2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
29 #include <linux/scatterlist.h>
30 #include <linux/vmalloc.h>
32 int iommu_dma_init(void)
34 return iova_cache_get();
38 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
39 * @domain: IOMMU domain to prepare for DMA-API usage
41 * IOMMU drivers should normally call this from their domain_alloc
42 * callback when domain->type == IOMMU_DOMAIN_DMA.
44 int iommu_get_dma_cookie(struct iommu_domain *domain)
46 struct iova_domain *iovad;
48 if (domain->iova_cookie)
51 iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
52 domain->iova_cookie = iovad;
54 return iovad ? 0 : -ENOMEM;
56 EXPORT_SYMBOL(iommu_get_dma_cookie);
59 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
60 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
62 * IOMMU drivers should normally call this from their domain_free callback.
64 void iommu_put_dma_cookie(struct iommu_domain *domain)
66 struct iova_domain *iovad = domain->iova_cookie;
72 put_iova_domain(iovad);
74 domain->iova_cookie = NULL;
76 EXPORT_SYMBOL(iommu_put_dma_cookie);
79 * iommu_dma_init_domain - Initialise a DMA mapping domain
80 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
81 * @base: IOVA at which the mappable address space starts
82 * @size: Size of IOVA space
84 * @base and @size should be exact multiples of IOMMU page granularity to
85 * avoid rounding surprises. If necessary, we reserve the page at address 0
86 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
87 * any change which could make prior IOVAs invalid will fail.
89 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
91 struct iova_domain *iovad = domain->iova_cookie;
92 unsigned long order, base_pfn, end_pfn;
97 /* Use the smallest supported page size for IOVA granularity */
98 order = __ffs(domain->pgsize_bitmap);
99 base_pfn = max_t(unsigned long, 1, base >> order);
100 end_pfn = (base + size - 1) >> order;
102 /* Check the domain allows at least some access to the device... */
103 if (domain->geometry.force_aperture) {
104 if (base > domain->geometry.aperture_end ||
105 base + size <= domain->geometry.aperture_start) {
106 pr_warn("specified DMA range outside IOMMU capability\n");
109 /* ...then finally give it a kicking to make sure it fits */
110 base_pfn = max_t(unsigned long, base_pfn,
111 domain->geometry.aperture_start >> order);
112 end_pfn = min_t(unsigned long, end_pfn,
113 domain->geometry.aperture_end >> order);
116 /* All we can safely do with an existing domain is enlarge it */
117 if (iovad->start_pfn) {
118 if (1UL << order != iovad->granule ||
119 base_pfn != iovad->start_pfn ||
120 end_pfn < iovad->dma_32bit_pfn) {
121 pr_warn("Incompatible range for DMA domain\n");
124 iovad->dma_32bit_pfn = end_pfn;
126 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
130 EXPORT_SYMBOL(iommu_dma_init_domain);
133 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
134 * @dir: Direction of DMA transfer
135 * @coherent: Is the DMA master cache-coherent?
137 * Return: corresponding IOMMU API page protection flags
139 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
141 int prot = coherent ? IOMMU_CACHE : 0;
144 case DMA_BIDIRECTIONAL:
145 return prot | IOMMU_READ | IOMMU_WRITE;
147 return prot | IOMMU_READ;
148 case DMA_FROM_DEVICE:
149 return prot | IOMMU_WRITE;
155 static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
156 dma_addr_t dma_limit)
158 struct iova_domain *iovad = domain->iova_cookie;
159 unsigned long shift = iova_shift(iovad);
160 unsigned long length = iova_align(iovad, size) >> shift;
162 if (domain->geometry.force_aperture)
163 dma_limit = min(dma_limit, domain->geometry.aperture_end);
165 * Enforce size-alignment to be safe - there could perhaps be an
166 * attribute to control this per-device, or at least per-domain...
168 return alloc_iova(iovad, length, dma_limit >> shift, true);
171 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
172 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
174 struct iova_domain *iovad = domain->iova_cookie;
175 unsigned long shift = iova_shift(iovad);
176 unsigned long pfn = dma_addr >> shift;
177 struct iova *iova = find_iova(iovad, pfn);
183 size = iova_size(iova) << shift;
184 size -= iommu_unmap(domain, pfn << shift, size);
185 /* ...and if we can't, then something is horribly, horribly wrong */
187 __free_iova(iovad, iova);
190 static void __iommu_dma_free_pages(struct page **pages, int count)
193 __free_page(pages[count]);
197 static struct page **__iommu_dma_alloc_pages(unsigned int count,
198 unsigned long order_mask, gfp_t gfp)
201 unsigned int i = 0, array_size = count * sizeof(*pages);
203 order_mask &= (2U << MAX_ORDER) - 1;
207 if (array_size <= PAGE_SIZE)
208 pages = kzalloc(array_size, GFP_KERNEL);
210 pages = vzalloc(array_size);
214 /* IOMMU can map any pages, so himem can also be used here */
215 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
218 struct page *page = NULL;
219 unsigned int order_size;
222 * Higher-order allocations are a convenience rather
223 * than a necessity, hence using __GFP_NORETRY until
224 * falling back to minimum-order allocations.
