2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <asm/msidef.h>
35 #include <asm/proto.h>
36 #include <asm/iommu.h>
40 #include "amd_iommu_proto.h"
41 #include "amd_iommu_types.h"
43 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
45 #define LOOP_TIMEOUT 100000
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
63 #define AMD_IOMMU_PGSIZES (~0xFFFUL)
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
79 static struct protection_domain *pt_domain;
81 static struct iommu_ops amd_iommu_ops;
83 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84 int amd_iommu_max_glx_val = -1;
86 static struct dma_map_ops amd_iommu_dma_ops;
89 * general struct to manage commands send to an IOMMU
95 static void update_domain(struct protection_domain *domain);
96 static int __init alloc_passthrough_domain(void);
98 /****************************************************************************
102 ****************************************************************************/
104 static struct iommu_dev_data *alloc_dev_data(u16 devid)
106 struct iommu_dev_data *dev_data;
109 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
113 dev_data->devid = devid;
114 atomic_set(&dev_data->bind, 0);
116 spin_lock_irqsave(&dev_data_list_lock, flags);
117 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118 spin_unlock_irqrestore(&dev_data_list_lock, flags);
123 static void free_dev_data(struct iommu_dev_data *dev_data)
127 spin_lock_irqsave(&dev_data_list_lock, flags);
128 list_del(&dev_data->dev_data_list);
129 spin_unlock_irqrestore(&dev_data_list_lock, flags);
134 static struct iommu_dev_data *search_dev_data(u16 devid)
136 struct iommu_dev_data *dev_data;
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141 if (dev_data->devid == devid)
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
153 static struct iommu_dev_data *find_dev_data(u16 devid)
155 struct iommu_dev_data *dev_data;
157 dev_data = search_dev_data(devid);
159 if (dev_data == NULL)
160 dev_data = alloc_dev_data(devid);
165 static inline u16 get_device_id(struct device *dev)
167 struct pci_dev *pdev = to_pci_dev(dev);
169 return calc_devid(pdev->bus->number, pdev->devfn);
172 static struct iommu_dev_data *get_dev_data(struct device *dev)
174 return dev->archdata.iommu;
177 static bool pci_iommuv2_capable(struct pci_dev *pdev)
179 static const int caps[] = {
182 PCI_EXT_CAP_ID_PASID,
186 for (i = 0; i < 3; ++i) {
187 pos = pci_find_ext_capability(pdev, caps[i]);
195 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
197 struct iommu_dev_data *dev_data;
199 dev_data = get_dev_data(&pdev->dev);
201 return dev_data->errata & (1 << erratum) ? true : false;
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
208 static struct dma_ops_domain *find_protection_domain(u16 devid)
210 struct dma_ops_domain *entry, *ret = NULL;
212 u16 alias = amd_iommu_alias_table[devid];
214 if (list_empty(&iommu_pd_list))
217 spin_lock_irqsave(&iommu_pd_list_lock, flags);
219 list_for_each_entry(entry, &iommu_pd_list, list) {
220 if (entry->target_dev == devid ||
221 entry->target_dev == alias) {
227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
236 static bool check_device(struct device *dev)
240 if (!dev || !dev->dma_mask)
243 /* No device or no PCI device */
244 if (dev->bus != &pci_bus_type)
247 devid = get_device_id(dev);
249 /* Out of our scope? */
250 if (devid > amd_iommu_last_bdf)
253 if (amd_iommu_rlookup_table[devid] == NULL)
259 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
265 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
267 static int iommu_init_device(struct device *dev)
269 struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
270 struct iommu_dev_data *dev_data;
271 struct iommu_group *group;
275 if (dev->archdata.iommu)
278 dev_data = find_dev_data(get_device_id(dev));
282 alias = amd_iommu_alias_table[dev_data->devid];
283 if (alias != dev_data->devid) {
284 struct iommu_dev_data *alias_data;
286 alias_data = find_dev_data(alias);
287 if (alias_data == NULL) {
288 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
290 free_dev_data(dev_data);
293 dev_data->alias_data = alias_data;
295 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
297 dma_pdev = pci_dev_get(pdev);
299 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
301 if (dma_pdev->multifunction &&
302 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
303 swap_pci_ref(&dma_pdev,
304 pci_get_slot(dma_pdev->bus,
305 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
308 while (!pci_is_root_bus(dma_pdev->bus)) {
309 if (pci_acs_path_enabled(dma_pdev->bus->self,
310 NULL, REQ_ACS_FLAGS))
313 swap_pci_ref(&dma_pdev, pci_dev_get(dma_pdev->bus->self));
316 group = iommu_group_get(&dma_pdev->dev);
317 pci_dev_put(dma_pdev);
319 group = iommu_group_alloc();
321 return PTR_ERR(group);
324 ret = iommu_group_add_device(group, dev);
326 iommu_group_put(group);
331 if (pci_iommuv2_capable(pdev)) {
332 struct amd_iommu *iommu;
334 iommu = amd_iommu_rlookup_table[dev_data->devid];
335 dev_data->iommu_v2 = iommu->is_iommu_v2;
338 dev->archdata.iommu = dev_data;
343 static void iommu_ignore_device(struct device *dev)
347 devid = get_device_id(dev);
348 alias = amd_iommu_alias_table[devid];
350 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
351 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
353 amd_iommu_rlookup_table[devid] = NULL;
354 amd_iommu_rlookup_table[alias] = NULL;
357 static void iommu_uninit_device(struct device *dev)
359 iommu_group_remove_device(dev);
362 * Nothing to do here - we keep dev_data around for unplugged devices
363 * and reuse it when the device is re-plugged - not doing so would
364 * introduce a ton of races.
368 void __init amd_iommu_uninit_devices(void)
370 struct iommu_dev_data *dev_data, *n;
371 struct pci_dev *pdev = NULL;
373 for_each_pci_dev(pdev) {
375 if (!check_device(&pdev->dev))
378 iommu_uninit_device(&pdev->dev);
381 /* Free all of our dev_data structures */
382 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
383 free_dev_data(dev_data);
386 int __init amd_iommu_init_devices(void)
388 struct pci_dev *pdev = NULL;
391 for_each_pci_dev(pdev) {
393 if (!check_device(&pdev->dev))
396 ret = iommu_init_device(&pdev->dev);
397 if (ret == -ENOTSUPP)
398 iommu_ignore_device(&pdev->dev);
407 amd_iommu_uninit_devices();
411 #ifdef CONFIG_AMD_IOMMU_STATS
414 * Initialization code for statistics collection
417 DECLARE_STATS_COUNTER(compl_wait);
418 DECLARE_STATS_COUNTER(cnt_map_single);
419 DECLARE_STATS_COUNTER(cnt_unmap_single);
420 DECLARE_STATS_COUNTER(cnt_map_sg);
421 DECLARE_STATS_COUNTER(cnt_unmap_sg);
422 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
423 DECLARE_STATS_COUNTER(cnt_free_coherent);
424 DECLARE_STATS_COUNTER(cross_page);
425 DECLARE_STATS_COUNTER(domain_flush_single);
426 DECLARE_STATS_COUNTER(domain_flush_all);
427 DECLARE_STATS_COUNTER(alloced_io_mem);
428 DECLARE_STATS_COUNTER(total_map_requests);
429 DECLARE_STATS_COUNTER(complete_ppr);
430 DECLARE_STATS_COUNTER(invalidate_iotlb);
431 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
432 DECLARE_STATS_COUNTER(pri_requests);
434 static struct dentry *stats_dir;
435 static struct dentry *de_fflush;
437 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
439 if (stats_dir == NULL)
442 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
446 static void amd_iommu_stats_init(void)
448 stats_dir = debugfs_create_dir("amd-iommu", NULL);
449 if (stats_dir == NULL)
452 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
453 &amd_iommu_unmap_flush);
455 amd_iommu_stats_add(&compl_wait);
456 amd_iommu_stats_add(&cnt_map_single);
457 amd_iommu_stats_add(&cnt_unmap_single);
458 amd_iommu_stats_add(&cnt_map_sg);
459 amd_iommu_stats_add(&cnt_unmap_sg);
460 amd_iommu_stats_add(&cnt_alloc_coherent);
461 amd_iommu_stats_add(&cnt_free_coherent);
462 amd_iommu_stats_add(&cross_page);
463 amd_iommu_stats_add(&domain_flush_single);
464 amd_iommu_stats_add(&domain_flush_all);
465 amd_iommu_stats_add(&alloced_io_mem);
466 amd_iommu_stats_add(&total_map_requests);
467 amd_iommu_stats_add(&complete_ppr);
468 amd_iommu_stats_add(&invalidate_iotlb);
469 amd_iommu_stats_add(&invalidate_iotlb_all);
470 amd_iommu_stats_add(&pri_requests);
475 /****************************************************************************
477 * Interrupt handling functions
479 ****************************************************************************/
481 static void dump_dte_entry(u16 devid)
485 for (i = 0; i < 4; ++i)
486 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
487 amd_iommu_dev_table[devid].data[i]);
490 static void dump_command(unsigned long phys_addr)
492 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
495 for (i = 0; i < 4; ++i)
496 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
499 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
501 int type, devid, domid, flags;
502 volatile u32 *event = __evt;
507 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
508 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
509 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
510 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
511 address = (u64)(((u64)event[3]) << 32) | event[2];
514 /* Did we hit the erratum? */
515 if (++count == LOOP_TIMEOUT) {
516 pr_err("AMD-Vi: No event written to event log\n");
523 printk(KERN_ERR "AMD-Vi: Event logged [");
526 case EVENT_TYPE_ILL_DEV:
527 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
528 "address=0x%016llx flags=0x%04x]\n",
529 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
531 dump_dte_entry(devid);
533 case EVENT_TYPE_IO_FAULT:
534 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
535 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
536 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
537 domid, address, flags);
539 case EVENT_TYPE_DEV_TAB_ERR:
540 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
541 "address=0x%016llx flags=0x%04x]\n",
542 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
545 case EVENT_TYPE_PAGE_TAB_ERR:
546 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
547 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
548 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
549 domid, address, flags);
551 case EVENT_TYPE_ILL_CMD:
552 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
553 dump_command(address);
555 case EVENT_TYPE_CMD_HARD_ERR:
556 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
557 "flags=0x%04x]\n", address, flags);
559 case EVENT_TYPE_IOTLB_INV_TO:
560 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
561 "address=0x%016llx]\n",
562 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
565 case EVENT_TYPE_INV_DEV_REQ:
566 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
567 "address=0x%016llx flags=0x%04x]\n",
568 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
572 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
575 memset(__evt, 0, 4 * sizeof(u32));
578 static void iommu_poll_events(struct amd_iommu *iommu)
583 spin_lock_irqsave(&iommu->lock, flags);
585 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
586 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
588 while (head != tail) {
589 iommu_print_event(iommu, iommu->evt_buf + head);
590 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
593 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
595 spin_unlock_irqrestore(&iommu->lock, flags);
598 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
600 struct amd_iommu_fault fault;
602 INC_STATS_COUNTER(pri_requests);
604 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
605 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
609 fault.address = raw[1];
610 fault.pasid = PPR_PASID(raw[0]);
611 fault.device_id = PPR_DEVID(raw[0]);
612 fault.tag = PPR_TAG(raw[0]);
613 fault.flags = PPR_FLAGS(raw[0]);
615 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
618 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
623 if (iommu->ppr_log == NULL)
626 /* enable ppr interrupts again */
627 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
629 spin_lock_irqsave(&iommu->lock, flags);
631 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
632 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
634 while (head != tail) {
639 raw = (u64 *)(iommu->ppr_log + head);
642 * Hardware bug: Interrupt may arrive before the entry is
643 * written to memory. If this happens we need to wait for the
646 for (i = 0; i < LOOP_TIMEOUT; ++i) {
647 if (PPR_REQ_TYPE(raw[0]) != 0)
652 /* Avoid memcpy function-call overhead */
657 * To detect the hardware bug we need to clear the entry
660 raw[0] = raw[1] = 0UL;
662 /* Update head pointer of hardware ring-buffer */
663 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
664 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
667 * Release iommu->lock because ppr-handling might need to
670 spin_unlock_irqrestore(&iommu->lock, flags);
672 /* Handle PPR entry */
673 iommu_handle_ppr_entry(iommu, entry);
675 spin_lock_irqsave(&iommu->lock, flags);
677 /* Refresh ring-buffer information */
678 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
679 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
682 spin_unlock_irqrestore(&iommu->lock, flags);
685 irqreturn_t amd_iommu_int_thread(int irq, void *data)
687 struct amd_iommu *iommu;
689 for_each_iommu(iommu) {
690 iommu_poll_events(iommu);
691 iommu_poll_ppr_log(iommu);
697 irqreturn_t amd_iommu_int_handler(int irq, void *data)
699 return IRQ_WAKE_THREAD;
702 /****************************************************************************
704 * IOMMU command queuing functions
706 ****************************************************************************/
708 static int wait_on_sem(volatile u64 *sem)
712 while (*sem == 0 && i < LOOP_TIMEOUT) {
717 if (i == LOOP_TIMEOUT) {
718 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
725 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
726 struct iommu_cmd *cmd,
731 target = iommu->cmd_buf + tail;
732 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
734 /* Copy command to buffer */
735 memcpy(target, cmd, sizeof(*cmd));
737 /* Tell the IOMMU about it */
738 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
741 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
743 WARN_ON(address & 0x7ULL);
745 memset(cmd, 0, sizeof(*cmd));
746 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
747 cmd->data[1] = upper_32_bits(__pa(address));
749 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
752 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
754 memset(cmd, 0, sizeof(*cmd));
755 cmd->data[0] = devid;
756 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
759 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
760 size_t size, u16 domid, int pde)
765 pages = iommu_num_pages(address, size, PAGE_SIZE);
770 * If we have to flush more than one page, flush all
771 * TLB entries for this domain
773 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
777 address &= PAGE_MASK;
779 memset(cmd, 0, sizeof(*cmd));
780 cmd->data[1] |= domid;
781 cmd->data[2] = lower_32_bits(address);
782 cmd->data[3] = upper_32_bits(address);
783 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
784 if (s) /* size bit - we flush more than one 4kb page */
785 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
786 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
787 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
790 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
791 u64 address, size_t size)
796 pages = iommu_num_pages(address, size, PAGE_SIZE);
801 * If we have to flush more than one page, flush all
802 * TLB entries for this domain
804 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
808 address &= PAGE_MASK;
810 memset(cmd, 0, sizeof(*cmd));
811 cmd->data[0] = devid;
812 cmd->data[0] |= (qdep & 0xff) << 24;
813 cmd->data[1] = devid;
814 cmd->data[2] = lower_32_bits(address);
815 cmd->data[3] = upper_32_bits(address);
816 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
818 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
821 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
822 u64 address, bool size)
824 memset(cmd, 0, sizeof(*cmd));
826 address &= ~(0xfffULL);
828 cmd->data[0] = pasid & PASID_MASK;
829 cmd->data[1] = domid;
830 cmd->data[2] = lower_32_bits(address);
831 cmd->data[3] = upper_32_bits(address);
832 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
833 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
835 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
836 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
839 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
840 int qdep, u64 address, bool size)
842 memset(cmd, 0, sizeof(*cmd));
844 address &= ~(0xfffULL);
846 cmd->data[0] = devid;
847 cmd->data[0] |= (pasid & 0xff) << 16;
848 cmd->data[0] |= (qdep & 0xff) << 24;
849 cmd->data[1] = devid;
850 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
851 cmd->data[2] = lower_32_bits(address);
852 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
853 cmd->data[3] = upper_32_bits(address);
855 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
856 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
859 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
860 int status, int tag, bool gn)
862 memset(cmd, 0, sizeof(*cmd));
864 cmd->data[0] = devid;
866 cmd->data[1] = pasid & PASID_MASK;
867 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
869 cmd->data[3] = tag & 0x1ff;
870 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
872 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
875 static void build_inv_all(struct iommu_cmd *cmd)
877 memset(cmd, 0, sizeof(*cmd));
878 CMD_SET_TYPE(cmd, CMD_INV_ALL);
882 * Writes the command to the IOMMUs command buffer and informs the
883 * hardware about the new command.
885 static int iommu_queue_command_sync(struct amd_iommu *iommu,
886 struct iommu_cmd *cmd,
889 u32 left, tail, head, next_tail;
892 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
895 spin_lock_irqsave(&iommu->lock, flags);
897 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
898 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
899 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
900 left = (head - next_tail) % iommu->cmd_buf_size;
903 struct iommu_cmd sync_cmd;
904 volatile u64 sem = 0;
907 build_completion_wait(&sync_cmd, (u64)&sem);
908 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
910 spin_unlock_irqrestore(&iommu->lock, flags);
912 if ((ret = wait_on_sem(&sem)) != 0)
918 copy_cmd_to_buffer(iommu, cmd, tail);
920 /* We need to sync now to make sure all commands are processed */
921 iommu->need_sync = sync;
923 spin_unlock_irqrestore(&iommu->lock, flags);
928 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
930 return iommu_queue_command_sync(iommu, cmd, true);
934 * This function queues a completion wait command into the command
937 static int iommu_completion_wait(struct amd_iommu *iommu)
939 struct iommu_cmd cmd;
940 volatile u64 sem = 0;
943 if (!iommu->need_sync)
946 build_completion_wait(&cmd, (u64)&sem);
948 ret = iommu_queue_command_sync(iommu, &cmd, false);
952 return wait_on_sem(&sem);
955 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
957 struct iommu_cmd cmd;
959 build_inv_dte(&cmd, devid);
961 return iommu_queue_command(iommu, &cmd);
964 static void iommu_flush_dte_all(struct amd_iommu *iommu)
968 for (devid = 0; devid <= 0xffff; ++devid)
969 iommu_flush_dte(iommu, devid);
971 iommu_completion_wait(iommu);
975 * This function uses heavy locking and may disable irqs for some time. But
976 * this is no issue because it is only called during resume.
