1 // SPDX-License-Identifier: GPL-2.0-only
3 * A fairly generic DMA-API to IOMMU-API glue layer.
5 * Copyright (C) 2014-2015 ARM Ltd.
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
29 struct iommu_dma_msi_page {
30 struct list_head list;
35 enum iommu_dma_cookie_type {
36 IOMMU_DMA_IOVA_COOKIE,
40 struct iommu_dma_cookie {
41 enum iommu_dma_cookie_type type;
43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 struct iova_domain iovad;
45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
48 struct list_head msi_page_list;
50 /* Domain for flush queue callback; NULL if flush queue not in use */
51 struct iommu_domain *fq_domain;
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
57 static int __init iommu_dma_forcedac_setup(char *str)
59 int ret = kstrtobool(str, &iommu_dma_forcedac);
61 if (!ret && iommu_dma_forcedac)
62 pr_info("Forcing DAC for PCI devices\n");
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
67 static void iommu_dma_entry_dtor(unsigned long data)
69 struct page *freelist = (struct page *)data;
72 unsigned long p = (unsigned long)page_address(freelist);
74 freelist = freelist->freelist;
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 return cookie->iovad.granule;
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
88 struct iommu_dma_cookie *cookie;
90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
92 INIT_LIST_HEAD(&cookie->msi_page_list);
99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100 * @domain: IOMMU domain to prepare for DMA-API usage
102 * IOMMU drivers should normally call this from their domain_alloc
103 * callback when domain->type == IOMMU_DOMAIN_DMA.
105 int iommu_get_dma_cookie(struct iommu_domain *domain)
107 if (domain->iova_cookie)
110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 if (!domain->iova_cookie)
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
119 * iommu_get_msi_cookie - Acquire just MSI remapping resources
120 * @domain: IOMMU domain to prepare
121 * @base: Start address of IOVA region for MSI mappings
123 * Users who manage their own IOVA allocation and do not want DMA API support,
124 * but would still like to take advantage of automatic MSI remapping, can use
125 * this to initialise their own domain appropriately. Users should reserve a
126 * contiguous IOVA region, starting at @base, large enough to accommodate the
127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128 * used by the devices attached to @domain.
130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
132 struct iommu_dma_cookie *cookie;
134 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
137 if (domain->iova_cookie)
140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
144 cookie->msi_iova = base;
145 domain->iova_cookie = cookie;
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153 * iommu_get_msi_cookie()
155 * IOMMU drivers should normally call this from their domain_free callback.
157 void iommu_put_dma_cookie(struct iommu_domain *domain)
159 struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 struct iommu_dma_msi_page *msi, *tmp;
165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 put_iova_domain(&cookie->iovad);
168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 list_del(&msi->list);
173 domain->iova_cookie = NULL;
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
178 * iommu_dma_get_resv_regions - Reserved region driver helper
179 * @dev: Device from iommu_get_resv_regions()
180 * @list: Reserved region list from iommu_get_resv_regions()
182 * IOMMU drivers can use this to implement their .get_resv_regions callback
183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 iort_iommu_msi_get_resv_regions(dev, list);
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 phys_addr_t start, phys_addr_t end)
199 struct iova_domain *iovad = &cookie->iovad;
200 struct iommu_dma_msi_page *msi_page;
203 start -= iova_offset(iovad, start);
204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
206 for (i = 0; i < num_pages; i++) {
207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
211 msi_page->phys = start;
212 msi_page->iova = start;
213 INIT_LIST_HEAD(&msi_page->list);
214 list_add(&msi_page->list, &cookie->msi_page_list);
215 start += iovad->granule;
221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 struct iova_domain *iovad)
224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 struct resource_entry *window;
226 unsigned long lo, hi;
227 phys_addr_t start = 0, end;
229 resource_list_for_each_entry(window, &bridge->windows) {
230 if (resource_type(window->res) != IORESOURCE_MEM)
