iommu/io-pgtable-arm: Convert to IOMMU API TLB sync
[platform/kernel/linux-rpi.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411 #define ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US  1000000 /* 1s! */
412
413 #define MSI_IOVA_BASE                   0x8000000
414 #define MSI_IOVA_LENGTH                 0x100000
415
416 /* Until ACPICA headers cover IORT rev. C */
417 #ifndef ACPI_IORT_SMMU_HISILICON_HI161X
418 #define ACPI_IORT_SMMU_HISILICON_HI161X         0x1
419 #endif
420
421 #ifndef ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
422 #define ACPI_IORT_SMMU_V3_CAVIUM_CN99XX         0x2
423 #endif
424
425 static bool disable_bypass;
426 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
427 MODULE_PARM_DESC(disable_bypass,
428         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
429
430 enum pri_resp {
431         PRI_RESP_DENY,
432         PRI_RESP_FAIL,
433         PRI_RESP_SUCC,
434 };
435
436 enum arm_smmu_msi_index {
437         EVTQ_MSI_INDEX,
438         GERROR_MSI_INDEX,
439         PRIQ_MSI_INDEX,
440         ARM_SMMU_MAX_MSIS,
441 };
442
443 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
444         [EVTQ_MSI_INDEX] = {
445                 ARM_SMMU_EVTQ_IRQ_CFG0,
446                 ARM_SMMU_EVTQ_IRQ_CFG1,
447                 ARM_SMMU_EVTQ_IRQ_CFG2,
448         },
449         [GERROR_MSI_INDEX] = {
450                 ARM_SMMU_GERROR_IRQ_CFG0,
451                 ARM_SMMU_GERROR_IRQ_CFG1,
452                 ARM_SMMU_GERROR_IRQ_CFG2,
453         },
454         [PRIQ_MSI_INDEX] = {
455                 ARM_SMMU_PRIQ_IRQ_CFG0,
456                 ARM_SMMU_PRIQ_IRQ_CFG1,
457                 ARM_SMMU_PRIQ_IRQ_CFG2,
458         },
459 };
460
461 struct arm_smmu_cmdq_ent {
462         /* Common fields */
463         u8                              opcode;
464         bool                            substream_valid;
465
466         /* Command-specific fields */
467         union {
468                 #define CMDQ_OP_PREFETCH_CFG    0x1
469                 struct {
470                         u32                     sid;
471                         u8                      size;
472                         u64                     addr;
473                 } prefetch;
474
475                 #define CMDQ_OP_CFGI_STE        0x3
476                 #define CMDQ_OP_CFGI_ALL        0x4
477                 struct {
478                         u32                     sid;
479                         union {
480                                 bool            leaf;
481                                 u8              span;
482                         };
483                 } cfgi;
484
485                 #define CMDQ_OP_TLBI_NH_ASID    0x11
486                 #define CMDQ_OP_TLBI_NH_VA      0x12
487                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
488                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
489                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
490                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
491                 struct {
492                         u16                     asid;
493                         u16                     vmid;
494                         bool                    leaf;
495                         u64                     addr;
496                 } tlbi;
497
498                 #define CMDQ_OP_PRI_RESP        0x41
499                 struct {
500                         u32                     sid;
501                         u32                     ssid;
502                         u16                     grpid;
503                         enum pri_resp           resp;
504                 } pri;
505
506                 #define CMDQ_OP_CMD_SYNC        0x46
507         };
508 };
509
510 struct arm_smmu_queue {
511         int                             irq; /* Wired interrupt */
512
513         __le64                          *base;
514         dma_addr_t                      base_dma;
515         u64                             q_base;
516
517         size_t                          ent_dwords;
518         u32                             max_n_shift;
519         u32                             prod;
520         u32                             cons;
521
522         u32 __iomem                     *prod_reg;
523         u32 __iomem                     *cons_reg;
524 };
525
526 struct arm_smmu_cmdq {
527         struct arm_smmu_queue           q;
528         spinlock_t                      lock;
529 };
530
531 struct arm_smmu_evtq {
532         struct arm_smmu_queue           q;
533         u32                             max_stalls;
534 };
535
536 struct arm_smmu_priq {
537         struct arm_smmu_queue           q;
538 };
539
540 /* High-level stream table and context descriptor structures */
541 struct arm_smmu_strtab_l1_desc {
542         u8                              span;
543
544         __le64                          *l2ptr;
545         dma_addr_t                      l2ptr_dma;
546 };
547
548 struct arm_smmu_s1_cfg {
549         __le64                          *cdptr;
550         dma_addr_t                      cdptr_dma;
551
552         struct arm_smmu_ctx_desc {
553                 u16     asid;
554                 u64     ttbr;
555                 u64     tcr;
556                 u64     mair;
557         }                               cd;
558 };
559
560 struct arm_smmu_s2_cfg {
561         u16                             vmid;
562         u64                             vttbr;
563         u64                             vtcr;
564 };
565
566 struct arm_smmu_strtab_ent {
567         /*
568          * An STE is "assigned" if the master emitting the corresponding SID
569          * is attached to a domain. The behaviour of an unassigned STE is
570          * determined by the disable_bypass parameter, whereas an assigned
571          * STE behaves according to s1_cfg/s2_cfg, which themselves are
572          * configured according to the domain type.
573          */
574         bool                            assigned;
575         struct arm_smmu_s1_cfg          *s1_cfg;
576         struct arm_smmu_s2_cfg          *s2_cfg;
577 };
578
579 struct arm_smmu_strtab_cfg {
580         __le64                          *strtab;
581         dma_addr_t                      strtab_dma;
582         struct arm_smmu_strtab_l1_desc  *l1_desc;
583         unsigned int                    num_l1_ents;
584
585         u64                             strtab_base;
586         u32                             strtab_base_cfg;
587 };
588
589 /* An SMMUv3 instance */
590 struct arm_smmu_device {
591         struct device                   *dev;
592         void __iomem                    *base;
593
594 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
595 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
596 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
597 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
598 #define ARM_SMMU_FEAT_PRI               (1 << 4)
599 #define ARM_SMMU_FEAT_ATS               (1 << 5)
600 #define ARM_SMMU_FEAT_SEV               (1 << 6)
601 #define ARM_SMMU_FEAT_MSI               (1 << 7)
602 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
603 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
604 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
605 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
606 #define ARM_SMMU_FEAT_HYP               (1 << 12)
607         u32                             features;
608
609 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
610 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
611         u32                             options;
612
613         struct arm_smmu_cmdq            cmdq;
614         struct arm_smmu_evtq            evtq;
615         struct arm_smmu_priq            priq;
616
617         int                             gerr_irq;
618         int                             combined_irq;
619
620         unsigned long                   ias; /* IPA */
621         unsigned long                   oas; /* PA */
622         unsigned long                   pgsize_bitmap;
623
624 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
625         unsigned int                    asid_bits;
626         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
627
628 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
629         unsigned int                    vmid_bits;
630         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
631
632         unsigned int                    ssid_bits;
633         unsigned int                    sid_bits;
634
635         struct arm_smmu_strtab_cfg      strtab_cfg;
636
637         /* IOMMU core code handle */
638         struct iommu_device             iommu;
639 };
640
641 /* SMMU private data for each master */
642 struct arm_smmu_master_data {
643         struct arm_smmu_device          *smmu;
644         struct arm_smmu_strtab_ent      ste;
645 };
646
647 /* SMMU private data for an IOMMU domain */
648 enum arm_smmu_domain_stage {
649         ARM_SMMU_DOMAIN_S1 = 0,
650         ARM_SMMU_DOMAIN_S2,
651         ARM_SMMU_DOMAIN_NESTED,
652         ARM_SMMU_DOMAIN_BYPASS,
653 };
654
655 struct arm_smmu_domain {
656         struct arm_smmu_device          *smmu;
657         struct mutex                    init_mutex; /* Protects smmu pointer */
658
659         struct io_pgtable_ops           *pgtbl_ops;
660
661         enum arm_smmu_domain_stage      stage;
662         union {
663                 struct arm_smmu_s1_cfg  s1_cfg;
664                 struct arm_smmu_s2_cfg  s2_cfg;
665         };
666
667         struct iommu_domain             domain;
668 };
669
670 struct arm_smmu_option_prop {
671         u32 opt;
672         const char *prop;
673 };
674
675 static struct arm_smmu_option_prop arm_smmu_options[] = {
676         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
677         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
678         { 0, NULL},
679 };
680
681 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
682                                                  struct arm_smmu_device *smmu)
683 {
684         if ((offset > SZ_64K) &&
685             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
686                 offset -= SZ_64K;
687
688         return smmu->base + offset;
689 }
690
691 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
692 {
693         return container_of(dom, struct arm_smmu_domain, domain);
694 }
695
696 static void parse_driver_options(struct arm_smmu_device *smmu)
697 {
698         int i = 0;
699
700         do {
701                 if (of_property_read_bool(smmu->dev->of_node,
702                                                 arm_smmu_options[i].prop)) {
703                         smmu->options |= arm_smmu_options[i].opt;
704                         dev_notice(smmu->dev, "option %s\n",
705                                 arm_smmu_options[i].prop);
706                 }
707         } while (arm_smmu_options[++i].opt);
708 }
709
710 /* Low-level queue manipulation functions */
711 static bool queue_full(struct arm_smmu_queue *q)
712 {
713         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
714                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
715 }
716
717 static bool queue_empty(struct arm_smmu_queue *q)
718 {
719         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
720                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
721 }
722
723 static void queue_sync_cons(struct arm_smmu_queue *q)
724 {
725         q->cons = readl_relaxed(q->cons_reg);
726 }
727
728 static void queue_inc_cons(struct arm_smmu_queue *q)
729 {
730         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
731
732         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
733         writel(q->cons, q->cons_reg);
734 }
735
736 static int queue_sync_prod(struct arm_smmu_queue *q)
737 {
738         int ret = 0;
739         u32 prod = readl_relaxed(q->prod_reg);
740
741         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
742                 ret = -EOVERFLOW;
743
744         q->prod = prod;
745         return ret;
746 }
747
748 static void queue_inc_prod(struct arm_smmu_queue *q)
749 {
750         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
751
752         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
753         writel(q->prod, q->prod_reg);
754 }
755
756 /*
757  * Wait for the SMMU to consume items. If drain is true, wait until the queue
758  * is empty. Otherwise, wait until there is at least one free slot.
