2 * IOMMU API for ARM architected SMMUv3 implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2015 ARM Limited
18 * Author: Will Deacon <will.deacon@arm.com>
20 * This driver is powered by bad coffee and bombay mix.
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
32 #include <linux/of_address.h>
33 #include <linux/of_platform.h>
34 #include <linux/pci.h>
35 #include <linux/platform_device.h>
37 #include "io-pgtable.h"
40 #define ARM_SMMU_IDR0 0x0
41 #define IDR0_ST_LVL_SHIFT 27
42 #define IDR0_ST_LVL_MASK 0x3
43 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
44 #define IDR0_STALL_MODEL_SHIFT 24
45 #define IDR0_STALL_MODEL_MASK 0x3
46 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
48 #define IDR0_TTENDIAN_SHIFT 21
49 #define IDR0_TTENDIAN_MASK 0x3
50 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53 #define IDR0_CD2L (1 << 19)
54 #define IDR0_VMID16 (1 << 18)
55 #define IDR0_PRI (1 << 16)
56 #define IDR0_SEV (1 << 14)
57 #define IDR0_MSI (1 << 13)
58 #define IDR0_ASID16 (1 << 12)
59 #define IDR0_ATS (1 << 10)
60 #define IDR0_HYP (1 << 9)
61 #define IDR0_COHACC (1 << 4)
62 #define IDR0_TTF_SHIFT 2
63 #define IDR0_TTF_MASK 0x3
64 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
65 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
66 #define IDR0_S1P (1 << 1)
67 #define IDR0_S2P (1 << 0)
69 #define ARM_SMMU_IDR1 0x4
70 #define IDR1_TABLES_PRESET (1 << 30)
71 #define IDR1_QUEUES_PRESET (1 << 29)
72 #define IDR1_REL (1 << 28)
73 #define IDR1_CMDQ_SHIFT 21
74 #define IDR1_CMDQ_MASK 0x1f
75 #define IDR1_EVTQ_SHIFT 16
76 #define IDR1_EVTQ_MASK 0x1f
77 #define IDR1_PRIQ_SHIFT 11
78 #define IDR1_PRIQ_MASK 0x1f
79 #define IDR1_SSID_SHIFT 6
80 #define IDR1_SSID_MASK 0x1f
81 #define IDR1_SID_SHIFT 0
82 #define IDR1_SID_MASK 0x3f
84 #define ARM_SMMU_IDR5 0x14
85 #define IDR5_STALL_MAX_SHIFT 16
86 #define IDR5_STALL_MAX_MASK 0xffff
87 #define IDR5_GRAN64K (1 << 6)
88 #define IDR5_GRAN16K (1 << 5)
89 #define IDR5_GRAN4K (1 << 4)
90 #define IDR5_OAS_SHIFT 0
91 #define IDR5_OAS_MASK 0x7
92 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
99 #define ARM_SMMU_CR0 0x20
100 #define CR0_CMDQEN (1 << 3)
101 #define CR0_EVTQEN (1 << 2)
102 #define CR0_PRIQEN (1 << 1)
103 #define CR0_SMMUEN (1 << 0)
105 #define ARM_SMMU_CR0ACK 0x24
107 #define ARM_SMMU_CR1 0x28
111 #define CR1_CACHE_NC 0
112 #define CR1_CACHE_WB 1
113 #define CR1_CACHE_WT 2
114 #define CR1_TABLE_SH_SHIFT 10
115 #define CR1_TABLE_OC_SHIFT 8
116 #define CR1_TABLE_IC_SHIFT 6
117 #define CR1_QUEUE_SH_SHIFT 4
118 #define CR1_QUEUE_OC_SHIFT 2
119 #define CR1_QUEUE_IC_SHIFT 0
121 #define ARM_SMMU_CR2 0x2c
122 #define CR2_PTM (1 << 2)
123 #define CR2_RECINVSID (1 << 1)
124 #define CR2_E2H (1 << 0)
126 #define ARM_SMMU_IRQ_CTRL 0x50
127 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
128 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
129 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
131 #define ARM_SMMU_IRQ_CTRLACK 0x54
133 #define ARM_SMMU_GERROR 0x60
134 #define GERROR_SFM_ERR (1 << 8)
135 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139 #define GERROR_PRIQ_ABT_ERR (1 << 3)
140 #define GERROR_EVTQ_ABT_ERR (1 << 2)
141 #define GERROR_CMDQ_ERR (1 << 0)
142 #define GERROR_ERR_MASK 0xfd
144 #define ARM_SMMU_GERRORN 0x64
146 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
150 #define ARM_SMMU_STRTAB_BASE 0x80
151 #define STRTAB_BASE_RA (1UL << 62)
152 #define STRTAB_BASE_ADDR_SHIFT 6
153 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
155 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
156 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160 #define STRTAB_BASE_CFG_FMT_SHIFT 16
161 #define STRTAB_BASE_CFG_FMT_MASK 0x3
162 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
165 #define ARM_SMMU_CMDQ_BASE 0x90
166 #define ARM_SMMU_CMDQ_PROD 0x98
167 #define ARM_SMMU_CMDQ_CONS 0x9c
169 #define ARM_SMMU_EVTQ_BASE 0xa0
170 #define ARM_SMMU_EVTQ_PROD 0x100a8
171 #define ARM_SMMU_EVTQ_CONS 0x100ac
172 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
176 #define ARM_SMMU_PRIQ_BASE 0xc0
177 #define ARM_SMMU_PRIQ_PROD 0x100c8
178 #define ARM_SMMU_PRIQ_CONS 0x100cc
179 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
183 /* Common MSI config fields */
184 #define MSI_CFG0_ADDR_SHIFT 2
185 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
186 #define MSI_CFG2_SH_SHIFT 4
187 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190 #define MSI_CFG2_MEMATTR_SHIFT 0
191 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
193 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195 #define Q_OVERFLOW_FLAG (1 << 31)
196 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197 #define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
200 #define Q_BASE_RWA (1UL << 62)
201 #define Q_BASE_ADDR_SHIFT 5
202 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
203 #define Q_BASE_LOG2SIZE_SHIFT 0
204 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
213 #define STRTAB_L1_SZ_SHIFT 20
214 #define STRTAB_SPLIT 8
216 #define STRTAB_L1_DESC_DWORDS 1
217 #define STRTAB_L1_DESC_SPAN_SHIFT 0
218 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
220 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
222 #define STRTAB_STE_DWORDS 8
223 #define STRTAB_STE_0_V (1UL << 0)
224 #define STRTAB_STE_0_CFG_SHIFT 1
225 #define STRTAB_STE_0_CFG_MASK 0x7UL
226 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
231 #define STRTAB_STE_0_S1FMT_SHIFT 4
232 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
236 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
238 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
239 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
241 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
242 #define STRTAB_STE_1_S1C_SH_NSH 0UL
243 #define STRTAB_STE_1_S1C_SH_OSH 2UL
244 #define STRTAB_STE_1_S1C_SH_ISH 3UL
245 #define STRTAB_STE_1_S1CIR_SHIFT 2
246 #define STRTAB_STE_1_S1COR_SHIFT 4
247 #define STRTAB_STE_1_S1CSH_SHIFT 6
249 #define STRTAB_STE_1_S1STALLD (1UL << 27)
251 #define STRTAB_STE_1_EATS_ABT 0UL
252 #define STRTAB_STE_1_EATS_TRANS 1UL
253 #define STRTAB_STE_1_EATS_S1CHK 2UL
254 #define STRTAB_STE_1_EATS_SHIFT 28
256 #define STRTAB_STE_1_STRW_NSEL1 0UL
257 #define STRTAB_STE_1_STRW_EL2 2UL
258 #define STRTAB_STE_1_STRW_SHIFT 30
260 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
261 #define STRTAB_STE_1_SHCFG_SHIFT 44
263 #define STRTAB_STE_2_S2VMID_SHIFT 0
264 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265 #define STRTAB_STE_2_VTCR_SHIFT 32
266 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267 #define STRTAB_STE_2_S2AA64 (1UL << 51)
