drm/vc4: txp: Protect device resources
[platform/kernel/linux-starfive.git] / drivers / iommu / exynos-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24
25 typedef u32 sysmmu_iova_t;
26 typedef u32 sysmmu_pte_t;
27
28 /* We do not consider super section mapping (16MB) */
29 #define SECT_ORDER 20
30 #define LPAGE_ORDER 16
31 #define SPAGE_ORDER 12
32
33 #define SECT_SIZE (1 << SECT_ORDER)
34 #define LPAGE_SIZE (1 << LPAGE_ORDER)
35 #define SPAGE_SIZE (1 << SPAGE_ORDER)
36
37 #define SECT_MASK (~(SECT_SIZE - 1))
38 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
39 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
40
41 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
42                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
43 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
44 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
45 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
46                           ((*(sent) & 3) == 1))
47 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
48
49 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
50 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
51 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
52
53 /*
54  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
55  * v5.0 introduced support for 36bit physical address space by shifting
56  * all page entry values by 4 bits.
57  * All SYSMMU controllers in the system support the address spaces of the same
58  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
59  * value (0 or 4).
60  */
61 static short PG_ENT_SHIFT = -1;
62 #define SYSMMU_PG_ENT_SHIFT 0
63 #define SYSMMU_V5_PG_ENT_SHIFT 4
64
65 static const sysmmu_pte_t *LV1_PROT;
66 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
67         ((0 << 15) | (0 << 10)), /* no access */
68         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
69         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
70         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
71 };
72 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
73         (0 << 4), /* no access */
74         (1 << 4), /* IOMMU_READ only */
75         (2 << 4), /* IOMMU_WRITE only */
76         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
77 };
78
79 static const sysmmu_pte_t *LV2_PROT;
80 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
81         ((0 << 9) | (0 << 4)), /* no access */
82         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
83         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
84         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
85 };
86 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
87         (0 << 2), /* no access */
88         (1 << 2), /* IOMMU_READ only */
89         (2 << 2), /* IOMMU_WRITE only */
90         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
91 };
92
93 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
94
95 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
96 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
97 #define section_offs(iova) (iova & (SECT_SIZE - 1))
98 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
99 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
100 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
101 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
102
103 #define NUM_LV1ENTRIES 4096
104 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
105
106 static u32 lv1ent_offset(sysmmu_iova_t iova)
107 {
108         return iova >> SECT_ORDER;
109 }
110
111 static u32 lv2ent_offset(sysmmu_iova_t iova)
112 {
113         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
114 }
115
116 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
117 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
118
119 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
120 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
121
122 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
123 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
124 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
125 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
126
127 #define CTRL_ENABLE     0x5
128 #define CTRL_BLOCK      0x7
129 #define CTRL_DISABLE    0x0
130
131 #define CFG_LRU         0x1
132 #define CFG_EAP         (1 << 2)
133 #define CFG_QOS(n)      ((n & 0xF) << 7)
134 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
135 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
136 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
137
138 /* common registers */
139 #define REG_MMU_CTRL            0x000
140 #define REG_MMU_CFG             0x004
141 #define REG_MMU_STATUS          0x008
142 #define REG_MMU_VERSION         0x034
143
144 #define MMU_MAJ_VER(val)        ((val) >> 7)
145 #define MMU_MIN_VER(val)        ((val) & 0x7F)
146 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
147
148 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
149
150 /* v1.x - v3.x registers */
151 #define REG_MMU_FLUSH           0x00C
152 #define REG_MMU_FLUSH_ENTRY     0x010
153 #define REG_PT_BASE_ADDR        0x014
154 #define REG_INT_STATUS          0x018
155 #define REG_INT_CLEAR           0x01C
156
157 #define REG_PAGE_FAULT_ADDR     0x024
158 #define REG_AW_FAULT_ADDR       0x028
159 #define REG_AR_FAULT_ADDR       0x02C
160 #define REG_DEFAULT_SLAVE_ADDR  0x030
161
162 /* v5.x registers */
163 #define REG_V5_PT_BASE_PFN      0x00C
164 #define REG_V5_MMU_FLUSH_ALL    0x010
165 #define REG_V5_MMU_FLUSH_ENTRY  0x014
166 #define REG_V5_MMU_FLUSH_RANGE  0x018
167 #define REG_V5_MMU_FLUSH_START  0x020
168 #define REG_V5_MMU_FLUSH_END    0x024
169 #define REG_V5_INT_STATUS       0x060
170 #define REG_V5_INT_CLEAR        0x064
171 #define REG_V5_FAULT_AR_VA      0x070
172 #define REG_V5_FAULT_AW_VA      0x080
173
174 #define has_sysmmu(dev)         (dev_iommu_priv_get(dev) != NULL)
175
176 static struct device *dma_dev;
177 static struct kmem_cache *lv2table_kmem_cache;
178 static sysmmu_pte_t *zero_lv2_table;
179 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
180
181 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
182 {
183         return pgtable + lv1ent_offset(iova);
184 }
185
186 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
187 {
188         return (sysmmu_pte_t *)phys_to_virt(
189                                 lv2table_base(sent)) + lv2ent_offset(iova);
190 }
191
192 /*
193  * IOMMU fault information register
194  */
195 struct sysmmu_fault_info {
196         unsigned int bit;       /* bit number in STATUS register */
197         unsigned short addr_reg; /* register to read VA fault address */
198         const char *name;       /* human readable fault name */
199         unsigned int type;      /* fault type for report_iommu_fault */
200 };
201
202 static const struct sysmmu_fault_info sysmmu_faults[] = {
203         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
204         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
205         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
206         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
207         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
208         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
209         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
210         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
211 };
212
213 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
214         { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
215         { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
216         { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
217         { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
218         { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
219         { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
220         { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
221         { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
222         { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
223         { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
224 };
225
226 /*
227  * This structure is attached to dev->iommu->priv of the master device
228  * on device add, contains a list of SYSMMU controllers defined by device tree,
229  * which are bound to given master device. It is usually referenced by 'owner'
230  * pointer.
