iommu/vt-d: Omit devTLB invalidation requests when TES=0
[platform/kernel/linux-starfive.git] / drivers / iommu / intel / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 #include "perfmon.h"
38
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
42         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
43         bool                    ignore_unhandled;
44         bool                    print_entry;
45 };
46
47 /*
48  * Assumptions:
49  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50  *    before IO devices managed by that unit.
51  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52  *    after IO devices managed by that unit.
53  * 3) Hotplug events are rare.
54  *
55  * Locking rules for DMA and interrupt remapping related global data structures:
56  * 1) Use dmar_global_lock in process context
57  * 2) Use RCU in interrupt context
58  */
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
61
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static DEFINE_IDA(dmar_seq_ids);
65
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
68
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71         /*
72          * add INCLUDE_ALL at the tail, so scan the list will find it at
73          * the very end.
74          */
75         if (drhd->include_all)
76                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77         else
78                 list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83         struct acpi_dmar_device_scope *scope;
84
85         *cnt = 0;
86         while (start < end) {
87                 scope = start;
88                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91                         (*cnt)++;
92                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94                         pr_warn("Unsupported device scope\n");
95                 }
96                 start += scope->length;
97         }
98         if (*cnt == 0)
99                 return NULL;
100
101         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106         int i;
107         struct device *tmp_dev;
108
109         if (*devices && *cnt) {
110                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111                         put_device(tmp_dev);
112                 kfree(*devices);
113         }
114
115         *devices = NULL;
116         *cnt = 0;
117 }
118
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125         int level = 0;
126         size_t size;
127         struct pci_dev *tmp;
128         struct dmar_pci_notify_info *info;
129
130         /*
131          * Ignore devices that have a domain number higher than what can
132          * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
133          */
134         if (pci_domain_nr(dev->bus) > U16_MAX)
135                 return NULL;
136
137         /* Only generate path[] for device addition event */
138         if (event == BUS_NOTIFY_ADD_DEVICE)
139                 for (tmp = dev; tmp; tmp = tmp->bus->self)
140                         level++;
141
142         size = struct_size(info, path, level);
143         if (size <= sizeof(dmar_pci_notify_info_buf)) {
144                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
145         } else {
146                 info = kzalloc(size, GFP_KERNEL);
147                 if (!info) {
148                         if (dmar_dev_scope_status == 0)
149                                 dmar_dev_scope_status = -ENOMEM;
150                         return NULL;
151                 }
152         }
153
154         info->event = event;
155         info->dev = dev;
156         info->seg = pci_domain_nr(dev->bus);
157         info->level = level;
158         if (event == BUS_NOTIFY_ADD_DEVICE) {
159                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
160                         level--;
161                         info->path[level].bus = tmp->bus->number;
162                         info->path[level].device = PCI_SLOT(tmp->devfn);
163                         info->path[level].function = PCI_FUNC(tmp->devfn);
164                         if (pci_is_root_bus(tmp->bus))
165                                 info->bus = tmp->bus->number;
166                 }
167         }
168
169         return info;
170 }
171
172 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
173 {
174         if ((void *)info != dmar_pci_notify_info_buf)
175                 kfree(info);
176 }
177
178 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
179                                 struct acpi_dmar_pci_path *path, int count)
180 {
181         int i;
182
183         if (info->bus != bus)
184                 goto fallback;
185         if (info->level != count)
186                 goto fallback;
187
188         for (i = 0; i < count; i++) {
189                 if (path[i].device != info->path[i].device ||
190                     path[i].function != info->path[i].function)
191                         goto fallback;
192         }
193
194         return true;
195
196 fallback:
197
198         if (count != 1)
199                 return false;
200
201         i = info->level - 1;
202         if (bus              == info->path[i].bus &&
203             path[0].device   == info->path[i].device &&
204             path[0].function == info->path[i].function) {
205                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
206                         bus, path[0].device, path[0].function);
207                 return true;
208         }
209
210         return false;
211 }
212
213 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
214 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
215                           void *start, void*end, u16 segment,
216                           struct dmar_dev_scope *devices,
217                           int devices_cnt)
218 {
219         int i, level;
220         struct device *tmp, *dev = &info->dev->dev;
221         struct acpi_dmar_device_scope *scope;
222         struct acpi_dmar_pci_path *path;
223
224         if (segment != info->seg)
225                 return 0;
226
227         for (; start < end; start += scope->length) {
228                 scope = start;
229                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
230                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
231                         continue;
232
233                 path = (struct acpi_dmar_pci_path *)(scope + 1);
234                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
235                 if (!dmar_match_pci_path(info, scope->bus, path, level))
236                         continue;
237
238                 /*
239                  * We expect devices with endpoint scope to have normal PCI
240                  * headers, and devices with bridge scope to have bridge PCI
241                  * headers.  However PCI NTB devices may be listed in the
242                  * DMAR table with bridge scope, even though they have a
243                  * normal PCI header.  NTB devices are identified by class
244                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
245                  * for this special case.
246                  */
247                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
248                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
249                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
250                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
251                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
252                         pr_warn("Device scope type does not match for %s\n",
253                                 pci_name(info->dev));
254                         return -EINVAL;
255                 }
256
257                 for_each_dev_scope(devices, devices_cnt, i, tmp)
258                         if (tmp == NULL) {
259                                 devices[i].bus = info->dev->bus->number;
260                                 devices[i].devfn = info->dev->devfn;
261                                 rcu_assign_pointer(devices[i].dev,
262                                                    get_device(dev));
263                                 return 1;
264                         }
265                 if (WARN_ON(i >= devices_cnt))
266                         return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273                           struct dmar_dev_scope *devices, int count)
274 {
275         int index;
276         struct device *tmp;
277
278         if (info->seg != segment)
279                 return 0;
280
281         for_each_active_dev_scope(devices, count, index, tmp)
282                 if (tmp == &info->dev->dev) {
283                         RCU_INIT_POINTER(devices[index].dev, NULL);
284                         synchronize_rcu();
285                         put_device(tmp);
286                         return 1;
287                 }
288
289         return 0;
290 }
291
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294         int ret = 0;
295         struct dmar_drhd_unit *dmaru;
296         struct acpi_dmar_hardware_unit *drhd;
297
298         for_each_drhd_unit(dmaru) {
299                 if (dmaru->include_all)
300                         continue;
301
302                 drhd = container_of(dmaru->hdr,
303                                     struct acpi_dmar_hardware_unit, header);
304                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305                                 ((void *)drhd) + drhd->header.length,
306                                 dmaru->segment,
307                                 dmaru->devices, dmaru->devices_cnt);
308                 if (ret)
309                         break;
310         }
311         if (ret >= 0)
312                 ret = dmar_iommu_notify_scope_dev(info);
313         if (ret < 0 && dmar_dev_scope_status == 0)
314                 dmar_dev_scope_status = ret;
315
316         if (ret >= 0)
317                 intel_irq_remap_add_device(info);
318
319         return ret;
320 }
321
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324         struct dmar_drhd_unit *dmaru;
325
326         for_each_drhd_unit(dmaru)
327                 if (dmar_remove_dev_scope(info, dmaru->segment,
328                         dmaru->devices, dmaru->devices_cnt))
329                         break;
330         dmar_iommu_notify_scope_dev(info);
331 }
332
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335         struct pci_dev *physfn = pci_physfn(pdev);
336
337         dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341                                  unsigned long action, void *data)
342 {
343         struct pci_dev *pdev = to_pci_dev(data);
344         struct dmar_pci_notify_info *info;
345
346         /* Only care about add/remove events for physical functions.
347          * For VFs we actually do the lookup based on the corresponding
348          * PF in device_to_iommu() anyway. */
349         if (pdev->is_virtfn) {
350                 /*
351                  * Ensure that the VF device inherits the irq domain of the
352                  * PF device. Ideally the device would inherit the domain
353                  * from the bus, but DMAR can have multiple units per bus
354                  * which makes this impossible. The VF 'bus' could inherit
355                  * from the PF device, but that's yet another x86'sism to
356                  * inflict on everybody else.
