Input: synaptics-rmi4 - add rmi_find_function()
[platform/kernel/linux-exynos.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/kconfig.h>
22 #include <linux/pm.h>
23 #include <linux/slab.h>
24 #include <linux/of.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
29
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
34
35 #define RMI_DEVICE_RESET_CMD    0x01
36 #define DEFAULT_RESET_DELAY_MS  100
37
38 void rmi_free_function_list(struct rmi_device *rmi_dev)
39 {
40         struct rmi_function *fn, *tmp;
41         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
42
43         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
44
45         devm_kfree(&rmi_dev->dev, data->irq_memory);
46         data->irq_memory = NULL;
47         data->irq_status = NULL;
48         data->fn_irq_bits = NULL;
49         data->current_irq_mask = NULL;
50         data->new_irq_mask = NULL;
51
52         data->f01_container = NULL;
53         data->f34_container = NULL;
54
55         /* Doing it in the reverse order so F01 will be removed last */
56         list_for_each_entry_safe_reverse(fn, tmp,
57                                          &data->function_list, node) {
58                 list_del(&fn->node);
59                 rmi_unregister_function(fn);
60         }
61 }
62
63 static int reset_one_function(struct rmi_function *fn)
64 {
65         struct rmi_function_handler *fh;
66         int retval = 0;
67
68         if (!fn || !fn->dev.driver)
69                 return 0;
70
71         fh = to_rmi_function_handler(fn->dev.driver);
72         if (fh->reset) {
73                 retval = fh->reset(fn);
74                 if (retval < 0)
75                         dev_err(&fn->dev, "Reset failed with code %d.\n",
76                                 retval);
77         }
78
79         return retval;
80 }
81
82 static int configure_one_function(struct rmi_function *fn)
83 {
84         struct rmi_function_handler *fh;
85         int retval = 0;
86
87         if (!fn || !fn->dev.driver)
88                 return 0;
89
90         fh = to_rmi_function_handler(fn->dev.driver);
91         if (fh->config) {
92                 retval = fh->config(fn);
93                 if (retval < 0)
94                         dev_err(&fn->dev, "Config failed with code %d.\n",
95                                 retval);
96         }
97
98         return retval;
99 }
100
101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
102 {
103         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104         struct rmi_function *entry;
105         int retval;
106
107         list_for_each_entry(entry, &data->function_list, node) {
108                 retval = reset_one_function(entry);
109                 if (retval < 0)
110                         return retval;
111         }
112
113         return 0;
114 }
115
116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
117 {
118         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119         struct rmi_function *entry;
120         int retval;
121
122         list_for_each_entry(entry, &data->function_list, node) {
123                 retval = configure_one_function(entry);
124                 if (retval < 0)
125                         return retval;
126         }
127
128         return 0;
129 }
130
131 static void process_one_interrupt(struct rmi_driver_data *data,
132                                   struct rmi_function *fn)
133 {
134         struct rmi_function_handler *fh;
135
136         if (!fn || !fn->dev.driver)
137                 return;
138
139         fh = to_rmi_function_handler(fn->dev.driver);
140         if (fh->attention) {
141                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
142                                 data->irq_count);
143                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
144                         fh->attention(fn, data->fn_irq_bits);
145         }
146 }
147
148 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
149 {
150         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
151         struct device *dev = &rmi_dev->dev;
152         struct rmi_function *entry;
153         int error;
154
155         if (!data)
156                 return 0;
157
158         if (!data->attn_data.data) {
159                 error = rmi_read_block(rmi_dev,
160                                 data->f01_container->fd.data_base_addr + 1,
161                                 data->irq_status, data->num_of_irq_regs);
162                 if (error < 0) {
163                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
164                         return error;
165                 }
166         }
167
168         mutex_lock(&data->irq_mutex);
169         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
170                data->irq_count);
171         /*
172          * At this point, irq_status has all bits that are set in the
173          * interrupt status register and are enabled.
174          */
175         mutex_unlock(&data->irq_mutex);
176
177         /*
178          * It would be nice to be able to use irq_chip to handle these
179          * nested IRQs.  Unfortunately, most of the current customers for
180          * this driver are using older kernels (3.0.x) that don't support
181          * the features required for that.  Once they've shifted to more
182          * recent kernels (say, 3.3 and higher), this should be switched to
183          * use irq_chip.