231 */
232 struct exynos_iommu_owner {
233         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
234         struct iommu_domain *domain;    /* domain this device is attached */
235         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
236 };
237
238 /*
239  * This structure exynos specific generalization of struct iommu_domain.
240  * It contains list of SYSMMU controllers from all master devices, which has
241  * been attached to this domain and page tables of IO address space defined by
242  * it. It is usually referenced by 'domain' pointer.
243  */
244 struct exynos_iommu_domain {
245         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
246         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
247         short *lv2entcnt;       /* free lv2 entry counter for each section */
248         spinlock_t lock;        /* lock for modyfying list of clients */
249         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
250         struct iommu_domain domain; /* generic domain data structure */
251 };
252
253 /*
254  * This structure hold all data of a single SYSMMU controller, this includes
255  * hw resources like registers and clocks, pointers and list nodes to connect
256  * it to all other structures, internal state and parameters read from device
257  * tree. It is usually referenced by 'data' pointer.
258  */
259 struct sysmmu_drvdata {
260         struct device *sysmmu;          /* SYSMMU controller device */
261         struct device *master;          /* master device (owner) */
262         struct device_link *link;       /* runtime PM link to master */
263         void __iomem *sfrbase;          /* our registers */
264         struct clk *clk;                /* SYSMMU's clock */
265         struct clk *aclk;               /* SYSMMU's aclk clock */
266         struct clk *pclk;               /* SYSMMU's pclk clock */
267         struct clk *clk_master;         /* master's device clock */
268         spinlock_t lock;                /* lock for modyfying state */
269         bool active;                    /* current status */
270         struct exynos_iommu_domain *domain; /* domain we belong to */
271         struct list_head domain_node;   /* node for domain clients list */
272         struct list_head owner_node;    /* node for owner controllers list */
273         phys_addr_t pgtable;            /* assigned page table structure */
274         unsigned int version;           /* our version */
275
276         struct iommu_device iommu;      /* IOMMU core handle */
277 };
278
279 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
280 {
281         return container_of(dom, struct exynos_iommu_domain, domain);
282 }
283
284 static void sysmmu_unblock(struct sysmmu_drvdata *data)
285 {
286         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
287 }
288
289 static bool sysmmu_block(struct sysmmu_drvdata *data)
290 {
291         int i = 120;
292
293         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
294         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
295                 --i;
296
297         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
298                 sysmmu_unblock(data);
299                 return false;
300         }
301
302         return true;
303 }
304
305 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
306 {
307         if (MMU_MAJ_VER(data->version) < 5)
308                 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
309         else
310                 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
311 }
312
313 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
314                                 sysmmu_iova_t iova, unsigned int num_inv)
315 {
316         unsigned int i;
317
318         if (MMU_MAJ_VER(data->version) < 5) {
319                 for (i = 0; i < num_inv; i++) {
320                         writel((iova & SPAGE_MASK) | 1,
321                                      data->sfrbase + REG_MMU_FLUSH_ENTRY);
322                         iova += SPAGE_SIZE;
323                 }
324         } else {
325                 if (num_inv == 1) {
326                         writel((iova & SPAGE_MASK) | 1,
327                                      data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
328                 } else {
329                         writel((iova & SPAGE_MASK),
330                                      data->sfrbase + REG_V5_MMU_FLUSH_START);
331                         writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
332                                      data->sfrbase + REG_V5_MMU_FLUSH_END);
333                         writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
334                 }
335         }
336 }
337
338 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
339 {
340         if (MMU_MAJ_VER(data->version) < 5)
341                 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
342         else
343                 writel(pgd >> PAGE_SHIFT,
344                              data->sfrbase + REG_V5_PT_BASE_PFN);
345
346         __sysmmu_tlb_invalidate(data);
347 }
348
349 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
350 {
351         BUG_ON(clk_prepare_enable(data->clk_master));
352         BUG_ON(clk_prepare_enable(data->clk));
353         BUG_ON(clk_prepare_enable(data->pclk));
354         BUG_ON(clk_prepare_enable(data->aclk));
355 }
356
357 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
358 {
359         clk_disable_unprepare(data->aclk);
360         clk_disable_unprepare(data->pclk);
361         clk_disable_unprepare(data->clk);
362         clk_disable_unprepare(data->clk_master);
363 }
364
365 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
366 {
367         u32 ver;
368
369         __sysmmu_enable_clocks(data);
370
371         ver = readl(data->sfrbase + REG_MMU_VERSION);
372
373         /* controllers on some SoCs don't report proper version */
374         if (ver == 0x80000001u)
375                 data->version = MAKE_MMU_VER(1, 0);
376         else
377                 data->version = MMU_RAW_VER(ver);
378
379         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
380                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