357                  */
358                 if (action == BUS_NOTIFY_ADD_DEVICE)
359                         vf_inherit_msi_domain(pdev);
360                 return NOTIFY_DONE;
361         }
362
363         if (action != BUS_NOTIFY_ADD_DEVICE &&
364             action != BUS_NOTIFY_REMOVED_DEVICE)
365                 return NOTIFY_DONE;
366
367         info = dmar_alloc_pci_notify_info(pdev, action);
368         if (!info)
369                 return NOTIFY_DONE;
370
371         down_write(&dmar_global_lock);
372         if (action == BUS_NOTIFY_ADD_DEVICE)
373                 dmar_pci_bus_add_dev(info);
374         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375                 dmar_pci_bus_del_dev(info);
376         up_write(&dmar_global_lock);
377
378         dmar_free_pci_notify_info(info);
379
380         return NOTIFY_OK;
381 }
382
383 static struct notifier_block dmar_pci_bus_nb = {
384         .notifier_call = dmar_pci_bus_notifier,
385         .priority = 1,
386 };
387
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391         struct dmar_drhd_unit *dmaru;
392
393         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394                                 dmar_rcu_check())
395                 if (dmaru->segment == drhd->segment &&
396                     dmaru->reg_base_addr == drhd->address)
397                         return dmaru;
398
399         return NULL;
400 }
401
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409         struct acpi_dmar_hardware_unit *drhd;
410         struct dmar_drhd_unit *dmaru;
411         int ret;
412
413         drhd = (struct acpi_dmar_hardware_unit *)header;
414         dmaru = dmar_find_dmaru(drhd);
415         if (dmaru)
416                 goto out;
417
418         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419         if (!dmaru)
420                 return -ENOMEM;
421
422         /*
423          * If header is allocated from slab by ACPI _DSM method, we need to
424          * copy the content because the memory buffer will be freed on return.
425          */
426         dmaru->hdr = (void *)(dmaru + 1);
427         memcpy(dmaru->hdr, header, header->length);
428         dmaru->reg_base_addr = drhd->address;
429         dmaru->segment = drhd->segment;
430         /* The size of the register set is 2 ^ N 4 KB pages. */
431         dmaru->reg_size = 1UL << (drhd->size + 12);
432         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
433         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
434                                               ((void *)drhd) + drhd->header.length,
435                                               &dmaru->devices_cnt);
436         if (dmaru->devices_cnt && dmaru->devices == NULL) {
437                 kfree(dmaru);
438                 return -ENOMEM;
439         }
440
441         ret = alloc_iommu(dmaru);
442         if (ret) {
443                 dmar_free_dev_scope(&dmaru->devices,
444                                     &dmaru->devices_cnt);
445                 kfree(dmaru);
446                 return ret;
447         }
448         dmar_register_drhd_unit(dmaru);
449
450 out:
451         if (arg)
452                 (*(int *)arg)++;
453
454         return 0;
455 }
456
457 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
458 {
459         if (dmaru->devices && dmaru->devices_cnt)
460                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
461         if (dmaru->iommu)
462                 free_iommu(dmaru->iommu);
463         kfree(dmaru);
464 }
465
466 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
467                                       void *arg)
468 {
469         struct acpi_dmar_andd *andd = (void *)header;
470
471         /* Check for NUL termination within the designated length */
472         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
473                 pr_warn(FW_BUG
474                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
475                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
476                            dmi_get_system_info(DMI_BIOS_VENDOR),
477                            dmi_get_system_info(DMI_BIOS_VERSION),
478                            dmi_get_system_info(DMI_PRODUCT_VERSION));
479                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
480                 return -EINVAL;
481         }
482         pr_info("ANDD device: %x name: %s\n", andd->device_number,
483                 andd->device_name);
484
485         return 0;
486 }
487
488 #ifdef CONFIG_ACPI_NUMA
489 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
490 {
491         struct acpi_dmar_rhsa *rhsa;
492         struct dmar_drhd_unit *drhd;
493
494         rhsa = (struct acpi_dmar_rhsa *)header;
495         for_each_drhd_unit(drhd) {
496                 if (drhd->reg_base_addr == rhsa->base_address) {
497                         int node = pxm_to_node(rhsa->proximity_domain);
498
499                         if (node != NUMA_NO_NODE && !node_online(node))
500                                 node = NUMA_NO_NODE;
501                         drhd->iommu->node = node;
502                         return 0;
503                 }
504         }
505         pr_warn(FW_BUG
506                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
507                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
508                 rhsa->base_address,
509                 dmi_get_system_info(DMI_BIOS_VENDOR),
510                 dmi_get_system_info(DMI_BIOS_VERSION),
511                 dmi_get_system_info(DMI_PRODUCT_VERSION));
512         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
513
514         return 0;
515 }
516 #else
517 #define dmar_parse_one_rhsa             dmar_res_noop
518 #endif
519
520 static void
521 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
522 {
523         struct acpi_dmar_hardware_unit *drhd;
524         struct acpi_dmar_reserved_memory *rmrr;
525         struct acpi_dmar_atsr *atsr;
526         struct acpi_dmar_rhsa *rhsa;
527         struct acpi_dmar_satc *satc;
528
529         switch (header->type) {
530         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
532                                     header);
533                 pr_info("DRHD base: %#016Lx flags: %#x\n",
534                         (unsigned long long)drhd->address, drhd->flags);
535                 break;
536         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538                                     header);
539                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540                         (unsigned long long)rmrr->base_address,
541                         (unsigned long long)rmrr->end_address);
542                 break;
543         case ACPI_DMAR_TYPE_ROOT_ATS:
544                 atsr = container_of(header, struct acpi_dmar_atsr, header);
545                 pr_info("ATSR flags: %#x\n", atsr->flags);
546                 break;
547         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550                        (unsigned long long)rhsa->base_address,
551                        rhsa->proximity_domain);
552                 break;
553         case ACPI_DMAR_TYPE_NAMESPACE:
554                 /* We don't print this here because we need to sanity-check
555                    it first. So print it in dmar_parse_one_andd() instead. */
556                 break;
557         case ACPI_DMAR_TYPE_SATC:
558                 satc = container_of(header, struct acpi_dmar_satc, header);
559                 pr_info("SATC flags: 0x%x\n", satc->flags);
560                 break;
561         }
562 }
563
564 /**
565  * dmar_table_detect - checks to see if the platform supports DMAR devices
566  */
567 static int __init dmar_table_detect(void)
568 {
569         acpi_status status = AE_OK;
570
571         /* if we could find DMAR table, then there are DMAR devices */
572         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
573
574         if (ACPI_SUCCESS(status) && !dmar_tbl) {
575                 pr_warn("Unable to map DMAR\n");
576                 status = AE_NOT_FOUND;
577         }
578
579         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
580 }
581
582 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
583                                        size_t len, struct dmar_res_callback *cb)
584 {
585         struct acpi_dmar_header *iter, *next;
586         struct acpi_dmar_header *end = ((void *)start) + len;
587
588         for (iter = start; iter < end; iter = next) {
589                 next = (void *)iter + iter->length;
590                 if (iter->length == 0) {
591                         /* Avoid looping forever on bad ACPI tables */
592                         pr_debug(FW_BUG "Invalid 0-length structure\n");
593                         break;
594                 } else if (next > end) {
595                         /* Avoid passing table end */
596                         pr_warn(FW_BUG "Record passes table end\n");
597                         return -EINVAL;
598                 }
599
600                 if (cb->print_entry)
601                         dmar_table_print_dmar_entry(iter);
602
603                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
604                         /* continue for forward compatibility */
605                         pr_debug("Unknown DMAR structure type %d\n",
606                                  iter->type);
607                 } else if (cb->cb[iter->type]) {
608                         int ret;
609
610                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
611                         if (ret)
612                                 return ret;
613                 } else if (!cb->ignore_unhandled) {
614                         pr_warn("No handler for DMAR structure type %d\n",
615                                 iter->type);
616                         return -EINVAL;
617                 }
618         }
619
620         return 0;
621 }
622
623 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
624                                        struct dmar_res_callback *cb)
625 {
626         return dmar_walk_remapping_entries((void *)(dmar + 1),
627                         dmar->header.length - sizeof(*dmar), cb);
628 }
629
630 /**
631  * parse_dmar_table - parses the DMA reporting table
632  */
633 static int __init
634 parse_dmar_table(void)
635 {
636         struct acpi_table_dmar *dmar;
637         int drhd_count = 0;
638         int ret;
639         struct dmar_res_callback cb = {
640                 .print_entry = true,
641                 .ignore_unhandled = true,
642                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
643                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
644                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
645                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
646                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
647                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
648                 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
649         };
650
651         /*
652          * Do it again, earlier dmar_tbl mapping could be mapped with
653          * fixed map.