184          */
185         list_for_each_entry(entry, &data->function_list, node)
186                 process_one_interrupt(data, entry);
187
188         if (data->input)
189                 input_sync(data->input);
190
191         return 0;
192 }
193
194 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
195                        void *data, size_t size)
196 {
197         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
198         struct rmi4_attn_data attn_data;
199         void *fifo_data;
200
201         if (!drvdata->enabled)
202                 return;
203
204         fifo_data = kmemdup(data, size, GFP_ATOMIC);
205         if (!fifo_data)
206                 return;
207
208         attn_data.irq_status = irq_status;
209         attn_data.size = size;
210         attn_data.data = fifo_data;
211
212         kfifo_put(&drvdata->attn_fifo, attn_data);
213 }
214 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
215
216 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
217 {
218         struct rmi_device *rmi_dev = dev_id;
219         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
220         struct rmi4_attn_data attn_data = {0};
221         int ret, count;
222
223         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
224         if (count) {
225                 *(drvdata->irq_status) = attn_data.irq_status;
226                 drvdata->attn_data = attn_data;
227         }
228
229         ret = rmi_process_interrupt_requests(rmi_dev);
230         if (ret)
231                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
232                         "Failed to process interrupt request: %d\n", ret);
233
234         if (count)
235                 kfree(attn_data.data);
236
237         if (!kfifo_is_empty(&drvdata->attn_fifo))
238                 return rmi_irq_fn(irq, dev_id);
239
240         return IRQ_HANDLED;
241 }
242
243 static int rmi_irq_init(struct rmi_device *rmi_dev)
244 {
245         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
246         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
247         int irq_flags = irq_get_trigger_type(pdata->irq);
248         int ret;
249
250         if (!irq_flags)
251                 irq_flags = IRQF_TRIGGER_LOW;
252
253         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
254                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
255                                         dev_name(rmi_dev->xport->dev),
256                                         rmi_dev);
257         if (ret < 0) {
258                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
259                         pdata->irq);
260
261                 return ret;
262         }
263
264         data->enabled = true;
265
266         return 0;
267 }
268
269 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
270 {
271         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
272         struct rmi_function *entry;
273
274         list_for_each_entry(entry, &data->function_list, node) {
275                 if (entry->fd.function_number == number)
276                         return entry;
277         }
278
279         return NULL;
280 }
281
282 static int suspend_one_function(struct rmi_function *fn)
283 {
284         struct rmi_function_handler *fh;
285         int retval = 0;
286
287         if (!fn || !fn->dev.driver)
288                 return 0;
289
290         fh = to_rmi_function_handler(fn->dev.driver);
291         if (fh->suspend) {
292                 retval = fh->suspend(fn);
293                 if (retval < 0)
294                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
295                                 retval);
296         }
297
298         return retval;
299 }
300
301 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
302 {
303         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
304         struct rmi_function *entry;
305         int retval;
306
307         list_for_each_entry(entry, &data->function_list, node) {
308                 retval = suspend_one_function(entry);
309                 if (retval < 0)
310                         return retval;
311         }
312
313         return 0;
314 }
315
316 static int resume_one_function(struct rmi_function *fn)
317 {
318         struct rmi_function_handler *fh;
319         int retval = 0;
320
321         if (!fn || !fn->dev.driver)
322                 return 0;
323
324         fh = to_rmi_function_handler(fn->dev.driver);
325         if (fh->resume) {
326                 retval = fh->resume(fn);
327                 if (retval < 0)
328                         dev_err(&fn->dev, "Resume failed with code %d.\n",
329                                 retval);
330         }
331
332         return retval;
333 }
334
335 static int rmi_resume_functions(struct rmi_device *rmi_dev)
336 {
337         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
338         struct rmi_function *entry;
339         int retval;
340
341         list_for_each_entry(entry, &data->function_list, node) {
342                 retval = resume_one_function(entry);
343                 if (retval < 0)
344                         return retval;
345         }
346
347         return 0;
348 }
349
350 int rmi_enable_sensor(struct rmi_device *rmi_dev)
351 {
352         int retval = 0;
353
354         retval = rmi_driver_process_config_requests(rmi_dev);
355         if (retval < 0)
356                 return retval;
357
358         return rmi_process_interrupt_requests(rmi_dev);
359 }
360
361 /**
362  * rmi_driver_set_input_params - set input device id and other data.