381
382         __sysmmu_disable_clocks(data);
383 }
384
385 static void show_fault_information(struct sysmmu_drvdata *data,
386                                    const struct sysmmu_fault_info *finfo,
387                                    sysmmu_iova_t fault_addr)
388 {
389         sysmmu_pte_t *ent;
390
391         dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
392                 dev_name(data->master), finfo->name, fault_addr);
393         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
394         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
395         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
396         if (lv1ent_page(ent)) {
397                 ent = page_entry(ent, fault_addr);
398                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
399         }
400 }
401
402 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
403 {
404         /* SYSMMU is in blocked state when interrupt occurred. */
405         struct sysmmu_drvdata *data = dev_id;
406         const struct sysmmu_fault_info *finfo;
407         unsigned int i, n, itype;
408         sysmmu_iova_t fault_addr;
409         unsigned short reg_status, reg_clear;
410         int ret = -ENOSYS;
411
412         WARN_ON(!data->active);
413
414         if (MMU_MAJ_VER(data->version) < 5) {
415                 reg_status = REG_INT_STATUS;
416                 reg_clear = REG_INT_CLEAR;
417                 finfo = sysmmu_faults;
418                 n = ARRAY_SIZE(sysmmu_faults);
419         } else {
420                 reg_status = REG_V5_INT_STATUS;
421                 reg_clear = REG_V5_INT_CLEAR;
422                 finfo = sysmmu_v5_faults;
423                 n = ARRAY_SIZE(sysmmu_v5_faults);
424         }
425
426         spin_lock(&data->lock);
427
428         clk_enable(data->clk_master);
429
430         itype = __ffs(readl(data->sfrbase + reg_status));
431         for (i = 0; i < n; i++, finfo++)
432                 if (finfo->bit == itype)
433                         break;
434         /* unknown/unsupported fault */
435         BUG_ON(i == n);
436
437         /* print debug message */
438         fault_addr = readl(data->sfrbase + finfo->addr_reg);
439         show_fault_information(data, finfo, fault_addr);
440
441         if (data->domain)
442                 ret = report_iommu_fault(&data->domain->domain,
443                                         data->master, fault_addr, finfo->type);
444         /* fault is not recovered by fault handler */
445         BUG_ON(ret != 0);
446
447         writel(1 << itype, data->sfrbase + reg_clear);
448
449         sysmmu_unblock(data);
450
451         clk_disable(data->clk_master);
452
453         spin_unlock(&data->lock);
454
455         return IRQ_HANDLED;
456 }
457
458 static void __sysmmu_disable(struct sysmmu_drvdata *data)
459 {
460         unsigned long flags;
461
462         clk_enable(data->clk_master);
463
464         spin_lock_irqsave(&data->lock, flags);
465         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
466         writel(0, data->sfrbase + REG_MMU_CFG);
467         data->active = false;
468         spin_unlock_irqrestore(&data->lock, flags);
469
470         __sysmmu_disable_clocks(data);
471 }
472
473 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
474 {
475         unsigned int cfg;
476
477         if (data->version <= MAKE_MMU_VER(3, 1))
478                 cfg = CFG_LRU | CFG_QOS(15);
479         else if (data->version <= MAKE_MMU_VER(3, 2))
480                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
481         else
482                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
483
484         cfg |= CFG_EAP; /* enable access protection bits check */
485
486         writel(cfg, data->sfrbase + REG_MMU_CFG);
487 }
488
489 static void __sysmmu_enable(struct sysmmu_drvdata *data)
490 {
491         unsigned long flags;
492
493         __sysmmu_enable_clocks(data);
494
495         spin_lock_irqsave(&data->lock, flags);
496         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
497         __sysmmu_init_config(data);
498         __sysmmu_set_ptbase(data, data->pgtable);
499         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
500         data->active = true;
501         spin_unlock_irqrestore(&data->lock, flags);
502
503         /*
504          * SYSMMU driver keeps master's clock enabled only for the short
505          * time, while accessing the registers. For performing address
506          * translation during DMA transaction it relies on the client
507          * driver to enable it.
508          */
509         clk_disable(data->clk_master);
510 }
511
512 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
513                                             sysmmu_iova_t iova)
514 {
515         unsigned long flags;
516
517         spin_lock_irqsave(&data->lock, flags);
518         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
519                 clk_enable(data->clk_master);
520                 if (sysmmu_block(data)) {
521                         if (data->version >= MAKE_MMU_VER(5, 0))
522                                 __sysmmu_tlb_invalidate(data);
523                         else
524                                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
525                         sysmmu_unblock(data);
526                 }
527                 clk_disable(data->clk_master);
528         }
529         spin_unlock_irqrestore(&data->lock, flags);
530 }
531
532 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
533                                         sysmmu_iova_t iova, size_t size)
534 {
535         unsigned long flags;
536
537         spin_lock_irqsave(&data->lock, flags);
538         if (data->active) {
539                 unsigned int num_inv = 1;
540
541                 clk_enable(data->clk_master);
542
543                 /*
544                  * L2TLB invalidation required
545                  * 4KB page: 1 invalidation
546                  * 64KB page: 16 invalidations
547                  * 1MB page: 64 invalidations
548                  * because it is set-associative TLB
549                  * with 8-way and 64 sets.
