4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
56 return code <= max && test_bit(code, bm);
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
75 static void input_start_autorepeat(struct input_dev *dev, int code)
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
86 static void input_stop_autorepeat(struct input_dev *dev)
88 del_timer(&dev->timer);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
103 for (v = vals; v != vals + count; v++) {
104 if (handler->filter &&
105 handler->filter(handle, v->type, v->code, v->value))
117 handler->events(handle, vals, count);
118 else if (handler->event)
119 for (v = vals; v != end; v++)
120 handler->event(handle, v->type, v->code, v->value);
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
130 static void input_pass_values(struct input_dev *dev,
131 struct input_value *vals, unsigned int count)
133 struct input_handle *handle;
134 struct input_value *v;
141 handle = rcu_dereference(dev->grab);
143 count = input_to_handler(handle, vals, count);
145 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 count = input_to_handler(handle, vals, count);
152 add_input_randomness(vals->type, vals->code, vals->value);
154 /* trigger auto repeat for key events */
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
158 input_start_autorepeat(dev, v->code);
160 input_stop_autorepeat(dev);
165 static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
168 struct input_value vals[] = { { type, code, value } };
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
178 static void input_repeat_key(unsigned long data)
180 struct input_dev *dev = (void *) data;
183 spin_lock_irqsave(&dev->event_lock, flags);
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 spin_unlock_irqrestore(&dev->event_lock, flags);
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
212 struct input_mt *mt = dev->mt;
216 if (code == ABS_MT_SLOT) {
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
224 return INPUT_IGNORE_EVENT;
227 is_mt_event = input_is_mt_value(code);
230 pold = &dev->absinfo[code].value;
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
242 *pval = input_defuzz_abs_event(*pval, *pold,
243 dev->absinfo[code].fuzz);
245 return INPUT_IGNORE_EVENT;
250 /* Flush pending "slot" event */
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 return INPUT_PASS_TO_HANDLERS;
259 static int input_get_disposition(struct input_dev *dev,
260 unsigned int type, unsigned int code, int value)
262 int disposition = INPUT_IGNORE_EVENT;
269 disposition = INPUT_PASS_TO_ALL;
273 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
276 disposition = INPUT_PASS_TO_HANDLERS;
282 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
284 /* auto-repeat bypasses state updates */
286 disposition = INPUT_PASS_TO_HANDLERS;
290 if (!!test_bit(code, dev->key) != !!value) {
292 __change_bit(code, dev->key);
293 disposition = INPUT_PASS_TO_HANDLERS;
299 if (is_event_supported(code, dev->swbit, SW_MAX) &&
300 !!test_bit(code, dev->sw) != !!value) {
302 __change_bit(code, dev->sw);
303 disposition = INPUT_PASS_TO_HANDLERS;
308 if (is_event_supported(code, dev->absbit, ABS_MAX))
309 disposition = input_handle_abs_event(dev, code, &value);
314 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
315 disposition = INPUT_PASS_TO_HANDLERS;
320 if (is_event_supported(code, dev->mscbit, MSC_MAX))
321 disposition = INPUT_PASS_TO_ALL;
326 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
327 !!test_bit(code, dev->led) != !!value) {
329 __change_bit(code, dev->led);
330 disposition = INPUT_PASS_TO_ALL;
335 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
337 if (!!test_bit(code, dev->snd) != !!value)
338 __change_bit(code, dev->snd);
339 disposition = INPUT_PASS_TO_ALL;
344 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
345 dev->rep[code] = value;
346 disposition = INPUT_PASS_TO_ALL;
352 disposition = INPUT_PASS_TO_ALL;
356 disposition = INPUT_PASS_TO_ALL;
363 static void input_handle_event(struct input_dev *dev,
364 unsigned int type, unsigned int code, int value)
368 disposition = input_get_disposition(dev, type, code, value);
370 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
371 dev->event(dev, type, code, value);
376 if (disposition & INPUT_PASS_TO_HANDLERS) {
377 struct input_value *v;
379 if (disposition & INPUT_SLOT) {
380 v = &dev->vals[dev->num_vals++];
382 v->code = ABS_MT_SLOT;
383 v->value = dev->mt->slot;
386 v = &dev->vals[dev->num_vals++];
392 if (disposition & INPUT_FLUSH) {
393 if (dev->num_vals >= 2)
394 input_pass_values(dev, dev->vals, dev->num_vals);
396 } else if (dev->num_vals >= dev->max_vals - 2) {
397 dev->vals[dev->num_vals++] = input_value_sync;
398 input_pass_values(dev, dev->vals, dev->num_vals);
405 * input_event() - report new input event
406 * @dev: device that generated the event
407 * @type: type of the event
409 * @value: value of the event
411 * This function should be used by drivers implementing various input
412 * devices to report input events. See also input_inject_event().