363  *
364  * @rmi_dev: Pointer to an RMI device
365  * @input: Pointer to input device
366  *
367  */
368 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
369                                 struct input_dev *input)
370 {
371         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
372         input->id.vendor  = SYNAPTICS_VENDOR_ID;
373         input->id.bustype = BUS_RMI;
374         return 0;
375 }
376
377 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
378                                 struct input_dev *input)
379 {
380         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
381         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
382         char *name;
383
384         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
385                               "Synaptics %s", device_name);
386         if (!name)
387                 return;
388
389         input->name = name;
390 }
391
392 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
393                                    unsigned long *mask)
394 {
395         int error = 0;
396         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
397         struct device *dev = &rmi_dev->dev;
398
399         mutex_lock(&data->irq_mutex);
400         bitmap_or(data->new_irq_mask,
401                   data->current_irq_mask, mask, data->irq_count);
402
403         error = rmi_write_block(rmi_dev,
404                         data->f01_container->fd.control_base_addr + 1,
405                         data->new_irq_mask, data->num_of_irq_regs);
406         if (error < 0) {
407                 dev_err(dev, "%s: Failed to change enabled interrupts!",
408                                                         __func__);
409                 goto error_unlock;
410         }
411         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
412                     data->num_of_irq_regs);
413
414 error_unlock:
415         mutex_unlock(&data->irq_mutex);
416         return error;
417 }
418
419 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
420                                      unsigned long *mask)
421 {
422         int error = 0;
423         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
424         struct device *dev = &rmi_dev->dev;
425
426         mutex_lock(&data->irq_mutex);
427         bitmap_andnot(data->new_irq_mask,
428                   data->current_irq_mask, mask, data->irq_count);
429
430         error = rmi_write_block(rmi_dev,
431                         data->f01_container->fd.control_base_addr + 1,
432                         data->new_irq_mask, data->num_of_irq_regs);
433         if (error < 0) {
434                 dev_err(dev, "%s: Failed to change enabled interrupts!",
435                                                         __func__);
436                 goto error_unlock;
437         }
438         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
439                     data->num_of_irq_regs);
440
441 error_unlock:
442         mutex_unlock(&data->irq_mutex);
443         return error;
444 }
445
446 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
447 {
448         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
449         int error;
450
451         /*
452          * Can get called before the driver is fully ready to deal with
453          * this situation.
454          */
455         if (!data || !data->f01_container) {
456                 dev_warn(&rmi_dev->dev,
457                          "Not ready to handle reset yet!\n");
458                 return 0;
459         }
460
461         error = rmi_read_block(rmi_dev,
462                                data->f01_container->fd.control_base_addr + 1,
463                                data->current_irq_mask, data->num_of_irq_regs);
464         if (error < 0) {
465                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
466                         __func__);
467                 return error;
468         }
469
470         error = rmi_driver_process_reset_requests(rmi_dev);
471         if (error < 0)
472                 return error;
473
474         error = rmi_driver_process_config_requests(rmi_dev);
475         if (error < 0)
476                 return error;
477
478         return 0;
479 }
480
481 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
482                               struct pdt_entry *entry, u16 pdt_address)
483 {
484         u8 buf[RMI_PDT_ENTRY_SIZE];
485         int error;
486
487         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
488         if (error) {
489                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
490                                 pdt_address, error);
491                 return error;
492         }
493
494         entry->page_start = pdt_address & RMI4_PAGE_MASK;
495         entry->query_base_addr = buf[0];
496         entry->command_base_addr = buf[1];
497         entry->control_base_addr = buf[2];
498         entry->data_base_addr = buf[3];
499         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
500         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
501         entry->function_number = buf[5];
502
503         return 0;
504 }
505
506 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
507                                       struct rmi_function_descriptor *fd)
508 {
509         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
510         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
511         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
512         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
513         fd->function_number = pdt->function_number;
514         fd->interrupt_source_count = pdt->interrupt_source_count;
515         fd->function_version = pdt->function_version;
516 }
517
518 #define RMI_SCAN_CONTINUE       0
519 #define RMI_SCAN_DONE           1
520
521 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
522                              int page,
523                              int *empty_pages,
524                              void *ctx,
525                              int (*callback)(struct rmi_device *rmi_dev,
526                                              void *ctx,
527                                              const struct pdt_entry *entry))
528 {
529         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
530         struct pdt_entry pdt_entry;
531         u16 page_start = RMI4_PAGE_SIZE * page;
532         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
533         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
534         u16 addr;
535         int error;
536         int retval;
537
538         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
539                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
540                 if (error)
541                         return error;
542
543                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
544                         break;
545
546                 retval = callback(rmi_dev, ctx, &pdt_entry);
547                 if (retval != RMI_SCAN_CONTINUE)
548                         return retval;
549         }
550
551         /*
552          * Count number of empty PDT pages. If a gap of two pages
553          * or more is found, stop scanning.