550                  * 1MB page can be cached in one of all sets.
551                  * 64KB page can be one of 16 consecutive sets.
552                  */
553                 if (MMU_MAJ_VER(data->version) == 2)
554                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
555
556                 if (sysmmu_block(data)) {
557                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
558                         sysmmu_unblock(data);
559                 }
560                 clk_disable(data->clk_master);
561         }
562         spin_unlock_irqrestore(&data->lock, flags);
563 }
564
565 static const struct iommu_ops exynos_iommu_ops;
566
567 static int exynos_sysmmu_probe(struct platform_device *pdev)
568 {
569         int irq, ret;
570         struct device *dev = &pdev->dev;
571         struct sysmmu_drvdata *data;
572         struct resource *res;
573
574         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
575         if (!data)
576                 return -ENOMEM;
577
578         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
579         data->sfrbase = devm_ioremap_resource(dev, res);
580         if (IS_ERR(data->sfrbase))
581                 return PTR_ERR(data->sfrbase);
582
583         irq = platform_get_irq(pdev, 0);
584         if (irq <= 0)
585                 return irq;
586
587         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
588                                 dev_name(dev), data);
589         if (ret) {
590                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
591                 return ret;
592         }
593
594         data->clk = devm_clk_get(dev, "sysmmu");
595         if (PTR_ERR(data->clk) == -ENOENT)
596                 data->clk = NULL;
597         else if (IS_ERR(data->clk))
598                 return PTR_ERR(data->clk);
599
600         data->aclk = devm_clk_get(dev, "aclk");
601         if (PTR_ERR(data->aclk) == -ENOENT)
602                 data->aclk = NULL;
603         else if (IS_ERR(data->aclk))
604                 return PTR_ERR(data->aclk);
605
606         data->pclk = devm_clk_get(dev, "pclk");
607         if (PTR_ERR(data->pclk) == -ENOENT)
608                 data->pclk = NULL;
609         else if (IS_ERR(data->pclk))
610                 return PTR_ERR(data->pclk);
611
612         if (!data->clk && (!data->aclk || !data->pclk)) {
613                 dev_err(dev, "Failed to get device clock(s)!\n");
614                 return -ENOSYS;
615         }
616
617         data->clk_master = devm_clk_get(dev, "master");
618         if (PTR_ERR(data->clk_master) == -ENOENT)
619                 data->clk_master = NULL;
620         else if (IS_ERR(data->clk_master))
621                 return PTR_ERR(data->clk_master);
622
623         data->sysmmu = dev;
624         spin_lock_init(&data->lock);
625
626         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
627                                      dev_name(data->sysmmu));
628         if (ret)
629                 return ret;
630
631         ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
632         if (ret)
633                 return ret;
634
635         platform_set_drvdata(pdev, data);
636
637         __sysmmu_get_version(data);
638         if (PG_ENT_SHIFT < 0) {
639                 if (MMU_MAJ_VER(data->version) < 5) {
640                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
641                         LV1_PROT = SYSMMU_LV1_PROT;
642                         LV2_PROT = SYSMMU_LV2_PROT;
643                 } else {
644                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
645                         LV1_PROT = SYSMMU_V5_LV1_PROT;
646                         LV2_PROT = SYSMMU_V5_LV2_PROT;
647                 }
648         }
649
650         /*
651          * use the first registered sysmmu device for performing
652          * dma mapping operations on iommu page tables (cpu cache flush)
653          */
654         if (!dma_dev)
655                 dma_dev = &pdev->dev;
656
657         pm_runtime_enable(dev);
658
659         return 0;
660 }
661
662 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
663 {
664         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
665         struct device *master = data->master;
666
667         if (master) {
668                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
669
670                 mutex_lock(&owner->rpm_lock);
671                 if (data->domain) {
672                         dev_dbg(data->sysmmu, "saving state\n");
673                         __sysmmu_disable(data);
674                 }
675                 mutex_unlock(&owner->rpm_lock);
676         }
677         return 0;
678 }
679
680 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
681 {
682         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
683         struct device *master = data->master;
684
685         if (master) {
686                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
687
688                 mutex_lock(&owner->rpm_lock);
689                 if (data->domain) {
690                         dev_dbg(data->sysmmu, "restoring state\n");
691                         __sysmmu_enable(data);
692                 }
693                 mutex_unlock(&owner->rpm_lock);
694         }
695         return 0;
696 }
697
698 static const struct dev_pm_ops sysmmu_pm_ops = {
699         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
700         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
701                                 pm_runtime_force_resume)
702 };
703
704 static const struct of_device_id sysmmu_of_match[] = {
705         { .compatible   = "samsung,exynos-sysmmu", },
706         { },
707 };
708
709 static struct platform_driver exynos_sysmmu_driver __refdata = {
710         .probe  = exynos_sysmmu_probe,
711         .driver = {
712                 .name           = "exynos-sysmmu",
713                 .of_match_table = sysmmu_of_match,
714                 .pm             = &sysmmu_pm_ops,
715                 .suppress_bind_attrs = true,
716         }
717 };
718
719 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
720 {
721         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
722                                 DMA_TO_DEVICE);
723         *ent = cpu_to_le32(val);
724         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