268 #define STRTAB_STE_2_S2ENDI (1UL << 52)
269 #define STRTAB_STE_2_S2PTW (1UL << 54)
270 #define STRTAB_STE_2_S2R (1UL << 58)
272 #define STRTAB_STE_3_S2TTB_SHIFT 4
273 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
275 /* Context descriptor (stage-1 only) */
276 #define CTXDESC_CD_DWORDS 8
277 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278 #define ARM64_TCR_T0SZ_SHIFT 0
279 #define ARM64_TCR_T0SZ_MASK 0x1fUL
280 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281 #define ARM64_TCR_TG0_SHIFT 14
282 #define ARM64_TCR_TG0_MASK 0x3UL
283 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
284 #define ARM64_TCR_IRGN0_SHIFT 8
285 #define ARM64_TCR_IRGN0_MASK 0x3UL
286 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
287 #define ARM64_TCR_ORGN0_SHIFT 10
288 #define ARM64_TCR_ORGN0_MASK 0x3UL
289 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290 #define ARM64_TCR_SH0_SHIFT 12
291 #define ARM64_TCR_SH0_MASK 0x3UL
292 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293 #define ARM64_TCR_EPD0_SHIFT 7
294 #define ARM64_TCR_EPD0_MASK 0x1UL
295 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296 #define ARM64_TCR_EPD1_SHIFT 23
297 #define ARM64_TCR_EPD1_MASK 0x1UL
299 #define CTXDESC_CD_0_ENDI (1UL << 15)
300 #define CTXDESC_CD_0_V (1UL << 31)
302 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303 #define ARM64_TCR_IPS_SHIFT 32
304 #define ARM64_TCR_IPS_MASK 0x7UL
305 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306 #define ARM64_TCR_TBI0_SHIFT 37
307 #define ARM64_TCR_TBI0_MASK 0x1UL
309 #define CTXDESC_CD_0_AA64 (1UL << 41)
310 #define CTXDESC_CD_0_R (1UL << 45)
311 #define CTXDESC_CD_0_A (1UL << 46)
312 #define CTXDESC_CD_0_ASET_SHIFT 47
313 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315 #define CTXDESC_CD_0_ASID_SHIFT 48
316 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
318 #define CTXDESC_CD_1_TTB0_SHIFT 4
319 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
321 #define CTXDESC_CD_3_MAIR_SHIFT 0
323 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324 #define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
329 #define CMDQ_ENT_DWORDS 2
330 #define CMDQ_MAX_SZ_SHIFT 8
332 #define CMDQ_ERR_SHIFT 24
333 #define CMDQ_ERR_MASK 0x7f
334 #define CMDQ_ERR_CERROR_NONE_IDX 0
335 #define CMDQ_ERR_CERROR_ILL_IDX 1
336 #define CMDQ_ERR_CERROR_ABT_IDX 2
338 #define CMDQ_0_OP_SHIFT 0
339 #define CMDQ_0_OP_MASK 0xffUL
340 #define CMDQ_0_SSV (1UL << 11)
342 #define CMDQ_PREFETCH_0_SID_SHIFT 32
343 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
346 #define CMDQ_CFGI_0_SID_SHIFT 32
347 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348 #define CMDQ_CFGI_1_LEAF (1UL << 0)
349 #define CMDQ_CFGI_1_RANGE_SHIFT 0
350 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
352 #define CMDQ_TLBI_0_VMID_SHIFT 32
353 #define CMDQ_TLBI_0_ASID_SHIFT 48
354 #define CMDQ_TLBI_1_LEAF (1UL << 0)
355 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
358 #define CMDQ_PRI_0_SSID_SHIFT 12
359 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360 #define CMDQ_PRI_0_SID_SHIFT 32
361 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362 #define CMDQ_PRI_1_GRPID_SHIFT 0
363 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364 #define CMDQ_PRI_1_RESP_SHIFT 12
365 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
369 #define CMDQ_SYNC_0_CS_SHIFT 12
370 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
374 #define EVTQ_ENT_DWORDS 4
375 #define EVTQ_MAX_SZ_SHIFT 7
377 #define EVTQ_0_ID_SHIFT 0
378 #define EVTQ_0_ID_MASK 0xffUL
381 #define PRIQ_ENT_DWORDS 2
382 #define PRIQ_MAX_SZ_SHIFT 8
384 #define PRIQ_0_SID_SHIFT 0
385 #define PRIQ_0_SID_MASK 0xffffffffUL
386 #define PRIQ_0_SSID_SHIFT 32
387 #define PRIQ_0_SSID_MASK 0xfffffUL
388 #define PRIQ_0_PERM_PRIV (1UL << 58)
389 #define PRIQ_0_PERM_EXEC (1UL << 59)
390 #define PRIQ_0_PERM_READ (1UL << 60)
391 #define PRIQ_0_PERM_WRITE (1UL << 61)
392 #define PRIQ_0_PRG_LAST (1UL << 62)
393 #define PRIQ_0_SSID_V (1UL << 63)
395 #define PRIQ_1_PRG_IDX_SHIFT 0
396 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397 #define PRIQ_1_ADDR_SHIFT 12
398 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
400 /* High-level queue structures */
401 #define ARM_SMMU_POLL_TIMEOUT_US 100
403 static bool disable_bypass;
404 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405 MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
414 enum arm_smmu_msi_index {
421 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
439 struct arm_smmu_cmdq_ent {
442 bool substream_valid;
444 /* Command-specific fields */
446 #define CMDQ_OP_PREFETCH_CFG 0x1
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
476 #define CMDQ_OP_PRI_RESP 0x41
484 #define CMDQ_OP_CMD_SYNC 0x46
488 struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
504 struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
509 struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
514 struct arm_smmu_priq {
515 struct arm_smmu_queue q;
518 /* High-level stream table and context descriptor structures */
519 struct arm_smmu_strtab_l1_desc {
523 dma_addr_t l2ptr_dma;
526 struct arm_smmu_s1_cfg {
528 dma_addr_t cdptr_dma;
530 struct arm_smmu_ctx_desc {
538 struct arm_smmu_s2_cfg {
544 struct arm_smmu_strtab_ent {
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
552 struct arm_smmu_strtab_cfg {
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
562 /* An SMMUv3 instance */
563 struct arm_smmu_device {
567 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
570 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
571 #define ARM_SMMU_FEAT_PRI (1 << 4)
572 #define ARM_SMMU_FEAT_ATS (1 << 5)
573 #define ARM_SMMU_FEAT_SEV (1 << 6)
574 #define ARM_SMMU_FEAT_MSI (1 << 7)
575 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578 #define ARM_SMMU_FEAT_STALLS (1 << 11)
579 #define ARM_SMMU_FEAT_HYP (1 << 12)
582 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
593 unsigned long pgsize_bitmap;
595 #define ARM_SMMU_MAX_ASIDS (1 << 16)
596 unsigned int asid_bits;
597 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
599 #define ARM_SMMU_MAX_VMIDS (1 << 16)
600 unsigned int vmid_bits;
601 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
603 unsigned int ssid_bits;
604 unsigned int sid_bits;
606 struct arm_smmu_strtab_cfg strtab_cfg;
609 /* SMMU private data for an IOMMU group */
610 struct arm_smmu_group {
611 struct arm_smmu_device *smmu;
612 struct arm_smmu_domain *domain;
615 struct arm_smmu_strtab_ent ste;
618 /* SMMU private data for an IOMMU domain */