654          */
655         dmar_table_detect();
656
657         /*
658          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
659          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
660          */
661         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
662
663         dmar = (struct acpi_table_dmar *)dmar_tbl;
664         if (!dmar)
665                 return -ENODEV;
666
667         if (dmar->width < PAGE_SHIFT - 1) {
668                 pr_warn("Invalid DMAR haw\n");
669                 return -EINVAL;
670         }
671
672         pr_info("Host address width %d\n", dmar->width + 1);
673         ret = dmar_walk_dmar_table(dmar, &cb);
674         if (ret == 0 && drhd_count == 0)
675                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
676
677         return ret;
678 }
679
680 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
681                                  int cnt, struct pci_dev *dev)
682 {
683         int index;
684         struct device *tmp;
685
686         while (dev) {
687                 for_each_active_dev_scope(devices, cnt, index, tmp)
688                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
689                                 return 1;
690
691                 /* Check our parent */
692                 dev = dev->bus->self;
693         }
694
695         return 0;
696 }
697
698 struct dmar_drhd_unit *
699 dmar_find_matched_drhd_unit(struct pci_dev *dev)
700 {
701         struct dmar_drhd_unit *dmaru;
702         struct acpi_dmar_hardware_unit *drhd;
703
704         dev = pci_physfn(dev);
705
706         rcu_read_lock();
707         for_each_drhd_unit(dmaru) {
708                 drhd = container_of(dmaru->hdr,
709                                     struct acpi_dmar_hardware_unit,
710                                     header);
711
712                 if (dmaru->include_all &&
713                     drhd->segment == pci_domain_nr(dev->bus))
714                         goto out;
715
716                 if (dmar_pci_device_match(dmaru->devices,
717                                           dmaru->devices_cnt, dev))
718                         goto out;
719         }
720         dmaru = NULL;
721 out:
722         rcu_read_unlock();
723
724         return dmaru;
725 }
726
727 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
728                                               struct acpi_device *adev)
729 {
730         struct dmar_drhd_unit *dmaru;
731         struct acpi_dmar_hardware_unit *drhd;
732         struct acpi_dmar_device_scope *scope;
733         struct device *tmp;
734         int i;
735         struct acpi_dmar_pci_path *path;
736
737         for_each_drhd_unit(dmaru) {
738                 drhd = container_of(dmaru->hdr,
739                                     struct acpi_dmar_hardware_unit,
740                                     header);
741
742                 for (scope = (void *)(drhd + 1);
743                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
744                      scope = ((void *)scope) + scope->length) {
745                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
746                                 continue;
747                         if (scope->enumeration_id != device_number)
748                                 continue;
749
750                         path = (void *)(scope + 1);
751                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
752                                 dev_name(&adev->dev), dmaru->reg_base_addr,
753                                 scope->bus, path->device, path->function);
754                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
755                                 if (tmp == NULL) {
756                                         dmaru->devices[i].bus = scope->bus;
757                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
758                                                                             path->function);
759                                         rcu_assign_pointer(dmaru->devices[i].dev,
760                                                            get_device(&adev->dev));
761                                         return;
762                                 }
763                         BUG_ON(i >= dmaru->devices_cnt);
764                 }
765         }
766         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
767                 device_number, dev_name(&adev->dev));
768 }
769
770 static int __init dmar_acpi_dev_scope_init(void)
771 {
772         struct acpi_dmar_andd *andd;
773
774         if (dmar_tbl == NULL)
775                 return -ENODEV;
776
777         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
778              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
779              andd = ((void *)andd) + andd->header.length) {
780                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
781                         acpi_handle h;
782                         struct acpi_device *adev;
783
784                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
785                                                           andd->device_name,
786                                                           &h))) {
787                                 pr_err("Failed to find handle for ACPI object %s\n",
788                                        andd->device_name);
789                                 continue;
790                         }
791                         adev = acpi_fetch_acpi_dev(h);
792                         if (!adev) {
793                                 pr_err("Failed to get device for ACPI object %s\n",
794                                        andd->device_name);
795                                 continue;
796                         }
797                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
798                 }
799         }
800         return 0;
801 }
802
803 int __init dmar_dev_scope_init(void)
804 {
805         struct pci_dev *dev = NULL;
806         struct dmar_pci_notify_info *info;
807
808         if (dmar_dev_scope_status != 1)
809                 return dmar_dev_scope_status;
810
811         if (list_empty(&dmar_drhd_units)) {
812                 dmar_dev_scope_status = -ENODEV;
813         } else {
814                 dmar_dev_scope_status = 0;
815
816                 dmar_acpi_dev_scope_init();
817
818                 for_each_pci_dev(dev) {
819                         if (dev->is_virtfn)
820                                 continue;
821
822                         info = dmar_alloc_pci_notify_info(dev,
823                                         BUS_NOTIFY_ADD_DEVICE);
824                         if (!info) {
825                                 pci_dev_put(dev);
826                                 return dmar_dev_scope_status;
827                         } else {
828                                 dmar_pci_bus_add_dev(info);
829                                 dmar_free_pci_notify_info(info);
830                         }
831                 }
832         }
833
834         return dmar_dev_scope_status;
835 }
836
837 void __init dmar_register_bus_notifier(void)
838 {
839         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
840 }
841
842
843 int __init dmar_table_init(void)
844 {
845         static int dmar_table_initialized;
846         int ret;
847
848         if (dmar_table_initialized == 0) {
849                 ret = parse_dmar_table();
850                 if (ret < 0) {
851                         if (ret != -ENODEV)
852                                 pr_info("Parse DMAR table failure.\n");
853                 } else  if (list_empty(&dmar_drhd_units)) {
854                         pr_info("No DMAR devices found\n");
855                         ret = -ENODEV;
856                 }
857
858                 if (ret < 0)
859                         dmar_table_initialized = ret;
860                 else
861                         dmar_table_initialized = 1;
862         }
863
864         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
865 }
866
867 static void warn_invalid_dmar(u64 addr, const char *message)
868 {
869         pr_warn_once(FW_BUG
870                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
871                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
872                 addr, message,
873                 dmi_get_system_info(DMI_BIOS_VENDOR),
874                 dmi_get_system_info(DMI_BIOS_VERSION),
875                 dmi_get_system_info(DMI_PRODUCT_VERSION));
876         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
877 }
878
879 static int __ref
880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
881 {
882         struct acpi_dmar_hardware_unit *drhd;
883         void __iomem *addr;
884         u64 cap, ecap;
885
886         drhd = (void *)entry;
887         if (!drhd->address) {
888                 warn_invalid_dmar(0, "");
889                 return -EINVAL;
890         }
891
892         if (arg)
893                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
894         else
895                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
896         if (!addr) {
897                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
898                 return -EINVAL;
899         }
900
901         cap = dmar_readq(addr + DMAR_CAP_REG);
902         ecap = dmar_readq(addr + DMAR_ECAP_REG);
903
904         if (arg)
905                 iounmap(addr);
906         else
907                 early_iounmap(addr, VTD_PAGE_SIZE);
908
909         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
910                 warn_invalid_dmar(drhd->address, " returns all ones");
911                 return -EINVAL;
912         }
913
914         return 0;
915 }
916
917 void __init detect_intel_iommu(void)
918 {
919         int ret;
920         struct dmar_res_callback validate_drhd_cb = {
921                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
922                 .ignore_unhandled = true,
923         };
924
925         down_write(&dmar_global_lock);
926         ret = dmar_table_detect();
927         if (!ret)
928                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
929                                            &validate_drhd_cb);
930         if (!ret && !no_iommu && !iommu_detected &&
931             (!dmar_disabled || dmar_platform_optin())) {
932                 iommu_detected = 1;
933                 /* Make sure ACS will be enabled */
934                 pci_request_acs();
935         }
936
937 #ifdef CONFIG_X86
938         if (!ret) {
939                 x86_init.iommu.iommu_init = intel_iommu_init;
940                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
941         }
942
943 #endif
944
945         if (dmar_tbl) {
946                 acpi_put_table(dmar_tbl);
947                 dmar_tbl = NULL;
948         }
949         up_write(&dmar_global_lock);
950 }
951
952 static void unmap_iommu(struct intel_iommu *iommu)
953 {
954         iounmap(iommu->reg);
955         release_mem_region(iommu->reg_phys, iommu->reg_size);
956 }
957
958 /**
959  * map_iommu: map the iommu's registers
960  * @iommu: the iommu to map
961  * @drhd: DMA remapping hardware definition structure
962  *
963  * Memory map the iommu's registers.  Start w/ a single page, and
964  * possibly expand if that turns out to be insufficent.