226 for (order_mask &= (2U << __fls(count)) - 1;
227 order_mask; order_mask &= ~order_size) {
228 unsigned int order = __fls(order_mask);
230 order_size = 1U << order;
231 page = alloc_pages((order_mask - order_size) ?
232 gfp | __GFP_NORETRY : gfp, order);
237 if (!PageCompound(page)) {
238 split_page(page, order);
240 } else if (!split_huge_page(page)) {
243 __free_pages(page, order);
246 __iommu_dma_free_pages(pages, i);
257 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
258 * @dev: Device which owns this buffer
259 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
260 * @size: Size of buffer in bytes
261 * @handle: DMA address of buffer
263 * Frees both the pages associated with the buffer, and the array
266 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
269 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
270 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
271 *handle = DMA_ERROR_CODE;
275 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
276 * @dev: Device to allocate memory for. Must be a real device
277 * attached to an iommu_dma_domain
278 * @size: Size of buffer in bytes
279 * @gfp: Allocation flags
280 * @attrs: DMA attributes for this allocation
281 * @prot: IOMMU mapping flags
282 * @handle: Out argument for allocated DMA handle
283 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
284 * given VA/PA are visible to the given non-coherent device.
286 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
287 * but an IOMMU which supports smaller pages might not map the whole thing.
289 * Return: Array of struct page pointers describing the buffer,
290 * or NULL on failure.
292 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
293 unsigned long attrs, int prot, dma_addr_t *handle,
294 void (*flush_page)(struct device *, const void *, phys_addr_t))
296 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
297 struct iova_domain *iovad = domain->iova_cookie;
302 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
304 *handle = DMA_ERROR_CODE;
306 min_size = alloc_sizes & -alloc_sizes;
307 if (min_size < PAGE_SIZE) {
308 min_size = PAGE_SIZE;
309 alloc_sizes |= PAGE_SIZE;
311 size = ALIGN(size, min_size);
313 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
314 alloc_sizes = min_size;
316 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
317 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
321 iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
325 size = iova_align(iovad, size);
326 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
329 if (!(prot & IOMMU_CACHE)) {
330 struct sg_mapping_iter miter;
332 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
333 * sufficient here, so skip it by using the "wrong" direction.
335 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
336 while (sg_miter_next(&miter))
337 flush_page(dev, miter.addr, page_to_phys(miter.page));
338 sg_miter_stop(&miter);
341 dma_addr = iova_dma_addr(iovad, iova);
342 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
353 __free_iova(iovad, iova);
355 __iommu_dma_free_pages(pages, count);
360 * iommu_dma_mmap - Map a buffer into provided user VMA
361 * @pages: Array representing buffer from iommu_dma_alloc()
362 * @size: Size of buffer in bytes
363 * @vma: VMA describing requested userspace mapping
365 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
366 * for verifying the correct size and protection of @vma beforehand.
369 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
371 unsigned long uaddr = vma->vm_start;
372 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
375 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
376 ret = vm_insert_page(vma, uaddr, pages[i]);
384 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
385 unsigned long offset, size_t size, int prot)
388 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
389 struct iova_domain *iovad = domain->iova_cookie;
390 phys_addr_t phys = page_to_phys(page) + offset;
391 size_t iova_off = iova_offset(iovad, phys);
392 size_t len = iova_align(iovad, size + iova_off);
393 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
396 return DMA_ERROR_CODE;
398 dma_addr = iova_dma_addr(iovad, iova);
399 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
400 __free_iova(iovad, iova);
401 return DMA_ERROR_CODE;
403 return dma_addr + iova_off;
406 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
407 enum dma_data_direction dir, unsigned long attrs)
409 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
413 * Prepare a successfully-mapped scatterlist to give back to the caller.
415 * At this point the segments are already laid out by iommu_dma_map_sg() to
416 * avoid individually crossing any boundaries, so we merely need to check a
417 * segment's start address to avoid concatenating across one.