619 enum arm_smmu_domain_stage {
620 ARM_SMMU_DOMAIN_S1 = 0,
622 ARM_SMMU_DOMAIN_NESTED,
625 struct arm_smmu_domain {
626 struct arm_smmu_device *smmu;
627 struct mutex init_mutex; /* Protects smmu pointer */
629 struct io_pgtable_ops *pgtbl_ops;
630 spinlock_t pgtbl_lock;
632 enum arm_smmu_domain_stage stage;
634 struct arm_smmu_s1_cfg s1_cfg;
635 struct arm_smmu_s2_cfg s2_cfg;
638 struct iommu_domain domain;
641 struct arm_smmu_option_prop {
646 static struct arm_smmu_option_prop arm_smmu_options[] = {
647 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
651 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
653 return container_of(dom, struct arm_smmu_domain, domain);
656 static void parse_driver_options(struct arm_smmu_device *smmu)
661 if (of_property_read_bool(smmu->dev->of_node,
662 arm_smmu_options[i].prop)) {
663 smmu->options |= arm_smmu_options[i].opt;
664 dev_notice(smmu->dev, "option %s\n",
665 arm_smmu_options[i].prop);
667 } while (arm_smmu_options[++i].opt);
670 /* Low-level queue manipulation functions */
671 static bool queue_full(struct arm_smmu_queue *q)
673 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
677 static bool queue_empty(struct arm_smmu_queue *q)
679 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
683 static void queue_sync_cons(struct arm_smmu_queue *q)
685 q->cons = readl_relaxed(q->cons_reg);
688 static void queue_inc_cons(struct arm_smmu_queue *q)
690 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
692 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693 writel(q->cons, q->cons_reg);
696 static int queue_sync_prod(struct arm_smmu_queue *q)
699 u32 prod = readl_relaxed(q->prod_reg);
701 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
708 static void queue_inc_prod(struct arm_smmu_queue *q)
710 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
712 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713 writel(q->prod, q->prod_reg);
716 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
718 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
719 return Q_IDX(q, q->cons) < Q_IDX(q, until);
721 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
724 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
726 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
728 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
729 if (ktime_compare(ktime_get(), timeout) > 0)
743 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
747 for (i = 0; i < n_dwords; ++i)
748 *dst++ = cpu_to_le64(*src++);
751 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
756 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
761 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
765 for (i = 0; i < n_dwords; ++i)
766 *dst++ = le64_to_cpu(*src++);
769 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
774 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
779 /* High-level queue accessors */
780 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
782 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
783 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
785 switch (ent->opcode) {
786 case CMDQ_OP_TLBI_EL2_ALL:
787 case CMDQ_OP_TLBI_NSNH_ALL:
789 case CMDQ_OP_PREFETCH_CFG:
790 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
791 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
792 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
794 case CMDQ_OP_CFGI_STE:
795 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
796 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
798 case CMDQ_OP_CFGI_ALL:
799 /* Cover the entire SID range */
800 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
802 case CMDQ_OP_TLBI_NH_VA:
803 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
804 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
805 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
807 case CMDQ_OP_TLBI_S2_IPA:
808 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
810 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
812 case CMDQ_OP_TLBI_NH_ASID:
813 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
815 case CMDQ_OP_TLBI_S12_VMALL:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
818 case CMDQ_OP_PRI_RESP:
819 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
820 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
821 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
822 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
823 switch (ent->pri.resp) {
825 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
828 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
831 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
837 case CMDQ_OP_CMD_SYNC:
838 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
849 static const char *cerror_str[] = {
850 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
851 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
852 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
856 u64 cmd[CMDQ_ENT_DWORDS];
857 struct arm_smmu_queue *q = &smmu->cmdq.q;
858 u32 cons = readl_relaxed(q->cons_reg);
859 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
860 struct arm_smmu_cmdq_ent cmd_sync = {
861 .opcode = CMDQ_OP_CMD_SYNC,
864 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
865 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
868 case CMDQ_ERR_CERROR_ABT_IDX:
869 dev_err(smmu->dev, "retrying command fetch\n");
870 case CMDQ_ERR_CERROR_NONE_IDX:
872 case CMDQ_ERR_CERROR_ILL_IDX:
879 * We may have concurrent producers, so we need to be careful
880 * not to touch any of the shadow cmdq state.
882 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
883 dev_err(smmu->dev, "skipping command in error state:\n");
884 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
885 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
887 /* Convert the erroneous command into a CMD_SYNC */
888 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
889 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
893 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
896 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
897 struct arm_smmu_cmdq_ent *ent)
900 u64 cmd[CMDQ_ENT_DWORDS];
901 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
902 struct arm_smmu_queue *q = &smmu->cmdq.q;
904 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
905 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
910 spin_lock(&smmu->cmdq.lock);
911 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
913 * Keep the queue locked, otherwise the producer could wrap
914 * twice and we could see a future consumer pointer that looks
915 * like it's behind us.