965  */
966 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
967 {
968         u64 phys_addr = drhd->reg_base_addr;
969         int map_size, err=0;
970
971         iommu->reg_phys = phys_addr;
972         iommu->reg_size = drhd->reg_size;
973
974         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
975                 pr_err("Can't reserve memory\n");
976                 err = -EBUSY;
977                 goto out;
978         }
979
980         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
981         if (!iommu->reg) {
982                 pr_err("Can't map the region\n");
983                 err = -ENOMEM;
984                 goto release;
985         }
986
987         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
988         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
989
990         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
991                 err = -EINVAL;
992                 warn_invalid_dmar(phys_addr, " returns all ones");
993                 goto unmap;
994         }
995
996         /* the registers might be more than one page */
997         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
998                          cap_max_fault_reg_offset(iommu->cap));
999         map_size = VTD_PAGE_ALIGN(map_size);
1000         if (map_size > iommu->reg_size) {
1001                 iounmap(iommu->reg);
1002                 release_mem_region(iommu->reg_phys, iommu->reg_size);
1003                 iommu->reg_size = map_size;
1004                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005                                         iommu->name)) {
1006                         pr_err("Can't reserve memory\n");
1007                         err = -EBUSY;
1008                         goto out;
1009                 }
1010                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011                 if (!iommu->reg) {
1012                         pr_err("Can't map the region\n");
1013                         err = -ENOMEM;
1014                         goto release;
1015                 }
1016         }
1017
1018         if (cap_ecmds(iommu->cap)) {
1019                 int i;
1020
1021                 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022                         iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023                                                        i * DMA_ECMD_REG_STEP);
1024                 }
1025         }
1026
1027         err = 0;
1028         goto out;
1029
1030 unmap:
1031         iounmap(iommu->reg);
1032 release:
1033         release_mem_region(iommu->reg_phys, iommu->reg_size);
1034 out:
1035         return err;
1036 }
1037
1038 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039 {
1040         struct intel_iommu *iommu;
1041         u32 ver, sts;
1042         int agaw = -1;
1043         int msagaw = -1;
1044         int err;
1045
1046         if (!drhd->reg_base_addr) {
1047                 warn_invalid_dmar(0, "");
1048                 return -EINVAL;
1049         }
1050
1051         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052         if (!iommu)
1053                 return -ENOMEM;
1054
1055         iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056                                         DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057         if (iommu->seq_id < 0) {
1058                 pr_err("Failed to allocate seq_id\n");
1059                 err = iommu->seq_id;
1060                 goto error;
1061         }
1062         sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064         err = map_iommu(iommu, drhd);
1065         if (err) {
1066                 pr_err("Failed to map %s\n", iommu->name);
1067                 goto error_free_seq_id;
1068         }
1069
1070         err = -EINVAL;
1071         if (!cap_sagaw(iommu->cap) &&
1072             (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073                 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074                         iommu->name);
1075                 drhd->ignored = 1;
1076         }
1077
1078         if (!drhd->ignored) {
1079                 agaw = iommu_calculate_agaw(iommu);
1080                 if (agaw < 0) {
1081                         pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082                                iommu->seq_id);
1083                         drhd->ignored = 1;
1084                 }
1085         }
1086         if (!drhd->ignored) {
1087                 msagaw = iommu_calculate_max_sagaw(iommu);
1088                 if (msagaw < 0) {
1089                         pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090                                iommu->seq_id);
1091                         drhd->ignored = 1;
1092                         agaw = -1;
1093                 }
1094         }
1095         iommu->agaw = agaw;
1096         iommu->msagaw = msagaw;
1097         iommu->segment = drhd->segment;
1098
1099         iommu->node = NUMA_NO_NODE;
1100
1101         ver = readl(iommu->reg + DMAR_VER_REG);
1102         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1103                 iommu->name,
1104                 (unsigned long long)drhd->reg_base_addr,
1105                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1106                 (unsigned long long)iommu->cap,
1107                 (unsigned long long)iommu->ecap);
1108
1109         /* Reflect status in gcmd */
1110         sts = readl(iommu->reg + DMAR_GSTS_REG);
1111         if (sts & DMA_GSTS_IRES)
1112                 iommu->gcmd |= DMA_GCMD_IRE;
1113         if (sts & DMA_GSTS_TES)
1114                 iommu->gcmd |= DMA_GCMD_TE;
1115         if (sts & DMA_GSTS_QIES)
1116                 iommu->gcmd |= DMA_GCMD_QIE;
1117
1118         if (alloc_iommu_pmu(iommu))
1119                 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1120
1121         raw_spin_lock_init(&iommu->register_lock);
1122
1123         /*
1124          * A value of N in PSS field of eCap register indicates hardware
1125          * supports PASID field of N+1 bits.
1126          */
1127         if (pasid_supported(iommu))
1128                 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1129
1130         /*
1131          * This is only for hotplug; at boot time intel_iommu_enabled won't
1132          * be set yet. When intel_iommu_init() runs, it registers the units
1133          * present at boot time, then sets intel_iommu_enabled.
1134          */
1135         if (intel_iommu_enabled && !drhd->ignored) {
1136                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1137                                              intel_iommu_groups,
1138                                              "%s", iommu->name);
1139                 if (err)
1140                         goto err_unmap;
1141
1142                 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1143                 if (err)
1144                         goto err_sysfs;
1145
1146                 iommu_pmu_register(iommu);
1147         }
1148
1149         drhd->iommu = iommu;
1150         iommu->drhd = drhd;
1151
1152         return 0;
1153
1154 err_sysfs:
1155         iommu_device_sysfs_remove(&iommu->iommu);
1156 err_unmap:
1157         free_iommu_pmu(iommu);
1158         unmap_iommu(iommu);
1159 error_free_seq_id:
1160         ida_free(&dmar_seq_ids, iommu->seq_id);
1161 error:
1162         kfree(iommu);
1163         return err;
1164 }
1165
1166 static void free_iommu(struct intel_iommu *iommu)
1167 {
1168         if (intel_iommu_enabled && !iommu->drhd->ignored) {
1169                 iommu_pmu_unregister(iommu);
1170                 iommu_device_unregister(&iommu->iommu);
1171                 iommu_device_sysfs_remove(&iommu->iommu);
1172         }
1173
1174         free_iommu_pmu(iommu);
1175
1176         if (iommu->irq) {
1177                 if (iommu->pr_irq) {
1178                         free_irq(iommu->pr_irq, iommu);
1179                         dmar_free_hwirq(iommu->pr_irq);
1180                         iommu->pr_irq = 0;
1181                 }
1182                 free_irq(iommu->irq, iommu);
1183                 dmar_free_hwirq(iommu->irq);
1184                 iommu->irq = 0;
1185         }
1186
1187         if (iommu->qi) {
1188                 free_page((unsigned long)iommu->qi->desc);
1189                 kfree(iommu->qi->desc_status);
1190                 kfree(iommu->qi);
1191         }
1192
1193         if (iommu->reg)
1194                 unmap_iommu(iommu);
1195
1196         ida_free(&dmar_seq_ids, iommu->seq_id);
1197         kfree(iommu);
1198 }
1199
1200 /*
1201  * Reclaim all the submitted descriptors which have completed its work.
1202  */
1203 static inline void reclaim_free_desc(struct q_inval *qi)
1204 {
1205         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1206                qi->desc_status[qi->free_tail] == QI_ABORT) {
1207                 qi->desc_status[qi->free_tail] = QI_FREE;
1208                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209                 qi->free_cnt++;
1210         }
1211 }
1212
1213 static const char *qi_type_string(u8 type)
1214 {
1215         switch (type) {
1216         case QI_CC_TYPE:
1217                 return "Context-cache Invalidation";
1218         case QI_IOTLB_TYPE:
1219                 return "IOTLB Invalidation";
1220         case QI_DIOTLB_TYPE:
1221                 return "Device-TLB Invalidation";
1222         case QI_IEC_TYPE:
1223                 return "Interrupt Entry Cache Invalidation";
1224         case QI_IWD_TYPE:
1225                 return "Invalidation Wait";
1226         case QI_EIOTLB_TYPE:
1227                 return "PASID-based IOTLB Invalidation";
1228         case QI_PC_TYPE:
1229                 return "PASID-cache Invalidation";
1230         case QI_DEIOTLB_TYPE:
1231                 return "PASID-based Device-TLB Invalidation";
1232         case QI_PGRP_RESP_TYPE:
1233                 return "Page Group Response";
1234         default:
1235                 return "UNKNOWN";
1236         }
1237 }
1238
1239 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240 {
1241         unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242         u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243         struct qi_desc *desc = iommu->qi->desc + head;
1244
1245         if (fault & DMA_FSTS_IQE)
1246                 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247                        DMAR_IQER_REG_IQEI(iqe_err));
1248         if (fault & DMA_FSTS_ITE)
1249                 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250                        DMAR_IQER_REG_ITESID(iqe_err));
1251         if (fault & DMA_FSTS_ICE)
1252                 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253                        DMAR_IQER_REG_ICESID(iqe_err));
1254
1255         pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256                qi_type_string(desc->qw0 & 0xf),
1257                (unsigned long long)desc->qw0,
1258                (unsigned long long)desc->qw1);
1259
1260         head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261         head <<= qi_shift(iommu);
1262         desc = iommu->qi->desc + head;
1263
1264         pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265                qi_type_string(desc->qw0 & 0xf),
1266                (unsigned long long)desc->qw0,
1267                (unsigned long long)desc->qw1);
1268 }
1269
1270 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271 {
1272         u32 fault;
1273         int head, tail;
1274         struct q_inval *qi = iommu->qi;
1275         int shift = qi_shift(iommu);
1276
1277         if (qi->desc_status[wait_index] == QI_ABORT)
1278                 return -EAGAIN;
1279
1280         fault = readl(iommu->reg + DMAR_FSTS_REG);
1281         if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1282                 qi_dump_fault(iommu, fault);
1283
1284         /*
1285          * If IQE happens, the head points to the descriptor associated
1286          * with the error. No new descriptors are fetched until the IQE
1287          * is cleared.