414 * NOTE: input_event() may be safely used right after input device was
415 * allocated with input_allocate_device(), even before it is registered
416 * with input_register_device(), but the event will not reach any of the
417 * input handlers. Such early invocation of input_event() may be used
418 * to 'seed' initial state of a switch or initial position of absolute
421 void input_event(struct input_dev *dev,
422 unsigned int type, unsigned int code, int value)
426 if (is_event_supported(type, dev->evbit, EV_MAX)) {
428 spin_lock_irqsave(&dev->event_lock, flags);
429 input_handle_event(dev, type, code, value);
430 spin_unlock_irqrestore(&dev->event_lock, flags);
433 EXPORT_SYMBOL(input_event);
436 * input_inject_event() - send input event from input handler
437 * @handle: input handle to send event through
438 * @type: type of the event
440 * @value: value of the event
442 * Similar to input_event() but will ignore event if device is
443 * "grabbed" and handle injecting event is not the one that owns
446 void input_inject_event(struct input_handle *handle,
447 unsigned int type, unsigned int code, int value)
449 struct input_dev *dev = handle->dev;
450 struct input_handle *grab;
453 if (is_event_supported(type, dev->evbit, EV_MAX)) {
454 spin_lock_irqsave(&dev->event_lock, flags);
457 grab = rcu_dereference(dev->grab);
458 if (!grab || grab == handle)
459 input_handle_event(dev, type, code, value);
462 spin_unlock_irqrestore(&dev->event_lock, flags);
465 EXPORT_SYMBOL(input_inject_event);
468 * input_alloc_absinfo - allocates array of input_absinfo structs
469 * @dev: the input device emitting absolute events
471 * If the absinfo struct the caller asked for is already allocated, this
472 * functions will not do anything.
474 void input_alloc_absinfo(struct input_dev *dev)
477 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
480 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
482 EXPORT_SYMBOL(input_alloc_absinfo);
484 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
485 int min, int max, int fuzz, int flat)
487 struct input_absinfo *absinfo;
489 input_alloc_absinfo(dev);
493 absinfo = &dev->absinfo[axis];
494 absinfo->minimum = min;
495 absinfo->maximum = max;
496 absinfo->fuzz = fuzz;
497 absinfo->flat = flat;
499 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
501 EXPORT_SYMBOL(input_set_abs_params);
505 * input_grab_device - grabs device for exclusive use
506 * @handle: input handle that wants to own the device
508 * When a device is grabbed by an input handle all events generated by
509 * the device are delivered only to this handle. Also events injected
510 * by other input handles are ignored while device is grabbed.
512 int input_grab_device(struct input_handle *handle)
514 struct input_dev *dev = handle->dev;
517 retval = mutex_lock_interruptible(&dev->mutex);
526 rcu_assign_pointer(dev->grab, handle);
529 mutex_unlock(&dev->mutex);
532 EXPORT_SYMBOL(input_grab_device);
534 static void __input_release_device(struct input_handle *handle)
536 struct input_dev *dev = handle->dev;
537 struct input_handle *grabber;
539 grabber = rcu_dereference_protected(dev->grab,
540 lockdep_is_held(&dev->mutex));
541 if (grabber == handle) {
542 rcu_assign_pointer(dev->grab, NULL);
543 /* Make sure input_pass_event() notices that grab is gone */
546 list_for_each_entry(handle, &dev->h_list, d_node)
547 if (handle->open && handle->handler->start)
548 handle->handler->start(handle);
553 * input_release_device - release previously grabbed device
554 * @handle: input handle that owns the device
556 * Releases previously grabbed device so that other input handles can
557 * start receiving input events. Upon release all handlers attached
558 * to the device have their start() method called so they have a change
559 * to synchronize device state with the rest of the system.
561 void input_release_device(struct input_handle *handle)
563 struct input_dev *dev = handle->dev;
565 mutex_lock(&dev->mutex);
566 __input_release_device(handle);
567 mutex_unlock(&dev->mutex);
569 EXPORT_SYMBOL(input_release_device);
572 * input_open_device - open input device
573 * @handle: handle through which device is being accessed
575 * This function should be called by input handlers when they
576 * want to start receive events from given input device.