233 lo = iova_pfn(iovad, window->res->start - window->offset);
234 hi = iova_pfn(iovad, window->res->end - window->offset);
235 reserve_iova(iovad, lo, hi);
238 /* Get reserved DMA windows from host bridge */
239 resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 end = window->res->start - window->offset;
243 lo = iova_pfn(iovad, start);
244 hi = iova_pfn(iovad, end);
245 reserve_iova(iovad, lo, hi);
246 } else if (end < start) {
247 /* dma_ranges list should be sorted */
249 "Failed to reserve IOVA [%pa-%pa]\n",
254 start = window->res->end - window->offset + 1;
255 /* If window is last entry */
256 if (window->node.next == &bridge->dma_ranges &&
257 end != ~(phys_addr_t)0) {
258 end = ~(phys_addr_t)0;
266 static int iova_reserve_iommu_regions(struct device *dev,
267 struct iommu_domain *domain)
269 struct iommu_dma_cookie *cookie = domain->iova_cookie;
270 struct iova_domain *iovad = &cookie->iovad;
271 struct iommu_resv_region *region;
272 LIST_HEAD(resv_regions);
275 if (dev_is_pci(dev)) {
276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
281 iommu_get_resv_regions(dev, &resv_regions);
282 list_for_each_entry(region, &resv_regions, list) {
283 unsigned long lo, hi;
285 /* We ARE the software that manages these! */
286 if (region->type == IOMMU_RESV_SW_MSI)
289 lo = iova_pfn(iovad, region->start);
290 hi = iova_pfn(iovad, region->start + region->length - 1);
291 reserve_iova(iovad, lo, hi);
293 if (region->type == IOMMU_RESV_MSI)
294 ret = cookie_init_hw_msi_region(cookie, region->start,
295 region->start + region->length);
299 iommu_put_resv_regions(dev, &resv_regions);
304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
306 struct iommu_dma_cookie *cookie;
307 struct iommu_domain *domain;
309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
310 domain = cookie->fq_domain;
312 domain->ops->flush_iotlb_all(domain);
315 static bool dev_is_untrusted(struct device *dev)
317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
320 /* sysfs updates are serialised by the mutex of the group owning @domain */
321 int iommu_dma_init_fq(struct iommu_domain *domain)
323 struct iommu_dma_cookie *cookie = domain->iova_cookie;
326 if (cookie->fq_domain)
329 ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
330 iommu_dma_entry_dtor);
332 pr_warn("iova flush queue initialization failed\n");
336 * Prevent incomplete iovad->fq being observable. Pairs with path from
337 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
340 WRITE_ONCE(cookie->fq_domain, domain);
345 * iommu_dma_init_domain - Initialise a DMA mapping domain
346 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
347 * @base: IOVA at which the mappable address space starts
348 * @limit: Last address of the IOVA space
349 * @dev: Device the domain is being initialised for
351 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
352 * avoid rounding surprises. If necessary, we reserve the page at address 0
353 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
354 * any change which could make prior IOVAs invalid will fail.
356 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
357 dma_addr_t limit, struct device *dev)
359 struct iommu_dma_cookie *cookie = domain->iova_cookie;
360 unsigned long order, base_pfn;
361 struct iova_domain *iovad;
363 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
366 iovad = &cookie->iovad;
368 /* Use the smallest supported page size for IOVA granularity */
369 order = __ffs(domain->pgsize_bitmap);
370 base_pfn = max_t(unsigned long, 1, base >> order);
372 /* Check the domain allows at least some access to the device... */
373 if (domain->geometry.force_aperture) {
374 if (base > domain->geometry.aperture_end ||
375 limit < domain->geometry.aperture_start) {
376 pr_warn("specified DMA range outside IOMMU capability\n");
379 /* ...then finally give it a kicking to make sure it fits */
380 base_pfn = max_t(unsigned long, base_pfn,
381 domain->geometry.aperture_start >> order);
384 /* start_pfn is always nonzero for an already-initialised domain */
385 if (iovad->start_pfn) {
386 if (1UL << order != iovad->granule ||
387 base_pfn != iovad->start_pfn) {
388 pr_warn("Incompatible range for DMA domain\n");
395 init_iova_domain(iovad, 1UL << order, base_pfn);
397 /* If the FQ fails we can simply fall back to strict mode */
398 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
399 domain->type = IOMMU_DOMAIN_DMA;
401 return iova_reserve_iommu_regions(dev, domain);
405 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
407 * @dir: Direction of DMA transfer
408 * @coherent: Is the DMA master cache-coherent?