725                                    DMA_TO_DEVICE);
726 }
727
728 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
729 {
730         struct exynos_iommu_domain *domain;
731         dma_addr_t handle;
732         int i;
733
734         /* Check if correct PTE offsets are initialized */
735         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
736
737         if (type != IOMMU_DOMAIN_DMA && type != IOMMU_DOMAIN_UNMANAGED)
738                 return NULL;
739
740         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
741         if (!domain)
742                 return NULL;
743
744         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
745         if (!domain->pgtable)
746                 goto err_pgtable;
747
748         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
749         if (!domain->lv2entcnt)
750                 goto err_counter;
751
752         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
753         for (i = 0; i < NUM_LV1ENTRIES; i++)
754                 domain->pgtable[i] = ZERO_LV2LINK;
755
756         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
757                                 DMA_TO_DEVICE);
758         /* For mapping page table entries we rely on dma == phys */
759         BUG_ON(handle != virt_to_phys(domain->pgtable));
760         if (dma_mapping_error(dma_dev, handle))
761                 goto err_lv2ent;
762
763         spin_lock_init(&domain->lock);
764         spin_lock_init(&domain->pgtablelock);
765         INIT_LIST_HEAD(&domain->clients);
766
767         domain->domain.geometry.aperture_start = 0;
768         domain->domain.geometry.aperture_end   = ~0UL;
769         domain->domain.geometry.force_aperture = true;
770
771         return &domain->domain;
772
773 err_lv2ent:
774         free_pages((unsigned long)domain->lv2entcnt, 1);
775 err_counter:
776         free_pages((unsigned long)domain->pgtable, 2);
777 err_pgtable:
778         kfree(domain);
779         return NULL;
780 }
781
782 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
783 {
784         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
785         struct sysmmu_drvdata *data, *next;
786         unsigned long flags;
787         int i;
788
789         WARN_ON(!list_empty(&domain->clients));
790
791         spin_lock_irqsave(&domain->lock, flags);
792
793         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
794                 spin_lock(&data->lock);
795                 __sysmmu_disable(data);
796                 data->pgtable = 0;
797                 data->domain = NULL;
798                 list_del_init(&data->domain_node);
799                 spin_unlock(&data->lock);
800         }
801
802         spin_unlock_irqrestore(&domain->lock, flags);
803
804         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
805                          DMA_TO_DEVICE);
806
807         for (i = 0; i < NUM_LV1ENTRIES; i++)
808                 if (lv1ent_page(domain->pgtable + i)) {
809                         phys_addr_t base = lv2table_base(domain->pgtable + i);
810
811                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
812                                          DMA_TO_DEVICE);
813                         kmem_cache_free(lv2table_kmem_cache,
814                                         phys_to_virt(base));
815                 }
816
817         free_pages((unsigned long)domain->pgtable, 2);
818         free_pages((unsigned long)domain->lv2entcnt, 1);
819         kfree(domain);
820 }
821
822 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
823                                     struct device *dev)
824 {
825         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
826         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
827         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
828         struct sysmmu_drvdata *data, *next;
829         unsigned long flags;
830
831         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
832                 return;
833
834         mutex_lock(&owner->rpm_lock);
835
836         list_for_each_entry(data, &owner->controllers, owner_node) {
837                 pm_runtime_get_noresume(data->sysmmu);
838                 if (pm_runtime_active(data->sysmmu))
839                         __sysmmu_disable(data);
840                 pm_runtime_put(data->sysmmu);
841         }
842
843         spin_lock_irqsave(&domain->lock, flags);
844         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
845                 spin_lock(&data->lock);
846                 data->pgtable = 0;
847                 data->domain = NULL;
848                 list_del_init(&data->domain_node);
849                 spin_unlock(&data->lock);
850         }
851         owner->domain = NULL;
852         spin_unlock_irqrestore(&domain->lock, flags);
853
854         mutex_unlock(&owner->rpm_lock);
855
856         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
857                 &pagetable);
858 }
859
860 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
861                                    struct device *dev)
862 {
863         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
864         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
865         struct sysmmu_drvdata *data;
866         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
867         unsigned long flags;
868
869         if (!has_sysmmu(dev))
870                 return -ENODEV;
871
872         if (owner->domain)
873                 exynos_iommu_detach_device(owner->domain, dev);
874
875         mutex_lock(&owner->rpm_lock);
876
877         spin_lock_irqsave(&domain->lock, flags);
878         list_for_each_entry(data, &owner->controllers, owner_node) {
879                 spin_lock(&data->lock);
880                 data->pgtable = pagetable;
881                 data->domain = domain;
882                 list_add_tail(&data->domain_node, &domain->clients);
883                 spin_unlock(&data->lock);
884         }
885         owner->domain = iommu_domain;
886         spin_unlock_irqrestore(&domain->lock, flags);
887
888         list_for_each_entry(data, &owner->controllers, owner_node) {
889                 pm_runtime_get_noresume(data->sysmmu);
890                 if (pm_runtime_active(data->sysmmu))
891                         __sysmmu_enable(data);
892                 pm_runtime_put(data->sysmmu);
893         }
894