917 if (queue_poll_cons(q, until, wfe))
918 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
921 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
922 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923 spin_unlock(&smmu->cmdq.lock);
926 /* Context descriptor manipulation functions */
927 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 /* Repack the TCR. Just care about TTBR0 for now */
932 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933 val |= ARM_SMMU_TCR2CD(tcr, TG0);
934 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936 val |= ARM_SMMU_TCR2CD(tcr, SH0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939 val |= ARM_SMMU_TCR2CD(tcr, IPS);
940 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
945 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946 struct arm_smmu_s1_cfg *cfg)
951 * We don't need to issue any invalidation here, as we'll invalidate
952 * the STE when installing the new entry anyway.
954 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
961 cfg->cdptr[0] = cpu_to_le64(val);
963 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964 cfg->cdptr[1] = cpu_to_le64(val);
966 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
969 /* Stream table manipulation functions */
971 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976 << STRTAB_L1_DESC_SPAN_SHIFT;
977 val |= desc->l2ptr_dma &
978 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
980 *dst = cpu_to_le64(val);
983 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
985 struct arm_smmu_cmdq_ent cmd = {
986 .opcode = CMDQ_OP_CFGI_STE,
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 cmd.opcode = CMDQ_OP_CMD_SYNC;
995 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
998 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1002 * This is hideously complicated, but we only really care about
1003 * three cases at the moment:
1005 * 1. Invalid (all zero) -> bypass (init)
1006 * 2. Bypass -> translation (attach)
1007 * 3. Translation -> bypass (detach)
1009 * Given that we can't update the STE atomically and the SMMU
1010 * doesn't read the thing in a defined order, that leaves us
1011 * with the following maintenance requirements:
1013 * 1. Update Config, return (init time STEs aren't live)
1014 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015 * 3. Update Config, sync
1017 u64 val = le64_to_cpu(dst[0]);
1018 bool ste_live = false;
1019 struct arm_smmu_cmdq_ent prefetch_cmd = {
1020 .opcode = CMDQ_OP_PREFETCH_CFG,
1026 if (val & STRTAB_STE_0_V) {
1029 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1031 case STRTAB_STE_0_CFG_BYPASS:
1033 case STRTAB_STE_0_CFG_S1_TRANS:
1034 case STRTAB_STE_0_CFG_S2_TRANS:
1038 BUG(); /* STE corruption */
1042 /* Nuke the existing Config, as we're going to rewrite it */
1043 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1046 val |= STRTAB_STE_0_V;
1048 val &= ~STRTAB_STE_0_V;
1051 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1052 : STRTAB_STE_0_CFG_BYPASS;
1053 dst[0] = cpu_to_le64(val);
1054 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1055 << STRTAB_STE_1_SHCFG_SHIFT);
1056 dst[2] = 0; /* Nuke the VMID */
1058 arm_smmu_sync_ste_for_sid(smmu, sid);
1064 dst[1] = cpu_to_le64(
1065 STRTAB_STE_1_S1C_CACHE_WBRA
1066 << STRTAB_STE_1_S1CIR_SHIFT |
1067 STRTAB_STE_1_S1C_CACHE_WBRA
1068 << STRTAB_STE_1_S1COR_SHIFT |
1069 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1070 #ifdef CONFIG_PCI_ATS
1071 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1073 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1075 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1076 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1078 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1079 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1080 STRTAB_STE_0_CFG_S1_TRANS;
1086 dst[2] = cpu_to_le64(
1087 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1088 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1089 << STRTAB_STE_2_VTCR_SHIFT |
1091 STRTAB_STE_2_S2ENDI |
1093 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1096 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1097 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1099 val |= STRTAB_STE_0_CFG_S2_TRANS;
1102 arm_smmu_sync_ste_for_sid(smmu, sid);
1103 dst[0] = cpu_to_le64(val);
1104 arm_smmu_sync_ste_for_sid(smmu, sid);
1106 /* It's likely that we'll want to use the new STE soon */
1107 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1108 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1111 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1114 struct arm_smmu_strtab_ent ste = {
1119 for (i = 0; i < nent; ++i) {
1120 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1121 strtab += STRTAB_STE_DWORDS;
1125 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1130 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1135 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1136 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1138 desc->span = STRTAB_SPLIT + 1;
1139 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1140 GFP_KERNEL | __GFP_ZERO);
1143 "failed to allocate l2 stream table for SID %u\n",
1148 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1149 arm_smmu_write_strtab_l1_desc(strtab, desc);
1153 /* IRQ and event handlers */
1154 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1157 struct arm_smmu_device *smmu = dev;
1158 struct arm_smmu_queue *q = &smmu->evtq.q;
1159 u64 evt[EVTQ_ENT_DWORDS];
1161 while (!queue_remove_raw(q, evt)) {
1162 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1164 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1165 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1166 dev_info(smmu->dev, "\t0x%016llx\n",
1167 (unsigned long long)evt[i]);
1170 /* Sync our overflow flag, as we believe we're up to speed */
1171 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1175 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1177 irqreturn_t ret = IRQ_WAKE_THREAD;
1178 struct arm_smmu_device *smmu = dev;
1179 struct arm_smmu_queue *q = &smmu->evtq.q;
1182 * Not much we can do on overflow, so scream and pretend we're
1185 if (queue_sync_prod(q) == -EOVERFLOW)
1186 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1187 else if (queue_empty(q))
1193 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1195 struct arm_smmu_device *smmu = dev;
1196 struct arm_smmu_queue *q = &smmu->priq.q;
1197 u64 evt[PRIQ_ENT_DWORDS];
1199 while (!queue_remove_raw(q, evt)) {
1204 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1205 ssv = evt[0] & PRIQ_0_SSID_V;
1206 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1207 last = evt[0] & PRIQ_0_PRG_LAST;
1208 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1210 dev_info(smmu->dev, "unexpected PRI request received:\n");
1212 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1213 sid, ssid, grpid, last ? "L" : "",
1214 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1215 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1216 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1217 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1218 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1221 struct arm_smmu_cmdq_ent cmd = {
1222 .opcode = CMDQ_OP_PRI_RESP,
1223 .substream_valid = ssv,
1228 .resp = PRI_RESP_DENY,
1232 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1236 /* Sync our overflow flag, as we believe we're up to speed */
1237 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1241 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1243 irqreturn_t ret = IRQ_WAKE_THREAD;
1244 struct arm_smmu_device *smmu = dev;
1245 struct arm_smmu_queue *q = &smmu->priq.q;
1247 /* PRIQ overflow indicates a programming error */
1248 if (queue_sync_prod(q) == -EOVERFLOW)
1249 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1250 else if (queue_empty(q))
1256 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1258 /* We don't actually use CMD_SYNC interrupts for anything */
1262 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1264 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1266 u32 gerror, gerrorn, active;
1267 struct arm_smmu_device *smmu = dev;
1269 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1270 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1272 active = gerror ^ gerrorn;
1273 if (!(active & GERROR_ERR_MASK))
1274 return IRQ_NONE; /* No errors pending */
1277 "unexpected global error reported (0x%08x), this could be serious\n",
1280 if (active & GERROR_SFM_ERR) {
1281 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1282 arm_smmu_device_disable(smmu);
1285 if (active & GERROR_MSI_GERROR_ABT_ERR)
1286 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1288 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
1289 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1290 arm_smmu_priq_handler(irq, smmu->dev);
1293 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
1294 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1295 arm_smmu_evtq_handler(irq, smmu->dev);
