Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / iommu / exynos-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24
25 typedef u32 sysmmu_iova_t;
26 typedef u32 sysmmu_pte_t;
27
28 /* We do not consider super section mapping (16MB) */
29 #define SECT_ORDER 20
30 #define LPAGE_ORDER 16
31 #define SPAGE_ORDER 12
32
33 #define SECT_SIZE (1 << SECT_ORDER)
34 #define LPAGE_SIZE (1 << LPAGE_ORDER)
35 #define SPAGE_SIZE (1 << SPAGE_ORDER)
36
37 #define SECT_MASK (~(SECT_SIZE - 1))
38 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
39 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
40
41 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
42                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
43 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
44 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
45 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
46                           ((*(sent) & 3) == 1))
47 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
48
49 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
50 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
51 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
52
53 /*
54  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
55  * v5.0 introduced support for 36bit physical address space by shifting
56  * all page entry values by 4 bits.
57  * All SYSMMU controllers in the system support the address spaces of the same
58  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
59  * value (0 or 4).
60  */
61 static short PG_ENT_SHIFT = -1;
62 #define SYSMMU_PG_ENT_SHIFT 0
63 #define SYSMMU_V5_PG_ENT_SHIFT 4
64
65 static const sysmmu_pte_t *LV1_PROT;
66 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
67         ((0 << 15) | (0 << 10)), /* no access */
68         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
69         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
70         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
71 };
72 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
73         (0 << 4), /* no access */
74         (1 << 4), /* IOMMU_READ only */
75         (2 << 4), /* IOMMU_WRITE only */
76         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
77 };
78
79 static const sysmmu_pte_t *LV2_PROT;
80 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
81         ((0 << 9) | (0 << 4)), /* no access */
82         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
83         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
84         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
85 };
86 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
87         (0 << 2), /* no access */
88         (1 << 2), /* IOMMU_READ only */
89         (2 << 2), /* IOMMU_WRITE only */
90         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
91 };
92
93 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
94
95 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
96 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
97 #define section_offs(iova) (iova & (SECT_SIZE - 1))
98 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
99 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
100 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
101 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
102
103 #define NUM_LV1ENTRIES 4096
104 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
105
106 static u32 lv1ent_offset(sysmmu_iova_t iova)
107 {
108         return iova >> SECT_ORDER;
109 }
110
111 static u32 lv2ent_offset(sysmmu_iova_t iova)
112 {
113         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
114 }
115
116 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
117 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
118
119 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
120 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
121
122 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
123 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
124 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
125 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
126
127 #define CTRL_ENABLE     0x5
128 #define CTRL_BLOCK      0x7
129 #define CTRL_DISABLE    0x0
130
131 #define CFG_LRU         0x1
132 #define CFG_EAP         (1 << 2)
133 #define CFG_QOS(n)      ((n & 0xF) << 7)
134 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
135 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
136 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
137
138 #define CTRL_VM_ENABLE                  BIT(0)
139 #define CTRL_VM_FAULT_MODE_STALL        BIT(3)
140 #define CAPA0_CAPA1_EXIST               BIT(11)
141 #define CAPA1_VCR_ENABLED               BIT(14)
142
143 /* common registers */
144 #define REG_MMU_CTRL            0x000
145 #define REG_MMU_CFG             0x004
146 #define REG_MMU_STATUS          0x008
147 #define REG_MMU_VERSION         0x034
148
149 #define MMU_MAJ_VER(val)        ((val) >> 7)
150 #define MMU_MIN_VER(val)        ((val) & 0x7F)
151 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
152
153 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
154
155 /* v1.x - v3.x registers */
156 #define REG_PAGE_FAULT_ADDR     0x024
157 #define REG_AW_FAULT_ADDR       0x028
158 #define REG_AR_FAULT_ADDR       0x02C
159 #define REG_DEFAULT_SLAVE_ADDR  0x030
160
161 /* v5.x registers */
162 #define REG_V5_FAULT_AR_VA      0x070
163 #define REG_V5_FAULT_AW_VA      0x080
164
165 /* v7.x registers */
166 #define REG_V7_CAPA0            0x870
167 #define REG_V7_CAPA1            0x874
168 #define REG_V7_CTRL_VM          0x8000
169
170 #define has_sysmmu(dev)         (dev_iommu_priv_get(dev) != NULL)
171
172 static struct device *dma_dev;
173 static struct kmem_cache *lv2table_kmem_cache;
174 static sysmmu_pte_t *zero_lv2_table;
175 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
176
177 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
178 {
179         return pgtable + lv1ent_offset(iova);
180 }
181
182 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
183 {
184         return (sysmmu_pte_t *)phys_to_virt(
185                                 lv2table_base(sent)) + lv2ent_offset(iova);
186 }
187
188 struct sysmmu_fault {
189         sysmmu_iova_t addr;     /* IOVA address that caused fault */
190         const char *name;       /* human readable fault name */
191         unsigned int type;      /* fault type for report_iommu_fault() */
192 };
193
194 struct sysmmu_v1_fault_info {
195         unsigned short addr_reg; /* register to read IOVA fault address */
196         const char *name;       /* human readable fault name */
197         unsigned int type;      /* fault type for report_iommu_fault */
198 };
199
200 static const struct sysmmu_v1_fault_info sysmmu_v1_faults[] = {
201         { REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
202         { REG_AR_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_READ },
203         { REG_AW_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_WRITE },
204         { REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
205         { REG_AR_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_READ },
206         { REG_AR_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_READ },
207         { REG_AW_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_WRITE },
208         { REG_AW_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_WRITE },
209 };
210
211 /* SysMMU v5 has the same faults for AR (0..4 bits) and AW (16..20 bits) */
212 static const char * const sysmmu_v5_fault_names[] = {
213         "PTW",
214         "PAGE",
215         "MULTI-HIT",
216         "ACCESS PROTECTION",
217         "SECURITY PROTECTION"
218 };
219
220 static const char * const sysmmu_v7_fault_names[] = {
221         "PTW",
222         "PAGE",
223         "ACCESS PROTECTION",
224         "RESERVED"
225 };
226
227 /*
228  * This structure is attached to dev->iommu->priv of the master device
229  * on device add, contains a list of SYSMMU controllers defined by device tree,
230  * which are bound to given master device. It is usually referenced by 'owner'
231  * pointer.
