iommu_domain",
3885 sizeof(struct dmar_domain),
3890 if (!iommu_domain_cache) {
3891 pr_err("Couldn't create iommu_domain cache\n");
3898 static inline int iommu_devinfo_cache_init(void)
3902 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3903 sizeof(struct device_domain_info),
3907 if (!iommu_devinfo_cache) {
3908 pr_err("Couldn't create devinfo cache\n");
3915 static int __init iommu_init_mempool(void)
3918 ret = iova_cache_get();
3922 ret = iommu_domain_cache_init();
3926 ret = iommu_devinfo_cache_init();
3930 kmem_cache_destroy(iommu_domain_cache);
3937 static void __init iommu_exit_mempool(void)
3939 kmem_cache_destroy(iommu_devinfo_cache);
3940 kmem_cache_destroy(iommu_domain_cache);
3944 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3946 struct dmar_drhd_unit *drhd;
3950 /* We know that this device on this chipset has its own IOMMU.
3951 * If we find it under a different IOMMU, then the BIOS is lying
3952 * to us. Hope that the IOMMU for this device is actually
3953 * disabled, and it needs no translation...
3955 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3957 /* "can't" happen */
3958 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3961 vtbar &= 0xffff0000;
3963 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3964 drhd = dmar_find_matched_drhd_unit(pdev);
3965 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3966 TAINT_FIRMWARE_WORKAROUND,
3967 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3968 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3970 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3972 static void __init init_no_remapping_devices(void)
3974 struct dmar_drhd_unit *drhd;
3978 for_each_drhd_unit(drhd) {
3979 if (!drhd->include_all) {
3980 for_each_active_dev_scope(drhd->devices,
3981 drhd->devices_cnt, i, dev)
3983 /* ignore DMAR unit if no devices exist */
3984 if (i == drhd->devices_cnt)
3989 for_each_active_drhd_unit(drhd) {
3990 if (drhd->include_all)
3993 for_each_active_dev_scope(drhd->devices,
3994 drhd->devices_cnt, i, dev)
3995 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3997 if (i < drhd->devices_cnt)
4000 /* This IOMMU has *only* gfx devices. Either bypass it or
4001 set the gfx_mapped flag, as appropriate */
4003 intel_iommu_gfx_mapped = 1;
4006 for_each_active_dev_scope(drhd->devices,
4007 drhd->devices_cnt, i, dev)
4008 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4013 #ifdef CONFIG_SUSPEND
4014 static int init_iommu_hw(void)
4016 struct dmar_drhd_unit *drhd;
4017 struct intel_iommu *iommu = NULL;
4019 for_each_active_iommu(iommu, drhd)
4021 dmar_reenable_qi(iommu);
4023 for_each_iommu(iommu, drhd) {
4024 if (drhd->ignored) {
4026 * we always have to disable PMRs or DMA may fail on
4030 iommu_disable_protect_mem_regions(iommu);
4034 iommu_flush_write_buffer(iommu);
4036 iommu_set_root_entry(iommu);
4038 iommu->flush.flush_context(iommu, 0, 0, 0,
4039 DMA_CCMD_GLOBAL_INVL);
4040 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4041 iommu_enable_translation(iommu);
4042 iommu_disable_protect_mem_regions(iommu);
4048 static void iommu_flush_all(void)
4050 struct dmar_drhd_unit *drhd;
4051 struct intel_iommu *iommu;
4053 for_each_active_iommu(iommu, drhd) {
4054 iommu->flush.flush_context(iommu, 0, 0, 0,
4055 DMA_CCMD_GLOBAL_INVL);
4056 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4057 DMA_TLB_GLOBAL_FLUSH);
4061 static int iommu_suspend(void)
4063 struct dmar_drhd_unit *drhd;
4064 struct intel_iommu *iommu = NULL;
4067 for_each_active_iommu(iommu, drhd) {
4068 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4070 if (!iommu->iommu_state)
4076 for_each_active_iommu(iommu, drhd) {
4077 iommu_disable_translation(iommu);
4079 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4081 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4082 readl(iommu->reg + DMAR_FECTL_REG);
4083 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4084 readl(iommu->reg + DMAR_FEDATA_REG);
4085 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4086 readl(iommu->reg + DMAR_FEADDR_REG);
4087 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4088 readl(iommu->reg + DMAR_FEUADDR_REG);
4090 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4095 for_each_active_iommu(iommu, drhd)
4096 kfree(iommu->iommu_state);
4101 static void iommu_resume(void)
4103 struct dmar_drhd_unit *drhd;
4104 struct intel_iommu *iommu = NULL;
4107 if (init_iommu_hw()) {