1288          */
1289         if (fault & DMA_FSTS_IQE) {
1290                 head = readl(iommu->reg + DMAR_IQH_REG);
1291                 if ((head >> shift) == index) {
1292                         struct qi_desc *desc = qi->desc + head;
1293
1294                         /*
1295                          * desc->qw2 and desc->qw3 are either reserved or
1296                          * used by software as private data. We won't print
1297                          * out these two qw's for security consideration.
1298                          */
1299                         memcpy(desc, qi->desc + (wait_index << shift),
1300                                1 << shift);
1301                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1302                         pr_info("Invalidation Queue Error (IQE) cleared\n");
1303                         return -EINVAL;
1304                 }
1305         }
1306
1307         /*
1308          * If ITE happens, all pending wait_desc commands are aborted.
1309          * No new descriptors are fetched until the ITE is cleared.
1310          */
1311         if (fault & DMA_FSTS_ITE) {
1312                 head = readl(iommu->reg + DMAR_IQH_REG);
1313                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1314                 head |= 1;
1315                 tail = readl(iommu->reg + DMAR_IQT_REG);
1316                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317
1318                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1319                 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1320
1321                 do {
1322                         if (qi->desc_status[head] == QI_IN_USE)
1323                                 qi->desc_status[head] = QI_ABORT;
1324                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1325                 } while (head != tail);
1326
1327                 if (qi->desc_status[wait_index] == QI_ABORT)
1328                         return -EAGAIN;
1329         }
1330
1331         if (fault & DMA_FSTS_ICE) {
1332                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1333                 pr_info("Invalidation Completion Error (ICE) cleared\n");
1334         }
1335
1336         return 0;
1337 }
1338
1339 /*
1340  * Function to submit invalidation descriptors of all types to the queued
1341  * invalidation interface(QI). Multiple descriptors can be submitted at a
1342  * time, a wait descriptor will be appended to each submission to ensure
1343  * hardware has completed the invalidation before return. Wait descriptors
1344  * can be part of the submission but it will not be polled for completion.
1345  */
1346 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1347                    unsigned int count, unsigned long options)
1348 {
1349         struct q_inval *qi = iommu->qi;
1350         s64 devtlb_start_ktime = 0;
1351         s64 iotlb_start_ktime = 0;
1352         s64 iec_start_ktime = 0;
1353         struct qi_desc wait_desc;
1354         int wait_index, index;
1355         unsigned long flags;
1356         int offset, shift;
1357         int rc, i;
1358         u64 type;
1359
1360         if (!qi)
1361                 return 0;
1362
1363         type = desc->qw0 & GENMASK_ULL(3, 0);
1364
1365         if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1366             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1367                 iotlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369         if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1370             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1371                 devtlb_start_ktime = ktime_to_ns(ktime_get());
1372
1373         if (type == QI_IEC_TYPE &&
1374             dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1375                 iec_start_ktime = ktime_to_ns(ktime_get());
1376
1377 restart:
1378         rc = 0;
1379
1380         raw_spin_lock_irqsave(&qi->q_lock, flags);
1381         /*
1382          * Check if we have enough empty slots in the queue to submit,
1383          * the calculation is based on:
1384          * # of desc + 1 wait desc + 1 space between head and tail
1385          */
1386         while (qi->free_cnt < count + 2) {
1387                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1388                 cpu_relax();
1389                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1390         }
1391
1392         index = qi->free_head;
1393         wait_index = (index + count) % QI_LENGTH;
1394         shift = qi_shift(iommu);
1395
1396         for (i = 0; i < count; i++) {
1397                 offset = ((index + i) % QI_LENGTH) << shift;
1398                 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1399                 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1400                 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1401                                 desc[i].qw2, desc[i].qw3);
1402         }
1403         qi->desc_status[wait_index] = QI_IN_USE;
1404
1405         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1406                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1407         if (options & QI_OPT_WAIT_DRAIN)
1408                 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1409         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1410         wait_desc.qw2 = 0;
1411         wait_desc.qw3 = 0;
1412
1413         offset = wait_index << shift;
1414         memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1415
1416         qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1417         qi->free_cnt -= count + 1;
1418
1419         /*
1420          * update the HW tail register indicating the presence of
1421          * new descriptors.
1422          */
1423         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1424
1425         while (qi->desc_status[wait_index] != QI_DONE) {
1426                 /*
1427                  * We will leave the interrupts disabled, to prevent interrupt
1428                  * context to queue another cmd while a cmd is already submitted
1429                  * and waiting for completion on this cpu. This is to avoid
1430                  * a deadlock where the interrupt context can wait indefinitely
1431                  * for free slots in the queue.
1432                  */
1433                 rc = qi_check_fault(iommu, index, wait_index);
1434                 if (rc)
1435                         break;
1436
1437                 raw_spin_unlock(&qi->q_lock);
1438                 cpu_relax();
1439                 raw_spin_lock(&qi->q_lock);
1440         }
1441
1442         for (i = 0; i < count; i++)
1443                 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1444
1445         reclaim_free_desc(qi);
1446         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1447
1448         if (rc == -EAGAIN)
1449                 goto restart;
1450
1451         if (iotlb_start_ktime)
1452                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1453                                 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1454
1455         if (devtlb_start_ktime)
1456                 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1457                                 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1458
1459         if (iec_start_ktime)
1460                 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1461                                 ktime_to_ns(ktime_get()) - iec_start_ktime);
1462
1463         return rc;
1464 }
1465
1466 /*
1467  * Flush the global interrupt entry cache.
1468  */
1469 void qi_global_iec(struct intel_iommu *iommu)
1470 {
1471         struct qi_desc desc;
1472
1473         desc.qw0 = QI_IEC_TYPE;
1474         desc.qw1 = 0;
1475         desc.qw2 = 0;
1476         desc.qw3 = 0;
1477
1478         /* should never fail */
1479         qi_submit_sync(iommu, &desc, 1, 0);
1480 }
1481
1482 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1483                       u64 type)
1484 {
1485         struct qi_desc desc;
1486
1487         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1488                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1489         desc.qw1 = 0;
1490         desc.qw2 = 0;
1491         desc.qw3 = 0;
1492
1493         qi_submit_sync(iommu, &desc, 1, 0);
1494 }
1495
1496 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1497                     unsigned int size_order, u64 type)
1498 {
1499         u8 dw = 0, dr = 0;
1500
1501         struct qi_desc desc;
1502         int ih = 0;
1503
1504         if (cap_write_drain(iommu->cap))
1505                 dw = 1;
1506
1507         if (cap_read_drain(iommu->cap))
1508                 dr = 1;
1509
1510         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1511                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1512         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1513                 | QI_IOTLB_AM(size_order);
1514         desc.qw2 = 0;
1515         desc.qw3 = 0;
1516
1517         qi_submit_sync(iommu, &desc, 1, 0);
1518 }
1519
1520 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1521                         u16 qdep, u64 addr, unsigned mask)
1522 {
1523         struct qi_desc desc;
1524
1525         /*
1526          * VT-d spec, section 4.3:
1527          *
1528          * Software is recommended to not submit any Device-TLB invalidation
1529          * requests while address remapping hardware is disabled.
1530          */
1531         if (!(iommu->gcmd & DMA_GCMD_TE))
1532                 return;
1533
1534         if (mask) {
1535                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1536                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1537         } else
1538                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1539
1540         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1541                 qdep = 0;
1542
1543         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1544                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1545         desc.qw2 = 0;
1546         desc.qw3 = 0;
1547
1548         qi_submit_sync(iommu, &desc, 1, 0);
1549 }
1550
1551 /* PASID-based IOTLB invalidation */
1552 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1553                      unsigned long npages, bool ih)
1554 {
1555         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1556
1557         /*
1558          * npages == -1 means a PASID-selective invalidation, otherwise,
1559          * a positive value for Page-selective-within-PASID invalidation.
1560          * 0 is not a valid input.