1298 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1299 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1300 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1303 if (active & GERROR_PRIQ_ABT_ERR)
1304 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1306 if (active & GERROR_EVTQ_ABT_ERR)
1307 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1309 if (active & GERROR_CMDQ_ERR)
1310 arm_smmu_cmdq_skip_err(smmu);
1312 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1316 /* IO_PGTABLE API */
1317 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1319 struct arm_smmu_cmdq_ent cmd;
1321 cmd.opcode = CMDQ_OP_CMD_SYNC;
1322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1325 static void arm_smmu_tlb_sync(void *cookie)
1327 struct arm_smmu_domain *smmu_domain = cookie;
1328 __arm_smmu_tlb_sync(smmu_domain->smmu);
1331 static void arm_smmu_tlb_inv_context(void *cookie)
1333 struct arm_smmu_domain *smmu_domain = cookie;
1334 struct arm_smmu_device *smmu = smmu_domain->smmu;
1335 struct arm_smmu_cmdq_ent cmd;
1337 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1338 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1339 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1342 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1343 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1346 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1347 __arm_smmu_tlb_sync(smmu);
1350 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1351 size_t granule, bool leaf, void *cookie)
1353 struct arm_smmu_domain *smmu_domain = cookie;
1354 struct arm_smmu_device *smmu = smmu_domain->smmu;
1355 struct arm_smmu_cmdq_ent cmd = {
1362 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1363 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1364 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1366 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1367 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1371 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1372 cmd.tlbi.addr += granule;
1373 } while (size -= granule);
1376 static struct iommu_gather_ops arm_smmu_gather_ops = {
1377 .tlb_flush_all = arm_smmu_tlb_inv_context,
1378 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1379 .tlb_sync = arm_smmu_tlb_sync,
1383 static bool arm_smmu_capable(enum iommu_cap cap)
1386 case IOMMU_CAP_CACHE_COHERENCY:
1388 case IOMMU_CAP_INTR_REMAP:
1389 return true; /* MSIs are just memory writes */
1390 case IOMMU_CAP_NOEXEC:
1397 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1399 struct arm_smmu_domain *smmu_domain;
1401 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1405 * Allocate the domain and initialise some of its data structures.
1406 * We can't really do anything meaningful until we've added a
1409 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1413 if (type == IOMMU_DOMAIN_DMA &&
1414 iommu_get_dma_cookie(&smmu_domain->domain)) {
1419 mutex_init(&smmu_domain->init_mutex);
1420 spin_lock_init(&smmu_domain->pgtbl_lock);
1421 return &smmu_domain->domain;
1424 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1426 int idx, size = 1 << span;
1429 idx = find_first_zero_bit(map, size);
1432 } while (test_and_set_bit(idx, map));
1437 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1439 clear_bit(idx, map);
1442 static void arm_smmu_domain_free(struct iommu_domain *domain)
1444 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1445 struct arm_smmu_device *smmu = smmu_domain->smmu;
1447 iommu_put_dma_cookie(domain);
1448 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1450 /* Free the CD and ASID, if we allocated them */
1451 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1452 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1455 dmam_free_coherent(smmu_domain->smmu->dev,
1456 CTXDESC_CD_DWORDS << 3,
1460 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1463 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1465 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1471 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1472 struct io_pgtable_cfg *pgtbl_cfg)
1476 struct arm_smmu_device *smmu = smmu_domain->smmu;
1477 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1479 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1483 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1485 GFP_KERNEL | __GFP_ZERO);
1487 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1492 cfg->cd.asid = (u16)asid;
1493 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1494 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1495 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1499 arm_smmu_bitmap_free(smmu->asid_map, asid);
1503 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1504 struct io_pgtable_cfg *pgtbl_cfg)
1507 struct arm_smmu_device *smmu = smmu_domain->smmu;
1508 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1510 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1514 cfg->vmid = (u16)vmid;
1515 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1516 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1520 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1523 unsigned long ias, oas;
1524 enum io_pgtable_fmt fmt;
1525 struct io_pgtable_cfg pgtbl_cfg;
1526 struct io_pgtable_ops *pgtbl_ops;
1527 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1528 struct io_pgtable_cfg *);
1529 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1530 struct arm_smmu_device *smmu = smmu_domain->smmu;
1532 /* Restrict the stage to what we can actually support */
1533 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1534 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1535 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1536 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1538 switch (smmu_domain->stage) {
1539 case ARM_SMMU_DOMAIN_S1:
1542 fmt = ARM_64_LPAE_S1;
1543 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1545 case ARM_SMMU_DOMAIN_NESTED:
1546 case ARM_SMMU_DOMAIN_S2:
1549 fmt = ARM_64_LPAE_S2;
1550 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1556 pgtbl_cfg = (struct io_pgtable_cfg) {
1557 .pgsize_bitmap = smmu->pgsize_bitmap,
1560 .tlb = &arm_smmu_gather_ops,
1561 .iommu_dev = smmu->dev,
1564 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1568 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1569 smmu_domain->pgtbl_ops = pgtbl_ops;
1571 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1573 free_io_pgtable_ops(pgtbl_ops);
1578 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1580 struct iommu_group *group;
1581 struct arm_smmu_group *smmu_group;
1583 group = iommu_group_get(dev);
1587 smmu_group = iommu_group_get_iommudata(group);
1588 iommu_group_put(group);
1592 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1595 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1597 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1598 struct arm_smmu_strtab_l1_desc *l1_desc;
1601 /* Two-level walk */
1602 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1603 l1_desc = &cfg->l1_desc[idx];
1604 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1605 step = &l1_desc->l2ptr[idx];
1607 /* Simple linear lookup */
1608 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1614 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1617 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1618 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1619 struct arm_smmu_device *smmu = smmu_group->smmu;
1621 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1622 ste->s1_cfg = &smmu_domain->s1_cfg;
1624 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1627 ste->s2_cfg = &smmu_domain->s2_cfg;
1630 for (i = 0; i < smmu_group->num_sids; ++i) {
1631 u32 sid = smmu_group->sids[i];
1632 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1634 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1640 static void arm_smmu_detach_dev(struct device *dev)
1642 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1644 smmu_group->ste.bypass = true;
1645 if (arm_smmu_install_ste_for_group(smmu_group) < 0)
1646 dev_warn(dev, "failed to install bypass STE\n");
1648 smmu_group->domain = NULL;
1651 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1654 struct arm_smmu_device *smmu;
1655 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1656 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1661 /* Already attached to a different domain? */
1662 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1663 arm_smmu_detach_dev(dev);
1665 smmu = smmu_group->smmu;
1666 mutex_lock(&smmu_domain->init_mutex);
1668 if (!smmu_domain->smmu) {
1669 smmu_domain->smmu = smmu;
1670 ret = arm_smmu_domain_finalise(domain);
1672 smmu_domain->smmu = NULL;
1675 } else if (smmu_domain->smmu != smmu) {
1677 "cannot attach to SMMU %s (upstream of %s)\n",
1678 dev_name(smmu_domain->smmu->dev),
1679 dev_name(smmu->dev));
1684 /* Group already attached to this domain? */
1685 if (smmu_group->domain)
1688 smmu_group->domain = smmu_domain;
1691 * FIXME: This should always be "false" once we have IOMMU-backed
1692 * DMA ops for all devices behind the SMMU.