978 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
982 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
983 struct iommu_cmd cmd;
984 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
986 iommu_queue_command(iommu, &cmd);
989 iommu_completion_wait(iommu);
992 static void iommu_flush_all(struct amd_iommu *iommu)
994 struct iommu_cmd cmd;
998 iommu_queue_command(iommu, &cmd);
999 iommu_completion_wait(iommu);
1002 void iommu_flush_all_caches(struct amd_iommu *iommu)
1004 if (iommu_feature(iommu, FEATURE_IA)) {
1005 iommu_flush_all(iommu);
1007 iommu_flush_dte_all(iommu);
1008 iommu_flush_tlb_all(iommu);
1013 * Command send function for flushing on-device TLB
1015 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1016 u64 address, size_t size)
1018 struct amd_iommu *iommu;
1019 struct iommu_cmd cmd;
1022 qdep = dev_data->ats.qdep;
1023 iommu = amd_iommu_rlookup_table[dev_data->devid];
1025 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1027 return iommu_queue_command(iommu, &cmd);
1031 * Command send function for invalidating a device table entry
1033 static int device_flush_dte(struct iommu_dev_data *dev_data)
1035 struct amd_iommu *iommu;
1038 iommu = amd_iommu_rlookup_table[dev_data->devid];
1040 ret = iommu_flush_dte(iommu, dev_data->devid);
1044 if (dev_data->ats.enabled)
1045 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1051 * TLB invalidation function which is called from the mapping functions.
1052 * It invalidates a single PTE if the range to flush is within a single
1053 * page. Otherwise it flushes the whole TLB of the IOMMU.
1055 static void __domain_flush_pages(struct protection_domain *domain,
1056 u64 address, size_t size, int pde)
1058 struct iommu_dev_data *dev_data;
1059 struct iommu_cmd cmd;
1062 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1064 for (i = 0; i < amd_iommus_present; ++i) {
1065 if (!domain->dev_iommu[i])
1069 * Devices of this domain are behind this IOMMU
1070 * We need a TLB flush
1072 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1075 list_for_each_entry(dev_data, &domain->dev_list, list) {
1077 if (!dev_data->ats.enabled)
1080 ret |= device_flush_iotlb(dev_data, address, size);
1086 static void domain_flush_pages(struct protection_domain *domain,
1087 u64 address, size_t size)
1089 __domain_flush_pages(domain, address, size, 0);
1092 /* Flush the whole IO/TLB for a given protection domain */
1093 static void domain_flush_tlb(struct protection_domain *domain)
1095 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1098 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1099 static void domain_flush_tlb_pde(struct protection_domain *domain)
1101 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1104 static void domain_flush_complete(struct protection_domain *domain)
1108 for (i = 0; i < amd_iommus_present; ++i) {
1109 if (!domain->dev_iommu[i])
1113 * Devices of this domain are behind this IOMMU
1114 * We need to wait for completion of all commands.
1116 iommu_completion_wait(amd_iommus[i]);
1122 * This function flushes the DTEs for all devices in domain
1124 static void domain_flush_devices(struct protection_domain *domain)
1126 struct iommu_dev_data *dev_data;
1128 list_for_each_entry(dev_data, &domain->dev_list, list)
1129 device_flush_dte(dev_data);
1132 /****************************************************************************
1134 * The functions below are used the create the page table mappings for
1135 * unity mapped regions.
1137 ****************************************************************************/
1140 * This function is used to add another level to an IO page table. Adding
1141 * another level increases the size of the address space by 9 bits to a size up
1144 static bool increase_address_space(struct protection_domain *domain,
1149 if (domain->mode == PAGE_MODE_6_LEVEL)
1150 /* address space already 64 bit large */
1153 pte = (void *)get_zeroed_page(gfp);
1157 *pte = PM_LEVEL_PDE(domain->mode,
1158 virt_to_phys(domain->pt_root));
1159 domain->pt_root = pte;
1161 domain->updated = true;
1166 static u64 *alloc_pte(struct protection_domain *domain,
1167 unsigned long address,
1168 unsigned long page_size,
1175 BUG_ON(!is_power_of_2(page_size));
1177 while (address > PM_LEVEL_SIZE(domain->mode))
1178 increase_address_space(domain, gfp);
1180 level = domain->mode - 1;
1181 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1182 address = PAGE_SIZE_ALIGN(address, page_size);
1183 end_lvl = PAGE_SIZE_LEVEL(page_size);
1185 while (level > end_lvl) {
1186 if (!IOMMU_PTE_PRESENT(*pte)) {
1187 page = (u64 *)get_zeroed_page(gfp);
1190 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1193 /* No level skipping support yet */
1194 if (PM_PTE_LEVEL(*pte) != level)
1199 pte = IOMMU_PTE_PAGE(*pte);
1201 if (pte_page && level == end_lvl)
1204 pte = &pte[PM_LEVEL_INDEX(level, address)];
1211 * This function checks if there is a PTE for a given dma address. If
1212 * there is one, it returns the pointer to it.
1214 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1219 if (address > PM_LEVEL_SIZE(domain->mode))
1222 level = domain->mode - 1;
1223 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1228 if (!IOMMU_PTE_PRESENT(*pte))
1232 if (PM_PTE_LEVEL(*pte) == 0x07) {
1233 unsigned long pte_mask, __pte;
1236 * If we have a series of large PTEs, make
1237 * sure to return a pointer to the first one.
1239 pte_mask = PTE_PAGE_SIZE(*pte);
1240 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1241 __pte = ((unsigned long)pte) & pte_mask;
1243 return (u64 *)__pte;
1246 /* No level skipping support yet */
1247 if (PM_PTE_LEVEL(*pte) != level)
1252 /* Walk to the next level */
1253 pte = IOMMU_PTE_PAGE(*pte);
1254 pte = &pte[PM_LEVEL_INDEX(level, address)];
1261 * Generic mapping functions. It maps a physical address into a DMA
1262 * address space. It allocates the page table pages if necessary.
1263 * In the future it can be extended to a generic mapping function
1264 * supporting all features of AMD IOMMU page tables like level skipping
1265 * and full 64 bit address spaces.
1267 static int iommu_map_page(struct protection_domain *dom,
1268 unsigned long bus_addr,
1269 unsigned long phys_addr,
1271 unsigned long page_size)
1276 if (!(prot & IOMMU_PROT_MASK))
1279 bus_addr = PAGE_ALIGN(bus_addr);
1280 phys_addr = PAGE_ALIGN(phys_addr);
1281 count = PAGE_SIZE_PTE_COUNT(page_size);
1282 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1284 for (i = 0; i < count; ++i)
1285 if (IOMMU_PTE_PRESENT(pte[i]))
1288 if (page_size > PAGE_SIZE) {
1289 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1290 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1292 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1294 if (prot & IOMMU_PROT_IR)
1295 __pte |= IOMMU_PTE_IR;
1296 if (prot & IOMMU_PROT_IW)
1297 __pte |= IOMMU_PTE_IW;
1299 for (i = 0; i < count; ++i)
1307 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1308 unsigned long bus_addr,
1309 unsigned long page_size)
1311 unsigned long long unmap_size, unmapped;
1314 BUG_ON(!is_power_of_2(page_size));
1318 while (unmapped < page_size) {
1320 pte = fetch_pte(dom, bus_addr);
1324 * No PTE for this address
1325 * move forward in 4kb steps
1327 unmap_size = PAGE_SIZE;
1328 } else if (PM_PTE_LEVEL(*pte) == 0) {
1329 /* 4kb PTE found for this address */
1330 unmap_size = PAGE_SIZE;
1335 /* Large PTE found which maps this address */
1336 unmap_size = PTE_PAGE_SIZE(*pte);
1337 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1338 for (i = 0; i < count; i++)
1342 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1343 unmapped += unmap_size;
1346 BUG_ON(!is_power_of_2(unmapped));
1352 * This function checks if a specific unity mapping entry is needed for
1353 * this specific IOMMU.
1355 static int iommu_for_unity_map(struct amd_iommu *iommu,
1356 struct unity_map_entry *entry)
1360 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1361 bdf = amd_iommu_alias_table[i];
1362 if (amd_iommu_rlookup_table[bdf] == iommu)
1370 * This function actually applies the mapping to the page table of the
1373 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1374 struct unity_map_entry *e)
1379 for (addr = e->address_start; addr < e->address_end;
1380 addr += PAGE_SIZE) {
1381 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1386 * if unity mapping is in aperture range mark the page
1387 * as allocated in the aperture
1389 if (addr < dma_dom->aperture_size)
1390 __set_bit(addr >> PAGE_SHIFT,
1391 dma_dom->aperture[0]->bitmap);
1398 * Init the unity mappings for a specific IOMMU in the system
1400 * Basically iterates over all unity mapping entries and applies them to
1401 * the default domain DMA of that IOMMU if necessary.
1403 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1405 struct unity_map_entry *entry;
1408 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1409 if (!iommu_for_unity_map(iommu, entry))
1411 ret = dma_ops_unity_map(iommu->default_dom, entry);
1420 * Inits the unity mappings required for a specific device
1422 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1425 struct unity_map_entry *e;
1428 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1429 if (!(devid >= e->devid_start && devid <= e->devid_end))
1431 ret = dma_ops_unity_map(dma_dom, e);
1439 /****************************************************************************
1441 * The next functions belong to the address allocator for the dma_ops
1442 * interface functions. They work like the allocators in the other IOMMU
1443 * drivers. Its basically a bitmap which marks the allocated pages in
1444 * the aperture. Maybe it could be enhanced in the future to a more
1445 * efficient allocator.
