iommu/vt-d: Fix scatterlist offset handling
[platform/kernel/linux-exynos.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411 #define ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US  1000000 /* 1s! */
412
413 #define MSI_IOVA_BASE                   0x8000000
414 #define MSI_IOVA_LENGTH                 0x100000
415
416 /* Until ACPICA headers cover IORT rev. C */
417 #ifndef ACPI_IORT_SMMU_HISILICON_HI161X
418 #define ACPI_IORT_SMMU_HISILICON_HI161X         0x1
419 #endif
420
421 #ifndef ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
422 #define ACPI_IORT_SMMU_V3_CAVIUM_CN99XX         0x2
423 #endif
424
425 static bool disable_bypass;
426 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
427 MODULE_PARM_DESC(disable_bypass,
428         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
429
430 enum pri_resp {
431         PRI_RESP_DENY,
432         PRI_RESP_FAIL,
433         PRI_RESP_SUCC,
434 };
435
436 enum arm_smmu_msi_index {
437         EVTQ_MSI_INDEX,
438         GERROR_MSI_INDEX,
439         PRIQ_MSI_INDEX,
440         ARM_SMMU_MAX_MSIS,
441 };
442
443 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
444         [EVTQ_MSI_INDEX] = {
445                 ARM_SMMU_EVTQ_IRQ_CFG0,
446                 ARM_SMMU_EVTQ_IRQ_CFG1,
447                 ARM_SMMU_EVTQ_IRQ_CFG2,
448         },
449         [GERROR_MSI_INDEX] = {
450                 ARM_SMMU_GERROR_IRQ_CFG0,
451                 ARM_SMMU_GERROR_IRQ_CFG1,
452                 ARM_SMMU_GERROR_IRQ_CFG2,
453         },
454         [PRIQ_MSI_INDEX] = {
455                 ARM_SMMU_PRIQ_IRQ_CFG0,
456                 ARM_SMMU_PRIQ_IRQ_CFG1,
457                 ARM_SMMU_PRIQ_IRQ_CFG2,
458         },
459 };
460
461 struct arm_smmu_cmdq_ent {
462         /* Common fields */
463         u8                              opcode;
464         bool                            substream_valid;
465
466         /* Command-specific fields */
467         union {
468                 #define CMDQ_OP_PREFETCH_CFG    0x1
469                 struct {
470                         u32                     sid;
471                         u8                      size;
472                         u64                     addr;
473                 } prefetch;
474
475                 #define CMDQ_OP_CFGI_STE        0x3
476                 #define CMDQ_OP_CFGI_ALL        0x4
477                 struct {
478                         u32                     sid;
479                         union {
480                                 bool            leaf;
481                                 u8              span;
482                         };
483                 } cfgi;
484
485                 #define CMDQ_OP_TLBI_NH_ASID    0x11
486                 #define CMDQ_OP_TLBI_NH_VA      0x12
487                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
488                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
489                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
490                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
491                 struct {
492                         u16                     asid;
493                         u16                     vmid;
494                         bool                    leaf;
495                         u64                     addr;
496                 } tlbi;
497
498                 #define CMDQ_OP_PRI_RESP        0x41
499                 struct {
500                         u32                     sid;
501                         u32                     ssid;
502                         u16                     grpid;
503                         enum pri_resp           resp;
504                 } pri;
505
506                 #define CMDQ_OP_CMD_SYNC        0x46
507         };
508 };
509
510 struct arm_smmu_queue {
511         int                             irq; /* Wired interrupt */
512
513         __le64                          *base;
514         dma_addr_t                      base_dma;
515         u64                             q_base;
516
517         size_t                          ent_dwords;
518         u32                             max_n_shift;
519         u32                             prod;
520         u32                             cons;
521
522         u32 __iomem                     *prod_reg;
523         u32 __iomem                     *cons_reg;
524 };
525
526 struct arm_smmu_cmdq {
527         struct arm_smmu_queue           q;
528         spinlock_t                      lock;
529 };
530
531 struct arm_smmu_evtq {
532         struct arm_smmu_queue           q;
533         u32                             max_stalls;
534 };
535
536 struct arm_smmu_priq {
537         struct arm_smmu_queue           q;
538 };
539
540 /* High-level stream table and context descriptor structures */
541 struct arm_smmu_strtab_l1_desc {
542         u8                              span;
543
544         __le64                          *l2ptr;
545         dma_addr_t                      l2ptr_dma;
546 };
547
548 struct arm_smmu_s1_cfg {
549         __le64                          *cdptr;
550         dma_addr_t                      cdptr_dma;
551
552         struct arm_smmu_ctx_desc {
553                 u16     asid;
554                 u64     ttbr;
555                 u64     tcr;
556                 u64     mair;
557         }                               cd;
558 };
559
560 struct arm_smmu_s2_cfg {
561         u16                             vmid;
562         u64                             vttbr;
563         u64                             vtcr;
564 };
565
566 struct arm_smmu_strtab_ent {
567         /*
568          * An STE is "assigned" if the master emitting the corresponding SID
569          * is attached to a domain. The behaviour of an unassigned STE is
570          * determined by the disable_bypass parameter, whereas an assigned
571          * STE behaves according to s1_cfg/s2_cfg, which themselves are
572          * configured according to the domain type.
573          */
574         bool                            assigned;
575         struct arm_smmu_s1_cfg          *s1_cfg;
576         struct arm_smmu_s2_cfg          *s2_cfg;
577 };
578
579 struct arm_smmu_strtab_cfg {
580         __le64                          *strtab;
581         dma_addr_t                      strtab_dma;
582         struct arm_smmu_strtab_l1_desc  *l1_desc;
583         unsigned int                    num_l1_ents;
584
585         u64                             strtab_base;
586         u32                             strtab_base_cfg;
587 };
588
589 /* An SMMUv3 instance */
590 struct arm_smmu_device {
591         struct device                   *dev;
592         void __iomem                    *base;
593
594 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
595 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
596 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
597 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
598 #define ARM_SMMU_FEAT_PRI               (1 << 4)
599 #define ARM_SMMU_FEAT_ATS               (1 << 5)
600 #define ARM_SMMU_FEAT_SEV               (1 << 6)
601 #define ARM_SMMU_FEAT_MSI               (1 << 7)
602 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
603 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
604 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
605 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
606 #define ARM_SMMU_FEAT_HYP               (1 << 12)
607         u32                             features;
608
609 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
610 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
611         u32                             options;
612
613         struct arm_smmu_cmdq            cmdq;
614         struct arm_smmu_evtq            evtq;
615         struct arm_smmu_priq            priq;
616
617         int                             gerr_irq;
618         int                             combined_irq;
619
620         unsigned long                   ias; /* IPA */
621         unsigned long                   oas; /* PA */
622         unsigned long                   pgsize_bitmap;
623
624 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
625         unsigned int                    asid_bits;
626         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
627
628 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
629         unsigned int                    vmid_bits;
630         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
631
632         unsigned int                    ssid_bits;
633         unsigned int                    sid_bits;
634
635         struct arm_smmu_strtab_cfg      strtab_cfg;
636
637         /* IOMMU core code handle */
638         struct iommu_device             iommu;
639 };
640
641 /* SMMU private data for each master */
642 struct arm_smmu_master_data {
643         struct arm_smmu_device          *smmu;
644         struct arm_smmu_strtab_ent      ste;
645 };
646
647 /* SMMU private data for an IOMMU domain */
648 enum arm_smmu_domain_stage {
649         ARM_SMMU_DOMAIN_S1 = 0,
650         ARM_SMMU_DOMAIN_S2,
651         ARM_SMMU_DOMAIN_NESTED,
652         ARM_SMMU_DOMAIN_BYPASS,
653 };
654
655 struct arm_smmu_domain {
656         struct arm_smmu_device          *smmu;
657         struct mutex                    init_mutex; /* Protects smmu pointer */
658
659         struct io_pgtable_ops           *pgtbl_ops;
660
661         enum arm_smmu_domain_stage      stage;
662         union {
663                 struct arm_smmu_s1_cfg  s1_cfg;
664                 struct arm_smmu_s2_cfg  s2_cfg;
665         };
666
667         struct iommu_domain             domain;
668 };
669
670 struct arm_smmu_option_prop {
671         u32 opt;
672         const char *prop;
673 };
674
675 static struct arm_smmu_option_prop arm_smmu_options[] = {
676         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
677         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
678         { 0, NULL},
679 };
680
681 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
682                                                  struct arm_smmu_device *smmu)
683 {
684         if ((offset > SZ_64K) &&
685             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
686                 offset -= SZ_64K;
687
688         return smmu->base + offset;
689 }
690
691 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
692 {
693         return container_of(dom, struct arm_smmu_domain, domain);
694 }
695
696 static void parse_driver_options(struct arm_smmu_device *smmu)
697 {
698         int i = 0;
699
700         do {
701                 if (of_property_read_bool(smmu->dev->of_node,
702                                                 arm_smmu_options[i].prop)) {
703                         smmu->options |= arm_smmu_options[i].opt;
704                         dev_notice(smmu->dev, "option %s\n",
705                                 arm_smmu_options[i].prop);
706                 }
707         } while (arm_smmu_options[++i].opt);
708 }
709
710 /* Low-level queue manipulation functions */
711 static bool queue_full(struct arm_smmu_queue *q)
712 {
713         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
714                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
715 }
716
717 static bool queue_empty(struct arm_smmu_queue *q)
718 {
719         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
720                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
721 }
722
723 static void queue_sync_cons(struct arm_smmu_queue *q)
724 {
725         q->cons = readl_relaxed(q->cons_reg);
726 }
727
728 static void queue_inc_cons(struct arm_smmu_queue *q)
729 {
730         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
731
732         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
733         writel(q->cons, q->cons_reg);
734 }
735
736 static int queue_sync_prod(struct arm_smmu_queue *q)
737 {
738         int ret = 0;
739         u32 prod = readl_relaxed(q->prod_reg);
740
741         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
742                 ret = -EOVERFLOW;
743
744         q->prod = prod;
745         return ret;
746 }
747
748 static void queue_inc_prod(struct arm_smmu_queue *q)
749 {
750         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
751
752         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
753         writel(q->prod, q->prod_reg);
754 }
755
756 /*
757  * Wait for the SMMU to consume items. If drain is true, wait until the queue
758  * is empty. Otherwise, wait until there is at least one free slot.
