2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
5 * This driver provides the core support for a single RMI4-based device.
7 * The RMI4 specification can be found here (URL split for line length):
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
20 #include <linux/irq.h>
22 #include <linux/slab.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
27 #include "rmi_driver.h"
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
34 #define RMI_DEVICE_RESET_CMD 0x01
35 #define DEFAULT_RESET_DELAY_MS 100
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
39 struct rmi_function *fn, *tmp;
40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
42 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
44 devm_kfree(&rmi_dev->dev, data->irq_memory);
45 data->irq_memory = NULL;
46 data->irq_status = NULL;
47 data->fn_irq_bits = NULL;
48 data->current_irq_mask = NULL;
49 data->new_irq_mask = NULL;
51 data->f01_container = NULL;
52 data->f34_container = NULL;
54 /* Doing it in the reverse order so F01 will be removed last */
55 list_for_each_entry_safe_reverse(fn, tmp,
56 &data->function_list, node) {
58 rmi_unregister_function(fn);
62 static int reset_one_function(struct rmi_function *fn)
64 struct rmi_function_handler *fh;
67 if (!fn || !fn->dev.driver)
70 fh = to_rmi_function_handler(fn->dev.driver);
72 retval = fh->reset(fn);
74 dev_err(&fn->dev, "Reset failed with code %d.\n",
81 static int configure_one_function(struct rmi_function *fn)
83 struct rmi_function_handler *fh;
86 if (!fn || !fn->dev.driver)
89 fh = to_rmi_function_handler(fn->dev.driver);
91 retval = fh->config(fn);
93 dev_err(&fn->dev, "Config failed with code %d.\n",
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
102 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 struct rmi_function *entry;
106 list_for_each_entry(entry, &data->function_list, node) {
107 retval = reset_one_function(entry);
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
117 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 struct rmi_function *entry;
121 list_for_each_entry(entry, &data->function_list, node) {
122 retval = configure_one_function(entry);
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 struct rmi_function *fn)
133 struct rmi_function_handler *fh;
135 if (!fn || !fn->dev.driver)
138 fh = to_rmi_function_handler(fn->dev.driver);
140 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
142 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 fh->attention(fn, data->fn_irq_bits);
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
149 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 struct device *dev = &rmi_dev->dev;
151 struct rmi_function *entry;
157 if (!data->attn_data.data) {
158 error = rmi_read_block(rmi_dev,
159 data->f01_container->fd.data_base_addr + 1,
160 data->irq_status, data->num_of_irq_regs);
162 dev_err(dev, "Failed to read irqs, code=%d\n", error);
167 mutex_lock(&data->irq_mutex);
168 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
171 * At this point, irq_status has all bits that are set in the
172 * interrupt status register and are enabled.
174 mutex_unlock(&data->irq_mutex);
177 * It would be nice to be able to use irq_chip to handle these
178 * nested IRQs. Unfortunately, most of the current customers for
179 * this driver are using older kernels (3.0.x) that don't support
180 * the features required for that. Once they've shifted to more
181 * recent kernels (say, 3.3 and higher), this should be switched to
184 list_for_each_entry(entry, &data->function_list, node)
185 process_one_interrupt(data, entry);
188 input_sync(data->input);
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 void *data, size_t size)
196 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 struct rmi4_attn_data attn_data;
200 if (!drvdata->enabled)
203 fifo_data = kmemdup(data, size, GFP_ATOMIC);
207 attn_data.irq_status = irq_status;
208 attn_data.size = size;
209 attn_data.data = fifo_data;
211 kfifo_put(&drvdata->attn_fifo, attn_data);
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
217 struct rmi_device *rmi_dev = dev_id;