554          */
555         if (addr == pdt_start)
556                 ++*empty_pages;
557         else
558                 *empty_pages = 0;
559
560         return (data->bootloader_mode || *empty_pages >= 2) ?
561                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
562 }
563
564 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
565                  int (*callback)(struct rmi_device *rmi_dev,
566                  void *ctx, const struct pdt_entry *entry))
567 {
568         int page;
569         int empty_pages = 0;
570         int retval = RMI_SCAN_DONE;
571
572         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
573                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
574                                            ctx, callback);
575                 if (retval != RMI_SCAN_CONTINUE)
576                         break;
577         }
578
579         return retval < 0 ? retval : 0;
580 }
581
582 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
583                                 struct rmi_register_descriptor *rdesc)
584 {
585         int ret;
586         u8 size_presence_reg;
587         u8 buf[35];
588         int presense_offset = 1;
589         u8 *struct_buf;
590         int reg;
591         int offset = 0;
592         int map_offset = 0;
593         int i;
594         int b;
595
596         /*
597          * The first register of the register descriptor is the size of
598          * the register descriptor's presense register.
599          */
600         ret = rmi_read(d, addr, &size_presence_reg);
601         if (ret)
602                 return ret;
603         ++addr;
604
605         if (size_presence_reg < 0 || size_presence_reg > 35)
606                 return -EIO;
607
608         memset(buf, 0, sizeof(buf));
609
610         /*
611          * The presence register contains the size of the register structure
612          * and a bitmap which identified which packet registers are present
613          * for this particular register type (ie query, control, or data).
614          */
615         ret = rmi_read_block(d, addr, buf, size_presence_reg);
616         if (ret)
617                 return ret;
618         ++addr;
619
620         if (buf[0] == 0) {
621                 presense_offset = 3;
622                 rdesc->struct_size = buf[1] | (buf[2] << 8);
623         } else {
624                 rdesc->struct_size = buf[0];
625         }
626
627         for (i = presense_offset; i < size_presence_reg; i++) {
628                 for (b = 0; b < 8; b++) {
629                         if (buf[i] & (0x1 << b))
630                                 bitmap_set(rdesc->presense_map, map_offset, 1);
631                         ++map_offset;
632                 }
633         }
634
635         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
636                                                 RMI_REG_DESC_PRESENSE_BITS);
637
638         rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
639                                 sizeof(struct rmi_register_desc_item),
640                                 GFP_KERNEL);
641         if (!rdesc->registers)
642                 return -ENOMEM;
643
644         /*
645          * Allocate a temporary buffer to hold the register structure.
646          * I'm not using devm_kzalloc here since it will not be retained
647          * after exiting this function
648          */
649         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
650         if (!struct_buf)
651                 return -ENOMEM;
652
653         /*
654          * The register structure contains information about every packet
655          * register of this type. This includes the size of the packet
656          * register and a bitmap of all subpackets contained in the packet
657          * register.