759  */
760 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
761 {
762         ktime_t timeout;
763         unsigned int delay = 1;
764
765         /* Wait longer if it's queue drain */
766         timeout = ktime_add_us(ktime_get(), drain ?
767                                             ARM_SMMU_CMDQ_DRAIN_TIMEOUT_US :
768                                             ARM_SMMU_POLL_TIMEOUT_US);
769
770         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
771                 if (ktime_compare(ktime_get(), timeout) > 0)
772                         return -ETIMEDOUT;
773
774                 if (wfe) {
775                         wfe();
776                 } else {
777                         cpu_relax();
778                         udelay(delay);
779                         delay *= 2;
780                 }
781         }
782
783         return 0;
784 }
785
786 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
787 {
788         int i;
789
790         for (i = 0; i < n_dwords; ++i)
791                 *dst++ = cpu_to_le64(*src++);
792 }
793
794 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
795 {
796         if (queue_full(q))
797                 return -ENOSPC;
798
799         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
800         queue_inc_prod(q);
801         return 0;
802 }
803
804 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
805 {
806         int i;
807
808         for (i = 0; i < n_dwords; ++i)
809                 *dst++ = le64_to_cpu(*src++);
810 }
811
812 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
813 {
814         if (queue_empty(q))
815                 return -EAGAIN;
816
817         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
818         queue_inc_cons(q);
819         return 0;
820 }
821
822 /* High-level queue accessors */
823 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
824 {
825         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
826         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
827
828         switch (ent->opcode) {
829         case CMDQ_OP_TLBI_EL2_ALL:
830         case CMDQ_OP_TLBI_NSNH_ALL:
831                 break;
832         case CMDQ_OP_PREFETCH_CFG:
833                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
834                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
835                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
836                 break;
837         case CMDQ_OP_CFGI_STE:
838                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
839                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
840                 break;
841         case CMDQ_OP_CFGI_ALL:
842                 /* Cover the entire SID range */
843                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
844                 break;
845         case CMDQ_OP_TLBI_NH_VA:
846                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
847                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
848                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
849                 break;
850         case CMDQ_OP_TLBI_S2_IPA:
851                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
852                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
853                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
854                 break;
855         case CMDQ_OP_TLBI_NH_ASID:
856                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
857                 /* Fallthrough */
858         case CMDQ_OP_TLBI_S12_VMALL:
859                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
860                 break;
861         case CMDQ_OP_PRI_RESP:
862                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
863                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
864                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
865                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
866                 switch (ent->pri.resp) {
867                 case PRI_RESP_DENY:
868                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
869                         break;
870                 case PRI_RESP_FAIL:
871                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
872                         break;
873                 case PRI_RESP_SUCC:
874                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
875                         break;
876                 default:
877                         return -EINVAL;
878                 }
879                 break;
880         case CMDQ_OP_CMD_SYNC:
881                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
882                 break;
883         default:
884                 return -ENOENT;
885         }
886
887         return 0;
888 }
889
890 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
891 {
892         static const char *cerror_str[] = {
893                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
894                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
895                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
896         };
897
898         int i;
899         u64 cmd[CMDQ_ENT_DWORDS];
900         struct arm_smmu_queue *q = &smmu->cmdq.q;
901         u32 cons = readl_relaxed(q->cons_reg);
902         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
903         struct arm_smmu_cmdq_ent cmd_sync = {
904                 .opcode = CMDQ_OP_CMD_SYNC,
905         };
906
907         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
908                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
909
910         switch (idx) {
911         case CMDQ_ERR_CERROR_ABT_IDX:
912                 dev_err(smmu->dev, "retrying command fetch\n");
913         case CMDQ_ERR_CERROR_NONE_IDX:
914                 return;
915         case CMDQ_ERR_CERROR_ILL_IDX:
916                 /* Fallthrough */
917         default:
918                 break;
919         }
920
921         /*
922          * We may have concurrent producers, so we need to be careful
923          * not to touch any of the shadow cmdq state.
924          */
925         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
926         dev_err(smmu->dev, "skipping command in error state:\n");
927         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
928                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
929
930         /* Convert the erroneous command into a CMD_SYNC */
931         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
932                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
933                 return;
934         }
935
936         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
937 }
938
939 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
940                                     struct arm_smmu_cmdq_ent *ent)
941 {
942         u64 cmd[CMDQ_ENT_DWORDS];
943         unsigned long flags;
944         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
945         struct arm_smmu_queue *q = &smmu->cmdq.q;
946
947         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
948                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
949                          ent->opcode);
950                 return;
951         }
952
953         spin_lock_irqsave(&smmu->cmdq.lock, flags);
954         while (queue_insert_raw(q, cmd) == -ENOSPC) {
955                 if (queue_poll_cons(q, false, wfe))
956                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
957         }
958
959         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
960                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
961         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
962 }
963
964 /* Context descriptor manipulation functions */
965 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
966 {
967         u64 val = 0;
968
969         /* Repack the TCR. Just care about TTBR0 for now */
970         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
971         val |= ARM_SMMU_TCR2CD(tcr, TG0);
972         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
973         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
974         val |= ARM_SMMU_TCR2CD(tcr, SH0);
975         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
976         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
977         val |= ARM_SMMU_TCR2CD(tcr, IPS);
978         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
979
980         return val;
981 }
982
983 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
984                                     struct arm_smmu_s1_cfg *cfg)
985 {
986         u64 val;
987
988         /*
989          * We don't need to issue any invalidation here, as we'll invalidate
990          * the STE when installing the new entry anyway.