759  */
760 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
761 {
762         ktime_t timeout;
763         unsigned int delay = 1;
764
765         /* Wait longer if it's queue drain */
766         timeout = ktime_add_us(ktime_get(), drain ?
767                                             ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US :
768                                             ARM_SMMU_POLL_TIMEOUT_US);
769
770         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
771                 if (ktime_compare(ktime_get(), timeout) > 0)
772                         return -ETIMEDOUT;
773
774                 if (wfe) {
775                         wfe();
776                 } else {
777                         cpu_relax();
778                         udelay(delay);
779                         delay *= 2;
780                 }
781         }
782
783         return 0;
784 }
785
786 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
787 {
788         int i;
789
790         for (i = 0; i < n_dwords; ++i)
791                 *dst++ = cpu_to_le64(*src++);
792 }
793
794 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
795 {
796         if (queue_full(q))
797                 return -ENOSPC;
798
799         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
800         queue_inc_prod(q);
801         return 0;
802 }
803
804 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
805 {
806         int i;
807
808         for (i = 0; i < n_dwords; ++i)
809                 *dst++ = le64_to_cpu(*src++);
810 }
811
812 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
813 {
814         if (queue_empty(q))
815                 return -EAGAIN;
816
817         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
818         queue_inc_cons(q);
819         return 0;
820 }
821
822 /* High-level queue accessors */
823 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
824 {
825         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
826         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
827
828         switch (ent->opcode) {
829         case CMDQ_OP_TLBI_EL2_ALL:
830         case CMDQ_OP_TLBI_NSNH_ALL:
831                 break;
832         case CMDQ_OP_PREFETCH_CFG:
833                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
834                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
835                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
836                 break;
837         case CMDQ_OP_CFGI_STE:
838                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
839                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
840                 break;
841         case CMDQ_OP_CFGI_ALL:
842                 /* Cover the entire SID range */
843                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
844                 break;
845         case CMDQ_OP_TLBI_NH_VA:
846                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
847                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
848                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
849                 break;
850         case CMDQ_OP_TLBI_S2_IPA:
851                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
852                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
853                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
854                 break;
855         case CMDQ_OP_TLBI_NH_ASID:
856                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
857                 /* Fallthrough */
858         case CMDQ_OP_TLBI_S12_VMALL:
859                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
860                 break;
861         case CMDQ_OP_PRI_RESP:
862                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
863                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
864                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
865                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
866                 switch (ent->pri.resp) {
867                 case PRI_RESP_DENY:
868                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
869                         break;
870                 case PRI_RESP_FAIL:
871                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
872                         break;
873                 case PRI_RESP_SUCC:
874                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
875                         break;
876                 default:
877                         return -EINVAL;
878                 }
879                 break;
880         case CMDQ_OP_CMD_SYNC:
881                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
882                 break;
883         default:
884                 return -ENOENT;
885         }
886
887         return 0;
888 }
889
890 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
891 {
892         static const char *cerror_str[] = {
893                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
894                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
895                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
896         };
897
898         int i;
899         u64 cmd[CMDQ_ENT_DWORDS];
900         struct arm_smmu_queue *q = &smmu->cmdq.q;
901         u32 cons = readl_relaxed(q->cons_reg);
902         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
903         struct arm_smmu_cmdq_ent cmd_sync = {
904                 .opcode = CMDQ_OP_CMD_SYNC,
905         };
906
907         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
908                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
909
910         switch (idx) {
911         case CMDQ_ERR_CERROR_ABT_IDX:
912                 dev_err(smmu->dev, "retrying command fetch\n");
913         case CMDQ_ERR_CERROR_NONE_IDX:
914                 return;
915         case CMDQ_ERR_CERROR_ILL_IDX:
916                 /* Fallthrough */
917         default:
918                 break;
919         }
920
921         /*
922          * We may have concurrent producers, so we need to be careful
923          * not to touch any of the shadow cmdq state.
924          */
925         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
926         dev_err(smmu->dev, "skipping command in error state:\n");
927         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
928                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
929
930         /* Convert the erroneous command into a CMD_SYNC */
931         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
932                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
933                 return;
934         }
935
936         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
937 }
938
939 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
940                                     struct arm_smmu_cmdq_ent *ent)
941 {
942         u64 cmd[CMDQ_ENT_DWORDS];
943         unsigned long flags;
944         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
945         struct arm_smmu_queue *q = &smmu->cmdq.q;
946
947         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
948                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
949                          ent->opcode);
950                 return;
951         }
952
953         spin_lock_irqsave(&smmu->cmdq.lock, flags);
954         while (queue_insert_raw(q, cmd) == -ENOSPC) {
955                 if (queue_poll_cons(q, false, wfe))
956                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
957         }
958
959         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
960                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
961         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
962 }
963
964 /* Context descriptor manipulation functions */
965 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
966 {
967         u64 val = 0;
968
969         /* Repack the TCR. Just care about TTBR0 for now */
970         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
971         val |= ARM_SMMU_TCR2CD(tcr, TG0);
972         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
973         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
974         val |= ARM_SMMU_TCR2CD(tcr, SH0);
975         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
976         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
977         val |= ARM_SMMU_TCR2CD(tcr, IPS);
978         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
979
980         return val;
981 }
982
983 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
984                                     struct arm_smmu_s1_cfg *cfg)
985 {
986         u64 val;
987
988         /*
989          * We don't need to issue any invalidation here, as we'll invalidate
990          * the STE when installing the new entry anyway.