232 */
233 struct exynos_iommu_owner {
234         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
235         struct iommu_domain *domain;    /* domain this device is attached */
236         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
237 };
238
239 /*
240  * This structure exynos specific generalization of struct iommu_domain.
241  * It contains list of SYSMMU controllers from all master devices, which has
242  * been attached to this domain and page tables of IO address space defined by
243  * it. It is usually referenced by 'domain' pointer.
244  */
245 struct exynos_iommu_domain {
246         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
247         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
248         short *lv2entcnt;       /* free lv2 entry counter for each section */
249         spinlock_t lock;        /* lock for modyfying list of clients */
250         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
251         struct iommu_domain domain; /* generic domain data structure */
252 };
253
254 struct sysmmu_drvdata;
255
256 /*
257  * SysMMU version specific data. Contains offsets for the registers which can
258  * be found in different SysMMU variants, but have different offset values.
259  * Also contains version specific callbacks to abstract the hardware.
260  */
261 struct sysmmu_variant {
262         u32 pt_base;            /* page table base address (physical) */
263         u32 flush_all;          /* invalidate all TLB entries */
264         u32 flush_entry;        /* invalidate specific TLB entry */
265         u32 flush_range;        /* invalidate TLB entries in specified range */
266         u32 flush_start;        /* start address of range invalidation */
267         u32 flush_end;          /* end address of range invalidation */
268         u32 int_status;         /* interrupt status information */
269         u32 int_clear;          /* clear the interrupt */
270         u32 fault_va;           /* IOVA address that caused fault */
271         u32 fault_info;         /* fault transaction info */
272
273         int (*get_fault_info)(struct sysmmu_drvdata *data, unsigned int itype,
274                               struct sysmmu_fault *fault);
275 };
276
277 /*
278  * This structure hold all data of a single SYSMMU controller, this includes
279  * hw resources like registers and clocks, pointers and list nodes to connect
280  * it to all other structures, internal state and parameters read from device
281  * tree. It is usually referenced by 'data' pointer.
282  */
283 struct sysmmu_drvdata {
284         struct device *sysmmu;          /* SYSMMU controller device */
285         struct device *master;          /* master device (owner) */
286         struct device_link *link;       /* runtime PM link to master */
287         void __iomem *sfrbase;          /* our registers */
288         struct clk *clk;                /* SYSMMU's clock */
289         struct clk *aclk;               /* SYSMMU's aclk clock */
290         struct clk *pclk;               /* SYSMMU's pclk clock */
291         struct clk *clk_master;         /* master's device clock */
292         spinlock_t lock;                /* lock for modyfying state */
293         bool active;                    /* current status */
294         struct exynos_iommu_domain *domain; /* domain we belong to */
295         struct list_head domain_node;   /* node for domain clients list */
296         struct list_head owner_node;    /* node for owner controllers list */
297         phys_addr_t pgtable;            /* assigned page table structure */
298         unsigned int version;           /* our version */
299
300         struct iommu_device iommu;      /* IOMMU core handle */
301         const struct sysmmu_variant *variant; /* version specific data */
302
303         /* v7 fields */
304         bool has_vcr;                   /* virtual machine control register */
305 };
306
307 #define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
308
309 static int exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata *data,
310                                            unsigned int itype,
311                                            struct sysmmu_fault *fault)
312 {
313         const struct sysmmu_v1_fault_info *finfo;
314
315         if (itype >= ARRAY_SIZE(sysmmu_v1_faults))
316                 return -ENXIO;
317
318         finfo = &sysmmu_v1_faults[itype];
319         fault->addr = readl(data->sfrbase + finfo->addr_reg);
320         fault->name = finfo->name;
321         fault->type = finfo->type;
322
323         return 0;
324 }
325
326 static int exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata *data,
327                                            unsigned int itype,
328                                            struct sysmmu_fault *fault)
329 {
330         unsigned int addr_reg;
331
332         if (itype < ARRAY_SIZE(sysmmu_v5_fault_names)) {
333                 fault->type = IOMMU_FAULT_READ;
334                 addr_reg = REG_V5_FAULT_AR_VA;
335         } else if (itype >= 16 && itype <= 20) {
336                 fault->type = IOMMU_FAULT_WRITE;
337                 addr_reg = REG_V5_FAULT_AW_VA;
338                 itype -= 16;
339         } else {
340                 return -ENXIO;
341         }
342
343         fault->name = sysmmu_v5_fault_names[itype];
344         fault->addr = readl(data->sfrbase + addr_reg);
345
346         return 0;
347 }
348
349 static int exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata *data,
350                                            unsigned int itype,
351                                            struct sysmmu_fault *fault)
352 {
353         u32 info = readl(SYSMMU_REG(data, fault_info));
354
355         fault->addr = readl(SYSMMU_REG(data, fault_va));
356         fault->name = sysmmu_v7_fault_names[itype % 4];
357         fault->type = (info & BIT(20)) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
358
359         return 0;
360 }
361
362 /* SysMMU v1..v3 */
363 static const struct sysmmu_variant sysmmu_v1_variant = {
364         .flush_all      = 0x0c,
365         .flush_entry    = 0x10,
366         .pt_base        = 0x14,
367         .int_status     = 0x18,
368         .int_clear      = 0x1c,
369
370         .get_fault_info = exynos_sysmmu_v1_get_fault_info,
371 };
372
373 /* SysMMU v5 */
374 static const struct sysmmu_variant sysmmu_v5_variant = {
375         .pt_base        = 0x0c,
376         .flush_all      = 0x10,
377         .flush_entry    = 0x14,
378         .flush_range    = 0x18,
379         .flush_start    = 0x20,
380         .flush_end      = 0x24,
381         .int_status     = 0x60,
382         .int_clear      = 0x64,
383
384         .get_fault_info = exynos_sysmmu_v5_get_fault_info,
385 };
386
387 /* SysMMU v7: non-VM capable register layout */
388 static const struct sysmmu_variant sysmmu_v7_variant = {
389         .pt_base        = 0x0c,
390         .flush_all      = 0x10,
391         .flush_entry    = 0x14,
392         .flush_range    = 0x18,