991          */
992         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
993 #ifdef __BIG_ENDIAN
994               CTXDESC_CD_0_ENDI |
995 #endif
996               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
997               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
998               CTXDESC_CD_0_V;
999         cfg->cdptr[0] = cpu_to_le64(val);
1000
1001         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1002         cfg->cdptr[1] = cpu_to_le64(val);
1003
1004         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1005 }
1006
1007 /* Stream table manipulation functions */
1008 static void
1009 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1010 {
1011         u64 val = 0;
1012
1013         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1014                 << STRTAB_L1_DESC_SPAN_SHIFT;
1015         val |= desc->l2ptr_dma &
1016                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1017
1018         *dst = cpu_to_le64(val);
1019 }
1020
1021 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1022 {
1023         struct arm_smmu_cmdq_ent cmd = {
1024                 .opcode = CMDQ_OP_CFGI_STE,
1025                 .cfgi   = {
1026                         .sid    = sid,
1027                         .leaf   = true,
1028                 },
1029         };
1030
1031         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1032         cmd.opcode = CMDQ_OP_CMD_SYNC;
1033         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1034 }
1035
1036 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1037                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1038 {
1039         /*
1040          * This is hideously complicated, but we only really care about
1041          * three cases at the moment:
1042          *
1043          * 1. Invalid (all zero) -> bypass/fault (init)
1044          * 2. Bypass/fault -> translation/bypass (attach)
1045          * 3. Translation/bypass -> bypass/fault (detach)
1046          *
1047          * Given that we can't update the STE atomically and the SMMU
1048          * doesn't read the thing in a defined order, that leaves us
1049          * with the following maintenance requirements:
1050          *
1051          * 1. Update Config, return (init time STEs aren't live)
1052          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1053          * 3. Update Config, sync
1054          */
1055         u64 val = le64_to_cpu(dst[0]);
1056         bool ste_live = false;
1057         struct arm_smmu_cmdq_ent prefetch_cmd = {
1058                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1059                 .prefetch       = {
1060                         .sid    = sid,
1061                 },
1062         };
1063
1064         if (val & STRTAB_STE_0_V) {
1065                 u64 cfg;
1066
1067                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1068                 switch (cfg) {
1069                 case STRTAB_STE_0_CFG_BYPASS:
1070                         break;
1071                 case STRTAB_STE_0_CFG_S1_TRANS:
1072                 case STRTAB_STE_0_CFG_S2_TRANS:
1073                         ste_live = true;
1074                         break;
1075                 case STRTAB_STE_0_CFG_ABORT:
1076                         if (disable_bypass)
1077                                 break;
1078                 default:
1079                         BUG(); /* STE corruption */
1080                 }
1081         }
1082
1083         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1084         val = STRTAB_STE_0_V;
1085
1086         /* Bypass/fault */
1087         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1088                 if (!ste->assigned && disable_bypass)
1089                         val |= STRTAB_STE_0_CFG_ABORT;
1090                 else
1091                         val |= STRTAB_STE_0_CFG_BYPASS;
1092
1093                 dst[0] = cpu_to_le64(val);
1094                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1095                          << STRTAB_STE_1_SHCFG_SHIFT);
1096                 dst[2] = 0; /* Nuke the VMID */
1097                 if (ste_live)
1098                         arm_smmu_sync_ste_for_sid(smmu, sid);
1099                 return;
1100         }
1101
1102         if (ste->s1_cfg) {
1103                 BUG_ON(ste_live);
1104                 dst[1] = cpu_to_le64(
1105                          STRTAB_STE_1_S1C_CACHE_WBRA
1106                          << STRTAB_STE_1_S1CIR_SHIFT |
1107                          STRTAB_STE_1_S1C_CACHE_WBRA
1108                          << STRTAB_STE_1_S1COR_SHIFT |
1109                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1110 #ifdef CONFIG_PCI_ATS
1111                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1112 #endif
1113                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1114
1115                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1116                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1117
1118                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1119                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1120                         STRTAB_STE_0_CFG_S1_TRANS;
1121         }
1122
1123         if (ste->s2_cfg) {
1124                 BUG_ON(ste_live);
1125                 dst[2] = cpu_to_le64(
1126                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1127                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1128                           << STRTAB_STE_2_VTCR_SHIFT |
1129 #ifdef __BIG_ENDIAN
1130                          STRTAB_STE_2_S2ENDI |
1131 #endif
1132                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1133                          STRTAB_STE_2_S2R);
1134
1135                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1136                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1137
1138                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1139         }
1140
1141         arm_smmu_sync_ste_for_sid(smmu, sid);
1142         dst[0] = cpu_to_le64(val);
1143         arm_smmu_sync_ste_for_sid(smmu, sid);
1144
1145         /* It's likely that we'll want to use the new STE soon */
1146         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1147                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1148 }
1149
1150 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1151 {
1152         unsigned int i;
1153         struct arm_smmu_strtab_ent ste = { .assigned = false };
1154
1155         for (i = 0; i < nent; ++i) {
1156                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1157                 strtab += STRTAB_STE_DWORDS;
1158         }
1159 }
1160
1161 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1162 {
1163         size_t size;
1164         void *strtab;
1165         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1166         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1167
1168         if (desc->l2ptr)
1169                 return 0;
1170
1171         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1172         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1173
1174         desc->span = STRTAB_SPLIT + 1;
1175         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1176                                           GFP_KERNEL | __GFP_ZERO);
1177         if (!desc->l2ptr) {
1178                 dev_err(smmu->dev,
1179                         "failed to allocate l2 stream table for SID %u\n",
1180                         sid);
1181                 return -ENOMEM;
1182         }
1183
1184         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1185         arm_smmu_write_strtab_l1_desc(strtab, desc);
1186         return 0;
1187 }
1188
1189 /* IRQ and event handlers */
1190 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1191 {
1192         int i;
1193         struct arm_smmu_device *smmu = dev;
1194         struct arm_smmu_queue *q = &smmu->evtq.q;
1195         u64 evt[EVTQ_ENT_DWORDS];
1196
1197         do {
1198                 while (!queue_remove_raw(q, evt)) {
1199                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1200
1201                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1202                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1203                                 dev_info(smmu->dev, "\t0x%016llx\n",
1204                                          (unsigned long long)evt[i]);
1205
1206                 }
1207
1208                 /*
1209                  * Not much we can do on overflow, so scream and pretend we're
1210                  * trying harder.
1211                  */
1212                 if (queue_sync_prod(q) == -EOVERFLOW)
1213                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1214         } while (!queue_empty(q));
1215
1216         /* Sync our overflow flag, as we believe we're up to speed */
1217         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1218         return IRQ_HANDLED;
1219 }
1220
1221 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1222 {
1223         u32 sid, ssid;
1224         u16 grpid;
1225         bool ssv, last;
1226
1227         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1228         ssv = evt[0] & PRIQ_0_SSID_V;
1229         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1230         last = evt[0] & PRIQ_0_PRG_LAST;
1231         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1232
1233         dev_info(smmu->dev, "unexpected PRI request received:\n");
1234         dev_info(smmu->dev,
1235                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1236                  sid, ssid, grpid, last ? "L" : "",
1237                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1238                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1239                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1240                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1241                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1242
1243         if (last) {
1244                 struct arm_smmu_cmdq_ent cmd = {
1245                         .opcode                 = CMDQ_OP_PRI_RESP,
1246                         .substream_valid        = ssv,
1247                         .pri                    = {
1248                                 .sid    = sid,
1249                                 .ssid   = ssid,
1250                                 .grpid  = grpid,
1251                                 .resp   = PRI_RESP_DENY,
1252                         },
1253                 };
1254
1255                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1256         }
1257 }
1258
1259 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1260 {
1261         struct arm_smmu_device *smmu = dev;
1262         struct arm_smmu_queue *q = &smmu->priq.q;
1263         u64 evt[PRIQ_ENT_DWORDS];