578 int input_open_device(struct input_handle *handle)
580 struct input_dev *dev = handle->dev;
583 retval = mutex_lock_interruptible(&dev->mutex);
587 if (dev->going_away) {
594 if (!dev->users++ && dev->open)
595 retval = dev->open(dev);
599 if (!--handle->open) {
601 * Make sure we are not delivering any more events
602 * through this handle
609 mutex_unlock(&dev->mutex);
612 EXPORT_SYMBOL(input_open_device);
614 int input_flush_device(struct input_handle *handle, struct file *file)
616 struct input_dev *dev = handle->dev;
619 retval = mutex_lock_interruptible(&dev->mutex);
624 retval = dev->flush(dev, file);
626 mutex_unlock(&dev->mutex);
629 EXPORT_SYMBOL(input_flush_device);
632 * input_close_device - close input device
633 * @handle: handle through which device is being accessed
635 * This function should be called by input handlers when they
636 * want to stop receive events from given input device.
638 void input_close_device(struct input_handle *handle)
640 struct input_dev *dev = handle->dev;
642 mutex_lock(&dev->mutex);
644 __input_release_device(handle);
646 if (!--dev->users && dev->close)
649 if (!--handle->open) {
651 * synchronize_rcu() makes sure that input_pass_event()
652 * completed and that no more input events are delivered
653 * through this handle
658 mutex_unlock(&dev->mutex);
660 EXPORT_SYMBOL(input_close_device);
663 * Simulate keyup events for all keys that are marked as pressed.
664 * The function must be called with dev->event_lock held.
666 static void input_dev_release_keys(struct input_dev *dev)
670 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
671 for (code = 0; code <= KEY_MAX; code++) {
672 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
673 __test_and_clear_bit(code, dev->key)) {
674 input_pass_event(dev, EV_KEY, code, 0);
677 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
682 * Prepare device for unregistering
684 static void input_disconnect_device(struct input_dev *dev)
686 struct input_handle *handle;
689 * Mark device as going away. Note that we take dev->mutex here
690 * not to protect access to dev->going_away but rather to ensure
691 * that there are no threads in the middle of input_open_device()
693 mutex_lock(&dev->mutex);
694 dev->going_away = true;
695 mutex_unlock(&dev->mutex);
697 spin_lock_irq(&dev->event_lock);
700 * Simulate keyup events for all pressed keys so that handlers
701 * are not left with "stuck" keys. The driver may continue
702 * generate events even after we done here but they will not
703 * reach any handlers.
705 input_dev_release_keys(dev);
707 list_for_each_entry(handle, &dev->h_list, d_node)
710 spin_unlock_irq(&dev->event_lock);
714 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
715 * @ke: keymap entry containing scancode to be converted.
716 * @scancode: pointer to the location where converted scancode should
719 * This function is used to convert scancode stored in &struct keymap_entry
720 * into scalar form understood by legacy keymap handling methods. These
721 * methods expect scancodes to be represented as 'unsigned int'.
723 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
724 unsigned int *scancode)
728 *scancode = *((u8 *)ke->scancode);
732 *scancode = *((u16 *)ke->scancode);
736 *scancode = *((u32 *)ke->scancode);
745 EXPORT_SYMBOL(input_scancode_to_scalar);
748 * Those routines handle the default case where no [gs]etkeycode() is
749 * defined. In this case, an array indexed by the scancode is used.