393         .flush_start    = 0x20,
394         .flush_end      = 0x24,
395         .int_status     = 0x60,
396         .int_clear      = 0x64,
397         .fault_va       = 0x70,
398         .fault_info     = 0x78,
399
400         .get_fault_info = exynos_sysmmu_v7_get_fault_info,
401 };
402
403 /* SysMMU v7: VM capable register layout */
404 static const struct sysmmu_variant sysmmu_v7_vm_variant = {
405         .pt_base        = 0x800c,
406         .flush_all      = 0x8010,
407         .flush_entry    = 0x8014,
408         .flush_range    = 0x8018,
409         .flush_start    = 0x8020,
410         .flush_end      = 0x8024,
411         .int_status     = 0x60,
412         .int_clear      = 0x64,
413         .fault_va       = 0x1000,
414         .fault_info     = 0x1004,
415
416         .get_fault_info = exynos_sysmmu_v7_get_fault_info,
417 };
418
419 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
420 {
421         return container_of(dom, struct exynos_iommu_domain, domain);
422 }
423
424 static void sysmmu_unblock(struct sysmmu_drvdata *data)
425 {
426         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
427 }
428
429 static bool sysmmu_block(struct sysmmu_drvdata *data)
430 {
431         int i = 120;
432
433         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
434         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
435                 --i;
436
437         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
438                 sysmmu_unblock(data);
439                 return false;
440         }
441
442         return true;
443 }
444
445 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
446 {
447         writel(0x1, SYSMMU_REG(data, flush_all));
448 }
449
450 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
451                                 sysmmu_iova_t iova, unsigned int num_inv)
452 {
453         unsigned int i;
454
455         if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
456                 for (i = 0; i < num_inv; i++) {
457                         writel((iova & SPAGE_MASK) | 1,
458                                SYSMMU_REG(data, flush_entry));
459                         iova += SPAGE_SIZE;
460                 }
461         } else {
462                 writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
463                 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
464                        SYSMMU_REG(data, flush_end));
465                 writel(0x1, SYSMMU_REG(data, flush_range));
466         }
467 }
468
469 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
470 {
471         u32 pt_base;
472
473         if (MMU_MAJ_VER(data->version) < 5)
474                 pt_base = pgd;
475         else
476                 pt_base = pgd >> SPAGE_ORDER;
477
478         writel(pt_base, SYSMMU_REG(data, pt_base));
479         __sysmmu_tlb_invalidate(data);
480 }
481
482 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
483 {
484         BUG_ON(clk_prepare_enable(data->clk_master));
485         BUG_ON(clk_prepare_enable(data->clk));
486         BUG_ON(clk_prepare_enable(data->pclk));
487         BUG_ON(clk_prepare_enable(data->aclk));
488 }
489
490 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
491 {
492         clk_disable_unprepare(data->aclk);
493         clk_disable_unprepare(data->pclk);
494         clk_disable_unprepare(data->clk);
495         clk_disable_unprepare(data->clk_master);
496 }
497
498 static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
499 {
500         u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
501
502         return capa0 & CAPA0_CAPA1_EXIST;
503 }
504
505 static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
506 {
507         u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
508
509         data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
510 }
511
512 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
513 {
514         u32 ver;
515
516         __sysmmu_enable_clocks(data);
517
518         ver = readl(data->sfrbase + REG_MMU_VERSION);
519
520         /* controllers on some SoCs don't report proper version */
521         if (ver == 0x80000001u)
522                 data->version = MAKE_MMU_VER(1, 0);
523         else
524                 data->version = MMU_RAW_VER(ver);
525
526         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
527                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
528
529         if (MMU_MAJ_VER(data->version) < 5) {
530                 data->variant = &sysmmu_v1_variant;
531         } else if (MMU_MAJ_VER(data->version) < 7) {
532                 data->variant = &sysmmu_v5_variant;
533         } else {
534                 if (__sysmmu_has_capa1(data))
535                         __sysmmu_get_vcr(data);
536                 if (data->has_vcr)
537                         data->variant = &sysmmu_v7_vm_variant;
538                 else
539                         data->variant = &sysmmu_v7_variant;
540         }
541
542         __sysmmu_disable_clocks(data);
543 }
544
545 static void show_fault_information(struct sysmmu_drvdata *data,
546                                    const struct sysmmu_fault *fault)
547 {
548         sysmmu_pte_t *ent;
549
550         dev_err(data->sysmmu, "%s: [%s] %s FAULT occurred at %#x\n",
551                 dev_name(data->master),
552                 fault->type == IOMMU_FAULT_READ ? "READ" : "WRITE",
553                 fault->name, fault->addr);
554         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
555         ent = section_entry(phys_to_virt(data->pgtable), fault->addr);
556         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
557         if (lv1ent_page(ent)) {
558                 ent = page_entry(ent, fault->addr);
559                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
560         }
561 }
562
563 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
564 {
565         struct sysmmu_drvdata *data = dev_id;
566         unsigned int itype;
567         struct sysmmu_fault fault;
568         int ret = -ENOSYS;
569
570         WARN_ON(!data->active);
571
572         spin_lock(&data->lock);
573         clk_enable(data->clk_master);
574
575         itype = __ffs(readl(SYSMMU_REG(data, int_status)));
576         ret = data->variant->get_fault_info(data, itype, &fault);
577         if (ret) {
578                 dev_err(data->sysmmu, "Unhandled interrupt bit %u\n", itype);
579                 goto out;
580         }
581         show_fault_information(data, &fault);
582
583         if (data->domain) {
584                 ret = report_iommu_fault(&data->domain->domain, data->master,
585                                          fault.addr, fault.type);
586         }
587         if (ret)
588                 panic("Unrecoverable System MMU Fault!");
589
590 out:
591         writel(1 << itype, SYSMMU_REG(data, int_clear));
592
593         /* SysMMU is in blocked state when interrupt occurred */
594         sysmmu_unblock(data);
595         clk_disable(data->clk_master);
596         spin_unlock(&data->lock);