1264
1265         do {
1266                 while (!queue_remove_raw(q, evt))
1267                         arm_smmu_handle_ppr(smmu, evt);
1268
1269                 if (queue_sync_prod(q) == -EOVERFLOW)
1270                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1271         } while (!queue_empty(q));
1272
1273         /* Sync our overflow flag, as we believe we're up to speed */
1274         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1275         return IRQ_HANDLED;
1276 }
1277
1278 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1279 {
1280         /* We don't actually use CMD_SYNC interrupts for anything */
1281         return IRQ_HANDLED;
1282 }
1283
1284 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1285
1286 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1287 {
1288         u32 gerror, gerrorn, active;
1289         struct arm_smmu_device *smmu = dev;
1290
1291         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1292         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1293
1294         active = gerror ^ gerrorn;
1295         if (!(active & GERROR_ERR_MASK))
1296                 return IRQ_NONE; /* No errors pending */
1297
1298         dev_warn(smmu->dev,
1299                  "unexpected global error reported (0x%08x), this could be serious\n",
1300                  active);
1301
1302         if (active & GERROR_SFM_ERR) {
1303                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1304                 arm_smmu_device_disable(smmu);
1305         }
1306
1307         if (active & GERROR_MSI_GERROR_ABT_ERR)
1308                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1309
1310         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1311                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1312
1313         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1314                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1315
1316         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1317                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1318                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1319         }
1320
1321         if (active & GERROR_PRIQ_ABT_ERR)
1322                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1323
1324         if (active & GERROR_EVTQ_ABT_ERR)
1325                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1326
1327         if (active & GERROR_CMDQ_ERR)
1328                 arm_smmu_cmdq_skip_err(smmu);
1329
1330         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1331         return IRQ_HANDLED;
1332 }
1333
1334 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1335 {
1336         struct arm_smmu_device *smmu = dev;
1337
1338         arm_smmu_evtq_thread(irq, dev);
1339         if (smmu->features & ARM_SMMU_FEAT_PRI)
1340                 arm_smmu_priq_thread(irq, dev);
1341
1342         return IRQ_HANDLED;
1343 }
1344
1345 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1346 {
1347         arm_smmu_gerror_handler(irq, dev);
1348         arm_smmu_cmdq_sync_handler(irq, dev);
1349         return IRQ_WAKE_THREAD;
1350 }
1351
1352 /* IO_PGTABLE API */
1353 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1354 {
1355         struct arm_smmu_cmdq_ent cmd;
1356
1357         cmd.opcode = CMDQ_OP_CMD_SYNC;
1358         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1359 }
1360
1361 static void arm_smmu_tlb_sync(void *cookie)
1362 {
1363         struct arm_smmu_domain *smmu_domain = cookie;
1364         __arm_smmu_tlb_sync(smmu_domain->smmu);
1365 }
1366
1367 static void arm_smmu_tlb_inv_context(void *cookie)
1368 {
1369         struct arm_smmu_domain *smmu_domain = cookie;
1370         struct arm_smmu_device *smmu = smmu_domain->smmu;
1371         struct arm_smmu_cmdq_ent cmd;
1372
1373         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1374                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1375                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1376                 cmd.tlbi.vmid   = 0;
1377         } else {
1378                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1379                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1380         }
1381
1382         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1383         __arm_smmu_tlb_sync(smmu);
1384 }
1385
1386 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1387                                           size_t granule, bool leaf, void *cookie)
1388 {
1389         struct arm_smmu_domain *smmu_domain = cookie;
1390         struct arm_smmu_device *smmu = smmu_domain->smmu;
1391         struct arm_smmu_cmdq_ent cmd = {
1392                 .tlbi = {
1393                         .leaf   = leaf,
1394                         .addr   = iova,
1395                 },
1396         };
1397
1398         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1399                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1400                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1401         } else {
1402                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1403                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1404         }
1405
1406         do {
1407                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1408                 cmd.tlbi.addr += granule;
1409         } while (size -= granule);
1410 }
1411
1412 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1413         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1414         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1415         .tlb_sync       = arm_smmu_tlb_sync,
1416 };
1417
1418 /* IOMMU API */
1419 static bool arm_smmu_capable(enum iommu_cap cap)
1420 {
1421         switch (cap) {
1422         case IOMMU_CAP_CACHE_COHERENCY:
1423                 return true;
1424         case IOMMU_CAP_NOEXEC:
1425                 return true;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1432 {
1433         struct arm_smmu_domain *smmu_domain;
1434
1435         if (type != IOMMU_DOMAIN_UNMANAGED &&
1436             type != IOMMU_DOMAIN_DMA &&
1437             type != IOMMU_DOMAIN_IDENTITY)
1438                 return NULL;
1439
1440         /*
1441          * Allocate the domain and initialise some of its data structures.
1442          * We can't really do anything meaningful until we've added a
1443          * master.
1444          */
1445         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1446         if (!smmu_domain)
1447                 return NULL;
1448
1449         if (type == IOMMU_DOMAIN_DMA &&
1450             iommu_get_dma_cookie(&smmu_domain->domain)) {
1451                 kfree(smmu_domain);
1452                 return NULL;
1453         }
1454
1455         mutex_init(&smmu_domain->init_mutex);
1456         return &smmu_domain->domain;
1457 }
1458
1459 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1460 {
1461         int idx, size = 1 << span;
1462
1463         do {
1464                 idx = find_first_zero_bit(map, size);
1465                 if (idx == size)
1466                         return -ENOSPC;
1467         } while (test_and_set_bit(idx, map));
1468
1469         return idx;
1470 }
1471
1472 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1473 {
1474         clear_bit(idx, map);
1475 }
1476
1477 static void arm_smmu_domain_free(struct iommu_domain *domain)
1478 {
1479         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1480         struct arm_smmu_device *smmu = smmu_domain->smmu;
1481
1482         iommu_put_dma_cookie(domain);
1483         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1484
1485         /* Free the CD and ASID, if we allocated them */
1486         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1487                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1488
1489                 if (cfg->cdptr) {
1490                         dmam_free_coherent(smmu_domain->smmu->dev,
1491                                            CTXDESC_CD_DWORDS << 3,
1492                                            cfg->cdptr,
1493                                            cfg->cdptr_dma);
1494
1495                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1496                 }
1497         } else {
1498                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1499                 if (cfg->vmid)
1500                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1501         }
1502
1503         kfree(smmu_domain);
1504 }
1505
1506 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1507                                        struct io_pgtable_cfg *pgtbl_cfg)
1508 {
1509         int ret;
1510         int asid;
1511         struct arm_smmu_device *smmu = smmu_domain->smmu;
1512         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1513
1514         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1515         if (asid < 0)
1516                 return asid;
1517
1518         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1519                                          &cfg->cdptr_dma,
1520                                          GFP_KERNEL | __GFP_ZERO);
1521         if (!cfg->cdptr) {
1522                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1523                 ret = -ENOMEM;
1524                 goto out_free_asid;
1525         }
1526
1527         cfg->cd.asid    = (u16)asid;
1528         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1529         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1530         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1531         return 0;
1532
1533 out_free_asid:
1534         arm_smmu_bitmap_free(smmu->asid_map, asid);
1535         return ret;
1536 }
1537
1538 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1539                                        struct io_pgtable_cfg *pgtbl_cfg)
1540 {
1541         int vmid;
1542         struct arm_smmu_device *smmu = smmu_domain->smmu;
1543         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1544
1545         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1546         if (vmid < 0)
1547                 return vmid;
1548
1549         cfg->vmid       = (u16)vmid;
1550         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1551         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1552         return 0;
1553 }
1554
1555 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1556 {
1557         int ret;
1558         unsigned long ias, oas;
1559         enum io_pgtable_fmt fmt;
1560         struct io_pgtable_cfg pgtbl_cfg;
1561         struct io_pgtable_ops *pgtbl_ops;
1562         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1563                                  struct io_pgtable_cfg *);
1564         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1565         struct arm_smmu_device *smmu = smmu_domain->smmu;