895         mutex_unlock(&owner->rpm_lock);
896
897         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
898                 &pagetable);
899
900         return 0;
901 }
902
903 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
904                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
905 {
906         if (lv1ent_section(sent)) {
907                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
908                 return ERR_PTR(-EADDRINUSE);
909         }
910
911         if (lv1ent_fault(sent)) {
912                 dma_addr_t handle;
913                 sysmmu_pte_t *pent;
914                 bool need_flush_flpd_cache = lv1ent_zero(sent);
915
916                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
917                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
918                 if (!pent)
919                         return ERR_PTR(-ENOMEM);
920
921                 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
922                 kmemleak_ignore(pent);
923                 *pgcounter = NUM_LV2ENTRIES;
924                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
925                                         DMA_TO_DEVICE);
926                 if (dma_mapping_error(dma_dev, handle)) {
927                         kmem_cache_free(lv2table_kmem_cache, pent);
928                         return ERR_PTR(-EADDRINUSE);
929                 }
930
931                 /*
932                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
933                  * FLPD cache may cache the address of zero_l2_table. This
934                  * function replaces the zero_l2_table with new L2 page table
935                  * to write valid mappings.
936                  * Accessing the valid area may cause page fault since FLPD
937                  * cache may still cache zero_l2_table for the valid area
938                  * instead of new L2 page table that has the mapping
939                  * information of the valid area.
940                  * Thus any replacement of zero_l2_table with other valid L2
941                  * page table must involve FLPD cache invalidation for System
942                  * MMU v3.3.
943                  * FLPD cache invalidation is performed with TLB invalidation
944                  * by VPN without blocking. It is safe to invalidate TLB without
945                  * blocking because the target address of TLB invalidation is
946                  * not currently mapped.
947                  */
948                 if (need_flush_flpd_cache) {
949                         struct sysmmu_drvdata *data;
950
951                         spin_lock(&domain->lock);
952                         list_for_each_entry(data, &domain->clients, domain_node)
953                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
954                         spin_unlock(&domain->lock);
955                 }
956         }
957
958         return page_entry(sent, iova);
959 }
960
961 static int lv1set_section(struct exynos_iommu_domain *domain,
962                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
963                           phys_addr_t paddr, int prot, short *pgcnt)
964 {
965         if (lv1ent_section(sent)) {
966                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
967                         iova);
968                 return -EADDRINUSE;
969         }
970
971         if (lv1ent_page(sent)) {
972                 if (*pgcnt != NUM_LV2ENTRIES) {
973                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
974                                 iova);
975                         return -EADDRINUSE;
976                 }
977
978                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
979                 *pgcnt = 0;
980         }
981
982         exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
983
984         spin_lock(&domain->lock);
985         if (lv1ent_page_zero(sent)) {
986                 struct sysmmu_drvdata *data;
987                 /*
988                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
989                  * entry by speculative prefetch of SLPD which has no mapping.
990                  */
991                 list_for_each_entry(data, &domain->clients, domain_node)
992                         sysmmu_tlb_invalidate_flpdcache(data, iova);
993         }
994         spin_unlock(&domain->lock);
995
996         return 0;
997 }
998
999 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1000                        int prot, short *pgcnt)
1001 {
1002         if (size == SPAGE_SIZE) {
1003                 if (WARN_ON(!lv2ent_fault(pent)))
1004                         return -EADDRINUSE;
1005
1006                 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1007                 *pgcnt -= 1;
1008         } else { /* size == LPAGE_SIZE */
1009                 int i;
1010                 dma_addr_t pent_base = virt_to_phys(pent);
1011
1012                 dma_sync_single_for_cpu(dma_dev, pent_base,
1013                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1014                                         DMA_TO_DEVICE);
1015                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1016                         if (WARN_ON(!lv2ent_fault(pent))) {
1017                                 if (i > 0)
1018                                         memset(pent - i, 0, sizeof(*pent) * i);
1019                                 return -EADDRINUSE;
1020                         }
1021
1022                         *pent = mk_lv2ent_lpage(paddr, prot);
1023                 }
1024                 dma_sync_single_for_device(dma_dev, pent_base,
1025                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1026                                            DMA_TO_DEVICE);
1027                 *pgcnt -= SPAGES_PER_LPAGE;
1028         }
1029
1030         return 0;
1031 }
1032
1033 /*
1034  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1035  *
1036  * System MMU v3.x has advanced logic to improve address translation
1037  * performance with caching more page table entries by a page table walk.
1038  * However, the logic has a bug that while caching faulty page table entries,
1039  * System MMU reports page fault if the cached fault entry is hit even though
1040  * the fault entry is updated to a valid entry after the entry is cached.