4109 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4111 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4115 for_each_active_iommu(iommu, drhd) {
4117 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4119 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4120 iommu->reg + DMAR_FECTL_REG);
4121 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4122 iommu->reg + DMAR_FEDATA_REG);
4123 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4124 iommu->reg + DMAR_FEADDR_REG);
4125 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4126 iommu->reg + DMAR_FEUADDR_REG);
4128 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4131 for_each_active_iommu(iommu, drhd)
4132 kfree(iommu->iommu_state);
4135 static struct syscore_ops iommu_syscore_ops = {
4136 .resume = iommu_resume,
4137 .suspend = iommu_suspend,
4140 static void __init init_iommu_pm_ops(void)
4142 register_syscore_ops(&iommu_syscore_ops);
4146 static inline void init_iommu_pm_ops(void) {}
4147 #endif /* CONFIG_PM */
4150 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4152 struct acpi_dmar_reserved_memory *rmrr;
4153 int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4154 struct dmar_rmrr_unit *rmrru;
4157 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4161 rmrru->hdr = header;
4162 rmrr = (struct acpi_dmar_reserved_memory *)header;
4163 rmrru->base_address = rmrr->base_address;
4164 rmrru->end_address = rmrr->end_address;
4166 length = rmrr->end_address - rmrr->base_address + 1;
4167 rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4172 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4173 ((void *)rmrr) + rmrr->header.length,
4174 &rmrru->devices_cnt);
4175 if (rmrru->devices_cnt && rmrru->devices == NULL)
4178 list_add(&rmrru->list, &dmar_rmrr_units);
4189 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4191 struct dmar_atsr_unit *atsru;
4192 struct acpi_dmar_atsr *tmp;
4194 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4195 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4196 if (atsr->segment != tmp->segment)
4198 if (atsr->header.length != tmp->header.length)
4200 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4207 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4209 struct acpi_dmar_atsr *atsr;
4210 struct dmar_atsr_unit *atsru;
4212 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4215 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4216 atsru = dmar_find_atsr(atsr);
4220 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4225 * If memory is allocated from slab by ACPI _DSM method, we need to
4226 * copy the memory content because the memory buffer will be freed
4229 atsru->hdr = (void *)(atsru + 1);
4230 memcpy(atsru->hdr, hdr, hdr->length);
4231 atsru->include_all = atsr->flags & 0x1;
4232 if (!atsru->include_all) {
4233 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4234 (void *)atsr + atsr->header.length,
4235 &atsru->devices_cnt);
4236 if (atsru->devices_cnt && atsru->devices == NULL) {
4242 list_add_rcu(&atsru->list, &dmar_atsr_units);
4247 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4249 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4253 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4255 struct acpi_dmar_atsr *atsr;
4256 struct dmar_atsr_unit *atsru;
4258 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4259 atsru = dmar_find_atsr(atsr);
4261 list_del_rcu(&atsru->list);
4263 intel_iommu_free_atsr(atsru);
4269 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4273 struct acpi_dmar_atsr *atsr;
4274 struct dmar_atsr_unit *atsru;
4276 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4277 atsru = dmar_find_atsr(atsr);
4281 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4282 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4290 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4293 struct intel_iommu *iommu = dmaru->iommu;
4295 if (g_iommus[iommu->seq_id])
4298 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4299 pr_warn("%s: Doesn't support hardware pass through.\n",
4303 if (!ecap_sc_support(iommu->ecap) &&
4304 domain_update_iommu_snooping(iommu)) {
4305 pr_warn("%s: Doesn't support snooping.\n",
4309 sp = domain_update_iommu_superpage(iommu) - 1;
4310 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4311 pr_warn("%s: Doesn't support large page.\n",
4317 * Disable translation if already enabled prior to OS handover.