1447 ****************************************************************************/
1450 * The address allocator core functions.
1452 * called with domain->lock held
1456 * Used to reserve address ranges in the aperture (e.g. for exclusion
1459 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1460 unsigned long start_page,
1463 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1465 if (start_page + pages > last_page)
1466 pages = last_page - start_page;
1468 for (i = start_page; i < start_page + pages; ++i) {
1469 int index = i / APERTURE_RANGE_PAGES;
1470 int page = i % APERTURE_RANGE_PAGES;
1471 __set_bit(page, dom->aperture[index]->bitmap);
1476 * This function is used to add a new aperture range to an existing
1477 * aperture in case of dma_ops domain allocation or address allocation
1480 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1481 bool populate, gfp_t gfp)
1483 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1484 struct amd_iommu *iommu;
1485 unsigned long i, old_size;
1487 #ifdef CONFIG_IOMMU_STRESS
1491 if (index >= APERTURE_MAX_RANGES)
1494 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1495 if (!dma_dom->aperture[index])
1498 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1499 if (!dma_dom->aperture[index]->bitmap)
1502 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1505 unsigned long address = dma_dom->aperture_size;
1506 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1507 u64 *pte, *pte_page;
1509 for (i = 0; i < num_ptes; ++i) {
1510 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1515 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1517 address += APERTURE_RANGE_SIZE / 64;
1521 old_size = dma_dom->aperture_size;
1522 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1524 /* Reserve address range used for MSI messages */
1525 if (old_size < MSI_ADDR_BASE_LO &&
1526 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1527 unsigned long spage;
1530 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1531 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1533 dma_ops_reserve_addresses(dma_dom, spage, pages);
1536 /* Initialize the exclusion range if necessary */
1537 for_each_iommu(iommu) {
1538 if (iommu->exclusion_start &&
1539 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1540 && iommu->exclusion_start < dma_dom->aperture_size) {
1541 unsigned long startpage;
1542 int pages = iommu_num_pages(iommu->exclusion_start,
1543 iommu->exclusion_length,
1545 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1546 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1551 * Check for areas already mapped as present in the new aperture
1552 * range and mark those pages as reserved in the allocator. Such
1553 * mappings may already exist as a result of requested unity
1554 * mappings for devices.
1556 for (i = dma_dom->aperture[index]->offset;
1557 i < dma_dom->aperture_size;
1559 u64 *pte = fetch_pte(&dma_dom->domain, i);
1560 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1563 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1566 update_domain(&dma_dom->domain);
1571 update_domain(&dma_dom->domain);
1573 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1575 kfree(dma_dom->aperture[index]);
1576 dma_dom->aperture[index] = NULL;
1581 static unsigned long dma_ops_area_alloc(struct device *dev,
1582 struct dma_ops_domain *dom,
1584 unsigned long align_mask,
1586 unsigned long start)
1588 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1589 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1590 int i = start >> APERTURE_RANGE_SHIFT;
1591 unsigned long boundary_size;
1592 unsigned long address = -1;
1593 unsigned long limit;
1595 next_bit >>= PAGE_SHIFT;
1597 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1598 PAGE_SIZE) >> PAGE_SHIFT;
1600 for (;i < max_index; ++i) {
1601 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1603 if (dom->aperture[i]->offset >= dma_mask)
1606 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1607 dma_mask >> PAGE_SHIFT);
1609 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1610 limit, next_bit, pages, 0,
1611 boundary_size, align_mask);
1612 if (address != -1) {
1613 address = dom->aperture[i]->offset +
1614 (address << PAGE_SHIFT);
1615 dom->next_address = address + (pages << PAGE_SHIFT);
1625 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1626 struct dma_ops_domain *dom,
1628 unsigned long align_mask,
1631 unsigned long address;
1633 #ifdef CONFIG_IOMMU_STRESS
1634 dom->next_address = 0;
1635 dom->need_flush = true;
1638 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1639 dma_mask, dom->next_address);
1641 if (address == -1) {
1642 dom->next_address = 0;
1643 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1645 dom->need_flush = true;
1648 if (unlikely(address == -1))
1649 address = DMA_ERROR_CODE;
1651 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1657 * The address free function.
1659 * called with domain->lock held
1661 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1662 unsigned long address,
1665 unsigned i = address >> APERTURE_RANGE_SHIFT;
1666 struct aperture_range *range = dom->aperture[i];
1668 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1670 #ifdef CONFIG_IOMMU_STRESS
1675 if (address >= dom->next_address)
1676 dom->need_flush = true;
1678 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1680 bitmap_clear(range->bitmap, address, pages);
1684 /****************************************************************************
1686 * The next functions belong to the domain allocation. A domain is
1687 * allocated for every IOMMU as the default domain. If device isolation
1688 * is enabled, every device get its own domain. The most important thing
1689 * about domains is the page table mapping the DMA address space they
1692 ****************************************************************************/
1695 * This function adds a protection domain to the global protection domain list
1697 static void add_domain_to_list(struct protection_domain *domain)
1699 unsigned long flags;
1701 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1702 list_add(&domain->list, &amd_iommu_pd_list);
1703 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1707 * This function removes a protection domain to the global
1708 * protection domain list
1710 static void del_domain_from_list(struct protection_domain *domain)
1712 unsigned long flags;
1714 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1715 list_del(&domain->list);
1716 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1719 static u16 domain_id_alloc(void)
1721 unsigned long flags;
1724 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1725 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1727 if (id > 0 && id < MAX_DOMAIN_ID)
1728 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1731 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1736 static void domain_id_free(int id)
1738 unsigned long flags;
1740 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1741 if (id > 0 && id < MAX_DOMAIN_ID)
1742 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1743 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1746 static void free_pagetable(struct protection_domain *domain)
1751 p1 = domain->pt_root;
1756 for (i = 0; i < 512; ++i) {
1757 if (!IOMMU_PTE_PRESENT(p1[i]))
1760 p2 = IOMMU_PTE_PAGE(p1[i]);
1761 for (j = 0; j < 512; ++j) {
1762 if (!IOMMU_PTE_PRESENT(p2[j]))
1764 p3 = IOMMU_PTE_PAGE(p2[j]);
1765 free_page((unsigned long)p3);
1768 free_page((unsigned long)p2);
1771 free_page((unsigned long)p1);
1773 domain->pt_root = NULL;
1776 static void free_gcr3_tbl_level1(u64 *tbl)
1781 for (i = 0; i < 512; ++i) {
1782 if (!(tbl[i] & GCR3_VALID))
1785 ptr = __va(tbl[i] & PAGE_MASK);
1787 free_page((unsigned long)ptr);
1791 static void free_gcr3_tbl_level2(u64 *tbl)
1796 for (i = 0; i < 512; ++i) {
1797 if (!(tbl[i] & GCR3_VALID))
1800 ptr = __va(tbl[i] & PAGE_MASK);
1802 free_gcr3_tbl_level1(ptr);
1806 static void free_gcr3_table(struct protection_domain *domain)
1808 if (domain->glx == 2)
1809 free_gcr3_tbl_level2(domain->gcr3_tbl);
1810 else if (domain->glx == 1)
1811 free_gcr3_tbl_level1(domain->gcr3_tbl);
1812 else if (domain->glx != 0)
1815 free_page((unsigned long)domain->gcr3_tbl);
1819 * Free a domain, only used if something went wrong in the
1820 * allocation path and we need to free an already allocated page table
1822 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1829 del_domain_from_list(&dom->domain);
1831 free_pagetable(&dom->domain);
1833 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1834 if (!dom->aperture[i])
1836 free_page((unsigned long)dom->aperture[i]->bitmap);
1837 kfree(dom->aperture[i]);
1844 * Allocates a new protection domain usable for the dma_ops functions.