1561          */
1562         if (WARN_ON(!npages)) {
1563                 pr_err("Invalid input npages = %ld\n", npages);
1564                 return;
1565         }
1566
1567         if (npages == -1) {
1568                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1569                                 QI_EIOTLB_DID(did) |
1570                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1571                                 QI_EIOTLB_TYPE;
1572                 desc.qw1 = 0;
1573         } else {
1574                 int mask = ilog2(__roundup_pow_of_two(npages));
1575                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1576
1577                 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1578                         addr = ALIGN_DOWN(addr, align);
1579
1580                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1581                                 QI_EIOTLB_DID(did) |
1582                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1583                                 QI_EIOTLB_TYPE;
1584                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1585                                 QI_EIOTLB_IH(ih) |
1586                                 QI_EIOTLB_AM(mask);
1587         }
1588
1589         qi_submit_sync(iommu, &desc, 1, 0);
1590 }
1591
1592 /* PASID-based device IOTLB Invalidate */
1593 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1594                               u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1595 {
1596         unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1597         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1598
1599         /*
1600          * VT-d spec, section 4.3:
1601          *
1602          * Software is recommended to not submit any Device-TLB invalidation
1603          * requests while address remapping hardware is disabled.
1604          */
1605         if (!(iommu->gcmd & DMA_GCMD_TE))
1606                 return;
1607
1608         desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1609                 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1610                 QI_DEV_IOTLB_PFSID(pfsid);
1611
1612         /*
1613          * If S bit is 0, we only flush a single page. If S bit is set,
1614          * The least significant zero bit indicates the invalidation address
1615          * range. VT-d spec 6.5.2.6.
1616          * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1617          * size order = 0 is PAGE_SIZE 4KB
1618          * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1619          * ECAP.
1620          */
1621         if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1622                 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1623                                     addr, size_order);
1624
1625         /* Take page address */
1626         desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1627
1628         if (size_order) {
1629                 /*
1630                  * Existing 0s in address below size_order may be the least
1631                  * significant bit, we must set them to 1s to avoid having
1632                  * smaller size than desired.
1633                  */
1634                 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1635                                         VTD_PAGE_SHIFT);
1636                 /* Clear size_order bit to indicate size */
1637                 desc.qw1 &= ~mask;
1638                 /* Set the S bit to indicate flushing more than 1 page */
1639                 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1640         }
1641
1642         qi_submit_sync(iommu, &desc, 1, 0);
1643 }
1644
1645 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1646                           u64 granu, u32 pasid)
1647 {
1648         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1649
1650         desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1651                         QI_PC_GRAN(granu) | QI_PC_TYPE;
1652         qi_submit_sync(iommu, &desc, 1, 0);
1653 }
1654
1655 /*
1656  * Disable Queued Invalidation interface.
1657  */
1658 void dmar_disable_qi(struct intel_iommu *iommu)
1659 {
1660         unsigned long flags;
1661         u32 sts;
1662         cycles_t start_time = get_cycles();
1663
1664         if (!ecap_qis(iommu->ecap))
1665                 return;
1666
1667         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1668
1669         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1670         if (!(sts & DMA_GSTS_QIES))
1671                 goto end;
1672
1673         /*
1674          * Give a chance to HW to complete the pending invalidation requests.
1675          */
1676         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1677                 readl(iommu->reg + DMAR_IQH_REG)) &&
1678                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1679                 cpu_relax();
1680
1681         iommu->gcmd &= ~DMA_GCMD_QIE;
1682         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1683
1684         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1685                       !(sts & DMA_GSTS_QIES), sts);
1686 end:
1687         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1688 }
1689
1690 /*
1691  * Enable queued invalidation.
1692  */
1693 static void __dmar_enable_qi(struct intel_iommu *iommu)
1694 {
1695         u32 sts;
1696         unsigned long flags;
1697         struct q_inval *qi = iommu->qi;
1698         u64 val = virt_to_phys(qi->desc);
1699
1700         qi->free_head = qi->free_tail = 0;
1701         qi->free_cnt = QI_LENGTH;
1702
1703         /*
1704          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1705          * is present.
1706          */
1707         if (ecap_smts(iommu->ecap))
1708                 val |= BIT_ULL(11) | BIT_ULL(0);
1709
1710         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1711
1712         /* write zero to the tail reg */
1713         writel(0, iommu->reg + DMAR_IQT_REG);
1714
1715         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1716
1717         iommu->gcmd |= DMA_GCMD_QIE;
1718         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1719
1720         /* Make sure hardware complete it */
1721         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1722
1723         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1724 }
1725
1726 /*
1727  * Enable Queued Invalidation interface. This is a must to support
1728  * interrupt-remapping. Also used by DMA-remapping, which replaces
1729  * register based IOTLB invalidation.
1730  */
1731 int dmar_enable_qi(struct intel_iommu *iommu)
1732 {
1733         struct q_inval *qi;
1734         struct page *desc_page;
1735
1736         if (!ecap_qis(iommu->ecap))
1737                 return -ENOENT;
1738
1739         /*
1740          * queued invalidation is already setup and enabled.
1741          */
1742         if (iommu->qi)
1743                 return 0;
1744
1745         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1746         if (!iommu->qi)
1747                 return -ENOMEM;
1748
1749         qi = iommu->qi;
1750
1751         /*
1752          * Need two pages to accommodate 256 descriptors of 256 bits each
1753          * if the remapping hardware supports scalable mode translation.
1754          */
1755         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1756                                      !!ecap_smts(iommu->ecap));
1757         if (!desc_page) {
1758                 kfree(qi);
1759                 iommu->qi = NULL;
1760                 return -ENOMEM;
1761         }
1762
1763         qi->desc = page_address(desc_page);
1764
1765         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1766         if (!qi->desc_status) {
1767                 free_page((unsigned long) qi->desc);
1768                 kfree(qi);
1769                 iommu->qi = NULL;
1770                 return -ENOMEM;
1771         }
1772
1773         raw_spin_lock_init(&qi->q_lock);
1774
1775         __dmar_enable_qi(iommu);
1776
1777         return 0;
1778 }
1779
1780 /* iommu interrupt handling. Most stuff are MSI-like. */
1781
1782 enum faulttype {
1783         DMA_REMAP,
1784         INTR_REMAP,
1785         UNKNOWN,
1786 };
1787
1788 static const char *dma_remap_fault_reasons[] =
1789 {
1790         "Software",
1791         "Present bit in root entry is clear",
1792         "Present bit in context entry is clear",
1793         "Invalid context entry",
1794         "Access beyond MGAW",
1795         "PTE Write access is not set",
1796         "PTE Read access is not set",
1797         "Next page table ptr is invalid",
1798         "Root table address invalid",
1799         "Context table ptr is invalid",
1800         "non-zero reserved fields in RTP",
1801         "non-zero reserved fields in CTP",
1802         "non-zero reserved fields in PTE",
1803         "PCE for translation request specifies blocking",
1804 };
1805
1806 static const char * const dma_remap_sm_fault_reasons[] = {
1807         "SM: Invalid Root Table Address",
1808         "SM: TTM 0 for request with PASID",
1809         "SM: TTM 0 for page group request",
1810         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1811         "SM: Error attempting to access Root Entry",
1812         "SM: Present bit in Root Entry is clear",
1813         "SM: Non-zero reserved field set in Root Entry",
1814         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1815         "SM: Error attempting to access Context Entry",
1816         "SM: Present bit in Context Entry is clear",
1817         "SM: Non-zero reserved field set in the Context Entry",
1818         "SM: Invalid Context Entry",
1819         "SM: DTE field in Context Entry is clear",
1820         "SM: PASID Enable field in Context Entry is clear",
1821         "SM: PASID is larger than the max in Context Entry",
1822         "SM: PRE field in Context-Entry is clear",
1823         "SM: RID_PASID field error in Context-Entry",
1824         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1825         "SM: Error attempting to access the PASID Directory Entry",
1826         "SM: Present bit in Directory Entry is clear",
1827         "SM: Non-zero reserved field set in PASID Directory Entry",
1828         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1829         "SM: Error attempting to access PASID Table Entry",
1830         "SM: Present bit in PASID Table Entry is clear",
1831         "SM: Non-zero reserved field set in PASID Table Entry",
1832         "SM: Invalid Scalable-Mode PASID Table Entry",
1833         "SM: ERE field is clear in PASID Table Entry",
1834         "SM: SRE field is clear in PASID Table Entry",
1835         "Unknown", "Unknown",/* 0x5E-0x5F */
1836         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1837         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1838         "SM: Error attempting to access first-level paging entry",
1839         "SM: Present bit in first-level paging entry is clear",
1840         "SM: Non-zero reserved field set in first-level paging entry",
1841         "SM: Error attempting to access FL-PML4 entry",
1842         "SM: First-level entry address beyond MGAW in Nested translation",
1843         "SM: Read permission error in FL-PML4 entry in Nested translation",
1844         "SM: Read permission error in first-level paging entry in Nested translation",
1845         "SM: Write permission error in first-level paging entry in Nested translation",
1846         "SM: Error attempting to access second-level paging entry",
1847         "SM: Read/Write permission error in second-level paging entry",