658          */
659         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
660         if (ret)
661                 goto free_struct_buff;
662
663         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
664         for (i = 0; i < rdesc->num_registers; i++) {
665                 struct rmi_register_desc_item *item = &rdesc->registers[i];
666                 int reg_size = struct_buf[offset];
667
668                 ++offset;
669                 if (reg_size == 0) {
670                         reg_size = struct_buf[offset] |
671                                         (struct_buf[offset + 1] << 8);
672                         offset += 2;
673                 }
674
675                 if (reg_size == 0) {
676                         reg_size = struct_buf[offset] |
677                                         (struct_buf[offset + 1] << 8) |
678                                         (struct_buf[offset + 2] << 16) |
679                                         (struct_buf[offset + 3] << 24);
680                         offset += 4;
681                 }
682
683                 item->reg = reg;
684                 item->reg_size = reg_size;
685
686                 map_offset = 0;
687
688                 do {
689                         for (b = 0; b < 7; b++) {
690                                 if (struct_buf[offset] & (0x1 << b))
691                                         bitmap_set(item->subpacket_map,
692                                                 map_offset, 1);
693                                 ++map_offset;
694                         }
695                 } while (struct_buf[offset++] & 0x80);
696
697                 item->num_subpackets = bitmap_weight(item->subpacket_map,
698                                                 RMI_REG_DESC_SUBPACKET_BITS);
699
700                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
701                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
702                         item->reg, item->reg_size, item->num_subpackets);
703
704                 reg = find_next_bit(rdesc->presense_map,
705                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
706         }
707
708 free_struct_buff:
709         kfree(struct_buf);
710         return ret;
711 }
712
713 const struct rmi_register_desc_item *rmi_get_register_desc_item(
714                                 struct rmi_register_descriptor *rdesc, u16 reg)
715 {
716         const struct rmi_register_desc_item *item;
717         int i;
718
719         for (i = 0; i < rdesc->num_registers; i++) {
720                 item = &rdesc->registers[i];
721                 if (item->reg == reg)
722                         return item;
723         }
724
725         return NULL;
726 }
727
728 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
729 {
730         const struct rmi_register_desc_item *item;
731         int i;
732         size_t size = 0;
733
734         for (i = 0; i < rdesc->num_registers; i++) {
735                 item = &rdesc->registers[i];
736                 size += item->reg_size;
737         }
738         return size;
739 }
740
741 /* Compute the register offset relative to the base address */
742 int rmi_register_desc_calc_reg_offset(
743                 struct rmi_register_descriptor *rdesc, u16 reg)
744 {
745         const struct rmi_register_desc_item *item;
746         int offset = 0;
747         int i;
748
749         for (i = 0; i < rdesc->num_registers; i++) {
750                 item = &rdesc->registers[i];
751                 if (item->reg == reg)
752                         return offset;
753                 ++offset;
754         }
755         return -1;
756 }
757
758 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
759         u8 subpacket)
760 {
761         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
762                                 subpacket) == subpacket;
763 }
764
765 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
766                                      const struct pdt_entry *pdt)
767 {
768         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
769         int ret;
770         u8 status;
771
772         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
773                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
774                 if (ret) {
775                         dev_err(&rmi_dev->dev,
776                                 "Failed to read F34 status: %d.\n", ret);
777                         return ret;
778                 }
779
780                 if (status & BIT(7))
781                         data->bootloader_mode = true;
782         } else if (pdt->function_number == 0x01) {
783                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
784                 if (ret) {
785                         dev_err(&rmi_dev->dev,
786                                 "Failed to read F01 status: %d.\n", ret);
787                         return ret;
788                 }
789
790                 if (status & BIT(6))
791                         data->bootloader_mode = true;
792         }
793
794         return 0;
795 }
796
797 static int rmi_count_irqs(struct rmi_device *rmi_dev,
798                          void *ctx, const struct pdt_entry *pdt)
799 {
800         int *irq_count = ctx;
801         int ret;
802
803         *irq_count += pdt->interrupt_source_count;
804
805         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
806         if (ret < 0)
807                 return ret;
808
809         return RMI_SCAN_CONTINUE;
810 }
811
812 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
813                       const struct pdt_entry *pdt)
814 {
815         int error;
816
817         if (pdt->function_number == 0x01) {
818                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
819                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
820                 const struct rmi_device_platform_data *pdata =
821                                 rmi_get_platform_data(rmi_dev);
822
823                 if (rmi_dev->xport->ops->reset) {
824                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
825                                                                 cmd_addr);
826                         if (error)
827                                 return error;
828
829                         return RMI_SCAN_DONE;
830                 }
831
832                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
833                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
834                 if (error) {
835                         dev_err(&rmi_dev->dev,
836                                 "Initial reset failed. Code = %d.\n", error);
837                         return error;
838                 }
839