409 * @attrs: DMA attributes for the mapping
411 * Return: corresponding IOMMU API page protection flags
413 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
416 int prot = coherent ? IOMMU_CACHE : 0;
418 if (attrs & DMA_ATTR_PRIVILEGED)
422 case DMA_BIDIRECTIONAL:
423 return prot | IOMMU_READ | IOMMU_WRITE;
425 return prot | IOMMU_READ;
426 case DMA_FROM_DEVICE:
427 return prot | IOMMU_WRITE;
433 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
434 size_t size, u64 dma_limit, struct device *dev)
436 struct iommu_dma_cookie *cookie = domain->iova_cookie;
437 struct iova_domain *iovad = &cookie->iovad;
438 unsigned long shift, iova_len, iova = 0;
440 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
441 cookie->msi_iova += size;
442 return cookie->msi_iova - size;
445 shift = iova_shift(iovad);
446 iova_len = size >> shift;
448 * Freeing non-power-of-two-sized allocations back into the IOVA caches
449 * will come back to bite us badly, so we have to waste a bit of space
450 * rounding up anything cacheable to make sure that can't happen. The
451 * order of the unadjusted size will still match upon freeing.
453 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
454 iova_len = roundup_pow_of_two(iova_len);
456 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
458 if (domain->geometry.force_aperture)
459 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
461 /* Try to get PCI devices a SAC address */
462 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
463 iova = alloc_iova_fast(iovad, iova_len,
464 DMA_BIT_MASK(32) >> shift, false);
467 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
470 return (dma_addr_t)iova << shift;
473 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
474 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
476 struct iova_domain *iovad = &cookie->iovad;
478 /* The MSI case is only ever cleaning up its most recent allocation */
479 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
480 cookie->msi_iova -= size;
481 else if (gather && gather->queued)
482 queue_iova(iovad, iova_pfn(iovad, iova),
483 size >> iova_shift(iovad),
484 (unsigned long)gather->freelist);
486 free_iova_fast(iovad, iova_pfn(iovad, iova),
487 size >> iova_shift(iovad));
490 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
493 struct iommu_domain *domain = iommu_get_dma_domain(dev);
494 struct iommu_dma_cookie *cookie = domain->iova_cookie;
495 struct iova_domain *iovad = &cookie->iovad;
496 size_t iova_off = iova_offset(iovad, dma_addr);
497 struct iommu_iotlb_gather iotlb_gather;
500 dma_addr -= iova_off;
501 size = iova_align(iovad, size + iova_off);
502 iommu_iotlb_gather_init(&iotlb_gather);
503 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
505 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
506 WARN_ON(unmapped != size);
508 if (!iotlb_gather.queued)
509 iommu_iotlb_sync(domain, &iotlb_gather);
510 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
513 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
514 size_t size, enum dma_data_direction dir,
517 struct iommu_domain *domain = iommu_get_dma_domain(dev);
520 phys = iommu_iova_to_phys(domain, dma_addr);
524 __iommu_dma_unmap(dev, dma_addr, size);
526 if (unlikely(is_swiotlb_buffer(dev, phys)))
527 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
530 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
531 size_t size, int prot, u64 dma_mask)
533 struct iommu_domain *domain = iommu_get_dma_domain(dev);
534 struct iommu_dma_cookie *cookie = domain->iova_cookie;
535 struct iova_domain *iovad = &cookie->iovad;
536 size_t iova_off = iova_offset(iovad, phys);
539 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
540 iommu_deferred_attach(dev, domain))
541 return DMA_MAPPING_ERROR;
543 size = iova_align(iovad, size + iova_off);
545 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
547 return DMA_MAPPING_ERROR;
549 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
550 iommu_dma_free_iova(cookie, iova, size, NULL);
551 return DMA_MAPPING_ERROR;
553 return iova + iova_off;
556 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
557 size_t org_size, dma_addr_t dma_mask, bool coherent,
558 enum dma_data_direction dir, unsigned long attrs)
560 int prot = dma_info_to_prot(dir, coherent, attrs);
561 struct iommu_domain *domain = iommu_get_dma_domain(dev);
562 struct iommu_dma_cookie *cookie = domain->iova_cookie;
563 struct iova_domain *iovad = &cookie->iovad;
564 size_t aligned_size = org_size;
570 * If both the physical buffer start address and size are
571 * page aligned, we don't need to use a bounce page.