1566
1567         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1568                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1569                 return 0;
1570         }
1571
1572         /* Restrict the stage to what we can actually support */
1573         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1574                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1575         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1576                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1577
1578         switch (smmu_domain->stage) {
1579         case ARM_SMMU_DOMAIN_S1:
1580                 ias = VA_BITS;
1581                 oas = smmu->ias;
1582                 fmt = ARM_64_LPAE_S1;
1583                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1584                 break;
1585         case ARM_SMMU_DOMAIN_NESTED:
1586         case ARM_SMMU_DOMAIN_S2:
1587                 ias = smmu->ias;
1588                 oas = smmu->oas;
1589                 fmt = ARM_64_LPAE_S2;
1590                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1591                 break;
1592         default:
1593                 return -EINVAL;
1594         }
1595
1596         pgtbl_cfg = (struct io_pgtable_cfg) {
1597                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1598                 .ias            = ias,
1599                 .oas            = oas,
1600                 .tlb            = &arm_smmu_gather_ops,
1601                 .iommu_dev      = smmu->dev,
1602         };
1603
1604         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1605                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1606
1607         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1608         if (!pgtbl_ops)
1609                 return -ENOMEM;
1610
1611         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1612         domain->geometry.aperture_end = (1UL << ias) - 1;
1613         domain->geometry.force_aperture = true;
1614         smmu_domain->pgtbl_ops = pgtbl_ops;
1615
1616         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1617         if (ret < 0)
1618                 free_io_pgtable_ops(pgtbl_ops);
1619
1620         return ret;
1621 }
1622
1623 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1624 {
1625         __le64 *step;
1626         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1627
1628         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1629                 struct arm_smmu_strtab_l1_desc *l1_desc;
1630                 int idx;
1631
1632                 /* Two-level walk */
1633                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1634                 l1_desc = &cfg->l1_desc[idx];
1635                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1636                 step = &l1_desc->l2ptr[idx];
1637         } else {
1638                 /* Simple linear lookup */
1639                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1640         }
1641
1642         return step;
1643 }
1644
1645 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1646 {
1647         int i;
1648         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1649         struct arm_smmu_device *smmu = master->smmu;
1650
1651         for (i = 0; i < fwspec->num_ids; ++i) {
1652                 u32 sid = fwspec->ids[i];
1653                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1654
1655                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1656         }
1657 }
1658
1659 static void arm_smmu_detach_dev(struct device *dev)
1660 {
1661         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1662
1663         master->ste.assigned = false;
1664         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1665 }
1666
1667 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1668 {
1669         int ret = 0;
1670         struct arm_smmu_device *smmu;
1671         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1672         struct arm_smmu_master_data *master;
1673         struct arm_smmu_strtab_ent *ste;
1674
1675         if (!dev->iommu_fwspec)
1676                 return -ENOENT;
1677
1678         master = dev->iommu_fwspec->iommu_priv;
1679         smmu = master->smmu;
1680         ste = &master->ste;
1681
1682         /* Already attached to a different domain? */
1683         if (ste->assigned)
1684                 arm_smmu_detach_dev(dev);
1685
1686         mutex_lock(&smmu_domain->init_mutex);
1687
1688         if (!smmu_domain->smmu) {
1689                 smmu_domain->smmu = smmu;
1690                 ret = arm_smmu_domain_finalise(domain);
1691                 if (ret) {
1692                         smmu_domain->smmu = NULL;
1693                         goto out_unlock;
1694                 }
1695         } else if (smmu_domain->smmu != smmu) {
1696                 dev_err(dev,
1697                         "cannot attach to SMMU %s (upstream of %s)\n",
1698                         dev_name(smmu_domain->smmu->dev),
1699                         dev_name(smmu->dev));
1700                 ret = -ENXIO;
1701                 goto out_unlock;
1702         }
1703
1704         ste->assigned = true;
1705
1706         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1707                 ste->s1_cfg = NULL;
1708                 ste->s2_cfg = NULL;
1709         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1710                 ste->s1_cfg = &smmu_domain->s1_cfg;
1711                 ste->s2_cfg = NULL;
1712                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1713         } else {
1714                 ste->s1_cfg = NULL;
1715                 ste->s2_cfg = &smmu_domain->s2_cfg;
1716         }
1717
1718         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1719 out_unlock:
1720         mutex_unlock(&smmu_domain->init_mutex);
1721         return ret;
1722 }
1723
1724 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1725                         phys_addr_t paddr, size_t size, int prot)
1726 {
1727         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1728
1729         if (!ops)
1730                 return -ENODEV;
1731
1732         return ops->map(ops, iova, paddr, size, prot);
1733 }
1734
1735 static size_t
1736 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1737 {
1738         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1739
1740         if (!ops)
1741                 return 0;
1742
1743         return ops->unmap(ops, iova, size);
1744 }
1745
1746 static phys_addr_t
1747 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1748 {
1749         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1750
1751         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1752                 return iova;
1753
1754         if (!ops)
1755                 return 0;
1756
1757         return ops->iova_to_phys(ops, iova);
1758 }
1759
1760 static struct platform_driver arm_smmu_driver;
1761
1762 static int arm_smmu_match_node(struct device *dev, void *data)
1763 {
1764         return dev->fwnode == data;
1765 }
1766
1767 static
1768 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1769 {
1770         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1771                                                 fwnode, arm_smmu_match_node);
1772         put_device(dev);
1773         return dev ? dev_get_drvdata(dev) : NULL;
1774 }
1775
1776 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1777 {
1778         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1779
1780         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1781                 limit *= 1UL << STRTAB_SPLIT;
1782
1783         return sid < limit;
1784 }
1785
1786 static struct iommu_ops arm_smmu_ops;
1787
1788 static int arm_smmu_add_device(struct device *dev)
1789 {
1790         int i, ret;
1791         struct arm_smmu_device *smmu;
1792         struct arm_smmu_master_data *master;
1793         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1794         struct iommu_group *group;
1795
1796         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1797                 return -ENODEV;
1798         /*
1799          * We _can_ actually withstand dodgy bus code re-calling add_device()
1800          * without an intervening remove_device()/of_xlate() sequence, but
1801          * we're not going to do so quietly...
1802          */
1803         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1804                 master = fwspec->iommu_priv;
1805                 smmu = master->smmu;
1806         } else {
1807                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1808                 if (!smmu)
1809                         return -ENODEV;
1810                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1811                 if (!master)
1812                         return -ENOMEM;
1813
1814                 master->smmu = smmu;
1815                 fwspec->iommu_priv = master;
1816         }
1817
1818         /* Check the SIDs are in range of the SMMU and our stream table */
1819         for (i = 0; i < fwspec->num_ids; i++) {
1820                 u32 sid = fwspec->ids[i];
1821
1822                 if (!arm_smmu_sid_in_range(smmu, sid))
1823                         return -ERANGE;
1824
1825                 /* Ensure l2 strtab is initialised */
1826                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1827                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1828                         if (ret)
1829                                 return ret;
1830                 }
1831         }
1832
1833         group = iommu_group_get_for_dev(dev);
1834         if (!IS_ERR(group)) {
1835                 iommu_group_put(group);
1836                 iommu_device_link(&smmu->iommu, dev);
1837         }
1838
1839         return PTR_ERR_OR_ZERO(group);
1840 }
1841
1842 static void arm_smmu_remove_device(struct device *dev)
1843 {
1844         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1845         struct arm_smmu_master_data *master;
1846         struct arm_smmu_device *smmu;
1847
1848         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1849                 return;
1850
1851         master = fwspec->iommu_priv;
1852         smmu = master->smmu;
1853         if (master && master->ste.assigned)
1854                 arm_smmu_detach_dev(dev);
1855         iommu_group_remove_device(dev);
1856         iommu_device_unlink(&smmu->iommu, dev);
1857         kfree(master);
1858         iommu_fwspec_free(dev);
1859 }
1860
1861 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1862 {
1863         struct iommu_group *group;
1864
1865         /*
1866          * We don't support devices sharing stream IDs other than PCI RID
1867          * aliases, since the necessary ID-to-device lookup becomes rather
1868          * impractical given a potential sparse 32-bit stream ID space.