991          */
992         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
993 #ifdef __BIG_ENDIAN
994               CTXDESC_CD_0_ENDI |
995 #endif
996               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
997               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
998               CTXDESC_CD_0_V;
999         cfg->cdptr[0] = cpu_to_le64(val);
1000
1001         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1002         cfg->cdptr[1] = cpu_to_le64(val);
1003
1004         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1005 }
1006
1007 /* Stream table manipulation functions */
1008 static void
1009 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1010 {
1011         u64 val = 0;
1012
1013         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1014                 << STRTAB_L1_DESC_SPAN_SHIFT;
1015         val |= desc->l2ptr_dma &
1016                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1017
1018         *dst = cpu_to_le64(val);
1019 }
1020
1021 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1022 {
1023         struct arm_smmu_cmdq_ent cmd = {
1024                 .opcode = CMDQ_OP_CFGI_STE,
1025                 .cfgi   = {
1026                         .sid    = sid,
1027                         .leaf   = true,
1028                 },
1029         };
1030
1031         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1032         cmd.opcode = CMDQ_OP_CMD_SYNC;
1033         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1034 }
1035
1036 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1037                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1038 {
1039         /*
1040          * This is hideously complicated, but we only really care about
1041          * three cases at the moment:
1042          *
1043          * 1. Invalid (all zero) -> bypass/fault (init)
1044          * 2. Bypass/fault -> translation/bypass (attach)
1045          * 3. Translation/bypass -> bypass/fault (detach)
1046          *
1047          * Given that we can't update the STE atomically and the SMMU
1048          * doesn't read the thing in a defined order, that leaves us
1049          * with the following maintenance requirements:
1050          *
1051          * 1. Update Config, return (init time STEs aren't live)
1052          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1053          * 3. Update Config, sync
1054          */
1055         u64 val = le64_to_cpu(dst[0]);
1056         bool ste_live = false;
1057         struct arm_smmu_cmdq_ent prefetch_cmd = {
1058                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1059                 .prefetch       = {
1060                         .sid    = sid,
1061                 },
1062         };
1063
1064         if (val & STRTAB_STE_0_V) {
1065                 u64 cfg;
1066
1067                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1068                 switch (cfg) {
1069                 case STRTAB_STE_0_CFG_BYPASS:
1070                         break;
1071                 case STRTAB_STE_0_CFG_S1_TRANS:
1072                 case STRTAB_STE_0_CFG_S2_TRANS:
1073                         ste_live = true;
1074                         break;
1075                 case STRTAB_STE_0_CFG_ABORT:
1076                         if (disable_bypass)
1077                                 break;
1078                 default:
1079                         BUG(); /* STE corruption */
1080                 }
1081         }
1082
1083         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1084         val = STRTAB_STE_0_V;
1085
1086         /* Bypass/fault */
1087         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1088                 if (!ste->assigned && disable_bypass)
1089                         val |= STRTAB_STE_0_CFG_ABORT;
1090                 else
1091                         val |= STRTAB_STE_0_CFG_BYPASS;
1092
1093                 dst[0] = cpu_to_le64(val);
1094                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1095                          << STRTAB_STE_1_SHCFG_SHIFT);
1096                 dst[2] = 0; /* Nuke the VMID */
1097                 if (ste_live)
1098                         arm_smmu_sync_ste_for_sid(smmu, sid);
1099                 return;
1100         }
1101
1102         if (ste->s1_cfg) {
1103                 BUG_ON(ste_live);
1104                 dst[1] = cpu_to_le64(
1105                          STRTAB_STE_1_S1C_CACHE_WBRA
1106                          << STRTAB_STE_1_S1CIR_SHIFT |
1107                          STRTAB_STE_1_S1C_CACHE_WBRA
1108                          << STRTAB_STE_1_S1COR_SHIFT |
1109                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1110 #ifdef CONFIG_PCI_ATS
1111                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1112 #endif
1113                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1114
1115                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1116                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1117
1118                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1119                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1120                         STRTAB_STE_0_CFG_S1_TRANS;
1121         }
1122
1123         if (ste->s2_cfg) {
1124                 BUG_ON(ste_live);
1125                 dst[2] = cpu_to_le64(
1126                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1127                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1128                           << STRTAB_STE_2_VTCR_SHIFT |
1129 #ifdef __BIG_ENDIAN
1130                          STRTAB_STE_2_S2ENDI |
1131 #endif
1132                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1133                          STRTAB_STE_2_S2R);
1134
1135                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1136                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1137
1138                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1139         }
1140
1141         arm_smmu_sync_ste_for_sid(smmu, sid);
1142         dst[0] = cpu_to_le64(val);
1143         arm_smmu_sync_ste_for_sid(smmu, sid);
1144
1145         /* It's likely that we'll want to use the new STE soon */
1146         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1147                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1148 }
1149
1150 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1151 {
1152         unsigned int i;
1153         struct arm_smmu_strtab_ent ste = { .assigned = false };
1154
1155         for (i = 0; i < nent; ++i) {
1156                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1157                 strtab += STRTAB_STE_DWORDS;
1158         }
1159 }
1160
1161 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1162 {
1163         size_t size;
1164         void *strtab;
1165         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1166         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1167
1168         if (desc->l2ptr)
1169                 return 0;
1170
1171         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1172         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1173
1174         desc->span = STRTAB_SPLIT + 1;
1175         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1176                                           GFP_KERNEL | __GFP_ZERO);
1177         if (!desc->l2ptr) {
1178                 dev_err(smmu->dev,
1179                         "failed to allocate l2 stream table for SID %u\n",
1180                         sid);
1181                 return -ENOMEM;
1182         }
1183
1184         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1185         arm_smmu_write_strtab_l1_desc(strtab, desc);
1186         return 0;
1187 }
1188
1189 /* IRQ and event handlers */
1190 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1191 {
1192         int i;
1193         struct arm_smmu_device *smmu = dev;
1194         struct arm_smmu_queue *q = &smmu->evtq.q;
1195         u64 evt[EVTQ_ENT_DWORDS];
1196
1197         do {
1198                 while (!queue_remove_raw(q, evt)) {
1199                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1200
1201                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1202                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1203                                 dev_info(smmu->dev, "\t0x%016llx\n",
1204                                          (unsigned long long)evt[i]);
1205
1206                 }
1207
1208                 /*
1209                  * Not much we can do on overflow, so scream and pretend we're
1210                  * trying harder.
1211                  */
1212                 if (queue_sync_prod(q) == -EOVERFLOW)
1213                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1214         } while (!queue_empty(q));
1215
1216         /* Sync our overflow flag, as we believe we're up to speed */
1217         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1218         return IRQ_HANDLED;
1219 }
1220
1221 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1222 {
1223         u32 sid, ssid;
1224         u16 grpid;
1225         bool ssv, last;
1226
1227         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1228         ssv = evt[0] & PRIQ_0_SSID_V;
1229         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1230         last = evt[0] & PRIQ_0_PRG_LAST;
1231         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1232
1233         dev_info(smmu->dev, "unexpected PRI request received:\n");
1234         dev_info(smmu->dev,
1235                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1236                  sid, ssid, grpid, last ? "L" : "",
1237                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1238                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1239                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1240                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1241                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1242
1243         if (last) {
1244                 struct arm_smmu_cmdq_ent cmd = {
1245                         .opcode                 = CMDQ_OP_PRI_RESP,
1246                         .substream_valid        = ssv,
1247                         .pri                    = {
1248                                 .sid    = sid,
1249                                 .ssid   = ssid,
1250                                 .grpid  = grpid,
1251                                 .resp   = PRI_RESP_DENY,
1252                         },
1253                 };
1254
1255                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1256         }
1257 }
1258
1259 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1260 {
1261         struct arm_smmu_device *smmu = dev;
1262         struct arm_smmu_queue *q = &smmu->priq.q;
1263         u64 evt[PRIQ_ENT_DWORDS];
1264
1265         do {
1266                 while (!queue_remove_raw(q, evt))