573 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
574 iova_offset(iovad, phys | org_size)) {
575 aligned_size = iova_align(iovad, org_size);
576 phys = swiotlb_tbl_map_single(dev, phys, org_size,
577 aligned_size, dir, attrs);
579 if (phys == DMA_MAPPING_ERROR)
580 return DMA_MAPPING_ERROR;
582 /* Cleanup the padding area. */
583 padding_start = phys_to_virt(phys);
584 padding_size = aligned_size;
586 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
587 (dir == DMA_TO_DEVICE ||
588 dir == DMA_BIDIRECTIONAL)) {
589 padding_start += org_size;
590 padding_size -= org_size;
593 memset(padding_start, 0, padding_size);
596 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
597 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
598 swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
602 static void __iommu_dma_free_pages(struct page **pages, int count)
605 __free_page(pages[count]);
609 static struct page **__iommu_dma_alloc_pages(struct device *dev,
610 unsigned int count, unsigned long order_mask, gfp_t gfp)
613 unsigned int i = 0, nid = dev_to_node(dev);
615 order_mask &= (2U << MAX_ORDER) - 1;
619 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
623 /* IOMMU can map any pages, so himem can also be used here */
624 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
626 /* It makes no sense to muck about with huge pages */
630 struct page *page = NULL;
631 unsigned int order_size;
634 * Higher-order allocations are a convenience rather
635 * than a necessity, hence using __GFP_NORETRY until
636 * falling back to minimum-order allocations.
638 for (order_mask &= (2U << __fls(count)) - 1;
639 order_mask; order_mask &= ~order_size) {
640 unsigned int order = __fls(order_mask);
641 gfp_t alloc_flags = gfp;
643 order_size = 1U << order;
644 if (order_mask > order_size)
645 alloc_flags |= __GFP_NORETRY;
646 page = alloc_pages_node(nid, alloc_flags, order);
650 split_page(page, order);
654 __iommu_dma_free_pages(pages, i);
665 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
666 * but an IOMMU which supports smaller pages might not map the whole thing.