840                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
841
842                 return RMI_SCAN_DONE;
843         }
844
845         /* F01 should always be on page 0. If we don't find it there, fail. */
846         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
847 }
848
849 static int rmi_create_function(struct rmi_device *rmi_dev,
850                                void *ctx, const struct pdt_entry *pdt)
851 {
852         struct device *dev = &rmi_dev->dev;
853         struct rmi_driver_data *data = dev_get_drvdata(dev);
854         int *current_irq_count = ctx;
855         struct rmi_function *fn;
856         int i;
857         int error;
858
859         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
860                         pdt->function_number);
861
862         fn = kzalloc(sizeof(struct rmi_function) +
863                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
864                      GFP_KERNEL);
865         if (!fn) {
866                 dev_err(dev, "Failed to allocate memory for F%02X\n",
867                         pdt->function_number);
868                 return -ENOMEM;
869         }
870
871         INIT_LIST_HEAD(&fn->node);
872         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
873
874         fn->rmi_dev = rmi_dev;
875
876         fn->num_of_irqs = pdt->interrupt_source_count;
877         fn->irq_pos = *current_irq_count;
878         *current_irq_count += fn->num_of_irqs;
879
880         for (i = 0; i < fn->num_of_irqs; i++)
881                 set_bit(fn->irq_pos + i, fn->irq_mask);
882
883         error = rmi_register_function(fn);
884         if (error)
885                 goto err_put_fn;
886
887         if (pdt->function_number == 0x01)
888                 data->f01_container = fn;
889         else if (pdt->function_number == 0x34)
890                 data->f34_container = fn;
891
892         list_add_tail(&fn->node, &data->function_list);
893
894         return RMI_SCAN_CONTINUE;
895
896 err_put_fn:
897         put_device(&fn->dev);
898         return error;
899 }
900
901 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
902 {
903         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
904         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
905         int irq = pdata->irq;
906         int irq_flags;
907         int retval;
908
909         mutex_lock(&data->enabled_mutex);
910
911         if (data->enabled)
912                 goto out;
913
914         enable_irq(irq);
915         data->enabled = true;
916         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
917                 retval = disable_irq_wake(irq);
918                 if (!retval)
919                         dev_warn(&rmi_dev->dev,
920                                  "Failed to disable irq for wake: %d\n",
921                                  retval);
922         }
923
924         /*
925          * Call rmi_process_interrupt_requests() after enabling irq,
926          * otherwise we may lose interrupt on edge-triggered systems.
927          */
928         irq_flags = irq_get_trigger_type(pdata->irq);
929         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
930                 rmi_process_interrupt_requests(rmi_dev);
931
932 out:
933         mutex_unlock(&data->enabled_mutex);
934 }
935
936 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
937 {
938         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
939         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
940         struct rmi4_attn_data attn_data = {0};
941         int irq = pdata->irq;
942         int retval, count;
943
944         mutex_lock(&data->enabled_mutex);
945
946         if (!data->enabled)
947                 goto out;
948
949         data->enabled = false;
950         disable_irq(irq);
951         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
952                 retval = enable_irq_wake(irq);
953                 if (!retval)
954                         dev_warn(&rmi_dev->dev,
955                                  "Failed to enable irq for wake: %d\n",
956                                  retval);
957         }
958
959         /* make sure the fifo is clean */
960         while (!kfifo_is_empty(&data->attn_fifo)) {
961                 count = kfifo_get(&data->attn_fifo, &attn_data);
962                 if (count)
963                         kfree(attn_data.data);
964         }
965
966 out:
967         mutex_unlock(&data->enabled_mutex);
968 }
969
970 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
971 {
972         int retval;
973
974         retval = rmi_suspend_functions(rmi_dev);
975         if (retval)
976                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
977                         retval);
978
979         rmi_disable_irq(rmi_dev, enable_wake);
980         return retval;
981 }
982 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
983
984 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
985 {
986         int retval;
987
988         rmi_enable_irq(rmi_dev, clear_wake);
989
990         retval = rmi_resume_functions(rmi_dev);
991         if (retval)
992                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
993                         retval);
994
995         return retval;
996 }
997 EXPORT_SYMBOL_GPL(rmi_driver_resume);
998
999 static int rmi_driver_remove(struct device *dev)
1000 {
1001         struct rmi_device *rmi_dev = to_rmi_device(dev);
1002
1003         rmi_disable_irq(rmi_dev, false);
1004
1005         rmi_f34_remove_sysfs(rmi_dev);
1006         rmi_free_function_list(rmi_dev);
1007
1008         return 0;
1009 }
1010
1011 #ifdef CONFIG_OF
1012 static int rmi_driver_of_probe(struct device *dev,
1013                                 struct rmi_device_platform_data *pdata)
1014 {
1015         int retval;
1016
1017         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1018                                         "syna,reset-delay-ms", 1);
1019         if (retval)
1020                 return retval;
1021
1022         return 0;
1023 }
1024 #else
1025 static inline int rmi_driver_of_probe(struct device *dev,
1026                                         struct rmi_device_platform_data *pdata)
1027 {
1028         return -ENODEV;
1029 }
1030 #endif
1031
1032 int rmi_probe_interrupts(struct rmi_driver_data *data)
1033 {
1034         struct rmi_device *rmi_dev = data->rmi_dev;
1035         struct device *dev = &rmi_dev->dev;
1036         int irq_count;
1037         size_t size;
1038         int retval;
1039
1040         /*
1041          * We need to count the IRQs and allocate their storage before scanning
1042          * the PDT and creating the function entries, because adding a new
1043          * function can trigger events that result in the IRQ related storage
1044          * being accessed.