218 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 struct rmi4_attn_data attn_data = {0};
222 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
224 *(drvdata->irq_status) = attn_data.irq_status;
225 drvdata->attn_data = attn_data;
228 ret = rmi_process_interrupt_requests(rmi_dev);
230 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 "Failed to process interrupt request: %d\n", ret);
234 kfree(attn_data.data);
236 if (!kfifo_is_empty(&drvdata->attn_fifo))
237 return rmi_irq_fn(irq, dev_id);
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
244 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 int irq_flags = irq_get_trigger_type(pdata->irq);
250 irq_flags = IRQF_TRIGGER_LOW;
252 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254 dev_name(rmi_dev->xport->dev),
257 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
263 data->enabled = true;
268 static int suspend_one_function(struct rmi_function *fn)
270 struct rmi_function_handler *fh;
273 if (!fn || !fn->dev.driver)
276 fh = to_rmi_function_handler(fn->dev.driver);
278 retval = fh->suspend(fn);
280 dev_err(&fn->dev, "Suspend failed with code %d.\n",
287 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
289 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
290 struct rmi_function *entry;
293 list_for_each_entry(entry, &data->function_list, node) {
294 retval = suspend_one_function(entry);
302 static int resume_one_function(struct rmi_function *fn)
304 struct rmi_function_handler *fh;
307 if (!fn || !fn->dev.driver)
310 fh = to_rmi_function_handler(fn->dev.driver);
312 retval = fh->resume(fn);
314 dev_err(&fn->dev, "Resume failed with code %d.\n",
321 static int rmi_resume_functions(struct rmi_device *rmi_dev)
323 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
324 struct rmi_function *entry;
327 list_for_each_entry(entry, &data->function_list, node) {
328 retval = resume_one_function(entry);
336 int rmi_enable_sensor(struct rmi_device *rmi_dev)
340 retval = rmi_driver_process_config_requests(rmi_dev);
344 return rmi_process_interrupt_requests(rmi_dev);
348 * rmi_driver_set_input_params - set input device id and other data.
350 * @rmi_dev: Pointer to an RMI device
351 * @input: Pointer to input device
354 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
355 struct input_dev *input)
357 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
358 input->id.vendor = SYNAPTICS_VENDOR_ID;
359 input->id.bustype = BUS_RMI;
363 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
364 struct input_dev *input)
366 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
367 char *device_name = rmi_f01_get_product_ID(data->f01_container);
370 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
371 "Synaptics %s", device_name);
378 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
382 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
383 struct device *dev = &rmi_dev->dev;
385 mutex_lock(&data->irq_mutex);
386 bitmap_or(data->new_irq_mask,
387 data->current_irq_mask, mask, data->irq_count);
389 error = rmi_write_block(rmi_dev,
390 data->f01_container->fd.control_base_addr + 1,
391 data->new_irq_mask, data->num_of_irq_regs);
393 dev_err(dev, "%s: Failed to change enabled interrupts!",
397 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
398 data->num_of_irq_regs);
401 mutex_unlock(&data->irq_mutex);
405 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
409 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
410 struct device *dev = &rmi_dev->dev;
412 mutex_lock(&data->irq_mutex);
413 bitmap_andnot(data->new_irq_mask,
414 data->current_irq_mask, mask, data->irq_count);
416 error = rmi_write_block(rmi_dev,
417 data->f01_container->fd.control_base_addr + 1,
418 data->new_irq_mask, data->num_of_irq_regs);
420 dev_err(dev, "%s: Failed to change enabled interrupts!",
424 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
425 data->num_of_irq_regs);
428 mutex_unlock(&data->irq_mutex);
432 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
434 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