597
598         return IRQ_HANDLED;
599 }
600
601 static void __sysmmu_disable(struct sysmmu_drvdata *data)
602 {
603         unsigned long flags;
604
605         clk_enable(data->clk_master);
606
607         spin_lock_irqsave(&data->lock, flags);
608         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
609         writel(0, data->sfrbase + REG_MMU_CFG);
610         data->active = false;
611         spin_unlock_irqrestore(&data->lock, flags);
612
613         __sysmmu_disable_clocks(data);
614 }
615
616 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
617 {
618         unsigned int cfg;
619
620         if (data->version <= MAKE_MMU_VER(3, 1))
621                 cfg = CFG_LRU | CFG_QOS(15);
622         else if (data->version <= MAKE_MMU_VER(3, 2))
623                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
624         else
625                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
626
627         cfg |= CFG_EAP; /* enable access protection bits check */
628
629         writel(cfg, data->sfrbase + REG_MMU_CFG);
630 }
631
632 static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
633 {
634         u32 ctrl;
635
636         if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
637                 return;
638
639         ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
640         ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
641         writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
642 }
643
644 static void __sysmmu_enable(struct sysmmu_drvdata *data)
645 {
646         unsigned long flags;
647
648         __sysmmu_enable_clocks(data);
649
650         spin_lock_irqsave(&data->lock, flags);
651         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
652         __sysmmu_init_config(data);
653         __sysmmu_set_ptbase(data, data->pgtable);
654         __sysmmu_enable_vid(data);
655         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
656         data->active = true;
657         spin_unlock_irqrestore(&data->lock, flags);
658
659         /*
660          * SYSMMU driver keeps master's clock enabled only for the short
661          * time, while accessing the registers. For performing address
662          * translation during DMA transaction it relies on the client
663          * driver to enable it.
664          */
665         clk_disable(data->clk_master);
666 }
667
668 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
669                                             sysmmu_iova_t iova)
670 {
671         unsigned long flags;
672
673         spin_lock_irqsave(&data->lock, flags);
674         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
675                 clk_enable(data->clk_master);
676                 if (sysmmu_block(data)) {
677                         if (data->version >= MAKE_MMU_VER(5, 0))
678                                 __sysmmu_tlb_invalidate(data);
679                         else
680                                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
681                         sysmmu_unblock(data);
682                 }
683                 clk_disable(data->clk_master);
684         }
685         spin_unlock_irqrestore(&data->lock, flags);
686 }
687
688 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
689                                         sysmmu_iova_t iova, size_t size)
690 {
691         unsigned long flags;
692
693         spin_lock_irqsave(&data->lock, flags);
694         if (data->active) {
695                 unsigned int num_inv = 1;
696
697                 clk_enable(data->clk_master);
698
699                 /*
700                  * L2TLB invalidation required
701                  * 4KB page: 1 invalidation
702                  * 64KB page: 16 invalidations
703                  * 1MB page: 64 invalidations
704                  * because it is set-associative TLB
705                  * with 8-way and 64 sets.
706                  * 1MB page can be cached in one of all sets.
707                  * 64KB page can be one of 16 consecutive sets.
708                  */
709                 if (MMU_MAJ_VER(data->version) == 2)
710                         num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
711
712                 if (sysmmu_block(data)) {
713                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
714                         sysmmu_unblock(data);
715                 }
716                 clk_disable(data->clk_master);
717         }
718         spin_unlock_irqrestore(&data->lock, flags);
719 }
720
721 static const struct iommu_ops exynos_iommu_ops;
722
723 static int exynos_sysmmu_probe(struct platform_device *pdev)
724 {
725         int irq, ret;
726         struct device *dev = &pdev->dev;
727         struct sysmmu_drvdata *data;
728         struct resource *res;
729
730         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
731         if (!data)
732                 return -ENOMEM;
733
734         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
735         data->sfrbase = devm_ioremap_resource(dev, res);
736         if (IS_ERR(data->sfrbase))
737                 return PTR_ERR(data->sfrbase);
738
739         irq = platform_get_irq(pdev, 0);
740         if (irq <= 0)
741                 return irq;
742
743         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
744                                 dev_name(dev), data);
745         if (ret) {
746                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
747                 return ret;
748         }
749
750         data->clk = devm_clk_get_optional(dev, "sysmmu");
751         if (IS_ERR(data->clk))
752                 return PTR_ERR(data->clk);
753
754         data->aclk = devm_clk_get_optional(dev, "aclk");
755         if (IS_ERR(data->aclk))
756                 return PTR_ERR(data->aclk);
757
758         data->pclk = devm_clk_get_optional(dev, "pclk");
759         if (IS_ERR(data->pclk))
760                 return PTR_ERR(data->pclk);
761
762         if (!data->clk && (!data->aclk || !data->pclk)) {
763                 dev_err(dev, "Failed to get device clock(s)!\n");
764                 return -ENOSYS;
765         }
766
767         data->clk_master = devm_clk_get_optional(dev, "master");
768         if (IS_ERR(data->clk_master))
769                 return PTR_ERR(data->clk_master);
770
771         data->sysmmu = dev;
772         spin_lock_init(&data->lock);
773
774         __sysmmu_get_version(data);
775
776         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
777                                      dev_name(data->sysmmu));
778         if (ret)
779                 return ret;
780
781         platform_set_drvdata(pdev, data);
782
783         if (PG_ENT_SHIFT < 0) {
784                 if (MMU_MAJ_VER(data->version) < 5) {
785                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
786                         LV1_PROT = SYSMMU_LV1_PROT;
787                         LV2_PROT = SYSMMU_LV2_PROT;
788                 } else {