1267                         arm_smmu_handle_ppr(smmu, evt);
1268
1269                 if (queue_sync_prod(q) == -EOVERFLOW)
1270                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1271         } while (!queue_empty(q));
1272
1273         /* Sync our overflow flag, as we believe we're up to speed */
1274         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1275         return IRQ_HANDLED;
1276 }
1277
1278 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1279 {
1280         /* We don't actually use CMD_SYNC interrupts for anything */
1281         return IRQ_HANDLED;
1282 }
1283
1284 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1285
1286 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1287 {
1288         u32 gerror, gerrorn, active;
1289         struct arm_smmu_device *smmu = dev;
1290
1291         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1292         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1293
1294         active = gerror ^ gerrorn;
1295         if (!(active & GERROR_ERR_MASK))
1296                 return IRQ_NONE; /* No errors pending */
1297
1298         dev_warn(smmu->dev,
1299                  "unexpected global error reported (0x%08x), this could be serious\n",
1300                  active);
1301
1302         if (active & GERROR_SFM_ERR) {
1303                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1304                 arm_smmu_device_disable(smmu);
1305         }
1306
1307         if (active & GERROR_MSI_GERROR_ABT_ERR)
1308                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1309
1310         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1311                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1312
1313         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1314                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1315
1316         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1317                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1318                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1319         }
1320
1321         if (active & GERROR_PRIQ_ABT_ERR)
1322                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1323
1324         if (active & GERROR_EVTQ_ABT_ERR)
1325                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1326
1327         if (active & GERROR_CMDQ_ERR)
1328                 arm_smmu_cmdq_skip_err(smmu);
1329
1330         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1331         return IRQ_HANDLED;
1332 }
1333
1334 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1335 {
1336         struct arm_smmu_device *smmu = dev;
1337
1338         arm_smmu_evtq_thread(irq, dev);
1339         if (smmu->features & ARM_SMMU_FEAT_PRI)
1340                 arm_smmu_priq_thread(irq, dev);
1341
1342         return IRQ_HANDLED;
1343 }
1344
1345 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1346 {
1347         arm_smmu_gerror_handler(irq, dev);
1348         arm_smmu_cmdq_sync_handler(irq, dev);
1349         return IRQ_WAKE_THREAD;
1350 }
1351
1352 /* IO_PGTABLE API */
1353 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1354 {
1355         struct arm_smmu_cmdq_ent cmd;
1356
1357         cmd.opcode = CMDQ_OP_CMD_SYNC;
1358         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1359 }
1360
1361 static void arm_smmu_tlb_sync(void *cookie)
1362 {
1363         struct arm_smmu_domain *smmu_domain = cookie;
1364         __arm_smmu_tlb_sync(smmu_domain->smmu);
1365 }
1366
1367 static void arm_smmu_tlb_inv_context(void *cookie)
1368 {
1369         struct arm_smmu_domain *smmu_domain = cookie;
1370         struct arm_smmu_device *smmu = smmu_domain->smmu;
1371         struct arm_smmu_cmdq_ent cmd;
1372
1373         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1374                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1375                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1376                 cmd.tlbi.vmid   = 0;
1377         } else {
1378                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1379                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1380         }
1381
1382         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1383         __arm_smmu_tlb_sync(smmu);
1384 }
1385
1386 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1387                                           size_t granule, bool leaf, void *cookie)
1388 {
1389         struct arm_smmu_domain *smmu_domain = cookie;
1390         struct arm_smmu_device *smmu = smmu_domain->smmu;
1391         struct arm_smmu_cmdq_ent cmd = {
1392                 .tlbi = {
1393                         .leaf   = leaf,
1394                         .addr   = iova,
1395                 },
1396         };
1397
1398         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1399                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1400                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1401         } else {
1402                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1403                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1404         }
1405
1406         do {
1407                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1408                 cmd.tlbi.addr += granule;
1409         } while (size -= granule);
1410 }
1411
1412 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1413         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1414         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1415         .tlb_sync       = arm_smmu_tlb_sync,
1416 };
1417
1418 /* IOMMU API */
1419 static bool arm_smmu_capable(enum iommu_cap cap)
1420 {
1421         switch (cap) {
1422         case IOMMU_CAP_CACHE_COHERENCY:
1423                 return true;
1424         case IOMMU_CAP_NOEXEC:
1425                 return true;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1432 {
1433         struct arm_smmu_domain *smmu_domain;
1434
1435         if (type != IOMMU_DOMAIN_UNMANAGED &&
1436             type != IOMMU_DOMAIN_DMA &&
1437             type != IOMMU_DOMAIN_IDENTITY)
1438                 return NULL;
1439
1440         /*
1441          * Allocate the domain and initialise some of its data structures.
1442          * We can't really do anything meaningful until we've added a
1443          * master.
1444          */
1445         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1446         if (!smmu_domain)
1447                 return NULL;
1448
1449         if (type == IOMMU_DOMAIN_DMA &&
1450             iommu_get_dma_cookie(&smmu_domain->domain)) {
1451                 kfree(smmu_domain);
1452                 return NULL;
1453         }
1454
1455         mutex_init(&smmu_domain->init_mutex);
1456         return &smmu_domain->domain;
1457 }
1458
1459 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1460 {
1461         int idx, size = 1 << span;
1462
1463         do {
1464                 idx = find_first_zero_bit(map, size);
1465                 if (idx == size)
1466                         return -ENOSPC;
1467         } while (test_and_set_bit(idx, map));
1468
1469         return idx;
1470 }
1471
1472 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1473 {
1474         clear_bit(idx, map);
1475 }
1476
1477 static void arm_smmu_domain_free(struct iommu_domain *domain)
1478 {
1479         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1480         struct arm_smmu_device *smmu = smmu_domain->smmu;
1481
1482         iommu_put_dma_cookie(domain);
1483         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1484
1485         /* Free the CD and ASID, if we allocated them */
1486         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1487                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1488
1489                 if (cfg->cdptr) {
1490                         dmam_free_coherent(smmu_domain->smmu->dev,
1491                                            CTXDESC_CD_DWORDS << 3,
1492                                            cfg->cdptr,
1493                                            cfg->cdptr_dma);
1494
1495                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1496                 }
1497         } else {
1498                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1499                 if (cfg->vmid)
1500                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1501         }
1502
1503         kfree(smmu_domain);
1504 }
1505
1506 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1507                                        struct io_pgtable_cfg *pgtbl_cfg)
1508 {
1509         int ret;
1510         int asid;
1511         struct arm_smmu_device *smmu = smmu_domain->smmu;
1512         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1513
1514         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1515         if (asid < 0)
1516                 return asid;
1517
1518         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1519                                          &cfg->cdptr_dma,
1520                                          GFP_KERNEL | __GFP_ZERO);
1521         if (!cfg->cdptr) {
1522                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1523                 ret = -ENOMEM;
1524                 goto out_free_asid;
1525         }
1526
1527         cfg->cd.asid    = (u16)asid;
1528         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1529         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1530         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1531         return 0;
1532
1533 out_free_asid:
1534         arm_smmu_bitmap_free(smmu->asid_map, asid);
1535         return ret;
1536 }
1537
1538 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1539                                        struct io_pgtable_cfg *pgtbl_cfg)
1540 {
1541         int vmid;
1542         struct arm_smmu_device *smmu = smmu_domain->smmu;
1543         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1544
1545         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1546         if (vmid < 0)
1547                 return vmid;
1548
1549         cfg->vmid       = (u16)vmid;
1550         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1551         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1552         return 0;
1553 }
1554
1555 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1556 {
1557         int ret;
1558         unsigned long ias, oas;
1559         enum io_pgtable_fmt fmt;
1560         struct io_pgtable_cfg pgtbl_cfg;
1561         struct io_pgtable_ops *pgtbl_ops;
1562         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1563                                  struct io_pgtable_cfg *);
1564         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1565         struct arm_smmu_device *smmu = smmu_domain->smmu;
1566
1567         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1568                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1569                 return 0;