1694 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
1696 ret = arm_smmu_install_ste_for_group(smmu_group);
1698 smmu_group->domain = NULL;
1701 mutex_unlock(&smmu_domain->init_mutex);
1705 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1706 phys_addr_t paddr, size_t size, int prot)
1709 unsigned long flags;
1710 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1711 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1717 ret = ops->map(ops, iova, paddr, size, prot);
1718 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1723 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1726 unsigned long flags;
1727 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1728 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1733 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1734 ret = ops->unmap(ops, iova, size);
1735 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1740 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1743 unsigned long flags;
1744 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1745 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1750 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1751 ret = ops->iova_to_phys(ops, iova);
1752 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1757 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1759 *(u32 *)sidp = alias;
1760 return 0; /* Continue walking */
1763 static void __arm_smmu_release_pci_iommudata(void *data)
1768 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1770 struct device_node *of_node;
1771 struct platform_device *smmu_pdev;
1772 struct arm_smmu_device *smmu = NULL;
1773 struct pci_bus *bus = pdev->bus;
1775 /* Walk up to the root bus */
1776 while (!pci_is_root_bus(bus))
1779 /* Follow the "iommus" phandle from the host controller */
1780 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1784 /* See if we can find an SMMU corresponding to the phandle */
1785 smmu_pdev = of_find_device_by_node(of_node);
1787 smmu = platform_get_drvdata(smmu_pdev);
1789 of_node_put(of_node);
1793 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1795 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1797 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1798 limit *= 1UL << STRTAB_SPLIT;
1803 static int arm_smmu_add_device(struct device *dev)
1807 struct pci_dev *pdev;
1808 struct iommu_group *group;
1809 struct arm_smmu_group *smmu_group;
1810 struct arm_smmu_device *smmu;
1812 /* We only support PCI, for now */
1813 if (!dev_is_pci(dev))
1816 pdev = to_pci_dev(dev);
1817 group = iommu_group_get_for_dev(dev);
1819 return PTR_ERR(group);
1821 smmu_group = iommu_group_get_iommudata(group);
1823 smmu = arm_smmu_get_for_pci_dev(pdev);
1826 goto out_remove_dev;
1829 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1832 goto out_remove_dev;
1835 smmu_group->ste.valid = true;
1836 smmu_group->smmu = smmu;
1837 iommu_group_set_iommudata(group, smmu_group,
1838 __arm_smmu_release_pci_iommudata);
1840 smmu = smmu_group->smmu;
1843 /* Assume SID == RID until firmware tells us otherwise */
1844 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1845 for (i = 0; i < smmu_group->num_sids; ++i) {
1846 /* If we already know about this SID, then we're done */
1847 if (smmu_group->sids[i] == sid)
1851 /* Check the SID is in range of the SMMU and our stream table */
1852 if (!arm_smmu_sid_in_range(smmu, sid)) {
1854 goto out_remove_dev;
1857 /* Ensure l2 strtab is initialised */
1858 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1859 ret = arm_smmu_init_l2_strtab(smmu, sid);
1861 goto out_remove_dev;
1864 /* Resize the SID array for the group */
1865 smmu_group->num_sids++;
1866 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1869 smmu_group->num_sids--;
1871 goto out_remove_dev;
1874 /* Add the new SID */
1875 sids[smmu_group->num_sids - 1] = sid;
1876 smmu_group->sids = sids;
1879 iommu_group_put(group);
1883 iommu_group_remove_device(dev);
1884 iommu_group_put(group);
1888 static void arm_smmu_remove_device(struct device *dev)
1890 iommu_group_remove_device(dev);
1893 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1894 enum iommu_attr attr, void *data)
1896 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1899 case DOMAIN_ATTR_NESTING:
1900 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1907 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1908 enum iommu_attr attr, void *data)
1911 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1913 mutex_lock(&smmu_domain->init_mutex);
1916 case DOMAIN_ATTR_NESTING:
1917 if (smmu_domain->smmu) {
1923 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1925 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1933 mutex_unlock(&smmu_domain->init_mutex);
1937 static struct iommu_ops arm_smmu_ops = {
1938 .capable = arm_smmu_capable,
1939 .domain_alloc = arm_smmu_domain_alloc,
1940 .domain_free = arm_smmu_domain_free,
1941 .attach_dev = arm_smmu_attach_dev,
1942 .map = arm_smmu_map,
1943 .unmap = arm_smmu_unmap,
1944 .map_sg = default_iommu_map_sg,
1945 .iova_to_phys = arm_smmu_iova_to_phys,
1946 .add_device = arm_smmu_add_device,
1947 .remove_device = arm_smmu_remove_device,
1948 .device_group = pci_device_group,
1949 .domain_get_attr = arm_smmu_domain_get_attr,
1950 .domain_set_attr = arm_smmu_domain_set_attr,
1951 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1954 /* Probing and initialisation functions */
1955 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1956 struct arm_smmu_queue *q,
1957 unsigned long prod_off,
1958 unsigned long cons_off,
1961 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1963 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1965 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1970 q->prod_reg = smmu->base + prod_off;
1971 q->cons_reg = smmu->base + cons_off;
1972 q->ent_dwords = dwords;
1974 q->q_base = Q_BASE_RWA;
1975 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1976 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1977 << Q_BASE_LOG2SIZE_SHIFT;
1979 q->prod = q->cons = 0;
1983 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1988 spin_lock_init(&smmu->cmdq.lock);
1989 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1990 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1995 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1996 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2001 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2004 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2005 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2008 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2011 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2012 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2013 void *strtab = smmu->strtab_cfg.strtab;
2015 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2016 if (!cfg->l1_desc) {
2017 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2021 for (i = 0; i < cfg->num_l1_ents; ++i) {
2022 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2023 strtab += STRTAB_L1_DESC_DWORDS << 3;
2029 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2034 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2037 * If we can resolve everything with a single L2 table, then we
2038 * just need a single L1 descriptor. Otherwise, calculate the L1
2039 * size, capped to the SIDSIZE.