4319 if (iommu->gcmd & DMA_GCMD_TE)
4320 iommu_disable_translation(iommu);
4322 g_iommus[iommu->seq_id] = iommu;
4323 ret = iommu_init_domains(iommu);
4325 ret = iommu_alloc_root_entry(iommu);
4329 #ifdef CONFIG_INTEL_IOMMU_SVM
4330 if (pasid_enabled(iommu))
4331 intel_svm_alloc_pasid_tables(iommu);
4334 if (dmaru->ignored) {
4336 * we always have to disable PMRs or DMA may fail on this device
4339 iommu_disable_protect_mem_regions(iommu);
4343 intel_iommu_init_qi(iommu);
4344 iommu_flush_write_buffer(iommu);
4346 #ifdef CONFIG_INTEL_IOMMU_SVM
4347 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4348 ret = intel_svm_enable_prq(iommu);
4353 ret = dmar_set_interrupt(iommu);
4357 iommu_set_root_entry(iommu);
4358 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4359 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4360 iommu_enable_translation(iommu);
4362 iommu_disable_protect_mem_regions(iommu);
4366 disable_dmar_iommu(iommu);
4368 free_dmar_iommu(iommu);
4372 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4375 struct intel_iommu *iommu = dmaru->iommu;
4377 if (!intel_iommu_enabled)
4383 ret = intel_iommu_add(dmaru);
4385 disable_dmar_iommu(iommu);
4386 free_dmar_iommu(iommu);
4392 static void intel_iommu_free_dmars(void)
4394 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4395 struct dmar_atsr_unit *atsru, *atsr_n;
4397 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4398 list_del(&rmrru->list);
4399 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4404 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4405 list_del(&atsru->list);
4406 intel_iommu_free_atsr(atsru);
4410 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4413 struct pci_bus *bus;
4414 struct pci_dev *bridge = NULL;
4416 struct acpi_dmar_atsr *atsr;
4417 struct dmar_atsr_unit *atsru;
4419 dev = pci_physfn(dev);
4420 for (bus = dev->bus; bus; bus = bus->parent) {
4422 /* If it's an integrated device, allow ATS */
4425 /* Connected via non-PCIe: no ATS */
4426 if (!pci_is_pcie(bridge) ||
4427 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4429 /* If we found the root port, look it up in the ATSR */
4430 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4435 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4436 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4437 if (atsr->segment != pci_domain_nr(dev->bus))
4440 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4441 if (tmp == &bridge->dev)
4444 if (atsru->include_all)
4454 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4457 struct dmar_rmrr_unit *rmrru;
4458 struct dmar_atsr_unit *atsru;
4459 struct acpi_dmar_atsr *atsr;
4460 struct acpi_dmar_reserved_memory *rmrr;
4462 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4465 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4466 rmrr = container_of(rmrru->hdr,
4467 struct acpi_dmar_reserved_memory, header);
4468 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4469 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4470 ((void *)rmrr) + rmrr->header.length,
4471 rmrr->segment, rmrru->devices,
4472 rmrru->devices_cnt);
4475 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4476 dmar_remove_dev_scope(info, rmrr->segment,
4477 rmrru->devices, rmrru->devices_cnt);
4481 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4482 if (atsru->include_all)
4485 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4486 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4487 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4488 (void *)atsr + atsr->header.length,
4489 atsr->segment, atsru->devices,
4490 atsru->devices_cnt);
4495 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4496 if (dmar_remove_dev_scope(info, atsr->segment,
4497 atsru->devices, atsru->devices_cnt))
4506 * Here we only respond to action of unbound device from driver.
4508 * Added device is not attached to its DMAR domain here yet. That will happen
4509 * when mapping the device to iova.