789                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
790                         LV1_PROT = SYSMMU_V5_LV1_PROT;
791                         LV2_PROT = SYSMMU_V5_LV2_PROT;
792                 }
793         }
794
795         if (MMU_MAJ_VER(data->version) >= 5) {
796                 ret = dma_set_mask(dev, DMA_BIT_MASK(36));
797                 if (ret) {
798                         dev_err(dev, "Unable to set DMA mask: %d\n", ret);
799                         goto err_dma_set_mask;
800                 }
801         }
802
803         /*
804          * use the first registered sysmmu device for performing
805          * dma mapping operations on iommu page tables (cpu cache flush)
806          */
807         if (!dma_dev)
808                 dma_dev = &pdev->dev;
809
810         pm_runtime_enable(dev);
811
812         ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
813         if (ret)
814                 goto err_dma_set_mask;
815
816         return 0;
817
818 err_dma_set_mask:
819         iommu_device_sysfs_remove(&data->iommu);
820         return ret;
821 }
822
823 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
824 {
825         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
826         struct device *master = data->master;
827
828         if (master) {
829                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
830
831                 mutex_lock(&owner->rpm_lock);
832                 if (data->domain) {
833                         dev_dbg(data->sysmmu, "saving state\n");
834                         __sysmmu_disable(data);
835                 }
836                 mutex_unlock(&owner->rpm_lock);
837         }
838         return 0;
839 }
840
841 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
842 {
843         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
844         struct device *master = data->master;
845
846         if (master) {
847                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
848
849                 mutex_lock(&owner->rpm_lock);
850                 if (data->domain) {
851                         dev_dbg(data->sysmmu, "restoring state\n");
852                         __sysmmu_enable(data);
853                 }
854                 mutex_unlock(&owner->rpm_lock);
855         }
856         return 0;
857 }
858
859 static const struct dev_pm_ops sysmmu_pm_ops = {
860         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
861         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
862                                 pm_runtime_force_resume)
863 };
864
865 static const struct of_device_id sysmmu_of_match[] = {
866         { .compatible   = "samsung,exynos-sysmmu", },
867         { },
868 };
869
870 static struct platform_driver exynos_sysmmu_driver __refdata = {
871         .probe  = exynos_sysmmu_probe,
872         .driver = {
873                 .name           = "exynos-sysmmu",
874                 .of_match_table = sysmmu_of_match,
875                 .pm             = &sysmmu_pm_ops,
876                 .suppress_bind_attrs = true,
877         }
878 };
879
880 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
881 {
882         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
883                                 DMA_TO_DEVICE);
884         *ent = cpu_to_le32(val);
885         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
886                                    DMA_TO_DEVICE);
887 }
888
889 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
890 {
891         struct exynos_iommu_domain *domain;
892         dma_addr_t handle;
893         int i;
894
895         /* Check if correct PTE offsets are initialized */
896         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
897
898         if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
899                 return NULL;
900
901         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
902         if (!domain)
903                 return NULL;
904
905         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
906         if (!domain->pgtable)
907                 goto err_pgtable;
908
909         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
910         if (!domain->lv2entcnt)
911                 goto err_counter;
912
913         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
914         for (i = 0; i < NUM_LV1ENTRIES; i++)
915                 domain->pgtable[i] = ZERO_LV2LINK;
916
917         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
918                                 DMA_TO_DEVICE);
919         /* For mapping page table entries we rely on dma == phys */
920         BUG_ON(handle != virt_to_phys(domain->pgtable));
921         if (dma_mapping_error(dma_dev, handle))
922                 goto err_lv2ent;
923
924         spin_lock_init(&domain->lock);
925         spin_lock_init(&domain->pgtablelock);
926         INIT_LIST_HEAD(&domain->clients);
927
928         domain->domain.geometry.aperture_start = 0;
929         domain->domain.geometry.aperture_end   = ~0UL;
930         domain->domain.geometry.force_aperture = true;
931
932         return &domain->domain;
933
934 err_lv2ent:
935         free_pages((unsigned long)domain->lv2entcnt, 1);
936 err_counter:
937         free_pages((unsigned long)domain->pgtable, 2);
938 err_pgtable:
939         kfree(domain);
940         return NULL;
941 }
942
943 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
944 {
945         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
946         struct sysmmu_drvdata *data, *next;
947         unsigned long flags;
948         int i;
949
950         WARN_ON(!list_empty(&domain->clients));
951
952         spin_lock_irqsave(&domain->lock, flags);
953
954         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
955                 spin_lock(&data->lock);
956                 __sysmmu_disable(data);
957                 data->pgtable = 0;
958                 data->domain = NULL;
959                 list_del_init(&data->domain_node);
960                 spin_unlock(&data->lock);
961         }
962
963         spin_unlock_irqrestore(&domain->lock, flags);
964
965         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
966                          DMA_TO_DEVICE);
967
968         for (i = 0; i < NUM_LV1ENTRIES; i++)
969                 if (lv1ent_page(domain->pgtable + i)) {
970                         phys_addr_t base = lv2table_base(domain->pgtable + i);
971
972                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
973                                          DMA_TO_DEVICE);
974                         kmem_cache_free(lv2table_kmem_cache,
975                                         phys_to_virt(base));
976                 }
977
978         free_pages((unsigned long)domain->pgtable, 2);
979         free_pages((unsigned long)domain->lv2entcnt, 1);
980         kfree(domain);
981 }
982
983 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
984                                     struct device *dev)
985 {
986         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