1845 * It also initializes the page table and the address allocator data
1846 * structures required for the dma_ops interface
1848 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1850 struct dma_ops_domain *dma_dom;
1852 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1856 spin_lock_init(&dma_dom->domain.lock);
1858 dma_dom->domain.id = domain_id_alloc();
1859 if (dma_dom->domain.id == 0)
1861 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1862 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1863 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1864 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1865 dma_dom->domain.priv = dma_dom;
1866 if (!dma_dom->domain.pt_root)
1869 dma_dom->need_flush = false;
1870 dma_dom->target_dev = 0xffff;
1872 add_domain_to_list(&dma_dom->domain);
1874 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1878 * mark the first page as allocated so we never return 0 as
1879 * a valid dma-address. So we can use 0 as error value
1881 dma_dom->aperture[0]->bitmap[0] = 1;
1882 dma_dom->next_address = 0;
1888 dma_ops_domain_free(dma_dom);
1894 * little helper function to check whether a given protection domain is a
1897 static bool dma_ops_domain(struct protection_domain *domain)
1899 return domain->flags & PD_DMA_OPS_MASK;
1902 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1907 if (domain->mode != PAGE_MODE_NONE)
1908 pte_root = virt_to_phys(domain->pt_root);
1910 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1911 << DEV_ENTRY_MODE_SHIFT;
1912 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1914 flags = amd_iommu_dev_table[devid].data[1];
1917 flags |= DTE_FLAG_IOTLB;
1919 if (domain->flags & PD_IOMMUV2_MASK) {
1920 u64 gcr3 = __pa(domain->gcr3_tbl);
1921 u64 glx = domain->glx;
1924 pte_root |= DTE_FLAG_GV;
1925 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1927 /* First mask out possible old values for GCR3 table */
1928 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1931 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1934 /* Encode GCR3 table into DTE */
1935 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1938 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1941 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1945 flags &= ~(0xffffUL);
1946 flags |= domain->id;
1948 amd_iommu_dev_table[devid].data[1] = flags;
1949 amd_iommu_dev_table[devid].data[0] = pte_root;
1952 static void clear_dte_entry(u16 devid)
1954 /* remove entry from the device table seen by the hardware */
1955 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1956 amd_iommu_dev_table[devid].data[1] = 0;
1958 amd_iommu_apply_erratum_63(devid);
1961 static void do_attach(struct iommu_dev_data *dev_data,
1962 struct protection_domain *domain)
1964 struct amd_iommu *iommu;
1967 iommu = amd_iommu_rlookup_table[dev_data->devid];
1968 ats = dev_data->ats.enabled;
1970 /* Update data structures */
1971 dev_data->domain = domain;
1972 list_add(&dev_data->list, &domain->dev_list);
1973 set_dte_entry(dev_data->devid, domain, ats);
1975 /* Do reference counting */
1976 domain->dev_iommu[iommu->index] += 1;
1977 domain->dev_cnt += 1;
1979 /* Flush the DTE entry */
1980 device_flush_dte(dev_data);
1983 static void do_detach(struct iommu_dev_data *dev_data)
1985 struct amd_iommu *iommu;
1987 iommu = amd_iommu_rlookup_table[dev_data->devid];
1989 /* decrease reference counters */
1990 dev_data->domain->dev_iommu[iommu->index] -= 1;
1991 dev_data->domain->dev_cnt -= 1;
1993 /* Update data structures */
1994 dev_data->domain = NULL;
1995 list_del(&dev_data->list);
1996 clear_dte_entry(dev_data->devid);
1998 /* Flush the DTE entry */
1999 device_flush_dte(dev_data);
2003 * If a device is not yet associated with a domain, this function does
2004 * assigns it visible for the hardware
2006 static int __attach_device(struct iommu_dev_data *dev_data,
2007 struct protection_domain *domain)
2012 spin_lock(&domain->lock);
2014 if (dev_data->alias_data != NULL) {
2015 struct iommu_dev_data *alias_data = dev_data->alias_data;
2017 /* Some sanity checks */
2019 if (alias_data->domain != NULL &&
2020 alias_data->domain != domain)
2023 if (dev_data->domain != NULL &&
2024 dev_data->domain != domain)
2027 /* Do real assignment */
2028 if (alias_data->domain == NULL)
2029 do_attach(alias_data, domain);
2031 atomic_inc(&alias_data->bind);
2034 if (dev_data->domain == NULL)
2035 do_attach(dev_data, domain);
2037 atomic_inc(&dev_data->bind);
2044 spin_unlock(&domain->lock);
2050 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2052 pci_disable_ats(pdev);
2053 pci_disable_pri(pdev);
2054 pci_disable_pasid(pdev);
2057 /* FIXME: Change generic reset-function to do the same */
2058 static int pri_reset_while_enabled(struct pci_dev *pdev)
2063 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2067 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2068 control |= PCI_PRI_CTRL_RESET;
2069 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2074 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2079 /* FIXME: Hardcode number of outstanding requests for now */
2081 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2083 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2085 /* Only allow access to user-accessible pages */
2086 ret = pci_enable_pasid(pdev, 0);
2090 /* First reset the PRI state of the device */
2091 ret = pci_reset_pri(pdev);
2096 ret = pci_enable_pri(pdev, reqs);
2101 ret = pri_reset_while_enabled(pdev);
2106 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2113 pci_disable_pri(pdev);
2114 pci_disable_pasid(pdev);
2119 /* FIXME: Move this to PCI code */
2120 #define PCI_PRI_TLP_OFF (1 << 15)
2122 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2127 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2131 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2133 return (status & PCI_PRI_TLP_OFF) ? true : false;
2137 * If a device is not yet associated with a domain, this function does
2138 * assigns it visible for the hardware
2140 static int attach_device(struct device *dev,
2141 struct protection_domain *domain)
2143 struct pci_dev *pdev = to_pci_dev(dev);
2144 struct iommu_dev_data *dev_data;
2145 unsigned long flags;
2148 dev_data = get_dev_data(dev);
2150 if (domain->flags & PD_IOMMUV2_MASK) {
2151 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2154 if (pdev_iommuv2_enable(pdev) != 0)
2157 dev_data->ats.enabled = true;
2158 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2159 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2160 } else if (amd_iommu_iotlb_sup &&
2161 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2162 dev_data->ats.enabled = true;
2163 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2166 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2167 ret = __attach_device(dev_data, domain);
2168 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2171 * We might boot into a crash-kernel here. The crashed kernel
2172 * left the caches in the IOMMU dirty. So we have to flush
2173 * here to evict all dirty stuff.
2175 domain_flush_tlb_pde(domain);
2181 * Removes a device from a protection domain (unlocked)
2183 static void __detach_device(struct iommu_dev_data *dev_data)
2185 struct protection_domain *domain;
2186 unsigned long flags;
2188 BUG_ON(!dev_data->domain);
2190 domain = dev_data->domain;
2192 spin_lock_irqsave(&domain->lock, flags);
2194 if (dev_data->alias_data != NULL) {
2195 struct iommu_dev_data *alias_data = dev_data->alias_data;
2197 if (atomic_dec_and_test(&alias_data->bind))
2198 do_detach(alias_data);
2201 if (atomic_dec_and_test(&dev_data->bind))
2202 do_detach(dev_data);
2204 spin_unlock_irqrestore(&domain->lock, flags);
2207 * If we run in passthrough mode the device must be assigned to the
2208 * passthrough domain if it is detached from any other domain.
2209 * Make sure we can deassign from the pt_domain itself.
2211 if (dev_data->passthrough &&
2212 (dev_data->domain == NULL && domain != pt_domain))
2213 __attach_device(dev_data, pt_domain);
2217 * Removes a device from a protection domain (with devtable_lock held)
2219 static void detach_device(struct device *dev)
2221 struct protection_domain *domain;
2222 struct iommu_dev_data *dev_data;
2223 unsigned long flags;
2225 dev_data = get_dev_data(dev);
2226 domain = dev_data->domain;
2228 /* lock device table */
2229 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2230 __detach_device(dev_data);
2231 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2233 if (domain->flags & PD_IOMMUV2_MASK)
2234 pdev_iommuv2_disable(to_pci_dev(dev));
2235 else if (dev_data->ats.enabled)
2236 pci_disable_ats(to_pci_dev(dev));
2238 dev_data->ats.enabled = false;
2242 * Find out the protection domain structure for a given PCI device. This
2243 * will give us the pointer to the page table root for example.
2245 static struct protection_domain *domain_for_device(struct device *dev)
2247 struct iommu_dev_data *dev_data;
2248 struct protection_domain *dom = NULL;
2249 unsigned long flags;
2251 dev_data = get_dev_data(dev);
2253 if (dev_data->domain)
2254 return dev_data->domain;
2256 if (dev_data->alias_data != NULL) {
2257 struct iommu_dev_data *alias_data = dev_data->alias_data;
2259 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2260 if (alias_data->domain != NULL) {
2261 __attach_device(dev_data, alias_data->domain);
2262 dom = alias_data->domain;
2264 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2270 static int device_change_notifier(struct notifier_block *nb,
2271 unsigned long action, void *data)
2273 struct dma_ops_domain *dma_domain;
2274 struct protection_domain *domain;
2275 struct iommu_dev_data *dev_data;
2276 struct device *dev = data;
2277 struct amd_iommu *iommu;
2278 unsigned long flags;
2281 if (!check_device(dev))
2284 devid = get_device_id(dev);
2285 iommu = amd_iommu_rlookup_table[devid];
2286 dev_data = get_dev_data(dev);
2289 case BUS_NOTIFY_UNBOUND_DRIVER:
2291 domain = domain_for_device(dev);
2295 if (dev_data->passthrough)
2299 case BUS_NOTIFY_ADD_DEVICE:
2301 iommu_init_device(dev);
2304 * dev_data is still NULL and
2305 * got initialized in iommu_init_device
2307 dev_data = get_dev_data(dev);
2309 if (iommu_pass_through || dev_data->iommu_v2) {
2310 dev_data->passthrough = true;
2311 attach_device(dev, pt_domain);
2315 domain = domain_for_device(dev);
2317 /* allocate a protection domain if a device is added */
2318 dma_domain = find_protection_domain(devid);
2321 dma_domain = dma_ops_domain_alloc();
2324 dma_domain->target_dev = devid;
2326 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2327 list_add_tail(&dma_domain->list, &iommu_pd_list);
2328 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2330 dev_data = get_dev_data(dev);
2332 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2335 case BUS_NOTIFY_DEL_DEVICE:
2337 iommu_uninit_device(dev);
2343 iommu_completion_wait(iommu);
2349 static struct notifier_block device_nb = {
2350 .notifier_call = device_change_notifier,
2353 void amd_iommu_init_notifier(void)
2355 bus_register_notifier(&pci_bus_type, &device_nb);
2358 /*****************************************************************************
2360 * The next functions belong to the dma_ops mapping/unmapping code.