438 * Can get called before the driver is fully ready to deal with
441 if (!data || !data->f01_container) {
442 dev_warn(&rmi_dev->dev,
443 "Not ready to handle reset yet!\n");
447 error = rmi_read_block(rmi_dev,
448 data->f01_container->fd.control_base_addr + 1,
449 data->current_irq_mask, data->num_of_irq_regs);
451 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
456 error = rmi_driver_process_reset_requests(rmi_dev);
460 error = rmi_driver_process_config_requests(rmi_dev);
467 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
468 struct pdt_entry *entry, u16 pdt_address)
470 u8 buf[RMI_PDT_ENTRY_SIZE];
473 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
475 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
480 entry->page_start = pdt_address & RMI4_PAGE_MASK;
481 entry->query_base_addr = buf[0];
482 entry->command_base_addr = buf[1];
483 entry->control_base_addr = buf[2];
484 entry->data_base_addr = buf[3];
485 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
486 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
487 entry->function_number = buf[5];
492 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
493 struct rmi_function_descriptor *fd)
495 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
496 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
497 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
498 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
499 fd->function_number = pdt->function_number;
500 fd->interrupt_source_count = pdt->interrupt_source_count;
501 fd->function_version = pdt->function_version;
504 #define RMI_SCAN_CONTINUE 0
505 #define RMI_SCAN_DONE 1
507 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
511 int (*callback)(struct rmi_device *rmi_dev,
513 const struct pdt_entry *entry))
515 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
516 struct pdt_entry pdt_entry;
517 u16 page_start = RMI4_PAGE_SIZE * page;
518 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
519 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
524 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
525 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
529 if (RMI4_END_OF_PDT(pdt_entry.function_number))
532 retval = callback(rmi_dev, ctx, &pdt_entry);
533 if (retval != RMI_SCAN_CONTINUE)
538 * Count number of empty PDT pages. If a gap of two pages
539 * or more is found, stop scanning.
541 if (addr == pdt_start)
546 return (data->bootloader_mode || *empty_pages >= 2) ?
547 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
550 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
551 int (*callback)(struct rmi_device *rmi_dev,
552 void *ctx, const struct pdt_entry *entry))
556 int retval = RMI_SCAN_DONE;
558 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
559 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
561 if (retval != RMI_SCAN_CONTINUE)
565 return retval < 0 ? retval : 0;
568 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
569 struct rmi_register_descriptor *rdesc)
572 u8 size_presence_reg;
574 int presense_offset = 1;
583 * The first register of the register descriptor is the size of
584 * the register descriptor's presense register.
586 ret = rmi_read(d, addr, &size_presence_reg);
591 if (size_presence_reg < 0 || size_presence_reg > 35)
594 memset(buf, 0, sizeof(buf));
597 * The presence register contains the size of the register structure
598 * and a bitmap which identified which packet registers are present
599 * for this particular register type (ie query, control, or data).
601 ret = rmi_read_block(d, addr, buf, size_presence_reg);
608 rdesc->struct_size = buf[1] | (buf[2] << 8);
610 rdesc->struct_size = buf[0];
613 for (i = presense_offset; i < size_presence_reg; i++) {
614 for (b = 0; b < 8; b++) {
615 if (buf[i] & (0x1 << b))
616 bitmap_set(rdesc->presense_map, map_offset, 1);
621 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
622 RMI_REG_DESC_PRESENSE_BITS);
624 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
625 sizeof(struct rmi_register_desc_item),
627 if (!rdesc->registers)
631 * Allocate a temporary buffer to hold the register structure.