1570         }
1571
1572         /* Restrict the stage to what we can actually support */
1573         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1574                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1575         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1576                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1577
1578         switch (smmu_domain->stage) {
1579         case ARM_SMMU_DOMAIN_S1:
1580                 ias = VA_BITS;
1581                 oas = smmu->ias;
1582                 fmt = ARM_64_LPAE_S1;
1583                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1584                 break;
1585         case ARM_SMMU_DOMAIN_NESTED:
1586         case ARM_SMMU_DOMAIN_S2:
1587                 ias = smmu->ias;
1588                 oas = smmu->oas;
1589                 fmt = ARM_64_LPAE_S2;
1590                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1591                 break;
1592         default:
1593                 return -EINVAL;
1594         }
1595
1596         pgtbl_cfg = (struct io_pgtable_cfg) {
1597                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1598                 .ias            = ias,
1599                 .oas            = oas,
1600                 .tlb            = &arm_smmu_gather_ops,
1601                 .iommu_dev      = smmu->dev,
1602         };
1603
1604         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1605                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1606
1607         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1608         if (!pgtbl_ops)
1609                 return -ENOMEM;
1610
1611         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1612         domain->geometry.aperture_end = (1UL << ias) - 1;
1613         domain->geometry.force_aperture = true;
1614         smmu_domain->pgtbl_ops = pgtbl_ops;
1615
1616         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1617         if (ret < 0)
1618                 free_io_pgtable_ops(pgtbl_ops);
1619
1620         return ret;
1621 }
1622
1623 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1624 {
1625         __le64 *step;
1626         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1627
1628         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1629                 struct arm_smmu_strtab_l1_desc *l1_desc;
1630                 int idx;
1631
1632                 /* Two-level walk */
1633                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1634                 l1_desc = &cfg->l1_desc[idx];
1635                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1636                 step = &l1_desc->l2ptr[idx];
1637         } else {
1638                 /* Simple linear lookup */
1639                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1640         }
1641
1642         return step;
1643 }
1644
1645 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1646 {
1647         int i;
1648         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1649         struct arm_smmu_device *smmu = master->smmu;
1650
1651         for (i = 0; i < fwspec->num_ids; ++i) {
1652                 u32 sid = fwspec->ids[i];
1653                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1654
1655                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1656         }
1657 }
1658
1659 static void arm_smmu_detach_dev(struct device *dev)
1660 {
1661         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1662
1663         master->ste.assigned = false;
1664         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1665 }
1666
1667 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1668 {
1669         int ret = 0;
1670         struct arm_smmu_device *smmu;
1671         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1672         struct arm_smmu_master_data *master;
1673         struct arm_smmu_strtab_ent *ste;
1674
1675         if (!dev->iommu_fwspec)
1676                 return -ENOENT;
1677
1678         master = dev->iommu_fwspec->iommu_priv;
1679         smmu = master->smmu;
1680         ste = &master->ste;
1681
1682         /* Already attached to a different domain? */
1683         if (ste->assigned)
1684                 arm_smmu_detach_dev(dev);
1685
1686         mutex_lock(&smmu_domain->init_mutex);
1687
1688         if (!smmu_domain->smmu) {
1689                 smmu_domain->smmu = smmu;
1690                 ret = arm_smmu_domain_finalise(domain);
1691                 if (ret) {
1692                         smmu_domain->smmu = NULL;
1693                         goto out_unlock;
1694                 }
1695         } else if (smmu_domain->smmu != smmu) {
1696                 dev_err(dev,
1697                         "cannot attach to SMMU %s (upstream of %s)\n",
1698                         dev_name(smmu_domain->smmu->dev),
1699                         dev_name(smmu->dev));
1700                 ret = -ENXIO;
1701                 goto out_unlock;
1702         }
1703
1704         ste->assigned = true;
1705
1706         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1707                 ste->s1_cfg = NULL;
1708                 ste->s2_cfg = NULL;
1709         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1710                 ste->s1_cfg = &smmu_domain->s1_cfg;
1711                 ste->s2_cfg = NULL;
1712                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1713         } else {
1714                 ste->s1_cfg = NULL;
1715                 ste->s2_cfg = &smmu_domain->s2_cfg;
1716         }
1717
1718         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1719 out_unlock:
1720         mutex_unlock(&smmu_domain->init_mutex);
1721         return ret;
1722 }
1723
1724 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1725                         phys_addr_t paddr, size_t size, int prot)
1726 {
1727         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1728
1729         if (!ops)
1730                 return -ENODEV;
1731
1732         return ops->map(ops, iova, paddr, size, prot);
1733 }
1734
1735 static size_t
1736 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1737 {
1738         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1739
1740         if (!ops)
1741                 return 0;
1742
1743         return ops->unmap(ops, iova, size);
1744 }
1745
1746 static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
1747 {
1748         struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1749
1750         if (smmu)
1751                 __arm_smmu_tlb_sync(smmu);
1752 }
1753
1754 static phys_addr_t
1755 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1756 {
1757         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1758
1759         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1760                 return iova;
1761
1762         if (!ops)
1763                 return 0;
1764
1765         return ops->iova_to_phys(ops, iova);
1766 }
1767
1768 static struct platform_driver arm_smmu_driver;
1769
1770 static int arm_smmu_match_node(struct device *dev, void *data)
1771 {
1772         return dev->fwnode == data;
1773 }
1774
1775 static
1776 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1777 {
1778         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1779                                                 fwnode, arm_smmu_match_node);
1780         put_device(dev);
1781         return dev ? dev_get_drvdata(dev) : NULL;
1782 }
1783
1784 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1785 {
1786         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1787
1788         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1789                 limit *= 1UL << STRTAB_SPLIT;
1790
1791         return sid < limit;
1792 }
1793
1794 static struct iommu_ops arm_smmu_ops;
1795
1796 static int arm_smmu_add_device(struct device *dev)
1797 {
1798         int i, ret;
1799         struct arm_smmu_device *smmu;
1800         struct arm_smmu_master_data *master;
1801         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1802         struct iommu_group *group;
1803
1804         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1805                 return -ENODEV;
1806         /*
1807          * We _can_ actually withstand dodgy bus code re-calling add_device()
1808          * without an intervening remove_device()/of_xlate() sequence, but
1809          * we're not going to do so quietly...
1810          */
1811         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1812                 master = fwspec->iommu_priv;
1813                 smmu = master->smmu;
1814         } else {
1815                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1816                 if (!smmu)
1817                         return -ENODEV;
1818                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1819                 if (!master)
1820                         return -ENOMEM;
1821
1822                 master->smmu = smmu;
1823                 fwspec->iommu_priv = master;
1824         }
1825
1826         /* Check the SIDs are in range of the SMMU and our stream table */
1827         for (i = 0; i < fwspec->num_ids; i++) {
1828                 u32 sid = fwspec->ids[i];
1829
1830                 if (!arm_smmu_sid_in_range(smmu, sid))
1831                         return -ERANGE;
1832
1833                 /* Ensure l2 strtab is initialised */
1834                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1835                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1836                         if (ret)
1837                                 return ret;
1838                 }
1839         }
1840
1841         group = iommu_group_get_for_dev(dev);
1842         if (!IS_ERR(group)) {
1843                 iommu_group_put(group);
1844                 iommu_device_link(&smmu->iommu, dev);
1845         }
1846
1847         return PTR_ERR_OR_ZERO(group);
1848 }
1849
1850 static void arm_smmu_remove_device(struct device *dev)
1851 {
1852         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1853         struct arm_smmu_master_data *master;
1854         struct arm_smmu_device *smmu;
1855
1856         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1857                 return;
1858
1859         master = fwspec->iommu_priv;
1860         smmu = master->smmu;
1861         if (master && master->ste.assigned)
1862                 arm_smmu_detach_dev(dev);
1863         iommu_group_remove_device(dev);
1864         iommu_device_unlink(&smmu->iommu, dev);
1865         kfree(master);
1866         iommu_fwspec_free(dev);
1867 }
1868
1869 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1870 {
1871         struct iommu_group *group;
1872
1873         /*
1874          * We don't support devices sharing stream IDs other than PCI RID
1875          * aliases, since the necessary ID-to-device lookup becomes rather
1876          * impractical given a potential sparse 32-bit stream ID space.