2362 *****************************************************************************/
2365 * In the dma_ops path we only have the struct device. This function
2366 * finds the corresponding IOMMU, the protection domain and the
2367 * requestor id for a given device.
2368 * If the device is not yet associated with a domain this is also done
2371 static struct protection_domain *get_domain(struct device *dev)
2373 struct protection_domain *domain;
2374 struct dma_ops_domain *dma_dom;
2375 u16 devid = get_device_id(dev);
2377 if (!check_device(dev))
2378 return ERR_PTR(-EINVAL);
2380 domain = domain_for_device(dev);
2381 if (domain != NULL && !dma_ops_domain(domain))
2382 return ERR_PTR(-EBUSY);
2387 /* Device not bount yet - bind it */
2388 dma_dom = find_protection_domain(devid);
2390 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2391 attach_device(dev, &dma_dom->domain);
2392 DUMP_printk("Using protection domain %d for device %s\n",
2393 dma_dom->domain.id, dev_name(dev));
2395 return &dma_dom->domain;
2398 static void update_device_table(struct protection_domain *domain)
2400 struct iommu_dev_data *dev_data;
2402 list_for_each_entry(dev_data, &domain->dev_list, list)
2403 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2406 static void update_domain(struct protection_domain *domain)
2408 if (!domain->updated)
2411 update_device_table(domain);
2413 domain_flush_devices(domain);
2414 domain_flush_tlb_pde(domain);
2416 domain->updated = false;
2420 * This function fetches the PTE for a given address in the aperture
2422 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2423 unsigned long address)
2425 struct aperture_range *aperture;
2426 u64 *pte, *pte_page;
2428 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2432 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2434 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2436 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2438 pte += PM_LEVEL_INDEX(0, address);
2440 update_domain(&dom->domain);
2446 * This is the generic map function. It maps one 4kb page at paddr to
2447 * the given address in the DMA address space for the domain.
2449 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2450 unsigned long address,
2456 WARN_ON(address > dom->aperture_size);
2460 pte = dma_ops_get_pte(dom, address);
2462 return DMA_ERROR_CODE;
2464 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2466 if (direction == DMA_TO_DEVICE)
2467 __pte |= IOMMU_PTE_IR;
2468 else if (direction == DMA_FROM_DEVICE)
2469 __pte |= IOMMU_PTE_IW;
2470 else if (direction == DMA_BIDIRECTIONAL)
2471 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2477 return (dma_addr_t)address;
2481 * The generic unmapping function for on page in the DMA address space.
2483 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2484 unsigned long address)
2486 struct aperture_range *aperture;
2489 if (address >= dom->aperture_size)
2492 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2496 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2500 pte += PM_LEVEL_INDEX(0, address);
2508 * This function contains common code for mapping of a physically
2509 * contiguous memory region into DMA address space. It is used by all
2510 * mapping functions provided with this IOMMU driver.
2511 * Must be called with the domain lock held.
2513 static dma_addr_t __map_single(struct device *dev,
2514 struct dma_ops_domain *dma_dom,
2521 dma_addr_t offset = paddr & ~PAGE_MASK;
2522 dma_addr_t address, start, ret;
2524 unsigned long align_mask = 0;
2527 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2530 INC_STATS_COUNTER(total_map_requests);
2533 INC_STATS_COUNTER(cross_page);
2536 align_mask = (1UL << get_order(size)) - 1;
2539 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2541 if (unlikely(address == DMA_ERROR_CODE)) {
2543 * setting next_address here will let the address
2544 * allocator only scan the new allocated range in the
2545 * first run. This is a small optimization.
2547 dma_dom->next_address = dma_dom->aperture_size;
2549 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2553 * aperture was successfully enlarged by 128 MB, try
2560 for (i = 0; i < pages; ++i) {
2561 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2562 if (ret == DMA_ERROR_CODE)
2570 ADD_STATS_COUNTER(alloced_io_mem, size);
2572 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2573 domain_flush_tlb(&dma_dom->domain);
2574 dma_dom->need_flush = false;
2575 } else if (unlikely(amd_iommu_np_cache))
2576 domain_flush_pages(&dma_dom->domain, address, size);
2583 for (--i; i >= 0; --i) {
2585 dma_ops_domain_unmap(dma_dom, start);
2588 dma_ops_free_addresses(dma_dom, address, pages);
2590 return DMA_ERROR_CODE;
2594 * Does the reverse of the __map_single function. Must be called with
2595 * the domain lock held too
2597 static void __unmap_single(struct dma_ops_domain *dma_dom,
2598 dma_addr_t dma_addr,
2602 dma_addr_t flush_addr;
2603 dma_addr_t i, start;
2606 if ((dma_addr == DMA_ERROR_CODE) ||
2607 (dma_addr + size > dma_dom->aperture_size))
2610 flush_addr = dma_addr;
2611 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2612 dma_addr &= PAGE_MASK;
2615 for (i = 0; i < pages; ++i) {
2616 dma_ops_domain_unmap(dma_dom, start);
2620 SUB_STATS_COUNTER(alloced_io_mem, size);
2622 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2624 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2625 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2626 dma_dom->need_flush = false;
2631 * The exported map_single function for dma_ops.
2633 static dma_addr_t map_page(struct device *dev, struct page *page,
2634 unsigned long offset, size_t size,
2635 enum dma_data_direction dir,
2636 struct dma_attrs *attrs)
2638 unsigned long flags;
2639 struct protection_domain *domain;
2642 phys_addr_t paddr = page_to_phys(page) + offset;
2644 INC_STATS_COUNTER(cnt_map_single);
2646 domain = get_domain(dev);
2647 if (PTR_ERR(domain) == -EINVAL)
2648 return (dma_addr_t)paddr;
2649 else if (IS_ERR(domain))
2650 return DMA_ERROR_CODE;
2652 dma_mask = *dev->dma_mask;
2654 spin_lock_irqsave(&domain->lock, flags);
2656 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2658 if (addr == DMA_ERROR_CODE)
2661 domain_flush_complete(domain);
2664 spin_unlock_irqrestore(&domain->lock, flags);
2670 * The exported unmap_single function for dma_ops.
2672 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2673 enum dma_data_direction dir, struct dma_attrs *attrs)
2675 unsigned long flags;
2676 struct protection_domain *domain;
2678 INC_STATS_COUNTER(cnt_unmap_single);
2680 domain = get_domain(dev);
2684 spin_lock_irqsave(&domain->lock, flags);
2686 __unmap_single(domain->priv, dma_addr, size, dir);
2688 domain_flush_complete(domain);
2690 spin_unlock_irqrestore(&domain->lock, flags);
2694 * This is a special map_sg function which is used if we should map a
2695 * device which is not handled by an AMD IOMMU in the system.
2697 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2698 int nelems, int dir)
2700 struct scatterlist *s;
2703 for_each_sg(sglist, s, nelems, i) {
2704 s->dma_address = (dma_addr_t)sg_phys(s);
2705 s->dma_length = s->length;
2712 * The exported map_sg function for dma_ops (handles scatter-gather
2715 static int map_sg(struct device *dev, struct scatterlist *sglist,
2716 int nelems, enum dma_data_direction dir,
2717 struct dma_attrs *attrs)
2719 unsigned long flags;
2720 struct protection_domain *domain;
2722 struct scatterlist *s;
2724 int mapped_elems = 0;
2727 INC_STATS_COUNTER(cnt_map_sg);
2729 domain = get_domain(dev);
2730 if (PTR_ERR(domain) == -EINVAL)
2731 return map_sg_no_iommu(dev, sglist, nelems, dir);
2732 else if (IS_ERR(domain))
2735 dma_mask = *dev->dma_mask;
2737 spin_lock_irqsave(&domain->lock, flags);
2739 for_each_sg(sglist, s, nelems, i) {
2742 s->dma_address = __map_single(dev, domain->priv,
2743 paddr, s->length, dir, false,
2746 if (s->dma_address) {
2747 s->dma_length = s->length;
2753 domain_flush_complete(domain);
2756 spin_unlock_irqrestore(&domain->lock, flags);
2758 return mapped_elems;
2760 for_each_sg(sglist, s, mapped_elems, i) {
2762 __unmap_single(domain->priv, s->dma_address,
2763 s->dma_length, dir);
2764 s->dma_address = s->dma_length = 0;
2773 * The exported map_sg function for dma_ops (handles scatter-gather
2776 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2777 int nelems, enum dma_data_direction dir,
2778 struct dma_attrs *attrs)
2780 unsigned long flags;
2781 struct protection_domain *domain;
2782 struct scatterlist *s;
2785 INC_STATS_COUNTER(cnt_unmap_sg);
2787 domain = get_domain(dev);
2791 spin_lock_irqsave(&domain->lock, flags);
2793 for_each_sg(sglist, s, nelems, i) {
2794 __unmap_single(domain->priv, s->dma_address,
2795 s->dma_length, dir);
2796 s->dma_address = s->dma_length = 0;
2799 domain_flush_complete(domain);
2801 spin_unlock_irqrestore(&domain->lock, flags);
2805 * The exported alloc_coherent function for dma_ops.