632 * I'm not using devm_kzalloc here since it will not be retained
633 * after exiting this function
635 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
640 * The register structure contains information about every packet
641 * register of this type. This includes the size of the packet
642 * register and a bitmap of all subpackets contained in the packet
645 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
647 goto free_struct_buff;
649 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
650 for (i = 0; i < rdesc->num_registers; i++) {
651 struct rmi_register_desc_item *item = &rdesc->registers[i];
652 int reg_size = struct_buf[offset];
656 reg_size = struct_buf[offset] |
657 (struct_buf[offset + 1] << 8);
662 reg_size = struct_buf[offset] |
663 (struct_buf[offset + 1] << 8) |
664 (struct_buf[offset + 2] << 16) |
665 (struct_buf[offset + 3] << 24);
670 item->reg_size = reg_size;
675 for (b = 0; b < 7; b++) {
676 if (struct_buf[offset] & (0x1 << b))
677 bitmap_set(item->subpacket_map,
681 } while (struct_buf[offset++] & 0x80);
683 item->num_subpackets = bitmap_weight(item->subpacket_map,
684 RMI_REG_DESC_SUBPACKET_BITS);
686 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
687 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
688 item->reg, item->reg_size, item->num_subpackets);
690 reg = find_next_bit(rdesc->presense_map,
691 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
699 const struct rmi_register_desc_item *rmi_get_register_desc_item(
700 struct rmi_register_descriptor *rdesc, u16 reg)
702 const struct rmi_register_desc_item *item;
705 for (i = 0; i < rdesc->num_registers; i++) {
706 item = &rdesc->registers[i];
707 if (item->reg == reg)
714 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
716 const struct rmi_register_desc_item *item;
720 for (i = 0; i < rdesc->num_registers; i++) {
721 item = &rdesc->registers[i];
722 size += item->reg_size;
727 /* Compute the register offset relative to the base address */
728 int rmi_register_desc_calc_reg_offset(
729 struct rmi_register_descriptor *rdesc, u16 reg)
731 const struct rmi_register_desc_item *item;
735 for (i = 0; i < rdesc->num_registers; i++) {
736 item = &rdesc->registers[i];
737 if (item->reg == reg)
744 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
747 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
748 subpacket) == subpacket;
751 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
752 const struct pdt_entry *pdt)
754 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
758 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
759 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
761 dev_err(&rmi_dev->dev,
762 "Failed to read F34 status: %d.\n", ret);
767 data->bootloader_mode = true;
768 } else if (pdt->function_number == 0x01) {
769 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
771 dev_err(&rmi_dev->dev,
772 "Failed to read F01 status: %d.\n", ret);
777 data->bootloader_mode = true;
783 static int rmi_count_irqs(struct rmi_device *rmi_dev,
784 void *ctx, const struct pdt_entry *pdt)
786 int *irq_count = ctx;
789 *irq_count += pdt->interrupt_source_count;
791 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
795 return RMI_SCAN_CONTINUE;
798 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
799 const struct pdt_entry *pdt)
803 if (pdt->function_number == 0x01) {
804 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
805 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
806 const struct rmi_device_platform_data *pdata =
807 rmi_get_platform_data(rmi_dev);
809 if (rmi_dev->xport->ops->reset) {
810 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
815 return RMI_SCAN_DONE;
818 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
819 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
821 dev_err(&rmi_dev->dev,
822 "Initial reset failed. Code = %d.\n", error);
826 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
828 return RMI_SCAN_DONE;
831 /* F01 should always be on page 0. If we don't find it there, fail. */
832 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
835 static int rmi_create_function(struct rmi_device *rmi_dev,
836 void *ctx, const struct pdt_entry *pdt)
838 struct device *dev = &rmi_dev->dev;
839 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
840 int *current_irq_count = ctx;
841 struct rmi_function *fn;
845 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
846 pdt->function_number);
848 fn = kzalloc(sizeof(struct rmi_function) +
849 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
852 dev_err(dev, "Failed to allocate memory for F%02X\n",
853 pdt->function_number);
857 INIT_LIST_HEAD(&fn->node);
858 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
860 fn->rmi_dev = rmi_dev;
862 fn->num_of_irqs = pdt->interrupt_source_count;
863 fn->irq_pos = *current_irq_count;
864 *current_irq_count += fn->num_of_irqs;
866 for (i = 0; i < fn->num_of_irqs; i++)
867 set_bit(fn->irq_pos + i, fn->irq_mask);
869 error = rmi_register_function(fn);
873 if (pdt->function_number == 0x01)
874 data->f01_container = fn;
875 else if (pdt->function_number == 0x34)
876 data->f34_container = fn;
878 list_add_tail(&fn->node, &data->function_list);
880 return RMI_SCAN_CONTINUE;
883 put_device(&fn->dev);
887 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
889 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
890 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
891 int irq = pdata->irq;
895 mutex_lock(&data->enabled_mutex);
901 data->enabled = true;
902 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
903 retval = disable_irq_wake(irq);
905 dev_warn(&rmi_dev->dev,
906 "Failed to disable irq for wake: %d\n",
911 * Call rmi_process_interrupt_requests() after enabling irq,
912 * otherwise we may lose interrupt on edge-triggered systems.