1869          */
1870         if (dev_is_pci(dev))
1871                 group = pci_device_group(dev);
1872         else
1873                 group = generic_device_group(dev);
1874
1875         return group;
1876 }
1877
1878 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1879                                     enum iommu_attr attr, void *data)
1880 {
1881         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1882
1883         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1884                 return -EINVAL;
1885
1886         switch (attr) {
1887         case DOMAIN_ATTR_NESTING:
1888                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1889                 return 0;
1890         default:
1891                 return -ENODEV;
1892         }
1893 }
1894
1895 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1896                                     enum iommu_attr attr, void *data)
1897 {
1898         int ret = 0;
1899         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1900
1901         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1902                 return -EINVAL;
1903
1904         mutex_lock(&smmu_domain->init_mutex);
1905
1906         switch (attr) {
1907         case DOMAIN_ATTR_NESTING:
1908                 if (smmu_domain->smmu) {
1909                         ret = -EPERM;
1910                         goto out_unlock;
1911                 }
1912
1913                 if (*(int *)data)
1914                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1915                 else
1916                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1917
1918                 break;
1919         default:
1920                 ret = -ENODEV;
1921         }
1922
1923 out_unlock:
1924         mutex_unlock(&smmu_domain->init_mutex);
1925         return ret;
1926 }
1927
1928 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1929 {
1930         return iommu_fwspec_add_ids(dev, args->args, 1);
1931 }
1932
1933 static void arm_smmu_get_resv_regions(struct device *dev,
1934                                       struct list_head *head)
1935 {
1936         struct iommu_resv_region *region;
1937         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1938
1939         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1940                                          prot, IOMMU_RESV_SW_MSI);
1941         if (!region)
1942                 return;
1943
1944         list_add_tail(&region->list, head);
1945
1946         iommu_dma_get_resv_regions(dev, head);
1947 }
1948
1949 static void arm_smmu_put_resv_regions(struct device *dev,
1950                                       struct list_head *head)
1951 {
1952         struct iommu_resv_region *entry, *next;
1953
1954         list_for_each_entry_safe(entry, next, head, list)
1955                 kfree(entry);
1956 }
1957
1958 static struct iommu_ops arm_smmu_ops = {
1959         .capable                = arm_smmu_capable,
1960         .domain_alloc           = arm_smmu_domain_alloc,
1961         .domain_free            = arm_smmu_domain_free,
1962         .attach_dev             = arm_smmu_attach_dev,
1963         .map                    = arm_smmu_map,
1964         .unmap                  = arm_smmu_unmap,
1965         .map_sg                 = default_iommu_map_sg,
1966         .iova_to_phys           = arm_smmu_iova_to_phys,
1967         .add_device             = arm_smmu_add_device,
1968         .remove_device          = arm_smmu_remove_device,
1969         .device_group           = arm_smmu_device_group,
1970         .domain_get_attr        = arm_smmu_domain_get_attr,
1971         .domain_set_attr        = arm_smmu_domain_set_attr,
1972         .of_xlate               = arm_smmu_of_xlate,
1973         .get_resv_regions       = arm_smmu_get_resv_regions,
1974         .put_resv_regions       = arm_smmu_put_resv_regions,
1975         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1976 };
1977
1978 /* Probing and initialisation functions */
1979 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1980                                    struct arm_smmu_queue *q,
1981                                    unsigned long prod_off,
1982                                    unsigned long cons_off,
1983                                    size_t dwords)
1984 {
1985         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1986
1987         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1988         if (!q->base) {
1989                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1990                         qsz);
1991                 return -ENOMEM;
1992         }
1993
1994         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
1995         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
1996         q->ent_dwords   = dwords;
1997
1998         q->q_base  = Q_BASE_RWA;
1999         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2000         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2001                      << Q_BASE_LOG2SIZE_SHIFT;
2002
2003         q->prod = q->cons = 0;
2004         return 0;
2005 }
2006
2007 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2008 {
2009         int ret;
2010
2011         /* cmdq */
2012         spin_lock_init(&smmu->cmdq.lock);
2013         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2014                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2015         if (ret)
2016                 return ret;
2017
2018         /* evtq */
2019         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2020                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2021         if (ret)
2022                 return ret;
2023
2024         /* priq */
2025         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2026                 return 0;
2027
2028         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2029                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2030 }
2031
2032 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2033 {
2034         unsigned int i;
2035         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2036         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2037         void *strtab = smmu->strtab_cfg.strtab;
2038
2039         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2040         if (!cfg->l1_desc) {
2041                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2042                 return -ENOMEM;
2043         }
2044
2045         for (i = 0; i < cfg->num_l1_ents; ++i) {
2046                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2047                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2048         }
2049
2050         return 0;
2051 }
2052
2053 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2054 {
2055         void *strtab;
2056         u64 reg;
2057         u32 size, l1size;
2058         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2059
2060         /* Calculate the L1 size, capped to the SIDSIZE. */
2061         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2062         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2063         cfg->num_l1_ents = 1 << size;
2064
2065         size += STRTAB_SPLIT;
2066         if (size < smmu->sid_bits)
2067                 dev_warn(smmu->dev,
2068                          "2-level strtab only covers %u/%u bits of SID\n",
2069                          size, smmu->sid_bits);
2070
2071         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2072         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2073                                      GFP_KERNEL | __GFP_ZERO);
2074         if (!strtab) {
2075                 dev_err(smmu->dev,
2076                         "failed to allocate l1 stream table (%u bytes)\n",
2077                         size);
2078                 return -ENOMEM;
2079         }
2080         cfg->strtab = strtab;
2081
2082         /* Configure strtab_base_cfg for 2 levels */
2083         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2084         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2085                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2086         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2087                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2088         cfg->strtab_base_cfg = reg;
2089
2090         return arm_smmu_init_l1_strtab(smmu);
2091 }
2092
2093 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2094 {
2095         void *strtab;
2096         u64 reg;
2097         u32 size;
2098         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2099
2100         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2101         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2102                                      GFP_KERNEL | __GFP_ZERO);
2103         if (!strtab) {
2104                 dev_err(smmu->dev,
2105                         "failed to allocate linear stream table (%u bytes)\n",
2106                         size);
2107                 return -ENOMEM;
2108         }
2109         cfg->strtab = strtab;
2110         cfg->num_l1_ents = 1 << smmu->sid_bits;
2111
2112         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2113         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2114         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2115                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2116         cfg->strtab_base_cfg = reg;
2117
2118         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2119         return 0;
2120 }
2121
2122 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2123 {
2124         u64 reg;
2125         int ret;
2126
2127         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2128                 ret = arm_smmu_init_strtab_2lvl(smmu);
2129         else
2130                 ret = arm_smmu_init_strtab_linear(smmu);
2131
2132         if (ret)
2133                 return ret;
2134
2135         /* Set the strtab base address */
2136         reg  = smmu->strtab_cfg.strtab_dma &
2137                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2138         reg |= STRTAB_BASE_RA;
2139         smmu->strtab_cfg.strtab_base = reg;
2140
2141         /* Allocate the first VMID for stage-2 bypass STEs */
2142         set_bit(0, smmu->vmid_map);
2143         return 0;
2144 }
2145
2146 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2147 {
2148         int ret;
2149
2150         ret = arm_smmu_init_queues(smmu);
2151         if (ret)
2152                 return ret;
2153
2154         return arm_smmu_init_strtab(smmu);
2155 }
2156
2157 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2158                                    unsigned int reg_off, unsigned int ack_off)
2159 {
2160         u32 reg;
2161
2162         writel_relaxed(val, smmu->base + reg_off);
2163         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2164                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2165 }
2166
2167 /* GBPA is "special" */
2168 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2169 {
2170         int ret;
2171         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2172
2173         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2174                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2175         if (ret)
2176                 return ret;
2177
2178         reg &= ~clr;
2179         reg |= set;
2180         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2181         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2182                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2183 }
2184
2185 static void arm_smmu_free_msis(void *data)
2186 {
2187         struct device *dev = data;
2188         platform_msi_domain_free_irqs(dev);
2189 }
2190
2191 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2192 {
2193         phys_addr_t doorbell;
2194         struct device *dev = msi_desc_to_dev(desc);
2195         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2196         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2197
2198         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2199         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2200
2201         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2202         writel_relaxed(msg->data, smmu->base + cfg[1]);
2203         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2204 }
2205
2206 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2207 {
2208         struct msi_desc *desc;
2209         int ret, nvec = ARM_SMMU_MAX_MSIS;
2210         struct device *dev = smmu->dev;
2211
2212         /* Clear the MSI address regs */
2213         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2214         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2215
2216         if (smmu->features & ARM_SMMU_FEAT_PRI)
2217                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2218         else