1877          */
1878         if (dev_is_pci(dev))
1879                 group = pci_device_group(dev);
1880         else
1881                 group = generic_device_group(dev);
1882
1883         return group;
1884 }
1885
1886 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1887                                     enum iommu_attr attr, void *data)
1888 {
1889         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1890
1891         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1892                 return -EINVAL;
1893
1894         switch (attr) {
1895         case DOMAIN_ATTR_NESTING:
1896                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1897                 return 0;
1898         default:
1899                 return -ENODEV;
1900         }
1901 }
1902
1903 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1904                                     enum iommu_attr attr, void *data)
1905 {
1906         int ret = 0;
1907         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1908
1909         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1910                 return -EINVAL;
1911
1912         mutex_lock(&smmu_domain->init_mutex);
1913
1914         switch (attr) {
1915         case DOMAIN_ATTR_NESTING:
1916                 if (smmu_domain->smmu) {
1917                         ret = -EPERM;
1918                         goto out_unlock;
1919                 }
1920
1921                 if (*(int *)data)
1922                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1923                 else
1924                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1925
1926                 break;
1927         default:
1928                 ret = -ENODEV;
1929         }
1930
1931 out_unlock:
1932         mutex_unlock(&smmu_domain->init_mutex);
1933         return ret;
1934 }
1935
1936 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1937 {
1938         return iommu_fwspec_add_ids(dev, args->args, 1);
1939 }
1940
1941 static void arm_smmu_get_resv_regions(struct device *dev,
1942                                       struct list_head *head)
1943 {
1944         struct iommu_resv_region *region;
1945         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1946
1947         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1948                                          prot, IOMMU_RESV_SW_MSI);
1949         if (!region)
1950                 return;
1951
1952         list_add_tail(&region->list, head);
1953
1954         iommu_dma_get_resv_regions(dev, head);
1955 }
1956
1957 static void arm_smmu_put_resv_regions(struct device *dev,
1958                                       struct list_head *head)
1959 {
1960         struct iommu_resv_region *entry, *next;
1961
1962         list_for_each_entry_safe(entry, next, head, list)
1963                 kfree(entry);
1964 }
1965
1966 static struct iommu_ops arm_smmu_ops = {
1967         .capable                = arm_smmu_capable,
1968         .domain_alloc           = arm_smmu_domain_alloc,
1969         .domain_free            = arm_smmu_domain_free,
1970         .attach_dev             = arm_smmu_attach_dev,
1971         .map                    = arm_smmu_map,
1972         .unmap                  = arm_smmu_unmap,
1973         .map_sg                 = default_iommu_map_sg,
1974         .flush_iotlb_all        = arm_smmu_iotlb_sync,
1975         .iotlb_sync             = arm_smmu_iotlb_sync,
1976         .iova_to_phys           = arm_smmu_iova_to_phys,
1977         .add_device             = arm_smmu_add_device,
1978         .remove_device          = arm_smmu_remove_device,
1979         .device_group           = arm_smmu_device_group,
1980         .domain_get_attr        = arm_smmu_domain_get_attr,
1981         .domain_set_attr        = arm_smmu_domain_set_attr,
1982         .of_xlate               = arm_smmu_of_xlate,
1983         .get_resv_regions       = arm_smmu_get_resv_regions,
1984         .put_resv_regions       = arm_smmu_put_resv_regions,
1985         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1986 };
1987
1988 /* Probing and initialisation functions */
1989 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1990                                    struct arm_smmu_queue *q,
1991                                    unsigned long prod_off,
1992                                    unsigned long cons_off,
1993                                    size_t dwords)
1994 {
1995         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1996
1997         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1998         if (!q->base) {
1999                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2000                         qsz);
2001                 return -ENOMEM;
2002         }
2003
2004         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
2005         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
2006         q->ent_dwords   = dwords;
2007
2008         q->q_base  = Q_BASE_RWA;
2009         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2010         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2011                      << Q_BASE_LOG2SIZE_SHIFT;
2012
2013         q->prod = q->cons = 0;
2014         return 0;
2015 }
2016
2017 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2018 {
2019         int ret;
2020
2021         /* cmdq */
2022         spin_lock_init(&smmu->cmdq.lock);
2023         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2024                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2025         if (ret)
2026                 return ret;
2027
2028         /* evtq */
2029         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2030                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2031         if (ret)
2032                 return ret;
2033
2034         /* priq */
2035         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2036                 return 0;
2037
2038         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2039                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2040 }
2041
2042 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2043 {
2044         unsigned int i;
2045         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2046         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2047         void *strtab = smmu->strtab_cfg.strtab;
2048
2049         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2050         if (!cfg->l1_desc) {
2051                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2052                 return -ENOMEM;
2053         }
2054
2055         for (i = 0; i < cfg->num_l1_ents; ++i) {
2056                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2057                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2058         }
2059
2060         return 0;
2061 }
2062
2063 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2064 {
2065         void *strtab;
2066         u64 reg;
2067         u32 size, l1size;
2068         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2069
2070         /* Calculate the L1 size, capped to the SIDSIZE. */
2071         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2072         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2073         cfg->num_l1_ents = 1 << size;
2074
2075         size += STRTAB_SPLIT;
2076         if (size < smmu->sid_bits)
2077                 dev_warn(smmu->dev,
2078                          "2-level strtab only covers %u/%u bits of SID\n",
2079                          size, smmu->sid_bits);
2080
2081         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2082         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2083                                      GFP_KERNEL | __GFP_ZERO);
2084         if (!strtab) {
2085                 dev_err(smmu->dev,
2086                         "failed to allocate l1 stream table (%u bytes)\n",
2087                         size);
2088                 return -ENOMEM;
2089         }
2090         cfg->strtab = strtab;
2091
2092         /* Configure strtab_base_cfg for 2 levels */
2093         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2094         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2095                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2096         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2097                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2098         cfg->strtab_base_cfg = reg;
2099
2100         return arm_smmu_init_l1_strtab(smmu);
2101 }
2102
2103 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2104 {
2105         void *strtab;
2106         u64 reg;
2107         u32 size;
2108         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2109
2110         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2111         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2112                                      GFP_KERNEL | __GFP_ZERO);
2113         if (!strtab) {
2114                 dev_err(smmu->dev,
2115                         "failed to allocate linear stream table (%u bytes)\n",
2116                         size);
2117                 return -ENOMEM;
2118         }
2119         cfg->strtab = strtab;
2120         cfg->num_l1_ents = 1 << smmu->sid_bits;
2121
2122         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2123         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2124         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2125                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2126         cfg->strtab_base_cfg = reg;
2127
2128         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2129         return 0;
2130 }
2131
2132 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2133 {
2134         u64 reg;
2135         int ret;
2136
2137         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2138                 ret = arm_smmu_init_strtab_2lvl(smmu);
2139         else
2140                 ret = arm_smmu_init_strtab_linear(smmu);
2141
2142         if (ret)
2143                 return ret;
2144
2145         /* Set the strtab base address */
2146         reg  = smmu->strtab_cfg.strtab_dma &
2147                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2148         reg |= STRTAB_BASE_RA;
2149         smmu->strtab_cfg.strtab_base = reg;
2150
2151         /* Allocate the first VMID for stage-2 bypass STEs */
2152         set_bit(0, smmu->vmid_map);
2153         return 0;
2154 }
2155
2156 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2157 {
2158         int ret;
2159
2160         ret = arm_smmu_init_queues(smmu);
2161         if (ret)
2162                 return ret;
2163
2164         return arm_smmu_init_strtab(smmu);
2165 }
2166
2167 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2168                                    unsigned int reg_off, unsigned int ack_off)
2169 {
2170         u32 reg;
2171
2172         writel_relaxed(val, smmu->base + reg_off);
2173         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2174                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2175 }
2176
2177 /* GBPA is "special" */
2178 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2179 {
2180         int ret;
2181         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2182
2183         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2184                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2185         if (ret)
2186                 return ret;
2187
2188         reg &= ~clr;
2189         reg |= set;
2190         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2191         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2192                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2193 }
2194
2195 static void arm_smmu_free_msis(void *data)
2196 {
2197         struct device *dev = data;
2198         platform_msi_domain_free_irqs(dev);
2199 }
2200
2201 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2202 {
2203         phys_addr_t doorbell;
2204         struct device *dev = msi_desc_to_dev(desc);
2205         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2206         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2207
2208         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2209         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2210
2211         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2212         writel_relaxed(msg->data, smmu->base + cfg[1]);
2213         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2214 }
2215
2216 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2217 {
2218         struct msi_desc *desc;
2219         int ret, nvec = ARM_SMMU_MAX_MSIS;
2220         struct device *dev = smmu->dev;
2221
2222         /* Clear the MSI address regs */
2223         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2224         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2225
2226         if (smmu->features & ARM_SMMU_FEAT_PRI)