2041 if (smmu->sid_bits < STRTAB_SPLIT) {
2044 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2045 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2047 cfg->num_l1_ents = 1 << size;
2049 size += STRTAB_SPLIT;
2050 if (size < smmu->sid_bits)
2052 "2-level strtab only covers %u/%u bits of SID\n",
2053 size, smmu->sid_bits);
2055 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2056 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2057 GFP_KERNEL | __GFP_ZERO);
2060 "failed to allocate l1 stream table (%u bytes)\n",
2064 cfg->strtab = strtab;
2066 /* Configure strtab_base_cfg for 2 levels */
2067 reg = STRTAB_BASE_CFG_FMT_2LVL;
2068 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2069 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2070 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2071 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2072 cfg->strtab_base_cfg = reg;
2074 return arm_smmu_init_l1_strtab(smmu);
2077 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2082 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2084 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2085 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2086 GFP_KERNEL | __GFP_ZERO);
2089 "failed to allocate linear stream table (%u bytes)\n",
2093 cfg->strtab = strtab;
2094 cfg->num_l1_ents = 1 << smmu->sid_bits;
2096 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2097 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2098 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2099 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2100 cfg->strtab_base_cfg = reg;
2102 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2106 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2111 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2112 ret = arm_smmu_init_strtab_2lvl(smmu);
2114 ret = arm_smmu_init_strtab_linear(smmu);
2119 /* Set the strtab base address */
2120 reg = smmu->strtab_cfg.strtab_dma &
2121 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2122 reg |= STRTAB_BASE_RA;
2123 smmu->strtab_cfg.strtab_base = reg;
2125 /* Allocate the first VMID for stage-2 bypass STEs */
2126 set_bit(0, smmu->vmid_map);
2130 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2134 ret = arm_smmu_init_queues(smmu);
2138 return arm_smmu_init_strtab(smmu);
2141 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2142 unsigned int reg_off, unsigned int ack_off)
2146 writel_relaxed(val, smmu->base + reg_off);
2147 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2148 1, ARM_SMMU_POLL_TIMEOUT_US);
2151 static void arm_smmu_free_msis(void *data)
2153 struct device *dev = data;
2154 platform_msi_domain_free_irqs(dev);
2157 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2159 phys_addr_t doorbell;
2160 struct device *dev = msi_desc_to_dev(desc);
2161 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2162 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2164 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2165 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2167 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2168 writel_relaxed(msg->data, smmu->base + cfg[1]);
2169 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2172 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2174 struct msi_desc *desc;
2175 int ret, nvec = ARM_SMMU_MAX_MSIS;
2176 struct device *dev = smmu->dev;
2178 /* Clear the MSI address regs */
2179 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2180 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2182 if (smmu->features & ARM_SMMU_FEAT_PRI)
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2187 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2190 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2191 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2193 dev_warn(dev, "failed to allocate MSIs\n");
2197 for_each_msi_entry(desc, dev) {
2198 switch (desc->platform.msi_index) {
2199 case EVTQ_MSI_INDEX:
2200 smmu->evtq.q.irq = desc->irq;
2202 case GERROR_MSI_INDEX:
2203 smmu->gerr_irq = desc->irq;
2205 case PRIQ_MSI_INDEX:
2206 smmu->priq.q.irq = desc->irq;
2208 default: /* Unknown */
2213 /* Add callback to free MSIs on teardown */
2214 devm_add_action(dev, arm_smmu_free_msis, dev);
2217 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2220 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2222 /* Disable IRQs first */
2223 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2224 ARM_SMMU_IRQ_CTRLACK);
2226 dev_err(smmu->dev, "failed to disable irqs\n");
2230 arm_smmu_setup_msis(smmu);
2232 /* Request interrupt lines */
2233 irq = smmu->evtq.q.irq;
2235 ret = devm_request_threaded_irq(smmu->dev, irq,
2236 arm_smmu_evtq_handler,
2237 arm_smmu_evtq_thread,
2238 0, "arm-smmu-v3-evtq", smmu);
2240 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2243 irq = smmu->cmdq.q.irq;
2245 ret = devm_request_irq(smmu->dev, irq,
2246 arm_smmu_cmdq_sync_handler, 0,
2247 "arm-smmu-v3-cmdq-sync", smmu);
2249 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2252 irq = smmu->gerr_irq;
2254 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2255 0, "arm-smmu-v3-gerror", smmu);
2257 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2260 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2261 irq = smmu->priq.q.irq;
2263 ret = devm_request_threaded_irq(smmu->dev, irq,
2264 arm_smmu_priq_handler,
2265 arm_smmu_priq_thread,
2266 0, "arm-smmu-v3-priq",
2270 "failed to enable priq irq\n");
2272 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2276 /* Enable interrupt generation on the SMMU */
2277 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2278 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2280 dev_warn(smmu->dev, "failed to enable irqs\n");
2285 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2289 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2291 dev_err(smmu->dev, "failed to clear cr0\n");
2296 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2300 struct arm_smmu_cmdq_ent cmd;
2302 /* Clear CR0 and sync (disables SMMU and queue processing) */
2303 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2304 if (reg & CR0_SMMUEN)
2305 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2307 ret = arm_smmu_device_disable(smmu);
2311 /* CR1 (table and queue memory attributes) */
2312 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2313 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2314 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2315 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2316 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2317 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2318 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2320 /* CR2 (random crap) */
2321 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2325 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2326 smmu->base + ARM_SMMU_STRTAB_BASE);
2327 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2328 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2331 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2332 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2333 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2335 enables = CR0_CMDQEN;
2336 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2339 dev_err(smmu->dev, "failed to enable command queue\n");
2343 /* Invalidate any cached configuration */
2344 cmd.opcode = CMDQ_OP_CFGI_ALL;
2345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2346 cmd.opcode = CMDQ_OP_CMD_SYNC;
2347 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2349 /* Invalidate any stale TLB entries */
2350 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2351 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2352 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2355 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357 cmd.opcode = CMDQ_OP_CMD_SYNC;
2358 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2361 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2362 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2363 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2365 enables |= CR0_EVTQEN;
2366 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2369 dev_err(smmu->dev, "failed to enable event queue\n");
2374 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2375 writeq_relaxed(smmu->priq.q.q_base,
2376 smmu->base + ARM_SMMU_PRIQ_BASE);
2377 writel_relaxed(smmu->priq.q.prod,
2378 smmu->base + ARM_SMMU_PRIQ_PROD);
2379 writel_relaxed(smmu->priq.q.cons,
2380 smmu->base + ARM_SMMU_PRIQ_CONS);
2382 enables |= CR0_PRIQEN;
2383 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2386 dev_err(smmu->dev, "failed to enable PRI queue\n");
2391 ret = arm_smmu_setup_irqs(smmu);
2393 dev_err(smmu->dev, "failed to setup irqs\n");
2397 /* Enable the SMMU interface */
2398 enables |= CR0_SMMUEN;
2399 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2402 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2409 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2415 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2417 /* 2-level structures */
2418 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2419 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2421 if (reg & IDR0_CD2L)
2422 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2425 * Translation table endianness.