1041  * To prevent caching faulty page table entries which may be updated to valid
1042  * entries later, the virtual memory manager should care about the workaround
1043  * for the problem. The following describes the workaround.
1044  *
1045  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1046  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1047  *
1048  * Precisely, any start address of I/O virtual region must be aligned with
1049  * the following sizes for System MMU v3.1 and v3.2.
1050  * System MMU v3.1: 128KiB
1051  * System MMU v3.2: 256KiB
1052  *
1053  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1054  * more workarounds.
1055  * - Any two consecutive I/O virtual regions must have a hole of size larger
1056  *   than or equal to 128KiB.
1057  * - Start address of an I/O virtual region must be aligned by 128KiB.
1058  */
1059 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1060                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1061                             int prot, gfp_t gfp)
1062 {
1063         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1064         sysmmu_pte_t *entry;
1065         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1066         unsigned long flags;
1067         int ret = -ENOMEM;
1068
1069         BUG_ON(domain->pgtable == NULL);
1070         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1071
1072         spin_lock_irqsave(&domain->pgtablelock, flags);
1073
1074         entry = section_entry(domain->pgtable, iova);
1075
1076         if (size == SECT_SIZE) {
1077                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1078                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1079         } else {
1080                 sysmmu_pte_t *pent;
1081
1082                 pent = alloc_lv2entry(domain, entry, iova,
1083                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1084
1085                 if (IS_ERR(pent))
1086                         ret = PTR_ERR(pent);
1087                 else
1088                         ret = lv2set_page(pent, paddr, size, prot,
1089                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1090         }
1091
1092         if (ret)
1093                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1094                         __func__, ret, size, iova);
1095
1096         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1097
1098         return ret;
1099 }
1100
1101 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1102                                               sysmmu_iova_t iova, size_t size)
1103 {
1104         struct sysmmu_drvdata *data;
1105         unsigned long flags;
1106
1107         spin_lock_irqsave(&domain->lock, flags);
1108
1109         list_for_each_entry(data, &domain->clients, domain_node)
1110                 sysmmu_tlb_invalidate_entry(data, iova, size);
1111
1112         spin_unlock_irqrestore(&domain->lock, flags);
1113 }
1114
1115 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1116                                  unsigned long l_iova, size_t size,
1117                                  struct iommu_iotlb_gather *gather)
1118 {
1119         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1120         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1121         sysmmu_pte_t *ent;
1122         size_t err_pgsize;
1123         unsigned long flags;
1124
1125         BUG_ON(domain->pgtable == NULL);
1126
1127         spin_lock_irqsave(&domain->pgtablelock, flags);
1128
1129         ent = section_entry(domain->pgtable, iova);
1130
1131         if (lv1ent_section(ent)) {
1132                 if (WARN_ON(size < SECT_SIZE)) {
1133                         err_pgsize = SECT_SIZE;
1134                         goto err;
1135                 }
1136
1137                 /* workaround for h/w bug in System MMU v3.3 */
1138                 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1139                 size = SECT_SIZE;
1140                 goto done;
1141         }
1142
1143         if (unlikely(lv1ent_fault(ent))) {
1144                 if (size > SECT_SIZE)
1145                         size = SECT_SIZE;
1146                 goto done;
1147         }
1148
1149         /* lv1ent_page(sent) == true here */
1150
1151         ent = page_entry(ent, iova);
1152
1153         if (unlikely(lv2ent_fault(ent))) {
1154                 size = SPAGE_SIZE;
1155                 goto done;
1156         }
1157
1158         if (lv2ent_small(ent)) {
1159                 exynos_iommu_set_pte(ent, 0);
1160                 size = SPAGE_SIZE;
1161                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1162                 goto done;
1163         }
1164
1165         /* lv1ent_large(ent) == true here */
1166         if (WARN_ON(size < LPAGE_SIZE)) {
1167                 err_pgsize = LPAGE_SIZE;
1168                 goto err;
1169         }
1170
1171         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1172                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1173                                 DMA_TO_DEVICE);
1174         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1175         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1176                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1177                                    DMA_TO_DEVICE);
1178         size = LPAGE_SIZE;
1179         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1180 done:
1181         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1182
1183         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1184
1185         return size;
1186 err:
1187         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1188
1189         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1190                 __func__, size, iova, err_pgsize);
1191
1192         return 0;
1193 }
1194
1195 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1196                                           dma_addr_t iova)
1197 {
1198         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1199         sysmmu_pte_t *entry;
1200         unsigned long flags;
1201         phys_addr_t phys = 0;
1202
1203         spin_lock_irqsave(&domain->pgtablelock, flags);
1204
1205         entry = section_entry(domain->pgtable, iova);
1206
1207         if (lv1ent_section(entry)) {
1208                 phys = section_phys(entry) + section_offs(iova);
1209         } else if (lv1ent_page(entry)) {
1210                 entry = page_entry(entry, iova);
1211
1212                 if (lv2ent_large(entry))
1213                         phys = lpage_phys(entry) + lpage_offs(iova);
1214                 else if (lv2ent_small(entry))
1215                         phys = spage_phys(entry) + spage_offs(iova);
1216         }
1217
1218         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1219
1220         return phys;
1221 }
1222
1223 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1224 {
1225         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1226         struct sysmmu_drvdata *data;
1227
1228         if (!has_sysmmu(dev))
1229                 return ERR_PTR(-ENODEV);
1230
1231         list_for_each_entry(data, &owner->controllers, owner_node) {
1232                 /*
1233                  * SYSMMU will be runtime activated via device link
1234                  * (dependency) to its master device, so there are no
1235                  * direct calls to pm_runtime_get/put in this driver.