752 static unsigned int input_fetch_keycode(struct input_dev *dev,
755 switch (dev->keycodesize) {
757 return ((u8 *)dev->keycode)[index];
760 return ((u16 *)dev->keycode)[index];
763 return ((u32 *)dev->keycode)[index];
767 static int input_default_getkeycode(struct input_dev *dev,
768 struct input_keymap_entry *ke)
773 if (!dev->keycodesize)
776 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
779 error = input_scancode_to_scalar(ke, &index);
784 if (index >= dev->keycodemax)
787 ke->keycode = input_fetch_keycode(dev, index);
789 ke->len = sizeof(index);
790 memcpy(ke->scancode, &index, sizeof(index));
795 static int input_default_setkeycode(struct input_dev *dev,
796 const struct input_keymap_entry *ke,
797 unsigned int *old_keycode)
803 if (!dev->keycodesize)
806 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
809 error = input_scancode_to_scalar(ke, &index);
814 if (index >= dev->keycodemax)
817 if (dev->keycodesize < sizeof(ke->keycode) &&
818 (ke->keycode >> (dev->keycodesize * 8)))
821 switch (dev->keycodesize) {
823 u8 *k = (u8 *)dev->keycode;
824 *old_keycode = k[index];
825 k[index] = ke->keycode;
829 u16 *k = (u16 *)dev->keycode;
830 *old_keycode = k[index];
831 k[index] = ke->keycode;
835 u32 *k = (u32 *)dev->keycode;
836 *old_keycode = k[index];
837 k[index] = ke->keycode;
842 __clear_bit(*old_keycode, dev->keybit);
843 __set_bit(ke->keycode, dev->keybit);
845 for (i = 0; i < dev->keycodemax; i++) {
846 if (input_fetch_keycode(dev, i) == *old_keycode) {
847 __set_bit(*old_keycode, dev->keybit);
848 break; /* Setting the bit twice is useless, so break */
856 * input_get_keycode - retrieve keycode currently mapped to a given scancode
857 * @dev: input device which keymap is being queried
860 * This function should be called by anyone interested in retrieving current
861 * keymap. Presently evdev handlers use it.
863 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
868 spin_lock_irqsave(&dev->event_lock, flags);
869 retval = dev->getkeycode(dev, ke);
870 spin_unlock_irqrestore(&dev->event_lock, flags);
874 EXPORT_SYMBOL(input_get_keycode);
877 * input_set_keycode - attribute a keycode to a given scancode
878 * @dev: input device which keymap is being updated
879 * @ke: new keymap entry
881 * This function should be called by anyone needing to update current
882 * keymap. Presently keyboard and evdev handlers use it.
884 int input_set_keycode(struct input_dev *dev,
885 const struct input_keymap_entry *ke)
888 unsigned int old_keycode;
891 if (ke->keycode > KEY_MAX)
894 spin_lock_irqsave(&dev->event_lock, flags);
896 retval = dev->setkeycode(dev, ke, &old_keycode);
900 /* Make sure KEY_RESERVED did not get enabled. */
901 __clear_bit(KEY_RESERVED, dev->keybit);
904 * Simulate keyup event if keycode is not present
905 * in the keymap anymore
907 if (test_bit(EV_KEY, dev->evbit) &&
908 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
909 __test_and_clear_bit(old_keycode, dev->key)) {
910 struct input_value vals[] = {
911 { EV_KEY, old_keycode, 0 },
915 input_pass_values(dev, vals, ARRAY_SIZE(vals));
919 spin_unlock_irqrestore(&dev->event_lock, flags);
923 EXPORT_SYMBOL(input_set_keycode);
925 static const struct input_device_id *input_match_device(struct input_handler *handler,
926 struct input_dev *dev)
928 const struct input_device_id *id;
930 for (id = handler->id_table; id->flags || id->driver_info; id++) {
932 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
933 if (id->bustype != dev->id.bustype)
936 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
937 if (id->vendor != dev->id.vendor)
940 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
941 if (id->product != dev->id.product)
944 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
945 if (id->version != dev->id.version)
948 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
951 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
954 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
957 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
960 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
963 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
966 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
969 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
972 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
975 if (!handler->match || handler->match(handler, dev))
982 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
984 const struct input_device_id *id;
987 id = input_match_device(handler, dev);
991 error = handler->connect(handler, dev, id);
992 if (error && error != -ENODEV)
993 pr_err("failed to attach handler %s to device %s, error: %d\n",
994 handler->name, kobject_name(&dev->dev.kobj), error);
1001 static int input_bits_to_string(char *buf, int buf_size,
1002 unsigned long bits, bool skip_empty)
1006 if (INPUT_COMPAT_TEST) {
1007 u32 dword = bits >> 32;
1008 if (dword || !skip_empty)
1009 len += snprintf(buf, buf_size, "%x ", dword);
1011 dword = bits & 0xffffffffUL;
1012 if (dword || !skip_empty || len)
1013 len += snprintf(buf + len, max(buf_size - len, 0),
1016 if (bits || !skip_empty)
1017 len += snprintf(buf, buf_size, "%lx", bits);
1023 #else /* !CONFIG_COMPAT */
1025 static int input_bits_to_string(char *buf, int buf_size,
1026 unsigned long bits, bool skip_empty)
1028 return bits || !skip_empty ?