1045          */
1046         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1047         irq_count = 0;
1048         data->bootloader_mode = false;
1049
1050         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1051         if (retval < 0) {
1052                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1053                 return retval;
1054         }
1055
1056         if (data->bootloader_mode)
1057                 dev_warn(dev, "Device in bootloader mode.\n");
1058
1059         data->irq_count = irq_count;
1060         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1061
1062         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1063         data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1064         if (!data->irq_memory) {
1065                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1066                 return retval;
1067         }
1068
1069         data->irq_status        = data->irq_memory + size * 0;
1070         data->fn_irq_bits       = data->irq_memory + size * 1;
1071         data->current_irq_mask  = data->irq_memory + size * 2;
1072         data->new_irq_mask      = data->irq_memory + size * 3;
1073
1074         return retval;
1075 }
1076
1077 int rmi_init_functions(struct rmi_driver_data *data)
1078 {
1079         struct rmi_device *rmi_dev = data->rmi_dev;
1080         struct device *dev = &rmi_dev->dev;
1081         int irq_count;
1082         int retval;
1083
1084         irq_count = 0;
1085         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1086         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1087         if (retval < 0) {
1088                 dev_err(dev, "Function creation failed with code %d.\n",
1089                         retval);
1090                 goto err_destroy_functions;
1091         }
1092
1093         if (!data->f01_container) {
1094                 dev_err(dev, "Missing F01 container!\n");
1095                 retval = -EINVAL;
1096                 goto err_destroy_functions;
1097         }
1098
1099         retval = rmi_read_block(rmi_dev,
1100                                 data->f01_container->fd.control_base_addr + 1,
1101                                 data->current_irq_mask, data->num_of_irq_regs);
1102         if (retval < 0) {
1103                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1104                         __func__);
1105                 goto err_destroy_functions;
1106         }
1107
1108         return 0;
1109
1110 err_destroy_functions:
1111         rmi_free_function_list(rmi_dev);
1112         return retval;
1113 }
1114
1115 static int rmi_driver_probe(struct device *dev)
1116 {
1117         struct rmi_driver *rmi_driver;
1118         struct rmi_driver_data *data;
1119         struct rmi_device_platform_data *pdata;
1120         struct rmi_device *rmi_dev;
1121         int retval;
1122
1123         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1124                         __func__);
1125
1126         if (!rmi_is_physical_device(dev)) {
1127                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1128                 return -ENODEV;
1129         }
1130
1131         rmi_dev = to_rmi_device(dev);
1132         rmi_driver = to_rmi_driver(dev->driver);
1133         rmi_dev->driver = rmi_driver;
1134
1135         pdata = rmi_get_platform_data(rmi_dev);
1136
1137         if (rmi_dev->xport->dev->of_node) {
1138                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1139                 if (retval)
1140                         return retval;
1141         }
1142
1143         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1144         if (!data)
1145                 return -ENOMEM;
1146
1147         INIT_LIST_HEAD(&data->function_list);
1148         data->rmi_dev = rmi_dev;
1149         dev_set_drvdata(&rmi_dev->dev, data);
1150
1151         /*
1152          * Right before a warm boot, the sensor might be in some unusual state,
1153          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1154          * or configuration update.  In order to clear the sensor to a known
1155          * state and/or apply any updates, we issue a initial reset to clear any
1156          * previous settings and force it into normal operation.