2219                 nvec--;
2220
2221         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2222                 return;
2223
2224         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2225         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2226         if (ret) {
2227                 dev_warn(dev, "failed to allocate MSIs\n");
2228                 return;
2229         }
2230
2231         for_each_msi_entry(desc, dev) {
2232                 switch (desc->platform.msi_index) {
2233                 case EVTQ_MSI_INDEX:
2234                         smmu->evtq.q.irq = desc->irq;
2235                         break;
2236                 case GERROR_MSI_INDEX:
2237                         smmu->gerr_irq = desc->irq;
2238                         break;
2239                 case PRIQ_MSI_INDEX:
2240                         smmu->priq.q.irq = desc->irq;
2241                         break;
2242                 default:        /* Unknown */
2243                         continue;
2244                 }
2245         }
2246
2247         /* Add callback to free MSIs on teardown */
2248         devm_add_action(dev, arm_smmu_free_msis, dev);
2249 }
2250
2251 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2252 {
2253         int irq, ret;
2254
2255         arm_smmu_setup_msis(smmu);
2256
2257         /* Request interrupt lines */
2258         irq = smmu->evtq.q.irq;
2259         if (irq) {
2260                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2261                                                 arm_smmu_evtq_thread,
2262                                                 IRQF_ONESHOT,
2263                                                 "arm-smmu-v3-evtq", smmu);
2264                 if (ret < 0)
2265                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2266         }
2267
2268         irq = smmu->cmdq.q.irq;
2269         if (irq) {
2270                 ret = devm_request_irq(smmu->dev, irq,
2271                                        arm_smmu_cmdq_sync_handler, 0,
2272                                        "arm-smmu-v3-cmdq-sync", smmu);
2273                 if (ret < 0)
2274                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2275         }
2276
2277         irq = smmu->gerr_irq;
2278         if (irq) {
2279                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2280                                        0, "arm-smmu-v3-gerror", smmu);
2281                 if (ret < 0)
2282                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2283         }
2284
2285         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2286                 irq = smmu->priq.q.irq;
2287                 if (irq) {
2288                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2289                                                         arm_smmu_priq_thread,
2290                                                         IRQF_ONESHOT,
2291                                                         "arm-smmu-v3-priq",
2292                                                         smmu);
2293                         if (ret < 0)
2294                                 dev_warn(smmu->dev,
2295                                          "failed to enable priq irq\n");
2296                 }
2297         }
2298 }
2299
2300 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2301 {
2302         int ret, irq;
2303         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2304
2305         /* Disable IRQs first */
2306         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2307                                       ARM_SMMU_IRQ_CTRLACK);
2308         if (ret) {
2309                 dev_err(smmu->dev, "failed to disable irqs\n");
2310                 return ret;
2311         }
2312
2313         irq = smmu->combined_irq;
2314         if (irq) {
2315                 /*
2316                  * Cavium ThunderX2 implementation doesn't not support unique
2317                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2318                  */
2319                 ret = devm_request_threaded_irq(smmu->dev, irq,
2320                                         arm_smmu_combined_irq_handler,
2321                                         arm_smmu_combined_irq_thread,
2322                                         IRQF_ONESHOT,
2323                                         "arm-smmu-v3-combined-irq", smmu);
2324                 if (ret < 0)
2325                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2326         } else
2327                 arm_smmu_setup_unique_irqs(smmu);
2328
2329         if (smmu->features & ARM_SMMU_FEAT_PRI)
2330                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2331
2332         /* Enable interrupt generation on the SMMU */
2333         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2334                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2335         if (ret)
2336                 dev_warn(smmu->dev, "failed to enable irqs\n");
2337
2338         return 0;
2339 }
2340
2341 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2342 {
2343         int ret;
2344
2345         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2346         if (ret)
2347                 dev_err(smmu->dev, "failed to clear cr0\n");
2348
2349         return ret;
2350 }
2351
2352 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2353 {
2354         int ret;
2355         u32 reg, enables;
2356         struct arm_smmu_cmdq_ent cmd;
2357
2358         /* Clear CR0 and sync (disables SMMU and queue processing) */
2359         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2360         if (reg & CR0_SMMUEN)
2361                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2362
2363         ret = arm_smmu_device_disable(smmu);
2364         if (ret)
2365                 return ret;
2366
2367         /* CR1 (table and queue memory attributes) */
2368         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2369               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2370               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2371               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2372               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2373               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2374         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2375
2376         /* CR2 (random crap) */
2377         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2378         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2379
2380         /* Stream table */
2381         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2382                        smmu->base + ARM_SMMU_STRTAB_BASE);
2383         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2384                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2385
2386         /* Command queue */
2387         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2388         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2389         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2390
2391         enables = CR0_CMDQEN;
2392         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2393                                       ARM_SMMU_CR0ACK);
2394         if (ret) {
2395                 dev_err(smmu->dev, "failed to enable command queue\n");
2396                 return ret;
2397         }
2398
2399         /* Invalidate any cached configuration */
2400         cmd.opcode = CMDQ_OP_CFGI_ALL;
2401         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2402         cmd.opcode = CMDQ_OP_CMD_SYNC;
2403         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2404
2405         /* Invalidate any stale TLB entries */
2406         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2407                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2408                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2409         }
2410
2411         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2412         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2413         cmd.opcode = CMDQ_OP_CMD_SYNC;
2414         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2415
2416         /* Event queue */
2417         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2418         writel_relaxed(smmu->evtq.q.prod,
2419                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2420         writel_relaxed(smmu->evtq.q.cons,
2421                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2422
2423         enables |= CR0_EVTQEN;
2424         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2425                                       ARM_SMMU_CR0ACK);
2426         if (ret) {
2427                 dev_err(smmu->dev, "failed to enable event queue\n");
2428                 return ret;
2429         }
2430
2431         /* PRI queue */
2432         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2433                 writeq_relaxed(smmu->priq.q.q_base,
2434                                smmu->base + ARM_SMMU_PRIQ_BASE);
2435                 writel_relaxed(smmu->priq.q.prod,
2436                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2437                 writel_relaxed(smmu->priq.q.cons,
2438                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2439
2440                 enables |= CR0_PRIQEN;
2441                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2442                                               ARM_SMMU_CR0ACK);
2443                 if (ret) {
2444                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2445                         return ret;
2446                 }
2447         }
2448
2449         ret = arm_smmu_setup_irqs(smmu);
2450         if (ret) {
2451                 dev_err(smmu->dev, "failed to setup irqs\n");
2452                 return ret;
2453         }
2454
2455
2456         /* Enable the SMMU interface, or ensure bypass */
2457         if (!bypass || disable_bypass) {
2458                 enables |= CR0_SMMUEN;
2459         } else {
2460                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2461                 if (ret) {
2462                         dev_err(smmu->dev, "GBPA not responding to update\n");
2463                         return ret;
2464                 }
2465         }
2466         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2467                                       ARM_SMMU_CR0ACK);
2468         if (ret) {
2469                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2470                 return ret;
2471         }
2472
2473         return 0;
2474 }
2475
2476 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2477 {
2478         u32 reg;
2479         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2480
2481         /* IDR0 */
2482         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2483
2484         /* 2-level structures */
2485         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2486                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2487
2488         if (reg & IDR0_CD2L)
2489                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2490
2491         /*
2492          * Translation table endianness.
2493          * We currently require the same endianness as the CPU, but this
2494          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2495          */
2496         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2497         case IDR0_TTENDIAN_MIXED:
2498                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2499                 break;
2500 #ifdef __BIG_ENDIAN
2501         case IDR0_TTENDIAN_BE:
2502                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2503                 break;
2504 #else
2505         case IDR0_TTENDIAN_LE:
2506                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2507                 break;
2508 #endif
2509         default:
2510                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2511                 return -ENXIO;
2512         }
2513
2514         /* Boolean feature flags */
2515         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2516                 smmu->features |= ARM_SMMU_FEAT_PRI;
2517
2518         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2519                 smmu->features |= ARM_SMMU_FEAT_ATS;
2520
2521         if (reg & IDR0_SEV)
2522                 smmu->features |= ARM_SMMU_FEAT_SEV;
2523
2524         if (reg & IDR0_MSI)
2525                 smmu->features |= ARM_SMMU_FEAT_MSI;
2526
2527         if (reg & IDR0_HYP)
2528                 smmu->features |= ARM_SMMU_FEAT_HYP;
2529
2530         /*
2531          * The coherency feature as set by FW is used in preference to the ID
2532          * register, but warn on mismatch.