4511 static int device_notifier(struct notifier_block *nb,
4512 unsigned long action, void *data)
4514 struct device *dev = data;
4515 struct dmar_domain *domain;
4517 if (iommu_dummy(dev))
4520 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4523 domain = find_domain(dev);
4527 dmar_remove_one_dev_info(domain, dev);
4528 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4529 domain_exit(domain);
4534 static struct notifier_block device_nb = {
4535 .notifier_call = device_notifier,
4538 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4539 unsigned long val, void *v)
4541 struct memory_notify *mhp = v;
4542 unsigned long long start, end;
4543 unsigned long start_vpfn, last_vpfn;
4546 case MEM_GOING_ONLINE:
4547 start = mhp->start_pfn << PAGE_SHIFT;
4548 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4549 if (iommu_domain_identity_map(si_domain, start, end)) {
4550 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4557 case MEM_CANCEL_ONLINE:
4558 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4559 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4560 while (start_vpfn <= last_vpfn) {
4562 struct dmar_drhd_unit *drhd;
4563 struct intel_iommu *iommu;
4564 struct page *freelist;
4566 iova = find_iova(&si_domain->iovad, start_vpfn);
4568 pr_debug("Failed get IOVA for PFN %lx\n",
4573 iova = split_and_remove_iova(&si_domain->iovad, iova,
4574 start_vpfn, last_vpfn);
4576 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4577 start_vpfn, last_vpfn);
4581 freelist = domain_unmap(si_domain, iova->pfn_lo,
4585 for_each_active_iommu(iommu, drhd)
4586 iommu_flush_iotlb_psi(iommu, si_domain,
4587 iova->pfn_lo, iova_size(iova),
4590 dma_free_pagelist(freelist);
4592 start_vpfn = iova->pfn_hi + 1;
4593 free_iova_mem(iova);
4601 static struct notifier_block intel_iommu_memory_nb = {
4602 .notifier_call = intel_iommu_memory_notifier,
4606 static void free_all_cpu_cached_iovas(unsigned int cpu)
4610 for (i = 0; i < g_num_of_iommus; i++) {
4611 struct intel_iommu *iommu = g_iommus[i];
4612 struct dmar_domain *domain;
4618 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4619 domain = get_iommu_domain(iommu, (u16)did);
4623 free_cpu_cached_iovas(cpu, &domain->iovad);
4628 static int intel_iommu_cpu_dead(unsigned int cpu)
4630 free_all_cpu_cached_iovas(cpu);
4634 static void intel_disable_iommus(void)
4636 struct intel_iommu *iommu = NULL;
4637 struct dmar_drhd_unit *drhd;
4639 for_each_iommu(iommu, drhd)
4640 iommu_disable_translation(iommu);
4643 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4645 struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4647 return container_of(iommu_dev, struct intel_iommu, iommu);
4650 static ssize_t intel_iommu_show_version(struct device *dev,
4651 struct device_attribute *attr,
4654 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4655 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4656 return sprintf(buf, "%d:%d\n",
4657 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4659 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4661 static ssize_t intel_iommu_show_address(struct device *dev,
4662 struct device_attribute *attr,
4665 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4666 return sprintf(buf, "%llx\n", iommu->reg_phys);
4668 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4670 static ssize_t intel_iommu_show_cap(struct device *dev,
4671 struct device_attribute *attr,
4674 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4675 return sprintf(buf, "%llx\n", iommu->cap);
4677 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4679 static ssize_t intel_iommu_show_ecap(struct device *dev,
4680 struct device_attribute *attr,
4683 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4684 return sprintf(buf, "%llx\n", iommu->ecap);
4686 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4688 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4689 struct device_attribute *attr,
4692 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4693 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4695 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4697 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4698 struct device_attribute *attr,
4701 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4702 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4703 cap_ndoms(iommu->cap)));