2426 * We currently require the same endianness as the CPU, but this
2427 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2429 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2430 case IDR0_TTENDIAN_MIXED:
2431 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2434 case IDR0_TTENDIAN_BE:
2435 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2438 case IDR0_TTENDIAN_LE:
2439 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2443 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2447 /* Boolean feature flags */
2448 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2449 smmu->features |= ARM_SMMU_FEAT_PRI;
2451 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2452 smmu->features |= ARM_SMMU_FEAT_ATS;
2455 smmu->features |= ARM_SMMU_FEAT_SEV;
2458 smmu->features |= ARM_SMMU_FEAT_MSI;
2461 smmu->features |= ARM_SMMU_FEAT_HYP;
2464 * The dma-coherent property is used in preference to the ID
2465 * register, but warn on mismatch.
2467 coherent = of_dma_is_coherent(smmu->dev->of_node);
2469 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2471 if (!!(reg & IDR0_COHACC) != coherent)
2472 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2473 coherent ? "true" : "false");
2475 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2476 case IDR0_STALL_MODEL_STALL:
2478 case IDR0_STALL_MODEL_FORCE:
2479 smmu->features |= ARM_SMMU_FEAT_STALLS;
2483 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2486 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2488 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2489 dev_err(smmu->dev, "no translation support!\n");
2493 /* We only support the AArch64 table format at present */
2494 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2495 case IDR0_TTF_AARCH32_64:
2498 case IDR0_TTF_AARCH64:
2501 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2505 /* ASID/VMID sizes */
2506 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2507 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2510 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2511 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2512 dev_err(smmu->dev, "embedded implementation not supported\n");
2516 /* Queue sizes, capped at 4k */
2517 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2518 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2519 if (!smmu->cmdq.q.max_n_shift) {
2520 /* Odd alignment restrictions on the base, so ignore for now */
2521 dev_err(smmu->dev, "unit-length command queue not supported\n");
2525 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2526 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2527 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2528 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2530 /* SID/SSID sizes */
2531 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2532 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2535 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2537 /* Maximum number of outstanding stalls */
2538 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2539 & IDR5_STALL_MAX_MASK;
2542 if (reg & IDR5_GRAN64K)
2543 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2544 if (reg & IDR5_GRAN16K)
2545 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2546 if (reg & IDR5_GRAN4K)
2547 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2549 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2550 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2552 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2554 /* Output address size */
2555 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2556 case IDR5_OAS_32_BIT:
2559 case IDR5_OAS_36_BIT:
2562 case IDR5_OAS_40_BIT:
2565 case IDR5_OAS_42_BIT:
2568 case IDR5_OAS_44_BIT:
2573 "unknown output address size. Truncating to 48-bit\n");
2575 case IDR5_OAS_48_BIT:
2579 /* Set the DMA mask for our table walker */
2580 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2582 "failed to set DMA mask for table walker\n");
2584 smmu->ias = max(smmu->ias, smmu->oas);
2586 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2587 smmu->ias, smmu->oas, smmu->features);
2591 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2594 struct resource *res;
2595 struct arm_smmu_device *smmu;
2596 struct device *dev = &pdev->dev;
2598 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2600 dev_err(dev, "failed to allocate arm_smmu_device\n");
2606 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2607 if (resource_size(res) + 1 < SZ_128K) {
2608 dev_err(dev, "MMIO region too small (%pr)\n", res);
2612 smmu->base = devm_ioremap_resource(dev, res);
2613 if (IS_ERR(smmu->base))
2614 return PTR_ERR(smmu->base);
2616 /* Interrupt lines */
2617 irq = platform_get_irq_byname(pdev, "eventq");
2619 smmu->evtq.q.irq = irq;
2621 irq = platform_get_irq_byname(pdev, "priq");
2623 smmu->priq.q.irq = irq;
2625 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2627 smmu->cmdq.q.irq = irq;
2629 irq = platform_get_irq_byname(pdev, "gerror");
2631 smmu->gerr_irq = irq;
2633 parse_driver_options(smmu);
2636 ret = arm_smmu_device_probe(smmu);
2640 /* Initialise in-memory data structures */
2641 ret = arm_smmu_init_structures(smmu);
2645 /* Record our private device structure */
2646 platform_set_drvdata(pdev, smmu);
2648 /* Reset the device */
2649 return arm_smmu_device_reset(smmu);
2652 static int arm_smmu_device_remove(struct platform_device *pdev)
2654 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2656 arm_smmu_device_disable(smmu);
2660 static struct of_device_id arm_smmu_of_match[] = {
2661 { .compatible = "arm,smmu-v3", },
2664 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2666 static struct platform_driver arm_smmu_driver = {
2668 .name = "arm-smmu-v3",
2669 .of_match_table = of_match_ptr(arm_smmu_of_match),
2671 .probe = arm_smmu_device_dt_probe,
2672 .remove = arm_smmu_device_remove,
2675 static int __init arm_smmu_init(void)
2677 struct device_node *np;
2680 np = of_find_matching_node(NULL, arm_smmu_of_match);
2686 ret = platform_driver_register(&arm_smmu_driver);
2692 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2695 static void __exit arm_smmu_exit(void)
2697 return platform_driver_unregister(&arm_smmu_driver);
2700 subsys_initcall(arm_smmu_init);
2701 module_exit(arm_smmu_exit);
2703 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2704 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2705 MODULE_LICENSE("GPL v2");