2807 static void *alloc_coherent(struct device *dev, size_t size,
2808 dma_addr_t *dma_addr, gfp_t flag,
2809 struct dma_attrs *attrs)
2811 unsigned long flags;
2813 struct protection_domain *domain;
2815 u64 dma_mask = dev->coherent_dma_mask;
2817 INC_STATS_COUNTER(cnt_alloc_coherent);
2819 domain = get_domain(dev);
2820 if (PTR_ERR(domain) == -EINVAL) {
2821 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2822 *dma_addr = __pa(virt_addr);
2824 } else if (IS_ERR(domain))
2827 dma_mask = dev->coherent_dma_mask;
2828 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2831 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2835 paddr = virt_to_phys(virt_addr);
2838 dma_mask = *dev->dma_mask;
2840 spin_lock_irqsave(&domain->lock, flags);
2842 *dma_addr = __map_single(dev, domain->priv, paddr,
2843 size, DMA_BIDIRECTIONAL, true, dma_mask);
2845 if (*dma_addr == DMA_ERROR_CODE) {
2846 spin_unlock_irqrestore(&domain->lock, flags);
2850 domain_flush_complete(domain);
2852 spin_unlock_irqrestore(&domain->lock, flags);
2858 free_pages((unsigned long)virt_addr, get_order(size));
2864 * The exported free_coherent function for dma_ops.
2866 static void free_coherent(struct device *dev, size_t size,
2867 void *virt_addr, dma_addr_t dma_addr,
2868 struct dma_attrs *attrs)
2870 unsigned long flags;
2871 struct protection_domain *domain;
2873 INC_STATS_COUNTER(cnt_free_coherent);
2875 domain = get_domain(dev);
2879 spin_lock_irqsave(&domain->lock, flags);
2881 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2883 domain_flush_complete(domain);
2885 spin_unlock_irqrestore(&domain->lock, flags);
2888 free_pages((unsigned long)virt_addr, get_order(size));
2892 * This function is called by the DMA layer to find out if we can handle a
2893 * particular device. It is part of the dma_ops.
2895 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2897 return check_device(dev);
2901 * The function for pre-allocating protection domains.
2903 * If the driver core informs the DMA layer if a driver grabs a device
2904 * we don't need to preallocate the protection domains anymore.
2905 * For now we have to.
2907 static void __init prealloc_protection_domains(void)
2909 struct iommu_dev_data *dev_data;
2910 struct dma_ops_domain *dma_dom;
2911 struct pci_dev *dev = NULL;
2914 for_each_pci_dev(dev) {
2916 /* Do we handle this device? */
2917 if (!check_device(&dev->dev))
2920 dev_data = get_dev_data(&dev->dev);
2921 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2922 /* Make sure passthrough domain is allocated */
2923 alloc_passthrough_domain();
2924 dev_data->passthrough = true;
2925 attach_device(&dev->dev, pt_domain);
2926 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2927 dev_name(&dev->dev));
2930 /* Is there already any domain for it? */
2931 if (domain_for_device(&dev->dev))
2934 devid = get_device_id(&dev->dev);
2936 dma_dom = dma_ops_domain_alloc();
2939 init_unity_mappings_for_device(dma_dom, devid);
2940 dma_dom->target_dev = devid;
2942 attach_device(&dev->dev, &dma_dom->domain);
2944 list_add_tail(&dma_dom->list, &iommu_pd_list);
2948 static struct dma_map_ops amd_iommu_dma_ops = {
2949 .alloc = alloc_coherent,
2950 .free = free_coherent,
2951 .map_page = map_page,
2952 .unmap_page = unmap_page,
2954 .unmap_sg = unmap_sg,
2955 .dma_supported = amd_iommu_dma_supported,
2958 static unsigned device_dma_ops_init(void)
2960 struct iommu_dev_data *dev_data;
2961 struct pci_dev *pdev = NULL;
2962 unsigned unhandled = 0;
2964 for_each_pci_dev(pdev) {
2965 if (!check_device(&pdev->dev)) {
2967 iommu_ignore_device(&pdev->dev);
2973 dev_data = get_dev_data(&pdev->dev);
2975 if (!dev_data->passthrough)
2976 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2978 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2985 * The function which clues the AMD IOMMU driver into dma_ops.
2988 void __init amd_iommu_init_api(void)
2990 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2993 int __init amd_iommu_init_dma_ops(void)
2995 struct amd_iommu *iommu;
2999 * first allocate a default protection domain for every IOMMU we
3000 * found in the system. Devices not assigned to any other
3001 * protection domain will be assigned to the default one.
3003 for_each_iommu(iommu) {
3004 iommu->default_dom = dma_ops_domain_alloc();
3005 if (iommu->default_dom == NULL)
3007 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3008 ret = iommu_init_unity_mappings(iommu);
3014 * Pre-allocate the protection domains for each device.
3016 prealloc_protection_domains();
3021 /* Make the driver finally visible to the drivers */
3022 unhandled = device_dma_ops_init();
3023 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3024 /* There are unhandled devices - initialize swiotlb for them */
3028 amd_iommu_stats_init();
3030 if (amd_iommu_unmap_flush)
3031 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3033 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3039 for_each_iommu(iommu) {
3040 if (iommu->default_dom)
3041 dma_ops_domain_free(iommu->default_dom);
3047 /*****************************************************************************
3049 * The following functions belong to the exported interface of AMD IOMMU
3051 * This interface allows access to lower level functions of the IOMMU
3052 * like protection domain handling and assignement of devices to domains
3053 * which is not possible with the dma_ops interface.
3055 *****************************************************************************/
3057 static void cleanup_domain(struct protection_domain *domain)
3059 struct iommu_dev_data *dev_data, *next;
3060 unsigned long flags;
3062 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3064 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3065 __detach_device(dev_data);
3066 atomic_set(&dev_data->bind, 0);
3069 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3072 static void protection_domain_free(struct protection_domain *domain)
3077 del_domain_from_list(domain);
3080 domain_id_free(domain->id);
3085 static struct protection_domain *protection_domain_alloc(void)
3087 struct protection_domain *domain;
3089 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3093 spin_lock_init(&domain->lock);
3094 mutex_init(&domain->api_lock);
3095 domain->id = domain_id_alloc();
3098 INIT_LIST_HEAD(&domain->dev_list);
3100 add_domain_to_list(domain);
3110 static int __init alloc_passthrough_domain(void)
3112 if (pt_domain != NULL)
3115 /* allocate passthrough domain */
3116 pt_domain = protection_domain_alloc();
3120 pt_domain->mode = PAGE_MODE_NONE;
3124 static int amd_iommu_domain_init(struct iommu_domain *dom)
3126 struct protection_domain *domain;
3128 domain = protection_domain_alloc();
3132 domain->mode = PAGE_MODE_3_LEVEL;
3133 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3134 if (!domain->pt_root)
3137 domain->iommu_domain = dom;
3141 dom->geometry.aperture_start = 0;
3142 dom->geometry.aperture_end = ~0ULL;
3143 dom->geometry.force_aperture = true;
3148 protection_domain_free(domain);
3153 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3155 struct protection_domain *domain = dom->priv;
3160 if (domain->dev_cnt > 0)
3161 cleanup_domain(domain);
3163 BUG_ON(domain->dev_cnt != 0);
3165 if (domain->mode != PAGE_MODE_NONE)
3166 free_pagetable(domain);
3168 if (domain->flags & PD_IOMMUV2_MASK)
3169 free_gcr3_table(domain);
3171 protection_domain_free(domain);
3176 static void amd_iommu_detach_device(struct iommu_domain *dom,
3179 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3180 struct amd_iommu *iommu;
3183 if (!check_device(dev))
3186 devid = get_device_id(dev);
3188 if (dev_data->domain != NULL)
3191 iommu = amd_iommu_rlookup_table[devid];
3195 iommu_completion_wait(iommu);
3198 static int amd_iommu_attach_device(struct iommu_domain *dom,
3201 struct protection_domain *domain = dom->priv;
3202 struct iommu_dev_data *dev_data;
3203 struct amd_iommu *iommu;
3206 if (!check_device(dev))
3209 dev_data = dev->archdata.iommu;
3211 iommu = amd_iommu_rlookup_table[dev_data->devid];
3215 if (dev_data->domain)
3218 ret = attach_device(dev, domain);
3220 iommu_completion_wait(iommu);
3225 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3226 phys_addr_t paddr, size_t page_size, int iommu_prot)
3228 struct protection_domain *domain = dom->priv;
3232 if (domain->mode == PAGE_MODE_NONE)
3235 if (iommu_prot & IOMMU_READ)
3236 prot |= IOMMU_PROT_IR;
3237 if (iommu_prot & IOMMU_WRITE)
3238 prot |= IOMMU_PROT_IW;
3240 mutex_lock(&domain->api_lock);
3241 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3242 mutex_unlock(&domain->api_lock);
3247 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3250 struct protection_domain *domain = dom->priv;
3253 if (domain->mode == PAGE_MODE_NONE)
3256 mutex_lock(&domain->api_lock);
3257 unmap_size = iommu_unmap_page(domain, iova, page_size);
3258 mutex_unlock(&domain->api_lock);
3260 domain_flush_tlb_pde(domain);
3265 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3268 struct protection_domain *domain = dom->priv;
3269 unsigned long offset_mask;
3273 if (domain->mode == PAGE_MODE_NONE)
3276 pte = fetch_pte(domain, iova);
3278 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3281 if (PM_PTE_LEVEL(*pte) == 0)
3282 offset_mask = PAGE_SIZE - 1;
3284 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3286 __pte = *pte & PM_ADDR_MASK;
3287 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3292 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3296 case IOMMU_CAP_CACHE_COHERENCY:
3303 static struct iommu_ops amd_iommu_ops = {
3304 .domain_init = amd_iommu_domain_init,
3305 .domain_destroy = amd_iommu_domain_destroy,
3306 .attach_dev = amd_iommu_attach_device,
3307 .detach_dev = amd_iommu_detach_device,
3308 .map = amd_iommu_map,
3309 .unmap = amd_iommu_unmap,
3310 .iova_to_phys = amd_iommu_iova_to_phys,
3311 .domain_has_cap = amd_iommu_domain_has_cap,
3312 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3315 /*****************************************************************************
3317 * The next functions do a basic initialization of IOMMU for pass through
3320 * In passthrough mode the IOMMU is initialized and enabled but not used for
3321 * DMA-API translation.