4705 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4707 static struct attribute *intel_iommu_attrs[] = {
4708 &dev_attr_version.attr,
4709 &dev_attr_address.attr,
4711 &dev_attr_ecap.attr,
4712 &dev_attr_domains_supported.attr,
4713 &dev_attr_domains_used.attr,
4717 static struct attribute_group intel_iommu_group = {
4718 .name = "intel-iommu",
4719 .attrs = intel_iommu_attrs,
4722 const struct attribute_group *intel_iommu_groups[] = {
4727 int __init intel_iommu_init(void)
4730 struct dmar_drhd_unit *drhd;
4731 struct intel_iommu *iommu;
4733 /* VT-d is required for a TXT/tboot launch, so enforce that */
4734 force_on = tboot_force_iommu();
4736 if (iommu_init_mempool()) {
4738 panic("tboot: Failed to initialize iommu memory\n");
4742 down_write(&dmar_global_lock);
4743 if (dmar_table_init()) {
4745 panic("tboot: Failed to initialize DMAR table\n");
4749 if (dmar_dev_scope_init() < 0) {
4751 panic("tboot: Failed to initialize DMAR device scope\n");
4755 if (no_iommu || dmar_disabled) {
4757 * We exit the function here to ensure IOMMU's remapping and
4758 * mempool aren't setup, which means that the IOMMU's PMRs
4759 * won't be disabled via the call to init_dmars(). So disable
4760 * it explicitly here. The PMRs were setup by tboot prior to
4761 * calling SENTER, but the kernel is expected to reset/tear
4764 if (intel_iommu_tboot_noforce) {
4765 for_each_iommu(iommu, drhd)
4766 iommu_disable_protect_mem_regions(iommu);
4770 * Make sure the IOMMUs are switched off, even when we
4771 * boot into a kexec kernel and the previous kernel left
4774 intel_disable_iommus();
4778 if (list_empty(&dmar_rmrr_units))
4779 pr_info("No RMRR found\n");
4781 if (list_empty(&dmar_atsr_units))
4782 pr_info("No ATSR found\n");
4784 if (dmar_init_reserved_ranges()) {
4786 panic("tboot: Failed to reserve iommu ranges\n");
4787 goto out_free_reserved_range;
4790 init_no_remapping_devices();
4795 panic("tboot: Failed to initialize DMARs\n");
4796 pr_err("Initialization failed\n");
4797 goto out_free_reserved_range;
4799 up_write(&dmar_global_lock);
4800 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4802 #ifdef CONFIG_SWIOTLB
4805 dma_ops = &intel_dma_ops;
4807 init_iommu_pm_ops();
4809 for_each_active_iommu(iommu, drhd) {
4810 iommu_device_sysfs_add(&iommu->iommu, NULL,
4813 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4814 iommu_device_register(&iommu->iommu);
4817 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4818 bus_register_notifier(&pci_bus_type, &device_nb);
4819 if (si_domain && !hw_pass_through)
4820 register_memory_notifier(&intel_iommu_memory_nb);
4821 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4822 intel_iommu_cpu_dead);
4823 intel_iommu_enabled = 1;
4827 out_free_reserved_range:
4828 put_iova_domain(&reserved_iova_list);
4830 intel_iommu_free_dmars();
4831 up_write(&dmar_global_lock);
4832 iommu_exit_mempool();
4836 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4838 struct intel_iommu *iommu = opaque;
4840 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4845 * NB - intel-iommu lacks any sort of reference counting for the users of
4846 * dependent devices. If multiple endpoints have intersecting dependent
4847 * devices, unbinding the driver from any one of them will possibly leave
4848 * the others unable to operate.
4850 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4852 if (!iommu || !dev || !dev_is_pci(dev))
4855 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4858 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4860 struct intel_iommu *iommu;
4861 unsigned long flags;
4863 assert_spin_locked(&device_domain_lock);
4868 iommu = info->iommu;
4871 iommu_disable_dev_iotlb(info);
4872 domain_context_clear(iommu, info->dev);
4875 unlink_domain_info(info);
4877 spin_lock_irqsave(&iommu->lock, flags);
4878 domain_detach_iommu(info->domain, iommu);
4879 spin_unlock_irqrestore(&iommu->lock, flags);
4881 free_devinfo_mem(info);
4884 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4887 struct device_domain_info *info;
4888 unsigned long flags;
4890 spin_lock_irqsave(&device_domain_lock, flags);
4891 info = dev->archdata.iommu;
4892 __dmar_remove_one_dev_info(info);
4893 spin_unlock_irqrestore(&device_domain_lock, flags);