1029 snprintf(buf, buf_size, "%lx", bits) : 0;
1034 #ifdef CONFIG_PROC_FS
1036 static struct proc_dir_entry *proc_bus_input_dir;
1037 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1038 static int input_devices_state;
1040 static inline void input_wakeup_procfs_readers(void)
1042 input_devices_state++;
1043 wake_up(&input_devices_poll_wait);
1046 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1048 poll_wait(file, &input_devices_poll_wait, wait);
1049 if (file->f_version != input_devices_state) {
1050 file->f_version = input_devices_state;
1051 return POLLIN | POLLRDNORM;
1057 union input_seq_state {
1060 bool mutex_acquired;
1065 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1067 union input_seq_state *state = (union input_seq_state *)&seq->private;
1070 /* We need to fit into seq->private pointer */
1071 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1073 error = mutex_lock_interruptible(&input_mutex);
1075 state->mutex_acquired = false;
1076 return ERR_PTR(error);
1079 state->mutex_acquired = true;
1081 return seq_list_start(&input_dev_list, *pos);
1084 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1086 return seq_list_next(v, &input_dev_list, pos);
1089 static void input_seq_stop(struct seq_file *seq, void *v)
1091 union input_seq_state *state = (union input_seq_state *)&seq->private;
1093 if (state->mutex_acquired)
1094 mutex_unlock(&input_mutex);
1097 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1098 unsigned long *bitmap, int max)
1101 bool skip_empty = true;
1104 seq_printf(seq, "B: %s=", name);
1106 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1107 if (input_bits_to_string(buf, sizeof(buf),
1108 bitmap[i], skip_empty)) {
1110 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1115 * If no output was produced print a single 0.
1120 seq_putc(seq, '\n');
1123 static int input_devices_seq_show(struct seq_file *seq, void *v)
1125 struct input_dev *dev = container_of(v, struct input_dev, node);
1126 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1127 struct input_handle *handle;
1129 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1130 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1132 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1133 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1134 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1135 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1136 seq_printf(seq, "H: Handlers=");
1138 list_for_each_entry(handle, &dev->h_list, d_node)
1139 seq_printf(seq, "%s ", handle->name);
1140 seq_putc(seq, '\n');
1142 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1144 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1145 if (test_bit(EV_KEY, dev->evbit))
1146 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1147 if (test_bit(EV_REL, dev->evbit))
1148 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1149 if (test_bit(EV_ABS, dev->evbit))
1150 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1151 if (test_bit(EV_MSC, dev->evbit))
1152 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1153 if (test_bit(EV_LED, dev->evbit))
1154 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1155 if (test_bit(EV_SND, dev->evbit))
1156 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1157 if (test_bit(EV_FF, dev->evbit))
1158 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1159 if (test_bit(EV_SW, dev->evbit))
1160 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1162 seq_putc(seq, '\n');
1168 static const struct seq_operations input_devices_seq_ops = {
1169 .start = input_devices_seq_start,
1170 .next = input_devices_seq_next,
1171 .stop = input_seq_stop,
1172 .show = input_devices_seq_show,
1175 static int input_proc_devices_open(struct inode *inode, struct file *file)
1177 return seq_open(file, &input_devices_seq_ops);
1180 static const struct file_operations input_devices_fileops = {
1181 .owner = THIS_MODULE,
1182 .open = input_proc_devices_open,
1183 .poll = input_proc_devices_poll,
1185 .llseek = seq_lseek,
1186 .release = seq_release,
1189 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1191 union input_seq_state *state = (union input_seq_state *)&seq->private;
1194 /* We need to fit into seq->private pointer */
1195 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1197 error = mutex_lock_interruptible(&input_mutex);
1199 state->mutex_acquired = false;
1200 return ERR_PTR(error);
1203 state->mutex_acquired = true;
1206 return seq_list_start(&input_handler_list, *pos);
1209 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1211 union input_seq_state *state = (union input_seq_state *)&seq->private;
1213 state->pos = *pos + 1;
1214 return seq_list_next(v, &input_handler_list, pos);
1217 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1219 struct input_handler *handler = container_of(v, struct input_handler, node);
1220 union input_seq_state *state = (union input_seq_state *)&seq->private;
1222 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1223 if (handler->filter)
1224 seq_puts(seq, " (filter)");
1225 if (handler->legacy_minors)
1226 seq_printf(seq, " Minor=%d", handler->minor);
1227 seq_putc(seq, '\n');
1232 static const struct seq_operations input_handlers_seq_ops = {
1233 .start = input_handlers_seq_start,
1234 .next = input_handlers_seq_next,