668 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
669 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
672 struct iommu_domain *domain = iommu_get_dma_domain(dev);
673 struct iommu_dma_cookie *cookie = domain->iova_cookie;
674 struct iova_domain *iovad = &cookie->iovad;
675 bool coherent = dev_is_dma_coherent(dev);
676 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
677 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
681 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
682 iommu_deferred_attach(dev, domain))
685 min_size = alloc_sizes & -alloc_sizes;
686 if (min_size < PAGE_SIZE) {
687 min_size = PAGE_SIZE;
688 alloc_sizes |= PAGE_SIZE;
690 size = ALIGN(size, min_size);
692 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
693 alloc_sizes = min_size;
695 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
696 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
701 size = iova_align(iovad, size);
702 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
706 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
709 if (!(ioprot & IOMMU_CACHE)) {
710 struct scatterlist *sg;
713 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
714 arch_dma_prep_coherent(sg_page(sg), sg->length);
717 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
721 sgt->sgl->dma_address = iova;
722 sgt->sgl->dma_length = size;
728 iommu_dma_free_iova(cookie, iova, size, NULL);
730 __iommu_dma_free_pages(pages, count);
734 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
735 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
742 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
746 *dma_handle = sgt.sgl->dma_address;
748 vaddr = dma_common_pages_remap(pages, size, prot,
749 __builtin_return_address(0));
755 __iommu_dma_unmap(dev, *dma_handle, size);
756 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
760 #ifdef CONFIG_DMA_REMAP
761 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
762 size_t size, enum dma_data_direction dir, gfp_t gfp,
765 struct dma_sgt_handle *sh;
767 sh = kmalloc(sizeof(*sh), gfp);
771 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
780 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
781 struct sg_table *sgt, enum dma_data_direction dir)
783 struct dma_sgt_handle *sh = sgt_handle(sgt);
785 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
786 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
787 sg_free_table(&sh->sgt);
790 #endif /* CONFIG_DMA_REMAP */
792 static void iommu_dma_sync_single_for_cpu(struct device *dev,
793 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
797 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
800 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
801 if (!dev_is_dma_coherent(dev))
802 arch_sync_dma_for_cpu(phys, size, dir);
804 if (is_swiotlb_buffer(dev, phys))
805 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
808 static void iommu_dma_sync_single_for_device(struct device *dev,
809 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
813 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
816 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
817 if (is_swiotlb_buffer(dev, phys))
818 swiotlb_sync_single_for_device(dev, phys, size, dir);
820 if (!dev_is_dma_coherent(dev))
821 arch_sync_dma_for_device(phys, size, dir);
824 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
825 struct scatterlist *sgl, int nelems,
826 enum dma_data_direction dir)
828 struct scatterlist *sg;
831 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
834 for_each_sg(sgl, sg, nelems, i) {
835 if (!dev_is_dma_coherent(dev))
836 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
838 if (is_swiotlb_buffer(dev, sg_phys(sg)))
839 swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
844 static void iommu_dma_sync_sg_for_device(struct device *dev,
845 struct scatterlist *sgl, int nelems,
846 enum dma_data_direction dir)
848 struct scatterlist *sg;
851 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
854 for_each_sg(sgl, sg, nelems, i) {
855 if (is_swiotlb_buffer(dev, sg_phys(sg)))
856 swiotlb_sync_single_for_device(dev, sg_phys(sg),
859 if (!dev_is_dma_coherent(dev))
860 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
864 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
865 unsigned long offset, size_t size, enum dma_data_direction dir,
868 phys_addr_t phys = page_to_phys(page) + offset;
869 bool coherent = dev_is_dma_coherent(dev);
870 dma_addr_t dma_handle;
872 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
873 coherent, dir, attrs);
874 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
875 dma_handle != DMA_MAPPING_ERROR)
876 arch_sync_dma_for_device(phys, size, dir);
880 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
881 size_t size, enum dma_data_direction dir, unsigned long attrs)
883 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
884 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
885 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
889 * Prepare a successfully-mapped scatterlist to give back to the caller.
891 * At this point the segments are already laid out by iommu_dma_map_sg() to
892 * avoid individually crossing any boundaries, so we merely need to check a
893 * segment's start address to avoid concatenating across one.
895 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
898 struct scatterlist *s, *cur = sg;
899 unsigned long seg_mask = dma_get_seg_boundary(dev);
900 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
903 for_each_sg(sg, s, nents, i) {
904 /* Restore this segment's original unaligned fields first */
905 unsigned int s_iova_off = sg_dma_address(s);
906 unsigned int s_length = sg_dma_len(s);
907 unsigned int s_iova_len = s->length;
909 s->offset += s_iova_off;
910 s->length = s_length;
911 sg_dma_address(s) = DMA_MAPPING_ERROR;
915 * Now fill in the real DMA data. If...