4896 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4900 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4902 domain_reserve_special_ranges(domain);
4904 /* calculate AGAW */
4905 domain->gaw = guest_width;
4906 adjust_width = guestwidth_to_adjustwidth(guest_width);
4907 domain->agaw = width_to_agaw(adjust_width);
4909 domain->iommu_coherency = 0;
4910 domain->iommu_snooping = 0;
4911 domain->iommu_superpage = 0;
4912 domain->max_addr = 0;
4914 /* always allocate the top pgd */
4915 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4918 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4922 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4924 struct dmar_domain *dmar_domain;
4925 struct iommu_domain *domain;
4927 if (type != IOMMU_DOMAIN_UNMANAGED)
4930 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4932 pr_err("Can't allocate dmar_domain\n");
4935 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4936 pr_err("Domain initialization failed\n");
4937 domain_exit(dmar_domain);
4940 domain_update_iommu_cap(dmar_domain);
4942 domain = &dmar_domain->domain;
4943 domain->geometry.aperture_start = 0;
4944 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4945 domain->geometry.force_aperture = true;
4950 static void intel_iommu_domain_free(struct iommu_domain *domain)
4952 domain_exit(to_dmar_domain(domain));
4955 static int intel_iommu_attach_device(struct iommu_domain *domain,
4958 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4959 struct intel_iommu *iommu;
4963 if (device_is_rmrr_locked(dev)) {
4964 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4968 /* normally dev is not mapped */
4969 if (unlikely(domain_context_mapped(dev))) {
4970 struct dmar_domain *old_domain;
4972 old_domain = find_domain(dev);
4975 dmar_remove_one_dev_info(old_domain, dev);
4978 if (!domain_type_is_vm_or_si(old_domain) &&
4979 list_empty(&old_domain->devices))
4980 domain_exit(old_domain);
4984 iommu = device_to_iommu(dev, &bus, &devfn);
4988 /* check if this iommu agaw is sufficient for max mapped address */
4989 addr_width = agaw_to_width(iommu->agaw);
4990 if (addr_width > cap_mgaw(iommu->cap))
4991 addr_width = cap_mgaw(iommu->cap);
4993 if (dmar_domain->max_addr > (1LL << addr_width)) {
4994 pr_err("%s: iommu width (%d) is not "
4995 "sufficient for the mapped address (%llx)\n",
4996 __func__, addr_width, dmar_domain->max_addr);
4999 dmar_domain->gaw = addr_width;
5002 * Knock out extra levels of page tables if necessary
5004 while (iommu->agaw < dmar_domain->agaw) {
5005 struct dma_pte *pte;
5007 pte = dmar_domain->pgd;
5008 if (dma_pte_present(pte)) {
5009 dmar_domain->pgd = (struct dma_pte *)
5010 phys_to_virt(dma_pte_addr(pte));
5011 free_pgtable_page(pte);
5013 dmar_domain->agaw--;
5016 return domain_add_dev_info(dmar_domain, dev);
5019 static void intel_iommu_detach_device(struct iommu_domain *domain,
5022 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5025 static int intel_iommu_map(struct iommu_domain *domain,
5026 unsigned long iova, phys_addr_t hpa,
5027 size_t size, int iommu_prot)
5029 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5034 if (iommu_prot & IOMMU_READ)
5035 prot |= DMA_PTE_READ;
5036 if (iommu_prot & IOMMU_WRITE)
5037 prot |= DMA_PTE_WRITE;
5038 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5039 prot |= DMA_PTE_SNP;
5041 max_addr = iova + size;
5042 if (dmar_domain->max_addr < max_addr) {
5045 /* check if minimum agaw is sufficient for mapped address */
5046 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5047 if (end < max_addr) {
5048 pr_err("%s: iommu width (%d) is not "
5049 "sufficient for the mapped address (%llx)\n",
5050 __func__, dmar_domain->gaw, max_addr);
5053 dmar_domain->max_addr = max_addr;
5055 /* Round up size to next multiple of PAGE_SIZE, if it and
5056 the low bits of hpa would take us onto the next page */
5057 size = aligned_nrpages(hpa, size);
5058 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5059 hpa >> VTD_PAGE_SHIFT, size, prot);
5063 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5064 unsigned long iova, size_t size)
5066 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5067 struct page *freelist = NULL;
5068 struct intel_iommu *iommu;
5069 unsigned long start_pfn, last_pfn;
5070 unsigned int npages;
5071 int iommu_id, level = 0;
5073 /* Cope with horrid API which requires us to unmap more than the