1848         "SM: Non-zero reserved field set in second-level paging entry",
1849         "SM: Invalid second-level page table pointer",
1850         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1851         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1852         "SM: Address in first-level translation is not canonical",
1853         "SM: U/S set 0 for first-level translation with user privilege",
1854         "SM: No execute permission for request with PASID and ER=1",
1855         "SM: Address beyond the DMA hardware max",
1856         "SM: Second-level entry address beyond the max",
1857         "SM: No write permission for Write/AtomicOp request",
1858         "SM: No read permission for Read/AtomicOp request",
1859         "SM: Invalid address-interrupt address",
1860         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1861         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1862 };
1863
1864 static const char *irq_remap_fault_reasons[] =
1865 {
1866         "Detected reserved fields in the decoded interrupt-remapped request",
1867         "Interrupt index exceeded the interrupt-remapping table size",
1868         "Present field in the IRTE entry is clear",
1869         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1870         "Detected reserved fields in the IRTE entry",
1871         "Blocked a compatibility format interrupt request",
1872         "Blocked an interrupt request due to source-id verification failure",
1873 };
1874
1875 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1876 {
1877         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1878                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1879                 *fault_type = INTR_REMAP;
1880                 return irq_remap_fault_reasons[fault_reason - 0x20];
1881         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1882                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1883                 *fault_type = DMA_REMAP;
1884                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1885         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1886                 *fault_type = DMA_REMAP;
1887                 return dma_remap_fault_reasons[fault_reason];
1888         } else {
1889                 *fault_type = UNKNOWN;
1890                 return "Unknown";
1891         }
1892 }
1893
1894
1895 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1896 {
1897         if (iommu->irq == irq)
1898                 return DMAR_FECTL_REG;
1899         else if (iommu->pr_irq == irq)
1900                 return DMAR_PECTL_REG;
1901         else if (iommu->perf_irq == irq)
1902                 return DMAR_PERFINTRCTL_REG;
1903         else
1904                 BUG();
1905 }
1906
1907 void dmar_msi_unmask(struct irq_data *data)
1908 {
1909         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1910         int reg = dmar_msi_reg(iommu, data->irq);
1911         unsigned long flag;
1912
1913         /* unmask it */
1914         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1915         writel(0, iommu->reg + reg);
1916         /* Read a reg to force flush the post write */
1917         readl(iommu->reg + reg);
1918         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1919 }
1920
1921 void dmar_msi_mask(struct irq_data *data)
1922 {
1923         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1924         int reg = dmar_msi_reg(iommu, data->irq);
1925         unsigned long flag;
1926
1927         /* mask it */
1928         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1929         writel(DMA_FECTL_IM, iommu->reg + reg);
1930         /* Read a reg to force flush the post write */
1931         readl(iommu->reg + reg);
1932         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1933 }
1934
1935 void dmar_msi_write(int irq, struct msi_msg *msg)
1936 {
1937         struct intel_iommu *iommu = irq_get_handler_data(irq);
1938         int reg = dmar_msi_reg(iommu, irq);
1939         unsigned long flag;
1940
1941         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1942         writel(msg->data, iommu->reg + reg + 4);
1943         writel(msg->address_lo, iommu->reg + reg + 8);
1944         writel(msg->address_hi, iommu->reg + reg + 12);
1945         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1946 }
1947
1948 void dmar_msi_read(int irq, struct msi_msg *msg)
1949 {
1950         struct intel_iommu *iommu = irq_get_handler_data(irq);
1951         int reg = dmar_msi_reg(iommu, irq);
1952         unsigned long flag;
1953
1954         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1955         msg->data = readl(iommu->reg + reg + 4);
1956         msg->address_lo = readl(iommu->reg + reg + 8);
1957         msg->address_hi = readl(iommu->reg + reg + 12);
1958         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1959 }
1960
1961 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1962                 u8 fault_reason, u32 pasid, u16 source_id,
1963                 unsigned long long addr)
1964 {
1965         const char *reason;
1966         int fault_type;
1967
1968         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1969
1970         if (fault_type == INTR_REMAP) {
1971                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1972                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1973                        PCI_FUNC(source_id & 0xFF), addr >> 48,
1974                        fault_reason, reason);
1975
1976                 return 0;
1977         }
1978
1979         if (pasid == IOMMU_PASID_INVALID)
1980                 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1981                        type ? "DMA Read" : "DMA Write",
1982                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1983                        PCI_FUNC(source_id & 0xFF), addr,
1984                        fault_reason, reason);
1985         else
1986                 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1987                        type ? "DMA Read" : "DMA Write", pasid,
1988                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1989                        PCI_FUNC(source_id & 0xFF), addr,
1990                        fault_reason, reason);
1991
1992         dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1993
1994         return 0;
1995 }
1996
1997 #define PRIMARY_FAULT_REG_LEN (16)
1998 irqreturn_t dmar_fault(int irq, void *dev_id)
1999 {
2000         struct intel_iommu *iommu = dev_id;
2001         int reg, fault_index;
2002         u32 fault_status;
2003         unsigned long flag;
2004         static DEFINE_RATELIMIT_STATE(rs,
2005                                       DEFAULT_RATELIMIT_INTERVAL,
2006                                       DEFAULT_RATELIMIT_BURST);
2007
2008         raw_spin_lock_irqsave(&iommu->register_lock, flag);
2009         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2010         if (fault_status && __ratelimit(&rs))
2011                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
2012
2013         /* TBD: ignore advanced fault log currently */
2014         if (!(fault_status & DMA_FSTS_PPF))
2015                 goto unlock_exit;
2016
2017         fault_index = dma_fsts_fault_record_index(fault_status);
2018         reg = cap_fault_reg_offset(iommu->cap);
2019         while (1) {
2020                 /* Disable printing, simply clear the fault when ratelimited */
2021                 bool ratelimited = !__ratelimit(&rs);
2022                 u8 fault_reason;
2023                 u16 source_id;
2024                 u64 guest_addr;
2025                 u32 pasid;
2026                 int type;
2027                 u32 data;
2028                 bool pasid_present;
2029
2030                 /* highest 32 bits */
2031                 data = readl(iommu->reg + reg +
2032                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2033                 if (!(data & DMA_FRCD_F))
2034                         break;
2035
2036                 if (!ratelimited) {
2037                         fault_reason = dma_frcd_fault_reason(data);
2038                         type = dma_frcd_type(data);
2039
2040                         pasid = dma_frcd_pasid_value(data);
2041                         data = readl(iommu->reg + reg +
2042                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
2043                         source_id = dma_frcd_source_id(data);
2044
2045                         pasid_present = dma_frcd_pasid_present(data);
2046                         guest_addr = dmar_readq(iommu->reg + reg +
2047                                         fault_index * PRIMARY_FAULT_REG_LEN);
2048                         guest_addr = dma_frcd_page_addr(guest_addr);
2049                 }
2050
2051                 /* clear the fault */
2052                 writel(DMA_FRCD_F, iommu->reg + reg +
2053                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
2054
2055                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2056
2057                 if (!ratelimited)
2058                         /* Using pasid -1 if pasid is not present */
2059                         dmar_fault_do_one(iommu, type, fault_reason,
2060                                           pasid_present ? pasid : IOMMU_PASID_INVALID,
2061                                           source_id, guest_addr);
2062
2063                 fault_index++;
2064                 if (fault_index >= cap_num_fault_regs(iommu->cap))
2065                         fault_index = 0;
2066                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2067         }
2068
2069         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2070                iommu->reg + DMAR_FSTS_REG);
2071
2072 unlock_exit:
2073         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2074         return IRQ_HANDLED;
2075 }
2076
2077 int dmar_set_interrupt(struct intel_iommu *iommu)
2078 {
2079         int irq, ret;
2080
2081         /*
2082          * Check if the fault interrupt is already initialized.
2083          */
2084         if (iommu->irq)
2085                 return 0;
2086
2087         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2088         if (irq > 0) {
2089                 iommu->irq = irq;
2090         } else {
2091                 pr_err("No free IRQ vectors\n");
2092                 return -EINVAL;
2093         }
2094
2095         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2096         if (ret)
2097                 pr_err("Can't request irq\n");
2098         return ret;
2099 }
2100
2101 int __init enable_drhd_fault_handling(void)
2102 {
2103         struct dmar_drhd_unit *drhd;
2104         struct intel_iommu *iommu;
2105
2106         /*
2107          * Enable fault control interrupt.
2108          */
2109         for_each_iommu(iommu, drhd) {
2110                 u32 fault_status;
2111                 int ret = dmar_set_interrupt(iommu);
2112
2113                 if (ret) {
2114                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2115                                (unsigned long long)drhd->reg_base_addr, ret);
2116                         return -1;
2117                 }
2118
2119                 /*
2120                  * Clear any previous faults.
2121                  */
2122                 dmar_fault(iommu->irq, iommu);
2123                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2124                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2125         }
2126
2127         return 0;
2128 }
2129
2130 /*
2131  * Re-enable Queued Invalidation interface.