916 * - there is a valid output segment to append to
917 * - and this segment starts on an IOVA page boundary
918 * - but doesn't fall at a segment boundary
919 * - and wouldn't make the resulting output segment too long
921 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
922 (max_len - cur_len >= s_length)) {
923 /* ...then concatenate it with the previous one */
926 /* Otherwise start the next output segment */
932 sg_dma_address(cur) = dma_addr + s_iova_off;
935 sg_dma_len(cur) = cur_len;
936 dma_addr += s_iova_len;
938 if (s_length + s_iova_off < s_iova_len)
945 * If mapping failed, then just restore the original list,
946 * but making sure the DMA fields are invalidated.
948 static void __invalidate_sg(struct scatterlist *sg, int nents)
950 struct scatterlist *s;
953 for_each_sg(sg, s, nents, i) {
954 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
955 s->offset += sg_dma_address(s);
957 s->length = sg_dma_len(s);
958 sg_dma_address(s) = DMA_MAPPING_ERROR;
963 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
964 int nents, enum dma_data_direction dir, unsigned long attrs)
966 struct scatterlist *s;
969 for_each_sg(sg, s, nents, i)
970 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
971 sg_dma_len(s), dir, attrs);
974 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
975 int nents, enum dma_data_direction dir, unsigned long attrs)
977 struct scatterlist *s;
980 for_each_sg(sg, s, nents, i) {
981 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
982 s->length, dma_get_mask(dev),
983 dev_is_dma_coherent(dev), dir, attrs);
984 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
986 sg_dma_len(s) = s->length;
992 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
997 * The DMA API client is passing in a scatterlist which could describe
998 * any old buffer layout, but the IOMMU API requires everything to be
999 * aligned to IOMMU pages. Hence the need for this complicated bit of
1000 * impedance-matching, to be able to hand off a suitably-aligned list,
1001 * but still preserve the original offsets and sizes for the caller.
1003 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir, unsigned long attrs)
1006 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1007 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1008 struct iova_domain *iovad = &cookie->iovad;
1009 struct scatterlist *s, *prev = NULL;
1010 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1012 size_t iova_len = 0;
1013 unsigned long mask = dma_get_seg_boundary(dev);
1017 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1018 ret = iommu_deferred_attach(dev, domain);
1022 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1023 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1025 if (dev_is_untrusted(dev))
1026 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1029 * Work out how much IOVA space we need, and align the segments to
1030 * IOVA granules for the IOMMU driver to handle. With some clever
1031 * trickery we can modify the list in-place, but reversibly, by
1032 * stashing the unaligned parts in the as-yet-unused DMA fields.
1034 for_each_sg(sg, s, nents, i) {
1035 size_t s_iova_off = iova_offset(iovad, s->offset);
1036 size_t s_length = s->length;
1037 size_t pad_len = (mask - iova_len + 1) & mask;
1039 sg_dma_address(s) = s_iova_off;
1040 sg_dma_len(s) = s_length;
1041 s->offset -= s_iova_off;
1042 s_length = iova_align(iovad, s_length + s_iova_off);
1043 s->length = s_length;
1046 * Due to the alignment of our single IOVA allocation, we can
1047 * depend on these assumptions about the segment boundary mask:
1048 * - If mask size >= IOVA size, then the IOVA range cannot
1049 * possibly fall across a boundary, so we don't care.
1050 * - If mask size < IOVA size, then the IOVA range must start
1051 * exactly on a boundary, therefore we can lay things out
1052 * based purely on segment lengths without needing to know
1053 * the actual addresses beforehand.
1054 * - The mask must be a power of 2, so pad_len == 0 if
1055 * iova_len == 0, thus we cannot dereference prev the first
1056 * time through here (i.e. before it has a meaningful value).
1058 if (pad_len && pad_len < s_length - 1) {
1059 prev->length += pad_len;
1060 iova_len += pad_len;
1063 iova_len += s_length;
1067 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1070 goto out_restore_sg;
1074 * We'll leave any physical concatenation to the IOMMU driver's
1075 * implementation - it knows better than we do.