419 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
422 struct scatterlist *s, *cur = sg;
423 unsigned long seg_mask = dma_get_seg_boundary(dev);
424 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
427 for_each_sg(sg, s, nents, i) {
428 /* Restore this segment's original unaligned fields first */
429 unsigned int s_iova_off = sg_dma_address(s);
430 unsigned int s_length = sg_dma_len(s);
431 unsigned int s_iova_len = s->length;
433 s->offset += s_iova_off;
434 s->length = s_length;
435 sg_dma_address(s) = DMA_ERROR_CODE;
439 * Now fill in the real DMA data. If...
440 * - there is a valid output segment to append to
441 * - and this segment starts on an IOVA page boundary
442 * - but doesn't fall at a segment boundary
443 * - and wouldn't make the resulting output segment too long
445 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
446 (cur_len + s_length <= max_len)) {
447 /* ...then concatenate it with the previous one */
450 /* Otherwise start the next output segment */
456 sg_dma_address(cur) = dma_addr + s_iova_off;
459 sg_dma_len(cur) = cur_len;
460 dma_addr += s_iova_len;
462 if (s_length + s_iova_off < s_iova_len)
469 * If mapping failed, then just restore the original list,
470 * but making sure the DMA fields are invalidated.
472 static void __invalidate_sg(struct scatterlist *sg, int nents)
474 struct scatterlist *s;
477 for_each_sg(sg, s, nents, i) {
478 if (sg_dma_address(s) != DMA_ERROR_CODE)
479 s->offset += sg_dma_address(s);
481 s->length = sg_dma_len(s);
482 sg_dma_address(s) = DMA_ERROR_CODE;
488 * The DMA API client is passing in a scatterlist which could describe
489 * any old buffer layout, but the IOMMU API requires everything to be
490 * aligned to IOMMU pages. Hence the need for this complicated bit of
491 * impedance-matching, to be able to hand off a suitably-aligned list,
492 * but still preserve the original offsets and sizes for the caller.
494 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
497 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
498 struct iova_domain *iovad = domain->iova_cookie;
500 struct scatterlist *s, *prev = NULL;
503 unsigned long mask = dma_get_seg_boundary(dev);
507 * Work out how much IOVA space we need, and align the segments to
508 * IOVA granules for the IOMMU driver to handle. With some clever
509 * trickery we can modify the list in-place, but reversibly, by
510 * stashing the unaligned parts in the as-yet-unused DMA fields.
512 for_each_sg(sg, s, nents, i) {
513 size_t s_iova_off = iova_offset(iovad, s->offset);
514 size_t s_length = s->length;
515 size_t pad_len = (mask - iova_len + 1) & mask;
517 sg_dma_address(s) = s_iova_off;
518 sg_dma_len(s) = s_length;
519 s->offset -= s_iova_off;
520 s_length = iova_align(iovad, s_length + s_iova_off);
521 s->length = s_length;
524 * Due to the alignment of our single IOVA allocation, we can
525 * depend on these assumptions about the segment boundary mask:
526 * - If mask size >= IOVA size, then the IOVA range cannot
527 * possibly fall across a boundary, so we don't care.
528 * - If mask size < IOVA size, then the IOVA range must start
529 * exactly on a boundary, therefore we can lay things out
530 * based purely on segment lengths without needing to know
531 * the actual addresses beforehand.
532 * - The mask must be a power of 2, so pad_len == 0 if
533 * iova_len == 0, thus we cannot dereference prev the first
534 * time through here (i.e. before it has a meaningful value).
536 if (pad_len && pad_len < s_length - 1) {
537 prev->length += pad_len;
541 iova_len += s_length;
545 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
550 * We'll leave any physical concatenation to the IOMMU driver's
551 * implementation - it knows better than we do.
553 dma_addr = iova_dma_addr(iovad, iova);
554 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
557 return __finalise_sg(dev, sg, nents, dma_addr);
560 __free_iova(iovad, iova);
562 __invalidate_sg(sg, nents);
566 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
567 enum dma_data_direction dir, unsigned long attrs)
570 * The scatterlist segments are mapped into a single
571 * contiguous IOVA allocation, so this is incredibly easy.
573 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
576 int iommu_dma_supported(struct device *dev, u64 mask)
579 * 'Special' IOMMUs which don't have the same addressing capability
580 * as the CPU will have to wait until we have some way to query that
581 * before they'll be able to use this framework.
586 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
588 return dma_addr == DMA_ERROR_CODE;