1235 .stop = input_seq_stop,
1236 .show = input_handlers_seq_show,
1239 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1241 return seq_open(file, &input_handlers_seq_ops);
1244 static const struct file_operations input_handlers_fileops = {
1245 .owner = THIS_MODULE,
1246 .open = input_proc_handlers_open,
1248 .llseek = seq_lseek,
1249 .release = seq_release,
1252 static int __init input_proc_init(void)
1254 struct proc_dir_entry *entry;
1256 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1257 if (!proc_bus_input_dir)
1260 entry = proc_create("devices", 0, proc_bus_input_dir,
1261 &input_devices_fileops);
1265 entry = proc_create("handlers", 0, proc_bus_input_dir,
1266 &input_handlers_fileops);
1272 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1273 fail1: remove_proc_entry("bus/input", NULL);
1277 static void input_proc_exit(void)
1279 remove_proc_entry("devices", proc_bus_input_dir);
1280 remove_proc_entry("handlers", proc_bus_input_dir);
1281 remove_proc_entry("bus/input", NULL);
1284 #else /* !CONFIG_PROC_FS */
1285 static inline void input_wakeup_procfs_readers(void) { }
1286 static inline int input_proc_init(void) { return 0; }
1287 static inline void input_proc_exit(void) { }
1290 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1291 static ssize_t input_dev_show_##name(struct device *dev, \
1292 struct device_attribute *attr, \
1295 struct input_dev *input_dev = to_input_dev(dev); \
1297 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1298 input_dev->name ? input_dev->name : ""); \
1300 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1302 INPUT_DEV_STRING_ATTR_SHOW(name);
1303 INPUT_DEV_STRING_ATTR_SHOW(phys);
1304 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1306 static int input_print_modalias_bits(char *buf, int size,
1307 char name, unsigned long *bm,
1308 unsigned int min_bit, unsigned int max_bit)
1312 len += snprintf(buf, max(size, 0), "%c", name);
1313 for (i = min_bit; i < max_bit; i++)
1314 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1315 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1319 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1324 len = snprintf(buf, max(size, 0),
1325 "input:b%04Xv%04Xp%04Xe%04X-",
1326 id->id.bustype, id->id.vendor,
1327 id->id.product, id->id.version);
1329 len += input_print_modalias_bits(buf + len, size - len,
1330 'e', id->evbit, 0, EV_MAX);
1331 len += input_print_modalias_bits(buf + len, size - len,
1332 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1333 len += input_print_modalias_bits(buf + len, size - len,
1334 'r', id->relbit, 0, REL_MAX);
1335 len += input_print_modalias_bits(buf + len, size - len,
1336 'a', id->absbit, 0, ABS_MAX);
1337 len += input_print_modalias_bits(buf + len, size - len,
1338 'm', id->mscbit, 0, MSC_MAX);
1339 len += input_print_modalias_bits(buf + len, size - len,
1340 'l', id->ledbit, 0, LED_MAX);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 's', id->sndbit, 0, SND_MAX);
1343 len += input_print_modalias_bits(buf + len, size - len,
1344 'f', id->ffbit, 0, FF_MAX);
1345 len += input_print_modalias_bits(buf + len, size - len,
1346 'w', id->swbit, 0, SW_MAX);
1349 len += snprintf(buf + len, max(size - len, 0), "\n");
1354 static ssize_t input_dev_show_modalias(struct device *dev,
1355 struct device_attribute *attr,
1358 struct input_dev *id = to_input_dev(dev);
1361 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1363 return min_t(int, len, PAGE_SIZE);
1365 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1367 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1368 int max, int add_cr);
1370 static ssize_t input_dev_show_properties(struct device *dev,
1371 struct device_attribute *attr,
1374 struct input_dev *input_dev = to_input_dev(dev);
1375 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1376 INPUT_PROP_MAX, true);
1377 return min_t(int, len, PAGE_SIZE);
1379 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1381 static struct attribute *input_dev_attrs[] = {
1382 &dev_attr_name.attr,
1383 &dev_attr_phys.attr,
1384 &dev_attr_uniq.attr,
1385 &dev_attr_modalias.attr,
1386 &dev_attr_properties.attr,
1390 static struct attribute_group input_dev_attr_group = {
1391 .attrs = input_dev_attrs,
1394 #define INPUT_DEV_ID_ATTR(name) \
1395 static ssize_t input_dev_show_id_##name(struct device *dev, \
1396 struct device_attribute *attr, \
1399 struct input_dev *input_dev = to_input_dev(dev); \
1400 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1402 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1404 INPUT_DEV_ID_ATTR(bustype);
1405 INPUT_DEV_ID_ATTR(vendor);
1406 INPUT_DEV_ID_ATTR(product);
1407 INPUT_DEV_ID_ATTR(version);
1409 static struct attribute *input_dev_id_attrs[] = {
1410 &dev_attr_bustype.attr,
1411 &dev_attr_vendor.attr,
1412 &dev_attr_product.attr,
1413 &dev_attr_version.attr,
1417 static struct attribute_group input_dev_id_attr_group = {
1419 .attrs = input_dev_id_attrs,
1422 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1423 int max, int add_cr)
1427 bool skip_empty = true;
1429 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1430 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1431 bitmap[i], skip_empty);
1435 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1440 * If no output was produced print a single 0.