2533          */
2534         if (!!(reg & IDR0_COHACC) != coherent)
2535                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2536                          coherent ? "true" : "false");
2537
2538         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2539         case IDR0_STALL_MODEL_STALL:
2540                 /* Fallthrough */
2541         case IDR0_STALL_MODEL_FORCE:
2542                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2543         }
2544
2545         if (reg & IDR0_S1P)
2546                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2547
2548         if (reg & IDR0_S2P)
2549                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2550
2551         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2552                 dev_err(smmu->dev, "no translation support!\n");
2553                 return -ENXIO;
2554         }
2555
2556         /* We only support the AArch64 table format at present */
2557         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2558         case IDR0_TTF_AARCH32_64:
2559                 smmu->ias = 40;
2560                 /* Fallthrough */
2561         case IDR0_TTF_AARCH64:
2562                 break;
2563         default:
2564                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2565                 return -ENXIO;
2566         }
2567
2568         /* ASID/VMID sizes */
2569         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2570         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2571
2572         /* IDR1 */
2573         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2574         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2575                 dev_err(smmu->dev, "embedded implementation not supported\n");
2576                 return -ENXIO;
2577         }
2578
2579         /* Queue sizes, capped at 4k */
2580         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2581                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2582         if (!smmu->cmdq.q.max_n_shift) {
2583                 /* Odd alignment restrictions on the base, so ignore for now */
2584                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2585                 return -ENXIO;
2586         }
2587
2588         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2589                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2590         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2591                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2592
2593         /* SID/SSID sizes */
2594         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2595         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2596
2597         /*
2598          * If the SMMU supports fewer bits than would fill a single L2 stream
2599          * table, use a linear table instead.
2600          */
2601         if (smmu->sid_bits <= STRTAB_SPLIT)
2602                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2603
2604         /* IDR5 */
2605         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2606
2607         /* Maximum number of outstanding stalls */
2608         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2609                                 & IDR5_STALL_MAX_MASK;
2610
2611         /* Page sizes */
2612         if (reg & IDR5_GRAN64K)
2613                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2614         if (reg & IDR5_GRAN16K)
2615                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2616         if (reg & IDR5_GRAN4K)
2617                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2618
2619         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2620                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2621         else
2622                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2623
2624         /* Output address size */
2625         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2626         case IDR5_OAS_32_BIT:
2627                 smmu->oas = 32;
2628                 break;
2629         case IDR5_OAS_36_BIT:
2630                 smmu->oas = 36;
2631                 break;
2632         case IDR5_OAS_40_BIT:
2633                 smmu->oas = 40;
2634                 break;
2635         case IDR5_OAS_42_BIT:
2636                 smmu->oas = 42;
2637                 break;
2638         case IDR5_OAS_44_BIT:
2639                 smmu->oas = 44;
2640                 break;
2641         default:
2642                 dev_info(smmu->dev,
2643                         "unknown output address size. Truncating to 48-bit\n");
2644                 /* Fallthrough */
2645         case IDR5_OAS_48_BIT:
2646                 smmu->oas = 48;
2647         }
2648
2649         /* Set the DMA mask for our table walker */
2650         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2651                 dev_warn(smmu->dev,
2652                          "failed to set DMA mask for table walker\n");
2653
2654         smmu->ias = max(smmu->ias, smmu->oas);
2655
2656         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2657                  smmu->ias, smmu->oas, smmu->features);
2658         return 0;
2659 }
2660
2661 #ifdef CONFIG_ACPI
2662 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2663 {
2664         switch (model) {
2665         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2666                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2667                 break;
2668         case ACPI_IORT_SMMU_HISILICON_HI161X:
2669                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2670                 break;
2671         }
2672
2673         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2674 }
2675
2676 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2677                                       struct arm_smmu_device *smmu)
2678 {
2679         struct acpi_iort_smmu_v3 *iort_smmu;
2680         struct device *dev = smmu->dev;
2681         struct acpi_iort_node *node;
2682
2683         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2684
2685         /* Retrieve SMMUv3 specific data */
2686         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2687
2688         acpi_smmu_get_options(iort_smmu->model, smmu);
2689
2690         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2691                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2692
2693         return 0;
2694 }
2695 #else
2696 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2697                                              struct arm_smmu_device *smmu)
2698 {
2699         return -ENODEV;
2700 }
2701 #endif
2702
2703 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2704                                     struct arm_smmu_device *smmu)
2705 {
2706         struct device *dev = &pdev->dev;
2707         u32 cells;
2708         int ret = -EINVAL;
2709
2710         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2711                 dev_err(dev, "missing #iommu-cells property\n");
2712         else if (cells != 1)
2713                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2714         else
2715                 ret = 0;
2716
2717         parse_driver_options(smmu);
2718
2719         if (of_dma_is_coherent(dev->of_node))
2720                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2721
2722         return ret;
2723 }
2724
2725 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2726 {
2727         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2728                 return SZ_64K;
2729         else
2730                 return SZ_128K;
2731 }
2732
2733 static int arm_smmu_device_probe(struct platform_device *pdev)
2734 {
2735         int irq, ret;
2736         struct resource *res;
2737         resource_size_t ioaddr;
2738         struct arm_smmu_device *smmu;
2739         struct device *dev = &pdev->dev;
2740         bool bypass;
2741
2742         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2743         if (!smmu) {
2744                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2745                 return -ENOMEM;
2746         }
2747         smmu->dev = dev;
2748
2749         if (dev->of_node) {
2750                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2751         } else {
2752                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2753                 if (ret == -ENODEV)
2754                         return ret;
2755         }
2756
2757         /* Set bypass mode according to firmware probing result */
2758         bypass = !!ret;
2759
2760         /* Base address */
2761         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2762         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2763                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2764                 return -EINVAL;
2765         }
2766         ioaddr = res->start;
2767
2768         smmu->base = devm_ioremap_resource(dev, res);
2769         if (IS_ERR(smmu->base))
2770                 return PTR_ERR(smmu->base);
2771
2772         /* Interrupt lines */
2773
2774         irq = platform_get_irq_byname(pdev, "combined");
2775         if (irq > 0)
2776                 smmu->combined_irq = irq;
2777         else {
2778                 irq = platform_get_irq_byname(pdev, "eventq");
2779                 if (irq > 0)
2780                         smmu->evtq.q.irq = irq;
2781
2782                 irq = platform_get_irq_byname(pdev, "priq");
2783                 if (irq > 0)
2784                         smmu->priq.q.irq = irq;
2785
2786                 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2787                 if (irq > 0)
2788                         smmu->cmdq.q.irq = irq;
2789
2790                 irq = platform_get_irq_byname(pdev, "gerror");
2791                 if (irq > 0)
2792                         smmu->gerr_irq = irq;
2793         }
2794         /* Probe the h/w */
2795         ret = arm_smmu_device_hw_probe(smmu);
2796         if (ret)
2797                 return ret;
2798
2799         /* Initialise in-memory data structures */
2800         ret = arm_smmu_init_structures(smmu);
2801         if (ret)
2802                 return ret;
2803
2804         /* Record our private device structure */
2805         platform_set_drvdata(pdev, smmu);
2806
2807         /* Reset the device */
2808         ret = arm_smmu_device_reset(smmu, bypass);
2809         if (ret)
2810                 return ret;
2811
2812         /* And we're up. Go go go! */
2813         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2814                                      "smmu3.%pa", &ioaddr);
2815         if (ret)
2816                 return ret;
2817
2818         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2819         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2820
2821         ret = iommu_device_register(&smmu->iommu);
2822         if (ret) {
2823                 dev_err(dev, "Failed to register iommu\n");
2824                 return ret;
2825         }
2826
2827 #ifdef CONFIG_PCI
2828         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2829                 pci_request_acs();
2830                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2831                 if (ret)
2832                         return ret;
2833         }
2834 #endif
2835 #ifdef CONFIG_ARM_AMBA
2836         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2837                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2838                 if (ret)
2839                         return ret;
2840         }
2841 #endif
2842         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2843                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2844                 if (ret)
2845                         return ret;
2846         }
2847         return 0;
2848 }
2849
2850 static int arm_smmu_device_remove(struct platform_device *pdev)
2851 {
2852         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2853
2854         arm_smmu_device_disable(smmu);
2855
2856         return 0;
2857 }
2858
2859 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2860 {
2861         arm_smmu_device_remove(pdev);
2862 }
2863
2864 static const struct of_device_id arm_smmu_of_match[] = {
2865         { .compatible = "arm,smmu-v3", },
2866         { },
2867 };
2868 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2869
2870 static struct platform_driver arm_smmu_driver = {
2871         .driver = {
2872                 .name           = "arm-smmu-v3",
2873                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2874         },
2875         .probe  = arm_smmu_device_probe,
2876         .remove = arm_smmu_device_remove,
2877         .shutdown = arm_smmu_device_shutdown,
2878 };
2879 module_platform_driver(arm_smmu_driver);
2880
2881 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2882
2883 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2884 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2885 MODULE_LICENSE("GPL v2");