2227                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2228         else
2229                 nvec--;
2230
2231         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2232                 return;
2233
2234         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2235         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2236         if (ret) {
2237                 dev_warn(dev, "failed to allocate MSIs\n");
2238                 return;
2239         }
2240
2241         for_each_msi_entry(desc, dev) {
2242                 switch (desc->platform.msi_index) {
2243                 case EVTQ_MSI_INDEX:
2244                         smmu->evtq.q.irq = desc->irq;
2245                         break;
2246                 case GERROR_MSI_INDEX:
2247                         smmu->gerr_irq = desc->irq;
2248                         break;
2249                 case PRIQ_MSI_INDEX:
2250                         smmu->priq.q.irq = desc->irq;
2251                         break;
2252                 default:        /* Unknown */
2253                         continue;
2254                 }
2255         }
2256
2257         /* Add callback to free MSIs on teardown */
2258         devm_add_action(dev, arm_smmu_free_msis, dev);
2259 }
2260
2261 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2262 {
2263         int irq, ret;
2264
2265         arm_smmu_setup_msis(smmu);
2266
2267         /* Request interrupt lines */
2268         irq = smmu->evtq.q.irq;
2269         if (irq) {
2270                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2271                                                 arm_smmu_evtq_thread,
2272                                                 IRQF_ONESHOT,
2273                                                 "arm-smmu-v3-evtq", smmu);
2274                 if (ret < 0)
2275                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2276         }
2277
2278         irq = smmu->cmdq.q.irq;
2279         if (irq) {
2280                 ret = devm_request_irq(smmu->dev, irq,
2281                                        arm_smmu_cmdq_sync_handler, 0,
2282                                        "arm-smmu-v3-cmdq-sync", smmu);
2283                 if (ret < 0)
2284                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2285         }
2286
2287         irq = smmu->gerr_irq;
2288         if (irq) {
2289                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2290                                        0, "arm-smmu-v3-gerror", smmu);
2291                 if (ret < 0)
2292                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2293         }
2294
2295         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2296                 irq = smmu->priq.q.irq;
2297                 if (irq) {
2298                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2299                                                         arm_smmu_priq_thread,
2300                                                         IRQF_ONESHOT,
2301                                                         "arm-smmu-v3-priq",
2302                                                         smmu);
2303                         if (ret < 0)
2304                                 dev_warn(smmu->dev,
2305                                          "failed to enable priq irq\n");
2306                 }
2307         }
2308 }
2309
2310 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2311 {
2312         int ret, irq;
2313         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2314
2315         /* Disable IRQs first */
2316         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2317                                       ARM_SMMU_IRQ_CTRLACK);
2318         if (ret) {
2319                 dev_err(smmu->dev, "failed to disable irqs\n");
2320                 return ret;
2321         }
2322
2323         irq = smmu->combined_irq;
2324         if (irq) {
2325                 /*
2326                  * Cavium ThunderX2 implementation doesn't not support unique
2327                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2328                  */
2329                 ret = devm_request_threaded_irq(smmu->dev, irq,
2330                                         arm_smmu_combined_irq_handler,
2331                                         arm_smmu_combined_irq_thread,
2332                                         IRQF_ONESHOT,
2333                                         "arm-smmu-v3-combined-irq", smmu);
2334                 if (ret < 0)
2335                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2336         } else
2337                 arm_smmu_setup_unique_irqs(smmu);
2338
2339         if (smmu->features & ARM_SMMU_FEAT_PRI)
2340                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2341
2342         /* Enable interrupt generation on the SMMU */
2343         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2344                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2345         if (ret)
2346                 dev_warn(smmu->dev, "failed to enable irqs\n");
2347
2348         return 0;
2349 }
2350
2351 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2352 {
2353         int ret;
2354
2355         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2356         if (ret)
2357                 dev_err(smmu->dev, "failed to clear cr0\n");
2358
2359         return ret;
2360 }
2361
2362 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2363 {
2364         int ret;
2365         u32 reg, enables;
2366         struct arm_smmu_cmdq_ent cmd;
2367
2368         /* Clear CR0 and sync (disables SMMU and queue processing) */
2369         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2370         if (reg & CR0_SMMUEN)
2371                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2372
2373         ret = arm_smmu_device_disable(smmu);
2374         if (ret)
2375                 return ret;
2376
2377         /* CR1 (table and queue memory attributes) */
2378         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2379               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2380               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2381               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2382               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2383               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2384         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2385
2386         /* CR2 (random crap) */
2387         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2388         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2389
2390         /* Stream table */
2391         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2392                        smmu->base + ARM_SMMU_STRTAB_BASE);
2393         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2394                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2395
2396         /* Command queue */
2397         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2398         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2399         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2400
2401         enables = CR0_CMDQEN;
2402         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2403                                       ARM_SMMU_CR0ACK);
2404         if (ret) {
2405                 dev_err(smmu->dev, "failed to enable command queue\n");
2406                 return ret;
2407         }
2408
2409         /* Invalidate any cached configuration */
2410         cmd.opcode = CMDQ_OP_CFGI_ALL;
2411         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2412         cmd.opcode = CMDQ_OP_CMD_SYNC;
2413         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2414
2415         /* Invalidate any stale TLB entries */
2416         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2417                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2418                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2419         }
2420
2421         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2422         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2423         cmd.opcode = CMDQ_OP_CMD_SYNC;
2424         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2425
2426         /* Event queue */
2427         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2428         writel_relaxed(smmu->evtq.q.prod,
2429                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2430         writel_relaxed(smmu->evtq.q.cons,
2431                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2432
2433         enables |= CR0_EVTQEN;
2434         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2435                                       ARM_SMMU_CR0ACK);
2436         if (ret) {
2437                 dev_err(smmu->dev, "failed to enable event queue\n");
2438                 return ret;
2439         }
2440
2441         /* PRI queue */
2442         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2443                 writeq_relaxed(smmu->priq.q.q_base,
2444                                smmu->base + ARM_SMMU_PRIQ_BASE);
2445                 writel_relaxed(smmu->priq.q.prod,
2446                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2447                 writel_relaxed(smmu->priq.q.cons,
2448                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2449
2450                 enables |= CR0_PRIQEN;
2451                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2452                                               ARM_SMMU_CR0ACK);
2453                 if (ret) {
2454                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2455                         return ret;
2456                 }
2457         }
2458
2459         ret = arm_smmu_setup_irqs(smmu);
2460         if (ret) {
2461                 dev_err(smmu->dev, "failed to setup irqs\n");
2462                 return ret;
2463         }
2464
2465
2466         /* Enable the SMMU interface, or ensure bypass */
2467         if (!bypass || disable_bypass) {
2468                 enables |= CR0_SMMUEN;
2469         } else {
2470                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2471                 if (ret) {
2472                         dev_err(smmu->dev, "GBPA not responding to update\n");
2473                         return ret;
2474                 }
2475         }
2476         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2477                                       ARM_SMMU_CR0ACK);
2478         if (ret) {
2479                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2480                 return ret;
2481         }
2482
2483         return 0;
2484 }
2485
2486 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2487 {
2488         u32 reg;
2489         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2490
2491         /* IDR0 */
2492         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2493
2494         /* 2-level structures */
2495         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2496                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2497
2498         if (reg & IDR0_CD2L)
2499                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2500
2501         /*
2502          * Translation table endianness.
2503          * We currently require the same endianness as the CPU, but this
2504          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2505          */
2506         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2507         case IDR0_TTENDIAN_MIXED:
2508                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2509                 break;
2510 #ifdef __BIG_ENDIAN
2511         case IDR0_TTENDIAN_BE:
2512                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2513                 break;
2514 #else
2515         case IDR0_TTENDIAN_LE:
2516                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2517                 break;
2518 #endif
2519         default:
2520                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2521                 return -ENXIO;
2522         }
2523
2524         /* Boolean feature flags */
2525         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2526                 smmu->features |= ARM_SMMU_FEAT_PRI;
2527
2528         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2529                 smmu->features |= ARM_SMMU_FEAT_ATS;
2530
2531         if (reg & IDR0_SEV)
2532                 smmu->features |= ARM_SMMU_FEAT_SEV;
2533
2534         if (reg & IDR0_MSI)
2535                 smmu->features |= ARM_SMMU_FEAT_MSI;
2536
2537         if (reg & IDR0_HYP)
2538                 smmu->features |= ARM_SMMU_FEAT_HYP;
2539
2540         /*
2541          * The coherency feature as set by FW is used in preference to the ID
2542          * register, but warn on mismatch.