1077 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1081 return __finalise_sg(dev, sg, nents, iova);
1084 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1086 __invalidate_sg(sg, nents);
1093 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1094 int nents, enum dma_data_direction dir, unsigned long attrs)
1096 dma_addr_t start, end;
1097 struct scatterlist *tmp;
1100 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1101 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1103 if (dev_is_untrusted(dev)) {
1104 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1109 * The scatterlist segments are mapped into a single
1110 * contiguous IOVA allocation, so this is incredibly easy.
1112 start = sg_dma_address(sg);
1113 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1114 if (sg_dma_len(tmp) == 0)
1118 end = sg_dma_address(sg) + sg_dma_len(sg);
1119 __iommu_dma_unmap(dev, start, end - start);
1122 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1123 size_t size, enum dma_data_direction dir, unsigned long attrs)
1125 return __iommu_dma_map(dev, phys, size,
1126 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1130 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1131 size_t size, enum dma_data_direction dir, unsigned long attrs)
1133 __iommu_dma_unmap(dev, handle, size);
1136 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1138 size_t alloc_size = PAGE_ALIGN(size);
1139 int count = alloc_size >> PAGE_SHIFT;
1140 struct page *page = NULL, **pages = NULL;
1142 /* Non-coherent atomic allocation? Easy */
1143 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1144 dma_free_from_pool(dev, cpu_addr, alloc_size))
1147 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1149 * If it the address is remapped, then it's either non-coherent
1150 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1152 pages = dma_common_find_pages(cpu_addr);
1154 page = vmalloc_to_page(cpu_addr);
1155 dma_common_free_remap(cpu_addr, alloc_size);
1157 /* Lowmem means a coherent atomic or CMA allocation */
1158 page = virt_to_page(cpu_addr);
1162 __iommu_dma_free_pages(pages, count);
1164 dma_free_contiguous(dev, page, alloc_size);
1167 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1168 dma_addr_t handle, unsigned long attrs)
1170 __iommu_dma_unmap(dev, handle, size);
1171 __iommu_dma_free(dev, size, cpu_addr);
1174 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1175 struct page **pagep, gfp_t gfp, unsigned long attrs)
1177 bool coherent = dev_is_dma_coherent(dev);
1178 size_t alloc_size = PAGE_ALIGN(size);
1179 int node = dev_to_node(dev);
1180 struct page *page = NULL;
1183 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1185 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1189 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1190 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1192 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1193 prot, __builtin_return_address(0));
1195 goto out_free_pages;
1198 arch_dma_prep_coherent(page, size);
1200 cpu_addr = page_address(page);
1204 memset(cpu_addr, 0, alloc_size);
1207 dma_free_contiguous(dev, page, alloc_size);
1211 static void *iommu_dma_alloc(struct device *dev, size_t size,
1212 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1214 bool coherent = dev_is_dma_coherent(dev);
1215 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1216 struct page *page = NULL;
1221 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1222 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1223 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1224 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1227 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1228 !gfpflags_allow_blocking(gfp) && !coherent)
1229 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1232 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1236 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1237 dev->coherent_dma_mask);
1238 if (*handle == DMA_MAPPING_ERROR) {
1239 __iommu_dma_free(dev, size, cpu_addr);
1246 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1247 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1248 unsigned long attrs)
1250 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251 unsigned long pfn, off = vma->vm_pgoff;
1254 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1256 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1259 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1262 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1263 struct page **pages = dma_common_find_pages(cpu_addr);
1266 return vm_map_pages(vma, pages, nr_pages);
1267 pfn = vmalloc_to_pfn(cpu_addr);
1269 pfn = page_to_pfn(virt_to_page(cpu_addr));