914 irq_flags = irq_get_trigger_type(pdata->irq);
915 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
916 rmi_process_interrupt_requests(rmi_dev);
919 mutex_unlock(&data->enabled_mutex);
922 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
924 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
925 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
926 struct rmi4_attn_data attn_data = {0};
927 int irq = pdata->irq;
930 mutex_lock(&data->enabled_mutex);
935 data->enabled = false;
937 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
938 retval = enable_irq_wake(irq);
940 dev_warn(&rmi_dev->dev,
941 "Failed to enable irq for wake: %d\n",
945 /* make sure the fifo is clean */
946 while (!kfifo_is_empty(&data->attn_fifo)) {
947 count = kfifo_get(&data->attn_fifo, &attn_data);
949 kfree(attn_data.data);
953 mutex_unlock(&data->enabled_mutex);
956 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
960 retval = rmi_suspend_functions(rmi_dev);
962 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
965 rmi_disable_irq(rmi_dev, enable_wake);
968 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
970 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
974 rmi_enable_irq(rmi_dev, clear_wake);
976 retval = rmi_resume_functions(rmi_dev);
978 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
983 EXPORT_SYMBOL_GPL(rmi_driver_resume);
985 static int rmi_driver_remove(struct device *dev)
987 struct rmi_device *rmi_dev = to_rmi_device(dev);
989 rmi_disable_irq(rmi_dev, false);
991 rmi_f34_remove_sysfs(rmi_dev);
992 rmi_free_function_list(rmi_dev);
998 static int rmi_driver_of_probe(struct device *dev,
999 struct rmi_device_platform_data *pdata)
1003 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1004 "syna,reset-delay-ms", 1);
1011 static inline int rmi_driver_of_probe(struct device *dev,
1012 struct rmi_device_platform_data *pdata)
1018 int rmi_probe_interrupts(struct rmi_driver_data *data)
1020 struct rmi_device *rmi_dev = data->rmi_dev;
1021 struct device *dev = &rmi_dev->dev;
1027 * We need to count the IRQs and allocate their storage before scanning
1028 * the PDT and creating the function entries, because adding a new
1029 * function can trigger events that result in the IRQ related storage
1032 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1034 data->bootloader_mode = false;
1036 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1038 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1042 if (data->bootloader_mode)
1043 dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");
1045 data->irq_count = irq_count;
1046 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1048 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1049 data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1050 if (!data->irq_memory) {
1051 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1055 data->irq_status = data->irq_memory + size * 0;
1056 data->fn_irq_bits = data->irq_memory + size * 1;
1057 data->current_irq_mask = data->irq_memory + size * 2;
1058 data->new_irq_mask = data->irq_memory + size * 3;
1063 int rmi_init_functions(struct rmi_driver_data *data)
1065 struct rmi_device *rmi_dev = data->rmi_dev;
1066 struct device *dev = &rmi_dev->dev;
1071 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1072 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1074 dev_err(dev, "Function creation failed with code %d.\n",
1076 goto err_destroy_functions;
1079 if (!data->f01_container) {
1080 dev_err(dev, "Missing F01 container!\n");
1082 goto err_destroy_functions;
1085 retval = rmi_read_block(rmi_dev,
1086 data->f01_container->fd.control_base_addr + 1,
1087 data->current_irq_mask, data->num_of_irq_regs);
1089 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1091 goto err_destroy_functions;
1096 err_destroy_functions:
1097 rmi_free_function_list(rmi_dev);
1101 static int rmi_driver_probe(struct device *dev)
1103 struct rmi_driver *rmi_driver;
1104 struct rmi_driver_data *data;
1105 struct rmi_device_platform_data *pdata;
1106 struct rmi_device *rmi_dev;
1109 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1112 if (!rmi_is_physical_device(dev)) {
1113 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1117 rmi_dev = to_rmi_device(dev);
1118 rmi_driver = to_rmi_driver(dev->driver);
1119 rmi_dev->driver = rmi_driver;
1121 pdata = rmi_get_platform_data(rmi_dev);
1123 if (rmi_dev->xport->dev->of_node) {
1124 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1129 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1133 INIT_LIST_HEAD(&data->function_list);
1134 data->rmi_dev = rmi_dev;
1135 dev_set_drvdata(&rmi_dev->dev, data);
1138 * Right before a warm boot, the sensor might be in some unusual state,
1139 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1140 * or configuration update. In order to clear the sensor to a known
1141 * state and/or apply any updates, we issue a initial reset to clear any
1142 * previous settings and force it into normal operation.