987         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
988         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
989         struct sysmmu_drvdata *data, *next;
990         unsigned long flags;
991
992         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
993                 return;
994
995         mutex_lock(&owner->rpm_lock);
996
997         list_for_each_entry(data, &owner->controllers, owner_node) {
998                 pm_runtime_get_noresume(data->sysmmu);
999                 if (pm_runtime_active(data->sysmmu))
1000                         __sysmmu_disable(data);
1001                 pm_runtime_put(data->sysmmu);
1002         }
1003
1004         spin_lock_irqsave(&domain->lock, flags);
1005         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
1006                 spin_lock(&data->lock);
1007                 data->pgtable = 0;
1008                 data->domain = NULL;
1009                 list_del_init(&data->domain_node);
1010                 spin_unlock(&data->lock);
1011         }
1012         owner->domain = NULL;
1013         spin_unlock_irqrestore(&domain->lock, flags);
1014
1015         mutex_unlock(&owner->rpm_lock);
1016
1017         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
1018                 &pagetable);
1019 }
1020
1021 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
1022                                    struct device *dev)
1023 {
1024         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1025         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1026         struct sysmmu_drvdata *data;
1027         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
1028         unsigned long flags;
1029
1030         if (!has_sysmmu(dev))
1031                 return -ENODEV;
1032
1033         if (owner->domain)
1034                 exynos_iommu_detach_device(owner->domain, dev);
1035
1036         mutex_lock(&owner->rpm_lock);
1037
1038         spin_lock_irqsave(&domain->lock, flags);
1039         list_for_each_entry(data, &owner->controllers, owner_node) {
1040                 spin_lock(&data->lock);
1041                 data->pgtable = pagetable;
1042                 data->domain = domain;
1043                 list_add_tail(&data->domain_node, &domain->clients);
1044                 spin_unlock(&data->lock);
1045         }
1046         owner->domain = iommu_domain;
1047         spin_unlock_irqrestore(&domain->lock, flags);
1048
1049         list_for_each_entry(data, &owner->controllers, owner_node) {
1050                 pm_runtime_get_noresume(data->sysmmu);
1051                 if (pm_runtime_active(data->sysmmu))
1052                         __sysmmu_enable(data);
1053                 pm_runtime_put(data->sysmmu);
1054         }
1055
1056         mutex_unlock(&owner->rpm_lock);
1057
1058         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
1059                 &pagetable);
1060
1061         return 0;
1062 }
1063
1064 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
1065                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
1066 {
1067         if (lv1ent_section(sent)) {
1068                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1069                 return ERR_PTR(-EADDRINUSE);
1070         }
1071
1072         if (lv1ent_fault(sent)) {
1073                 dma_addr_t handle;
1074                 sysmmu_pte_t *pent;
1075                 bool need_flush_flpd_cache = lv1ent_zero(sent);
1076
1077                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1078                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1079                 if (!pent)
1080                         return ERR_PTR(-ENOMEM);
1081
1082                 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1083                 kmemleak_ignore(pent);
1084                 *pgcounter = NUM_LV2ENTRIES;
1085                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1086                                         DMA_TO_DEVICE);
1087                 if (dma_mapping_error(dma_dev, handle)) {
1088                         kmem_cache_free(lv2table_kmem_cache, pent);
1089                         return ERR_PTR(-EADDRINUSE);
1090                 }
1091
1092                 /*
1093                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1094                  * FLPD cache may cache the address of zero_l2_table. This
1095                  * function replaces the zero_l2_table with new L2 page table
1096                  * to write valid mappings.
1097                  * Accessing the valid area may cause page fault since FLPD
1098                  * cache may still cache zero_l2_table for the valid area
1099                  * instead of new L2 page table that has the mapping
1100                  * information of the valid area.
1101                  * Thus any replacement of zero_l2_table with other valid L2
1102                  * page table must involve FLPD cache invalidation for System
1103                  * MMU v3.3.
1104                  * FLPD cache invalidation is performed with TLB invalidation
1105                  * by VPN without blocking. It is safe to invalidate TLB without
1106                  * blocking because the target address of TLB invalidation is
1107                  * not currently mapped.
1108                  */
1109                 if (need_flush_flpd_cache) {
1110                         struct sysmmu_drvdata *data;
1111
1112                         spin_lock(&domain->lock);
1113                         list_for_each_entry(data, &domain->clients, domain_node)
1114                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
1115                         spin_unlock(&domain->lock);
1116                 }
1117         }
1118
1119         return page_entry(sent, iova);
1120 }
1121
1122 static int lv1set_section(struct exynos_iommu_domain *domain,
1123                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
1124                           phys_addr_t paddr, int prot, short *pgcnt)
1125 {
1126         if (lv1ent_section(sent)) {
1127                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1128                         iova);
1129                 return -EADDRINUSE;
1130         }
1131
1132         if (lv1ent_page(sent)) {
1133                 if (*pgcnt != NUM_LV2ENTRIES) {
1134                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1135                                 iova);
1136                         return -EADDRINUSE;
1137                 }
1138
1139                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1140                 *pgcnt = 0;
1141         }
1142
1143         exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1144
1145         spin_lock(&domain->lock);
1146         if (lv1ent_page_zero(sent)) {
1147                 struct sysmmu_drvdata *data;
1148                 /*
1149                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1150                  * entry by speculative prefetch of SLPD which has no mapping.