5074 size argument if it happens to be a large-page mapping. */
5075 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5077 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5078 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5080 start_pfn = iova >> VTD_PAGE_SHIFT;
5081 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5083 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5085 npages = last_pfn - start_pfn + 1;
5087 for_each_domain_iommu(iommu_id, dmar_domain) {
5088 iommu = g_iommus[iommu_id];
5090 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5091 start_pfn, npages, !freelist, 0);
5094 dma_free_pagelist(freelist);
5096 if (dmar_domain->max_addr == iova + size)
5097 dmar_domain->max_addr = iova;
5102 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5105 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5106 struct dma_pte *pte;
5110 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5112 phys = dma_pte_addr(pte);
5117 static bool intel_iommu_capable(enum iommu_cap cap)
5119 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5120 return domain_update_iommu_snooping(NULL) == 1;
5121 if (cap == IOMMU_CAP_INTR_REMAP)
5122 return irq_remapping_enabled == 1;
5127 static int intel_iommu_add_device(struct device *dev)
5129 struct intel_iommu *iommu;
5130 struct iommu_group *group;
5133 iommu = device_to_iommu(dev, &bus, &devfn);
5137 iommu_device_link(&iommu->iommu, dev);
5139 group = iommu_group_get_for_dev(dev);
5142 return PTR_ERR(group);
5144 iommu_group_put(group);
5148 static void intel_iommu_remove_device(struct device *dev)
5150 struct intel_iommu *iommu;
5153 iommu = device_to_iommu(dev, &bus, &devfn);
5157 iommu_group_remove_device(dev);
5159 iommu_device_unlink(&iommu->iommu, dev);
5162 static void intel_iommu_get_resv_regions(struct device *device,
5163 struct list_head *head)
5165 struct iommu_resv_region *reg;
5166 struct dmar_rmrr_unit *rmrr;
5167 struct device *i_dev;
5171 for_each_rmrr_units(rmrr) {
5172 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5174 if (i_dev != device)
5177 list_add_tail(&rmrr->resv->list, head);
5182 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5183 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5187 list_add_tail(®->list, head);
5190 static void intel_iommu_put_resv_regions(struct device *dev,
5191 struct list_head *head)
5193 struct iommu_resv_region *entry, *next;
5195 list_for_each_entry_safe(entry, next, head, list) {
5196 if (entry->type == IOMMU_RESV_RESERVED)
5201 #ifdef CONFIG_INTEL_IOMMU_SVM
5202 #define MAX_NR_PASID_BITS (20)
5203 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5206 * Convert ecap_pss to extend context entry pts encoding, also
5207 * respect the soft pasid_max value set by the iommu.
5208 * - number of PASID bits = ecap_pss + 1
5209 * - number of PASID table entries = 2^(pts + 5)
5210 * Therefore, pts = ecap_pss - 4
5211 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5213 if (ecap_pss(iommu->ecap) < 5)
5216 /* pasid_max is encoded as actual number of entries not the bits */
5217 return find_first_bit((unsigned long *)&iommu->pasid_max,
5218 MAX_NR_PASID_BITS) - 5;
5221 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5223 struct device_domain_info *info;
5224 struct context_entry *context;
5225 struct dmar_domain *domain;
5226 unsigned long flags;
5230 domain = get_valid_domain_for_dev(sdev->dev);
5234 spin_lock_irqsave(&device_domain_lock, flags);
5235 spin_lock(&iommu->lock);
5238 info = sdev->dev->archdata.iommu;
5239 if (!info || !info->pasid_supported)
5242 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5243 if (WARN_ON(!context))
5246 ctx_lo = context[0].lo;
5248 sdev->did = domain->iommu_did[iommu->seq_id];
5249 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5251 if (!(ctx_lo & CONTEXT_PASIDE)) {
5252 if (iommu->pasid_state_table)
5253 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5254 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5255 intel_iommu_get_pts(iommu);
5258 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5259 * extended to permit requests-with-PASID if the PASIDE bit
5260 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5261 * however, the PASIDE bit is ignored and requests-with-PASID
5262 * are unconditionally blocked. Which makes less sense.