2132  */
2133 int dmar_reenable_qi(struct intel_iommu *iommu)
2134 {
2135         if (!ecap_qis(iommu->ecap))
2136                 return -ENOENT;
2137
2138         if (!iommu->qi)
2139                 return -ENOENT;
2140
2141         /*
2142          * First disable queued invalidation.
2143          */
2144         dmar_disable_qi(iommu);
2145         /*
2146          * Then enable queued invalidation again. Since there is no pending
2147          * invalidation requests now, it's safe to re-enable queued
2148          * invalidation.
2149          */
2150         __dmar_enable_qi(iommu);
2151
2152         return 0;
2153 }
2154
2155 /*
2156  * Check interrupt remapping support in DMAR table description.
2157  */
2158 int __init dmar_ir_support(void)
2159 {
2160         struct acpi_table_dmar *dmar;
2161         dmar = (struct acpi_table_dmar *)dmar_tbl;
2162         if (!dmar)
2163                 return 0;
2164         return dmar->flags & 0x1;
2165 }
2166
2167 /* Check whether DMAR units are in use */
2168 static inline bool dmar_in_use(void)
2169 {
2170         return irq_remapping_enabled || intel_iommu_enabled;
2171 }
2172
2173 static int __init dmar_free_unused_resources(void)
2174 {
2175         struct dmar_drhd_unit *dmaru, *dmaru_n;
2176
2177         if (dmar_in_use())
2178                 return 0;
2179
2180         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2181                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2182
2183         down_write(&dmar_global_lock);
2184         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2185                 list_del(&dmaru->list);
2186                 dmar_free_drhd(dmaru);
2187         }
2188         up_write(&dmar_global_lock);
2189
2190         return 0;
2191 }
2192
2193 late_initcall(dmar_free_unused_resources);
2194
2195 /*
2196  * DMAR Hotplug Support
2197  * For more details, please refer to Intel(R) Virtualization Technology
2198  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2199  * "Remapping Hardware Unit Hot Plug".
2200  */
2201 static guid_t dmar_hp_guid =
2202         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2203                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2204
2205 /*
2206  * Currently there's only one revision and BIOS will not check the revision id,
2207  * so use 0 for safety.
2208  */
2209 #define DMAR_DSM_REV_ID                 0
2210 #define DMAR_DSM_FUNC_DRHD              1
2211 #define DMAR_DSM_FUNC_ATSR              2
2212 #define DMAR_DSM_FUNC_RHSA              3
2213 #define DMAR_DSM_FUNC_SATC              4
2214
2215 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2216 {
2217         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2218 }
2219
2220 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2221                                   dmar_res_handler_t handler, void *arg)
2222 {
2223         int ret = -ENODEV;
2224         union acpi_object *obj;
2225         struct acpi_dmar_header *start;
2226         struct dmar_res_callback callback;
2227         static int res_type[] = {
2228                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2229                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2230                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2231                 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2232         };
2233
2234         if (!dmar_detect_dsm(handle, func))
2235                 return 0;
2236
2237         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2238                                       func, NULL, ACPI_TYPE_BUFFER);
2239         if (!obj)
2240                 return -ENODEV;
2241
2242         memset(&callback, 0, sizeof(callback));
2243         callback.cb[res_type[func]] = handler;
2244         callback.arg[res_type[func]] = arg;
2245         start = (struct acpi_dmar_header *)obj->buffer.pointer;
2246         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2247
2248         ACPI_FREE(obj);
2249
2250         return ret;
2251 }
2252
2253 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2254 {
2255         int ret;
2256         struct dmar_drhd_unit *dmaru;
2257
2258         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259         if (!dmaru)
2260                 return -ENODEV;
2261
2262         ret = dmar_ir_hotplug(dmaru, true);
2263         if (ret == 0)
2264                 ret = dmar_iommu_hotplug(dmaru, true);
2265
2266         return ret;
2267 }
2268
2269 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2270 {
2271         int i, ret;
2272         struct device *dev;
2273         struct dmar_drhd_unit *dmaru;
2274
2275         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2276         if (!dmaru)
2277                 return 0;
2278
2279         /*
2280          * All PCI devices managed by this unit should have been destroyed.
2281          */
2282         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2283                 for_each_active_dev_scope(dmaru->devices,
2284                                           dmaru->devices_cnt, i, dev)
2285                         return -EBUSY;
2286         }
2287
2288         ret = dmar_ir_hotplug(dmaru, false);
2289         if (ret == 0)
2290                 ret = dmar_iommu_hotplug(dmaru, false);
2291
2292         return ret;
2293 }
2294
2295 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2296 {
2297         struct dmar_drhd_unit *dmaru;
2298
2299         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2300         if (dmaru) {
2301                 list_del_rcu(&dmaru->list);
2302                 synchronize_rcu();
2303                 dmar_free_drhd(dmaru);
2304         }
2305
2306         return 0;
2307 }
2308
2309 static int dmar_hotplug_insert(acpi_handle handle)
2310 {
2311         int ret;
2312         int drhd_count = 0;
2313
2314         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315                                      &dmar_validate_one_drhd, (void *)1);
2316         if (ret)
2317                 goto out;
2318
2319         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2320                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2321         if (ret == 0 && drhd_count == 0) {
2322                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2323                 goto out;
2324         } else if (ret) {
2325                 goto release_drhd;
2326         }
2327
2328         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2329                                      &dmar_parse_one_rhsa, NULL);
2330         if (ret)
2331                 goto release_drhd;
2332
2333         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2334                                      &dmar_parse_one_atsr, NULL);
2335         if (ret)
2336                 goto release_atsr;
2337
2338         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2339                                      &dmar_hp_add_drhd, NULL);
2340         if (!ret)
2341                 return 0;
2342
2343         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344                                &dmar_hp_remove_drhd, NULL);
2345 release_atsr:
2346         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2347                                &dmar_release_one_atsr, NULL);
2348 release_drhd:
2349         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2350                                &dmar_hp_release_drhd, NULL);
2351 out:
2352         return ret;
2353 }
2354
2355 static int dmar_hotplug_remove(acpi_handle handle)
2356 {
2357         int ret;
2358
2359         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2360                                      &dmar_check_one_atsr, NULL);
2361         if (ret)
2362                 return ret;
2363
2364         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2365                                      &dmar_hp_remove_drhd, NULL);
2366         if (ret == 0) {
2367                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2368                                                &dmar_release_one_atsr, NULL));
2369                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2370                                                &dmar_hp_release_drhd, NULL));
2371         } else {
2372                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2373                                        &dmar_hp_add_drhd, NULL);
2374         }
2375
2376         return ret;
2377 }
2378
2379 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2380                                        void *context, void **retval)
2381 {
2382         acpi_handle *phdl = retval;
2383
2384         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2385                 *phdl = handle;
2386                 return AE_CTRL_TERMINATE;
2387         }
2388
2389         return AE_OK;
2390 }
2391
2392 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2393 {
2394         int ret;
2395         acpi_handle tmp = NULL;
2396         acpi_status status;
2397
2398         if (!dmar_in_use())
2399                 return 0;
2400
2401         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2402                 tmp = handle;
2403         } else {
2404                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2405                                              ACPI_UINT32_MAX,
2406                                              dmar_get_dsm_handle,
2407                                              NULL, NULL, &tmp);
2408                 if (ACPI_FAILURE(status)) {
2409                         pr_warn("Failed to locate _DSM method.\n");
2410                         return -ENXIO;
2411                 }
2412         }
2413         if (tmp == NULL)
2414                 return 0;
2415
2416         down_write(&dmar_global_lock);
2417         if (insert)
2418                 ret = dmar_hotplug_insert(tmp);
2419         else
2420                 ret = dmar_hotplug_remove(tmp);
2421         up_write(&dmar_global_lock);
2422
2423         return ret;
2424 }
2425
2426 int dmar_device_add(acpi_handle handle)
2427 {
2428         return dmar_device_hotplug(handle, true);
2429 }
2430
2431 int dmar_device_remove(acpi_handle handle)
2432 {
2433         return dmar_device_hotplug(handle, false);
2434 }
2435
2436 /*
2437  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2438  *
2439  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2440  * the ACPI DMAR table. This means that the platform boot firmware has made
2441  * sure no device can issue DMA outside of RMRR regions.
2442  */
2443 bool dmar_platform_optin(void)
2444 {
2445         struct acpi_table_dmar *dmar;
2446         acpi_status status;
2447         bool ret;
2448
2449         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2450                                 (struct acpi_table_header **)&dmar);
2451         if (ACPI_FAILURE(status))
2452                 return false;
2453
2454         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2455         acpi_put_table((struct acpi_table_header *)dmar);
2456
2457         return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(dmar_platform_optin);