1151                  */
1152                 list_for_each_entry(data, &domain->clients, domain_node)
1153                         sysmmu_tlb_invalidate_flpdcache(data, iova);
1154         }
1155         spin_unlock(&domain->lock);
1156
1157         return 0;
1158 }
1159
1160 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1161                        int prot, short *pgcnt)
1162 {
1163         if (size == SPAGE_SIZE) {
1164                 if (WARN_ON(!lv2ent_fault(pent)))
1165                         return -EADDRINUSE;
1166
1167                 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1168                 *pgcnt -= 1;
1169         } else { /* size == LPAGE_SIZE */
1170                 int i;
1171                 dma_addr_t pent_base = virt_to_phys(pent);
1172
1173                 dma_sync_single_for_cpu(dma_dev, pent_base,
1174                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1175                                         DMA_TO_DEVICE);
1176                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1177                         if (WARN_ON(!lv2ent_fault(pent))) {
1178                                 if (i > 0)
1179                                         memset(pent - i, 0, sizeof(*pent) * i);
1180                                 return -EADDRINUSE;
1181                         }
1182
1183                         *pent = mk_lv2ent_lpage(paddr, prot);
1184                 }
1185                 dma_sync_single_for_device(dma_dev, pent_base,
1186                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1187                                            DMA_TO_DEVICE);
1188                 *pgcnt -= SPAGES_PER_LPAGE;
1189         }
1190
1191         return 0;
1192 }
1193
1194 /*
1195  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1196  *
1197  * System MMU v3.x has advanced logic to improve address translation
1198  * performance with caching more page table entries by a page table walk.
1199  * However, the logic has a bug that while caching faulty page table entries,
1200  * System MMU reports page fault if the cached fault entry is hit even though
1201  * the fault entry is updated to a valid entry after the entry is cached.
1202  * To prevent caching faulty page table entries which may be updated to valid
1203  * entries later, the virtual memory manager should care about the workaround
1204  * for the problem. The following describes the workaround.
1205  *
1206  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1207  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1208  *
1209  * Precisely, any start address of I/O virtual region must be aligned with
1210  * the following sizes for System MMU v3.1 and v3.2.
1211  * System MMU v3.1: 128KiB
1212  * System MMU v3.2: 256KiB
1213  *
1214  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1215  * more workarounds.
1216  * - Any two consecutive I/O virtual regions must have a hole of size larger
1217  *   than or equal to 128KiB.
1218  * - Start address of an I/O virtual region must be aligned by 128KiB.
1219  */
1220 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1221                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1222                             int prot, gfp_t gfp)
1223 {
1224         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1225         sysmmu_pte_t *entry;
1226         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1227         unsigned long flags;
1228         int ret = -ENOMEM;
1229
1230         BUG_ON(domain->pgtable == NULL);
1231         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1232
1233         spin_lock_irqsave(&domain->pgtablelock, flags);
1234
1235         entry = section_entry(domain->pgtable, iova);
1236
1237         if (size == SECT_SIZE) {
1238                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1239                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1240         } else {
1241                 sysmmu_pte_t *pent;
1242
1243                 pent = alloc_lv2entry(domain, entry, iova,
1244                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1245
1246                 if (IS_ERR(pent))
1247                         ret = PTR_ERR(pent);
1248                 else
1249                         ret = lv2set_page(pent, paddr, size, prot,
1250                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1251         }
1252
1253         if (ret)
1254                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1255                         __func__, ret, size, iova);
1256
1257         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1258
1259         return ret;
1260 }
1261
1262 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1263                                               sysmmu_iova_t iova, size_t size)
1264 {
1265         struct sysmmu_drvdata *data;
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&domain->lock, flags);
1269
1270         list_for_each_entry(data, &domain->clients, domain_node)
1271                 sysmmu_tlb_invalidate_entry(data, iova, size);
1272
1273         spin_unlock_irqrestore(&domain->lock, flags);
1274 }
1275
1276 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1277                                  unsigned long l_iova, size_t size,
1278                                  struct iommu_iotlb_gather *gather)
1279 {
1280         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1281         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1282         sysmmu_pte_t *ent;
1283         size_t err_pgsize;
1284         unsigned long flags;
1285
1286         BUG_ON(domain->pgtable == NULL);
1287
1288         spin_lock_irqsave(&domain->pgtablelock, flags);
1289
1290         ent = section_entry(domain->pgtable, iova);
1291
1292         if (lv1ent_section(ent)) {
1293                 if (WARN_ON(size < SECT_SIZE)) {
1294                         err_pgsize = SECT_SIZE;
1295                         goto err;
1296                 }
1297
1298                 /* workaround for h/w bug in System MMU v3.3 */
1299                 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1300                 size = SECT_SIZE;
1301                 goto done;
1302         }
1303
1304         if (unlikely(lv1ent_fault(ent))) {
1305                 if (size > SECT_SIZE)
1306                         size = SECT_SIZE;
1307                 goto done;
1308         }
1309
1310         /* lv1ent_page(sent) == true here */
1311
1312         ent = page_entry(ent, iova);
1313
1314         if (unlikely(lv2ent_fault(ent))) {
1315                 size = SPAGE_SIZE;
1316                 goto done;
1317         }
1318
1319         if (lv2ent_small(ent)) {
1320                 exynos_iommu_set_pte(ent, 0);
1321                 size = SPAGE_SIZE;
1322                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1323                 goto done;
1324         }
1325
1326         /* lv1ent_large(ent) == true here */
1327         if (WARN_ON(size < LPAGE_SIZE)) {
1328                 err_pgsize = LPAGE_SIZE;
1329                 goto err;
1330         }
1331
1332         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1333                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1334                                 DMA_TO_DEVICE);
1335         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1336         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1337                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1338                                    DMA_TO_DEVICE);
1339         size = LPAGE_SIZE;
1340         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1341 done:
1342         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1343
1344         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1345
1346         return size;
1347 err:
1348         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1349
1350         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1351                 __func__, size, iova, err_pgsize);
1352
1353         return 0;
1354 }
1355
1356 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1357                                           dma_addr_t iova)
1358 {
1359         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1360         sysmmu_pte_t *entry;
1361         unsigned long flags;
1362         phys_addr_t phys = 0;
1363
1364         spin_lock_irqsave(&domain->pgtablelock, flags);
1365
1366         entry = section_entry(domain->pgtable, iova);
1367
1368         if (lv1ent_section(entry)) {
1369                 phys = section_phys(entry) + section_offs(iova);
1370         } else if (lv1ent_page(entry)) {
1371                 entry = page_entry(entry, iova);
1372
1373                 if (lv2ent_large(entry))
1374                         phys = lpage_phys(entry) + lpage_offs(iova);
1375                 else if (lv2ent_small(entry))
1376                         phys = spage_phys(entry) + spage_offs(iova);
1377         }
1378
1379         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1380
1381         return phys;
1382 }
1383
1384 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1385 {
1386         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1387         struct sysmmu_drvdata *data;
1388
1389         if (!has_sysmmu(dev))
1390                 return ERR_PTR(-ENODEV);
1391
1392         list_for_each_entry(data, &owner->controllers, owner_node) {
1393                 /*
1394                  * SYSMMU will be runtime activated via device link
1395                  * (dependency) to its master device, so there are no
1396                  * direct calls to pm_runtime_get/put in this driver.