5263 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5264 * "guest mode" translation types depending on whether ATS
5265 * is available or not. Annoyingly, we can't use the new
5266 * modes *unless* PASIDE is set. */
5267 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5268 ctx_lo &= ~CONTEXT_TT_MASK;
5269 if (info->ats_supported)
5270 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5272 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5274 ctx_lo |= CONTEXT_PASIDE;
5275 if (iommu->pasid_state_table)
5276 ctx_lo |= CONTEXT_DINVE;
5277 if (info->pri_supported)
5278 ctx_lo |= CONTEXT_PRS;
5279 context[0].lo = ctx_lo;
5281 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5282 DMA_CCMD_MASK_NOBIT,
5283 DMA_CCMD_DEVICE_INVL);
5286 /* Enable PASID support in the device, if it wasn't already */
5287 if (!info->pasid_enabled)
5288 iommu_enable_dev_iotlb(info);
5290 if (info->ats_enabled) {
5291 sdev->dev_iotlb = 1;
5292 sdev->qdep = info->ats_qdep;
5293 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5299 spin_unlock(&iommu->lock);
5300 spin_unlock_irqrestore(&device_domain_lock, flags);
5305 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5307 struct intel_iommu *iommu;
5310 if (iommu_dummy(dev)) {
5312 "No IOMMU translation for device; cannot enable SVM\n");
5316 iommu = device_to_iommu(dev, &bus, &devfn);
5318 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5322 if (!iommu->pasid_table) {
5323 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5329 #endif /* CONFIG_INTEL_IOMMU_SVM */
5331 const struct iommu_ops intel_iommu_ops = {
5332 .capable = intel_iommu_capable,
5333 .domain_alloc = intel_iommu_domain_alloc,
5334 .domain_free = intel_iommu_domain_free,
5335 .attach_dev = intel_iommu_attach_device,
5336 .detach_dev = intel_iommu_detach_device,
5337 .map = intel_iommu_map,
5338 .unmap = intel_iommu_unmap,
5339 .map_sg = default_iommu_map_sg,
5340 .iova_to_phys = intel_iommu_iova_to_phys,
5341 .add_device = intel_iommu_add_device,
5342 .remove_device = intel_iommu_remove_device,
5343 .get_resv_regions = intel_iommu_get_resv_regions,
5344 .put_resv_regions = intel_iommu_put_resv_regions,
5345 .device_group = pci_device_group,
5346 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5349 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5351 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5352 pr_info("Disabling IOMMU for graphics on this chipset\n");
5356 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5357 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5358 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5359 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5360 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5361 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5362 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5364 static void quirk_iommu_rwbf(struct pci_dev *dev)
5367 * Mobile 4 Series Chipset neglects to set RWBF capability,
5368 * but needs it. Same seems to hold for the desktop versions.
5370 pr_info("Forcing write-buffer flush capability\n");
5374 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5375 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5376 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5377 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5378 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5379 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5380 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5383 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5384 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5385 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5386 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5387 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5388 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5389 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5390 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5392 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5396 if (pci_read_config_word(dev, GGC, &ggc))
5399 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5400 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5402 } else if (dmar_map_gfx) {
5403 /* we have to ensure the gfx device is idle before we flush */
5404 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5405 intel_iommu_strict = 1;
5408 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5409 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5410 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5411 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5413 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5414 ISOCH DMAR unit for the Azalia sound device, but not give it any
5415 TLB entries, which causes it to deadlock. Check for that. We do
5416 this in a function called from init_dmars(), instead of in a PCI
5417 quirk, because we don't want to print the obnoxious "BIOS broken"
5418 message if VT-d is actually disabled.
5420 static void __init check_tylersburg_isoch(void)
5422 struct pci_dev *pdev;
5423 uint32_t vtisochctrl;
5425 /* If there's no Azalia in the system anyway, forget it. */
5426 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5431 /* System Management Registers. Might be hidden, in which case
5432 we can't do the sanity check. But that's OK, because the
5433 known-broken BIOSes _don't_ actually hide it, so far. */
5434 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5438 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5445 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5446 if (vtisochctrl & 1)
5449 /* Drop all bits other than the number of TLB entries */
5450 vtisochctrl &= 0x1c;
5452 /* If we have the recommended number of TLB entries (16), fine. */
5453 if (vtisochctrl == 0x10)
5456 /* Zero TLB entries? You get to ride the short bus to school. */
5458 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5459 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5460 dmi_get_system_info(DMI_BIOS_VENDOR),
5461 dmi_get_system_info(DMI_BIOS_VERSION),
5462 dmi_get_system_info(DMI_PRODUCT_VERSION));
5463 iommu_identity_mapping |= IDENTMAP_AZALIA;
5467 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",