1272 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1273 vma->vm_end - vma->vm_start,
1277 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1278 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1279 unsigned long attrs)
1284 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1285 struct page **pages = dma_common_find_pages(cpu_addr);
1288 return sg_alloc_table_from_pages(sgt, pages,
1289 PAGE_ALIGN(size) >> PAGE_SHIFT,
1290 0, size, GFP_KERNEL);
1293 page = vmalloc_to_page(cpu_addr);
1295 page = virt_to_page(cpu_addr);
1298 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1300 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1304 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1306 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1308 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1311 static const struct dma_map_ops iommu_dma_ops = {
1312 .alloc = iommu_dma_alloc,
1313 .free = iommu_dma_free,
1314 .alloc_pages = dma_common_alloc_pages,
1315 .free_pages = dma_common_free_pages,
1316 #ifdef CONFIG_DMA_REMAP
1317 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1318 .free_noncontiguous = iommu_dma_free_noncontiguous,
1320 .mmap = iommu_dma_mmap,
1321 .get_sgtable = iommu_dma_get_sgtable,
1322 .map_page = iommu_dma_map_page,
1323 .unmap_page = iommu_dma_unmap_page,
1324 .map_sg = iommu_dma_map_sg,
1325 .unmap_sg = iommu_dma_unmap_sg,
1326 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1327 .sync_single_for_device = iommu_dma_sync_single_for_device,
1328 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1329 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1330 .map_resource = iommu_dma_map_resource,
1331 .unmap_resource = iommu_dma_unmap_resource,
1332 .get_merge_boundary = iommu_dma_get_merge_boundary,
1336 * The IOMMU core code allocates the default DMA domain, which the underlying
1337 * IOMMU driver needs to support via the dma-iommu layer.
1339 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1341 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1347 * The IOMMU core code allocates the default DMA domain, which the
1348 * underlying IOMMU driver needs to support via the dma-iommu layer.
1350 if (iommu_is_dma_domain(domain)) {
1351 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1353 dev->dma_ops = &iommu_dma_ops;
1358 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1361 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1363 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1364 phys_addr_t msi_addr, struct iommu_domain *domain)
1366 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1367 struct iommu_dma_msi_page *msi_page;
1369 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1370 size_t size = cookie_msi_granule(cookie);
1372 msi_addr &= ~(phys_addr_t)(size - 1);
1373 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1374 if (msi_page->phys == msi_addr)
1377 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1381 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1385 if (iommu_map(domain, iova, msi_addr, size, prot))
1388 INIT_LIST_HEAD(&msi_page->list);
1389 msi_page->phys = msi_addr;
1390 msi_page->iova = iova;
1391 list_add(&msi_page->list, &cookie->msi_page_list);
1395 iommu_dma_free_iova(cookie, iova, size, NULL);
1401 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1403 struct device *dev = msi_desc_to_dev(desc);
1404 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1405 struct iommu_dma_msi_page *msi_page;
1406 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1408 if (!domain || !domain->iova_cookie) {
1409 desc->iommu_cookie = NULL;
1414 * In fact the whole prepare operation should already be serialised by
1415 * irq_domain_mutex further up the callchain, but that's pretty subtle
1416 * on its own, so consider this locking as failsafe documentation...
1418 mutex_lock(&msi_prepare_lock);
1419 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1420 mutex_unlock(&msi_prepare_lock);
1422 msi_desc_set_iommu_cookie(desc, msi_page);
1429 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1430 struct msi_msg *msg)
1432 struct device *dev = msi_desc_to_dev(desc);
1433 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1434 const struct iommu_dma_msi_page *msi_page;
1436 msi_page = msi_desc_get_iommu_cookie(desc);
1438 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1441 msg->address_hi = upper_32_bits(msi_page->iova);
1442 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1443 msg->address_lo += lower_32_bits(msi_page->iova);
1446 static int iommu_dma_init(void)
1448 if (is_kdump_kernel())
1449 static_branch_enable(&iommu_deferred_attach_enabled);
1451 return iova_cache_get();
1453 arch_initcall(iommu_dma_init);