3323 *****************************************************************************/
3325 int __init amd_iommu_init_passthrough(void)
3327 struct iommu_dev_data *dev_data;
3328 struct pci_dev *dev = NULL;
3329 struct amd_iommu *iommu;
3333 ret = alloc_passthrough_domain();
3337 for_each_pci_dev(dev) {
3338 if (!check_device(&dev->dev))
3341 dev_data = get_dev_data(&dev->dev);
3342 dev_data->passthrough = true;
3344 devid = get_device_id(&dev->dev);
3346 iommu = amd_iommu_rlookup_table[devid];
3350 attach_device(&dev->dev, pt_domain);
3353 amd_iommu_stats_init();
3355 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3360 /* IOMMUv2 specific functions */
3361 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3363 return atomic_notifier_chain_register(&ppr_notifier, nb);
3365 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3367 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3369 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3371 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3373 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3375 struct protection_domain *domain = dom->priv;
3376 unsigned long flags;
3378 spin_lock_irqsave(&domain->lock, flags);
3380 /* Update data structure */
3381 domain->mode = PAGE_MODE_NONE;
3382 domain->updated = true;
3384 /* Make changes visible to IOMMUs */
3385 update_domain(domain);
3387 /* Page-table is not visible to IOMMU anymore, so free it */
3388 free_pagetable(domain);
3390 spin_unlock_irqrestore(&domain->lock, flags);
3392 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3394 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3396 struct protection_domain *domain = dom->priv;
3397 unsigned long flags;
3400 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3403 /* Number of GCR3 table levels required */
3404 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3407 if (levels > amd_iommu_max_glx_val)
3410 spin_lock_irqsave(&domain->lock, flags);
3413 * Save us all sanity checks whether devices already in the
3414 * domain support IOMMUv2. Just force that the domain has no
3415 * devices attached when it is switched into IOMMUv2 mode.
3418 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3422 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3423 if (domain->gcr3_tbl == NULL)
3426 domain->glx = levels;
3427 domain->flags |= PD_IOMMUV2_MASK;
3428 domain->updated = true;
3430 update_domain(domain);
3435 spin_unlock_irqrestore(&domain->lock, flags);
3439 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3441 static int __flush_pasid(struct protection_domain *domain, int pasid,
3442 u64 address, bool size)
3444 struct iommu_dev_data *dev_data;
3445 struct iommu_cmd cmd;
3448 if (!(domain->flags & PD_IOMMUV2_MASK))
3451 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3454 * IOMMU TLB needs to be flushed before Device TLB to
3455 * prevent device TLB refill from IOMMU TLB
3457 for (i = 0; i < amd_iommus_present; ++i) {
3458 if (domain->dev_iommu[i] == 0)
3461 ret = iommu_queue_command(amd_iommus[i], &cmd);
3466 /* Wait until IOMMU TLB flushes are complete */
3467 domain_flush_complete(domain);
3469 /* Now flush device TLBs */
3470 list_for_each_entry(dev_data, &domain->dev_list, list) {
3471 struct amd_iommu *iommu;
3474 BUG_ON(!dev_data->ats.enabled);
3476 qdep = dev_data->ats.qdep;
3477 iommu = amd_iommu_rlookup_table[dev_data->devid];
3479 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3480 qdep, address, size);
3482 ret = iommu_queue_command(iommu, &cmd);
3487 /* Wait until all device TLBs are flushed */
3488 domain_flush_complete(domain);
3497 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3500 INC_STATS_COUNTER(invalidate_iotlb);
3502 return __flush_pasid(domain, pasid, address, false);
3505 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3508 struct protection_domain *domain = dom->priv;
3509 unsigned long flags;
3512 spin_lock_irqsave(&domain->lock, flags);
3513 ret = __amd_iommu_flush_page(domain, pasid, address);
3514 spin_unlock_irqrestore(&domain->lock, flags);
3518 EXPORT_SYMBOL(amd_iommu_flush_page);
3520 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3522 INC_STATS_COUNTER(invalidate_iotlb_all);
3524 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3528 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3530 struct protection_domain *domain = dom->priv;
3531 unsigned long flags;
3534 spin_lock_irqsave(&domain->lock, flags);
3535 ret = __amd_iommu_flush_tlb(domain, pasid);
3536 spin_unlock_irqrestore(&domain->lock, flags);
3540 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3542 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3549 index = (pasid >> (9 * level)) & 0x1ff;
3555 if (!(*pte & GCR3_VALID)) {
3559 root = (void *)get_zeroed_page(GFP_ATOMIC);
3563 *pte = __pa(root) | GCR3_VALID;
3566 root = __va(*pte & PAGE_MASK);
3574 static int __set_gcr3(struct protection_domain *domain, int pasid,
3579 if (domain->mode != PAGE_MODE_NONE)
3582 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3586 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3588 return __amd_iommu_flush_tlb(domain, pasid);
3591 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3595 if (domain->mode != PAGE_MODE_NONE)
3598 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3604 return __amd_iommu_flush_tlb(domain, pasid);
3607 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3610 struct protection_domain *domain = dom->priv;
3611 unsigned long flags;
3614 spin_lock_irqsave(&domain->lock, flags);
3615 ret = __set_gcr3(domain, pasid, cr3);
3616 spin_unlock_irqrestore(&domain->lock, flags);
3620 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3622 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3624 struct protection_domain *domain = dom->priv;
3625 unsigned long flags;
3628 spin_lock_irqsave(&domain->lock, flags);
3629 ret = __clear_gcr3(domain, pasid);
3630 spin_unlock_irqrestore(&domain->lock, flags);
3634 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3636 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3637 int status, int tag)
3639 struct iommu_dev_data *dev_data;
3640 struct amd_iommu *iommu;
3641 struct iommu_cmd cmd;
3643 INC_STATS_COUNTER(complete_ppr);
3645 dev_data = get_dev_data(&pdev->dev);
3646 iommu = amd_iommu_rlookup_table[dev_data->devid];
3648 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3649 tag, dev_data->pri_tlp);
3651 return iommu_queue_command(iommu, &cmd);
3653 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3655 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3657 struct protection_domain *domain;
3659 domain = get_domain(&pdev->dev);
3663 /* Only return IOMMUv2 domains */
3664 if (!(domain->flags & PD_IOMMUV2_MASK))
3667 return domain->iommu_domain;
3669 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3671 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3673 struct iommu_dev_data *dev_data;
3675 if (!amd_iommu_v2_supported())
3678 dev_data = get_dev_data(&pdev->dev);
3679 dev_data->errata |= (1 << erratum);
3681 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3683 int amd_iommu_device_info(struct pci_dev *pdev,
3684 struct amd_iommu_device_info *info)
3689 if (pdev == NULL || info == NULL)
3692 if (!amd_iommu_v2_supported())
3695 memset(info, 0, sizeof(*info));
3697 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3699 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3701 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3703 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3705 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3709 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3710 max_pasids = min(max_pasids, (1 << 20));
3712 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3713 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3715 features = pci_pasid_features(pdev);
3716 if (features & PCI_PASID_CAP_EXEC)
3717 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3718 if (features & PCI_PASID_CAP_PRIV)
3719 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3724 EXPORT_SYMBOL(amd_iommu_device_info);