1397                  */
1398                 data->link = device_link_add(dev, data->sysmmu,
1399                                              DL_FLAG_STATELESS |
1400                                              DL_FLAG_PM_RUNTIME);
1401         }
1402
1403         /* There is always at least one entry, see exynos_iommu_of_xlate() */
1404         data = list_first_entry(&owner->controllers,
1405                                 struct sysmmu_drvdata, owner_node);
1406
1407         return &data->iommu;
1408 }
1409
1410 static void exynos_iommu_set_platform_dma(struct device *dev)
1411 {
1412         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1413
1414         if (owner->domain) {
1415                 struct iommu_group *group = iommu_group_get(dev);
1416
1417                 if (group) {
1418                         exynos_iommu_detach_device(owner->domain, dev);
1419                         iommu_group_put(group);
1420                 }
1421         }
1422 }
1423
1424 static void exynos_iommu_release_device(struct device *dev)
1425 {
1426         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1427         struct sysmmu_drvdata *data;
1428
1429         exynos_iommu_set_platform_dma(dev);
1430
1431         list_for_each_entry(data, &owner->controllers, owner_node)
1432                 device_link_del(data->link);
1433 }
1434
1435 static int exynos_iommu_of_xlate(struct device *dev,
1436                                  struct of_phandle_args *spec)
1437 {
1438         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1439         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1440         struct sysmmu_drvdata *data, *entry;
1441
1442         if (!sysmmu)
1443                 return -ENODEV;
1444
1445         data = platform_get_drvdata(sysmmu);
1446         if (!data) {
1447                 put_device(&sysmmu->dev);
1448                 return -ENODEV;
1449         }
1450
1451         if (!owner) {
1452                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1453                 if (!owner) {
1454                         put_device(&sysmmu->dev);
1455                         return -ENOMEM;
1456                 }
1457
1458                 INIT_LIST_HEAD(&owner->controllers);
1459                 mutex_init(&owner->rpm_lock);
1460                 dev_iommu_priv_set(dev, owner);
1461         }
1462
1463         list_for_each_entry(entry, &owner->controllers, owner_node)
1464                 if (entry == data)
1465                         return 0;
1466
1467         list_add_tail(&data->owner_node, &owner->controllers);
1468         data->master = dev;
1469
1470         return 0;
1471 }
1472
1473 static const struct iommu_ops exynos_iommu_ops = {
1474         .domain_alloc = exynos_iommu_domain_alloc,
1475         .device_group = generic_device_group,
1476 #ifdef CONFIG_ARM
1477         .set_platform_dma_ops = exynos_iommu_set_platform_dma,
1478 #endif
1479         .probe_device = exynos_iommu_probe_device,
1480         .release_device = exynos_iommu_release_device,
1481         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1482         .of_xlate = exynos_iommu_of_xlate,
1483         .default_domain_ops = &(const struct iommu_domain_ops) {
1484                 .attach_dev     = exynos_iommu_attach_device,
1485                 .map            = exynos_iommu_map,
1486                 .unmap          = exynos_iommu_unmap,
1487                 .iova_to_phys   = exynos_iommu_iova_to_phys,
1488                 .free           = exynos_iommu_domain_free,
1489         }
1490 };
1491
1492 static int __init exynos_iommu_init(void)
1493 {
1494         struct device_node *np;
1495         int ret;
1496
1497         np = of_find_matching_node(NULL, sysmmu_of_match);
1498         if (!np)
1499                 return 0;
1500
1501         of_node_put(np);
1502
1503         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1504                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1505         if (!lv2table_kmem_cache) {
1506                 pr_err("%s: Failed to create kmem cache\n", __func__);
1507                 return -ENOMEM;
1508         }
1509
1510         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1511         if (zero_lv2_table == NULL) {
1512                 pr_err("%s: Failed to allocate zero level2 page table\n",
1513                         __func__);
1514                 ret = -ENOMEM;
1515                 goto err_zero_lv2;
1516         }
1517
1518         ret = platform_driver_register(&exynos_sysmmu_driver);
1519         if (ret) {
1520                 pr_err("%s: Failed to register driver\n", __func__);
1521                 goto err_reg_driver;
1522         }
1523
1524         return 0;
1525 err_reg_driver:
1526         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1527 err_zero_lv2:
1528         kmem_cache_destroy(lv2table_kmem_cache);
1529         return ret;
1530 }
1531 core_initcall(exynos_iommu_init);