1144 * We have to do this before actually building the PDT because
1145 * the reflash updates (if any) might cause various registers to move
1148 * For a number of reasons, this initial reset may fail to return
1149 * within the specified time, but we'll still be able to bring up the
1150 * driver normally after that failure. This occurs most commonly in
1151 * a cold boot situation (where then firmware takes longer to come up
1152 * than from a warm boot) and the reset_delay_ms in the platform data
1153 * has been set too short to accommodate that. Since the sensor will
1154 * eventually come up and be usable, we don't want to just fail here
1155 * and leave the customer's device unusable. So we warn them, and
1156 * continue processing.
1158 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1160 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1162 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1165 * we'll print out a warning and continue since
1166 * failure to get the PDT properties is not a cause to fail
1168 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1169 PDT_PROPERTIES_LOCATION, retval);
1172 mutex_init(&data->irq_mutex);
1173 mutex_init(&data->enabled_mutex);
1175 retval = rmi_probe_interrupts(data);
1179 if (rmi_dev->xport->input) {
1181 * The transport driver already has an input device.
1182 * In some cases it is preferable to reuse the transport
1183 * devices input device instead of creating a new one here.
1184 * One example is some HID touchpads report "pass-through"
1185 * button events are not reported by rmi registers.
1187 data->input = rmi_dev->xport->input;
1189 data->input = devm_input_allocate_device(dev);
1191 dev_err(dev, "%s: Failed to allocate input device.\n",
1196 rmi_driver_set_input_params(rmi_dev, data->input);
1197 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1198 "%s/input0", dev_name(dev));
1201 retval = rmi_init_functions(data);
1205 retval = rmi_f34_create_sysfs(rmi_dev);
1210 rmi_driver_set_input_name(rmi_dev, data->input);
1211 if (!rmi_dev->xport->input) {
1212 if (input_register_device(data->input)) {
1213 dev_err(dev, "%s: Failed to register input device.\n",
1215 goto err_destroy_functions;
1220 retval = rmi_irq_init(rmi_dev);
1222 goto err_destroy_functions;
1224 if (data->f01_container->dev.driver)
1225 /* Driver already bound, so enable ATTN now. */
1226 return rmi_enable_sensor(rmi_dev);
1230 err_destroy_functions:
1231 rmi_free_function_list(rmi_dev);
1233 return retval < 0 ? retval : 0;
1236 static struct rmi_driver rmi_physical_driver = {
1238 .owner = THIS_MODULE,
1239 .name = "rmi4_physical",
1240 .bus = &rmi_bus_type,
1241 .probe = rmi_driver_probe,
1242 .remove = rmi_driver_remove,
1244 .reset_handler = rmi_driver_reset_handler,
1245 .clear_irq_bits = rmi_driver_clear_irq_bits,
1246 .set_irq_bits = rmi_driver_set_irq_bits,
1247 .set_input_params = rmi_driver_set_input_params,
1250 bool rmi_is_physical_driver(struct device_driver *drv)
1252 return drv == &rmi_physical_driver.driver;
1255 int __init rmi_register_physical_driver(void)
1259 error = driver_register(&rmi_physical_driver.driver);
1261 pr_err("%s: driver register failed, code=%d.\n", __func__,
1269 void __exit rmi_unregister_physical_driver(void)
1271 driver_unregister(&rmi_physical_driver.driver);