2543          */
2544         if (!!(reg & IDR0_COHACC) != coherent)
2545                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2546                          coherent ? "true" : "false");
2547
2548         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2549         case IDR0_STALL_MODEL_STALL:
2550                 /* Fallthrough */
2551         case IDR0_STALL_MODEL_FORCE:
2552                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2553         }
2554
2555         if (reg & IDR0_S1P)
2556                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2557
2558         if (reg & IDR0_S2P)
2559                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2560
2561         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2562                 dev_err(smmu->dev, "no translation support!\n");
2563                 return -ENXIO;
2564         }
2565
2566         /* We only support the AArch64 table format at present */
2567         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2568         case IDR0_TTF_AARCH32_64:
2569                 smmu->ias = 40;
2570                 /* Fallthrough */
2571         case IDR0_TTF_AARCH64:
2572                 break;
2573         default:
2574                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2575                 return -ENXIO;
2576         }
2577
2578         /* ASID/VMID sizes */
2579         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2580         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2581
2582         /* IDR1 */
2583         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2584         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2585                 dev_err(smmu->dev, "embedded implementation not supported\n");
2586                 return -ENXIO;
2587         }
2588
2589         /* Queue sizes, capped at 4k */
2590         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2591                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2592         if (!smmu->cmdq.q.max_n_shift) {
2593                 /* Odd alignment restrictions on the base, so ignore for now */
2594                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2595                 return -ENXIO;
2596         }
2597
2598         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2599                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2600         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2601                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2602
2603         /* SID/SSID sizes */
2604         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2605         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2606
2607         /*
2608          * If the SMMU supports fewer bits than would fill a single L2 stream
2609          * table, use a linear table instead.
2610          */
2611         if (smmu->sid_bits <= STRTAB_SPLIT)
2612                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2613
2614         /* IDR5 */
2615         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2616
2617         /* Maximum number of outstanding stalls */
2618         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2619                                 & IDR5_STALL_MAX_MASK;
2620
2621         /* Page sizes */
2622         if (reg & IDR5_GRAN64K)
2623                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2624         if (reg & IDR5_GRAN16K)
2625                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2626         if (reg & IDR5_GRAN4K)
2627                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2628
2629         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2630                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2631         else
2632                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2633
2634         /* Output address size */
2635         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2636         case IDR5_OAS_32_BIT:
2637                 smmu->oas = 32;
2638                 break;
2639         case IDR5_OAS_36_BIT:
2640                 smmu->oas = 36;
2641                 break;
2642         case IDR5_OAS_40_BIT:
2643                 smmu->oas = 40;
2644                 break;
2645         case IDR5_OAS_42_BIT:
2646                 smmu->oas = 42;
2647                 break;
2648         case IDR5_OAS_44_BIT:
2649                 smmu->oas = 44;
2650                 break;
2651         default:
2652                 dev_info(smmu->dev,
2653                         "unknown output address size. Truncating to 48-bit\n");
2654                 /* Fallthrough */
2655         case IDR5_OAS_48_BIT:
2656                 smmu->oas = 48;
2657         }
2658
2659         /* Set the DMA mask for our table walker */
2660         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2661                 dev_warn(smmu->dev,
2662                          "failed to set DMA mask for table walker\n");
2663
2664         smmu->ias = max(smmu->ias, smmu->oas);
2665
2666         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2667                  smmu->ias, smmu->oas, smmu->features);
2668         return 0;
2669 }
2670
2671 #ifdef CONFIG_ACPI
2672 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2673 {
2674         switch (model) {
2675         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2676                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2677                 break;
2678         case ACPI_IORT_SMMU_HISILICON_HI161X:
2679                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2680                 break;
2681         }
2682
2683         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2684 }
2685
2686 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2687                                       struct arm_smmu_device *smmu)
2688 {
2689         struct acpi_iort_smmu_v3 *iort_smmu;
2690         struct device *dev = smmu->dev;
2691         struct acpi_iort_node *node;
2692
2693         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2694
2695         /* Retrieve SMMUv3 specific data */
2696         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2697
2698         acpi_smmu_get_options(iort_smmu->model, smmu);
2699
2700         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2701                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2702
2703         return 0;
2704 }
2705 #else
2706 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2707                                              struct arm_smmu_device *smmu)
2708 {
2709         return -ENODEV;
2710 }
2711 #endif
2712
2713 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2714                                     struct arm_smmu_device *smmu)
2715 {
2716         struct device *dev = &pdev->dev;
2717         u32 cells;
2718         int ret = -EINVAL;
2719
2720         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2721                 dev_err(dev, "missing #iommu-cells property\n");
2722         else if (cells != 1)
2723                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2724         else
2725                 ret = 0;
2726
2727         parse_driver_options(smmu);
2728
2729         if (of_dma_is_coherent(dev->of_node))
2730                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2731
2732         return ret;
2733 }
2734
2735 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2736 {
2737         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2738                 return SZ_64K;
2739         else
2740                 return SZ_128K;
2741 }
2742
2743 static int arm_smmu_device_probe(struct platform_device *pdev)
2744 {
2745         int irq, ret;
2746         struct resource *res;
2747         resource_size_t ioaddr;
2748         struct arm_smmu_device *smmu;
2749         struct device *dev = &pdev->dev;
2750         bool bypass;
2751
2752         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2753         if (!smmu) {
2754                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2755                 return -ENOMEM;
2756         }
2757         smmu->dev = dev;
2758
2759         if (dev->of_node) {
2760                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2761         } else {
2762                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2763                 if (ret == -ENODEV)
2764                         return ret;
2765         }
2766
2767         /* Set bypass mode according to firmware probing result */
2768         bypass = !!ret;
2769
2770         /* Base address */
2771         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2773                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2774                 return -EINVAL;
2775         }
2776         ioaddr = res->start;
2777
2778         smmu->base = devm_ioremap_resource(dev, res);
2779         if (IS_ERR(smmu->base))
2780                 return PTR_ERR(smmu->base);
2781
2782         /* Interrupt lines */
2783
2784         irq = platform_get_irq_byname(pdev, "combined");
2785         if (irq > 0)
2786                 smmu->combined_irq = irq;
2787         else {
2788                 irq = platform_get_irq_byname(pdev, "eventq");
2789                 if (irq > 0)
2790                         smmu->evtq.q.irq = irq;
2791
2792                 irq = platform_get_irq_byname(pdev, "priq");
2793                 if (irq > 0)
2794                         smmu->priq.q.irq = irq;
2795
2796                 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2797                 if (irq > 0)
2798                         smmu->cmdq.q.irq = irq;
2799
2800                 irq = platform_get_irq_byname(pdev, "gerror");
2801                 if (irq > 0)
2802                         smmu->gerr_irq = irq;
2803         }
2804         /* Probe the h/w */
2805         ret = arm_smmu_device_hw_probe(smmu);
2806         if (ret)
2807                 return ret;
2808
2809         /* Initialise in-memory data structures */
2810         ret = arm_smmu_init_structures(smmu);
2811         if (ret)
2812                 return ret;
2813
2814         /* Record our private device structure */
2815         platform_set_drvdata(pdev, smmu);
2816
2817         /* Reset the device */
2818         ret = arm_smmu_device_reset(smmu, bypass);
2819         if (ret)
2820                 return ret;
2821
2822         /* And we're up. Go go go! */
2823         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2824                                      "smmu3.%pa", &ioaddr);
2825         if (ret)
2826                 return ret;
2827
2828         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2829         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2830
2831         ret = iommu_device_register(&smmu->iommu);
2832         if (ret) {
2833                 dev_err(dev, "Failed to register iommu\n");
2834                 return ret;
2835         }
2836
2837 #ifdef CONFIG_PCI
2838         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2839                 pci_request_acs();
2840                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2841                 if (ret)
2842                         return ret;
2843         }
2844 #endif
2845 #ifdef CONFIG_ARM_AMBA
2846         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2847                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2848                 if (ret)
2849                         return ret;
2850         }
2851 #endif
2852         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2853                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2854                 if (ret)
2855                         return ret;
2856         }
2857         return 0;
2858 }
2859
2860 static int arm_smmu_device_remove(struct platform_device *pdev)
2861 {
2862         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2863
2864         arm_smmu_device_disable(smmu);
2865
2866         return 0;
2867 }
2868
2869 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2870 {
2871         arm_smmu_device_remove(pdev);
2872 }
2873
2874 static const struct of_device_id arm_smmu_of_match[] = {
2875         { .compatible = "arm,smmu-v3", },
2876         { },
2877 };
2878 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2879
2880 static struct platform_driver arm_smmu_driver = {
2881         .driver = {
2882                 .name           = "arm-smmu-v3",
2883                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2884         },
2885         .probe  = arm_smmu_device_probe,
2886         .remove = arm_smmu_device_remove,
2887         .shutdown = arm_smmu_device_shutdown,
2888 };
2889 module_platform_driver(arm_smmu_driver);
2890
2891 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2892
2893 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2894 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2895 MODULE_LICENSE("GPL v2");