1236                  */
1237                 data->link = device_link_add(dev, data->sysmmu,
1238                                              DL_FLAG_STATELESS |
1239                                              DL_FLAG_PM_RUNTIME);
1240         }
1241
1242         /* There is always at least one entry, see exynos_iommu_of_xlate() */
1243         data = list_first_entry(&owner->controllers,
1244                                 struct sysmmu_drvdata, owner_node);
1245
1246         return &data->iommu;
1247 }
1248
1249 static void exynos_iommu_release_device(struct device *dev)
1250 {
1251         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1252         struct sysmmu_drvdata *data;
1253
1254         if (!has_sysmmu(dev))
1255                 return;
1256
1257         if (owner->domain) {
1258                 struct iommu_group *group = iommu_group_get(dev);
1259
1260                 if (group) {
1261                         WARN_ON(owner->domain !=
1262                                 iommu_group_default_domain(group));
1263                         exynos_iommu_detach_device(owner->domain, dev);
1264                         iommu_group_put(group);
1265                 }
1266         }
1267
1268         list_for_each_entry(data, &owner->controllers, owner_node)
1269                 device_link_del(data->link);
1270 }
1271
1272 static int exynos_iommu_of_xlate(struct device *dev,
1273                                  struct of_phandle_args *spec)
1274 {
1275         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1276         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1277         struct sysmmu_drvdata *data, *entry;
1278
1279         if (!sysmmu)
1280                 return -ENODEV;
1281
1282         data = platform_get_drvdata(sysmmu);
1283         if (!data) {
1284                 put_device(&sysmmu->dev);
1285                 return -ENODEV;
1286         }
1287
1288         if (!owner) {
1289                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1290                 if (!owner) {
1291                         put_device(&sysmmu->dev);
1292                         return -ENOMEM;
1293                 }
1294
1295                 INIT_LIST_HEAD(&owner->controllers);
1296                 mutex_init(&owner->rpm_lock);
1297                 dev_iommu_priv_set(dev, owner);
1298         }
1299
1300         list_for_each_entry(entry, &owner->controllers, owner_node)
1301                 if (entry == data)
1302                         return 0;
1303
1304         list_add_tail(&data->owner_node, &owner->controllers);
1305         data->master = dev;
1306
1307         return 0;
1308 }
1309
1310 static const struct iommu_ops exynos_iommu_ops = {
1311         .domain_alloc = exynos_iommu_domain_alloc,
1312         .device_group = generic_device_group,
1313         .probe_device = exynos_iommu_probe_device,
1314         .release_device = exynos_iommu_release_device,
1315         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1316         .of_xlate = exynos_iommu_of_xlate,
1317         .default_domain_ops = &(const struct iommu_domain_ops) {
1318                 .attach_dev     = exynos_iommu_attach_device,
1319                 .detach_dev     = exynos_iommu_detach_device,
1320                 .map            = exynos_iommu_map,
1321                 .unmap          = exynos_iommu_unmap,
1322                 .iova_to_phys   = exynos_iommu_iova_to_phys,
1323                 .free           = exynos_iommu_domain_free,
1324         }
1325 };
1326
1327 static int __init exynos_iommu_init(void)
1328 {
1329         struct device_node *np;
1330         int ret;
1331
1332         np = of_find_matching_node(NULL, sysmmu_of_match);
1333         if (!np)
1334                 return 0;
1335
1336         of_node_put(np);
1337
1338         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1339                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1340         if (!lv2table_kmem_cache) {
1341                 pr_err("%s: Failed to create kmem cache\n", __func__);
1342                 return -ENOMEM;
1343         }
1344
1345         ret = platform_driver_register(&exynos_sysmmu_driver);
1346         if (ret) {
1347                 pr_err("%s: Failed to register driver\n", __func__);
1348                 goto err_reg_driver;
1349         }
1350
1351         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1352         if (zero_lv2_table == NULL) {
1353                 pr_err("%s: Failed to allocate zero level2 page table\n",
1354                         __func__);
1355                 ret = -ENOMEM;
1356                 goto err_zero_lv2;
1357         }
1358
1359         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1360         if (ret) {
1361                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1362                                                                 __func__);
1363                 goto err_set_iommu;
1364         }
1365
1366         return 0;
1367 err_set_iommu:
1368         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1369 err_zero_lv2:
1370         platform_driver_unregister(&exynos_sysmmu_driver);
1371 err_reg_driver:
1372         kmem_cache_destroy(lv2table_kmem_cache);
1373         return ret;
1374 }
1375 core_initcall(exynos_iommu_init);