1157          *
1158          * We have to do this before actually building the PDT because
1159          * the reflash updates (if any) might cause various registers to move
1160          * around.
1161          *
1162          * For a number of reasons, this initial reset may fail to return
1163          * within the specified time, but we'll still be able to bring up the
1164          * driver normally after that failure.  This occurs most commonly in
1165          * a cold boot situation (where then firmware takes longer to come up
1166          * than from a warm boot) and the reset_delay_ms in the platform data
1167          * has been set too short to accommodate that.  Since the sensor will
1168          * eventually come up and be usable, we don't want to just fail here
1169          * and leave the customer's device unusable.  So we warn them, and
1170          * continue processing.
1171          */
1172         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1173         if (retval < 0)
1174                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1175
1176         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1177         if (retval < 0) {
1178                 /*
1179                  * we'll print out a warning and continue since
1180                  * failure to get the PDT properties is not a cause to fail
1181                  */
1182                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1183                          PDT_PROPERTIES_LOCATION, retval);
1184         }
1185
1186         mutex_init(&data->irq_mutex);
1187         mutex_init(&data->enabled_mutex);
1188
1189         retval = rmi_probe_interrupts(data);
1190         if (retval)
1191                 goto err;
1192
1193         if (rmi_dev->xport->input) {
1194                 /*
1195                  * The transport driver already has an input device.
1196                  * In some cases it is preferable to reuse the transport
1197                  * devices input device instead of creating a new one here.
1198                  * One example is some HID touchpads report "pass-through"
1199                  * button events are not reported by rmi registers.
1200                  */
1201                 data->input = rmi_dev->xport->input;
1202         } else {
1203                 data->input = devm_input_allocate_device(dev);
1204                 if (!data->input) {
1205                         dev_err(dev, "%s: Failed to allocate input device.\n",
1206                                 __func__);
1207                         retval = -ENOMEM;
1208                         goto err;
1209                 }
1210                 rmi_driver_set_input_params(rmi_dev, data->input);
1211                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1212                                                 "%s/input0", dev_name(dev));
1213         }
1214
1215         retval = rmi_init_functions(data);
1216         if (retval)
1217                 goto err;
1218
1219         retval = rmi_f34_create_sysfs(rmi_dev);
1220         if (retval)
1221                 goto err;
1222
1223         if (data->input) {
1224                 rmi_driver_set_input_name(rmi_dev, data->input);
1225                 if (!rmi_dev->xport->input) {
1226                         if (input_register_device(data->input)) {
1227                                 dev_err(dev, "%s: Failed to register input device.\n",
1228                                         __func__);
1229                                 goto err_destroy_functions;
1230                         }
1231                 }
1232         }
1233
1234         retval = rmi_irq_init(rmi_dev);
1235         if (retval < 0)
1236                 goto err_destroy_functions;
1237
1238         if (data->f01_container->dev.driver)
1239                 /* Driver already bound, so enable ATTN now. */
1240                 return rmi_enable_sensor(rmi_dev);
1241
1242         return 0;
1243
1244 err_destroy_functions:
1245         rmi_free_function_list(rmi_dev);
1246 err:
1247         return retval < 0 ? retval : 0;
1248 }
1249
1250 static struct rmi_driver rmi_physical_driver = {
1251         .driver = {
1252                 .owner  = THIS_MODULE,
1253                 .name   = "rmi4_physical",
1254                 .bus    = &rmi_bus_type,
1255                 .probe = rmi_driver_probe,
1256                 .remove = rmi_driver_remove,
1257         },
1258         .reset_handler = rmi_driver_reset_handler,
1259         .clear_irq_bits = rmi_driver_clear_irq_bits,
1260         .set_irq_bits = rmi_driver_set_irq_bits,
1261         .set_input_params = rmi_driver_set_input_params,
1262 };
1263
1264 bool rmi_is_physical_driver(struct device_driver *drv)
1265 {
1266         return drv == &rmi_physical_driver.driver;
1267 }
1268
1269 int __init rmi_register_physical_driver(void)
1270 {
1271         int error;
1272
1273         error = driver_register(&rmi_physical_driver.driver);
1274         if (error) {
1275                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1276                        error);
1277                 return error;
1278         }
1279
1280         return 0;
1281 }
1282
1283 void __exit rmi_unregister_physical_driver(void)
1284 {
1285         driver_unregister(&rmi_physical_driver.driver);
1286 }