1443 len = snprintf(buf, buf_size, "%d", 0);
1446 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1451 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1452 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1453 struct device_attribute *attr, \
1456 struct input_dev *input_dev = to_input_dev(dev); \
1457 int len = input_print_bitmap(buf, PAGE_SIZE, \
1458 input_dev->bm##bit, ev##_MAX, \
1460 return min_t(int, len, PAGE_SIZE); \
1462 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1464 INPUT_DEV_CAP_ATTR(EV, ev);
1465 INPUT_DEV_CAP_ATTR(KEY, key);
1466 INPUT_DEV_CAP_ATTR(REL, rel);
1467 INPUT_DEV_CAP_ATTR(ABS, abs);
1468 INPUT_DEV_CAP_ATTR(MSC, msc);
1469 INPUT_DEV_CAP_ATTR(LED, led);
1470 INPUT_DEV_CAP_ATTR(SND, snd);
1471 INPUT_DEV_CAP_ATTR(FF, ff);
1472 INPUT_DEV_CAP_ATTR(SW, sw);
1474 static struct attribute *input_dev_caps_attrs[] = {
1487 static struct attribute_group input_dev_caps_attr_group = {
1488 .name = "capabilities",
1489 .attrs = input_dev_caps_attrs,
1492 static const struct attribute_group *input_dev_attr_groups[] = {
1493 &input_dev_attr_group,
1494 &input_dev_id_attr_group,
1495 &input_dev_caps_attr_group,
1499 static void input_dev_release(struct device *device)
1501 struct input_dev *dev = to_input_dev(device);
1503 input_ff_destroy(dev);
1504 input_mt_destroy_slots(dev);
1505 kfree(dev->absinfo);
1509 module_put(THIS_MODULE);
1513 * Input uevent interface - loading event handlers based on
1516 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1517 const char *name, unsigned long *bitmap, int max)
1521 if (add_uevent_var(env, "%s", name))
1524 len = input_print_bitmap(&env->buf[env->buflen - 1],
1525 sizeof(env->buf) - env->buflen,
1526 bitmap, max, false);
1527 if (len >= (sizeof(env->buf) - env->buflen))
1534 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1535 struct input_dev *dev)
1539 if (add_uevent_var(env, "MODALIAS="))
1542 len = input_print_modalias(&env->buf[env->buflen - 1],
1543 sizeof(env->buf) - env->buflen,
1545 if (len >= (sizeof(env->buf) - env->buflen))
1552 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1554 int err = add_uevent_var(env, fmt, val); \
1559 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1561 int err = input_add_uevent_bm_var(env, name, bm, max); \
1566 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1568 int err = input_add_uevent_modalias_var(env, dev); \
1573 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1575 struct input_dev *dev = to_input_dev(device);
1577 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1578 dev->id.bustype, dev->id.vendor,
1579 dev->id.product, dev->id.version);
1581 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1583 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1585 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1587 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1589 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1590 if (test_bit(EV_KEY, dev->evbit))
1591 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1592 if (test_bit(EV_REL, dev->evbit))
1593 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1594 if (test_bit(EV_ABS, dev->evbit))
1595 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1596 if (test_bit(EV_MSC, dev->evbit))
1597 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1598 if (test_bit(EV_LED, dev->evbit))
1599 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1600 if (test_bit(EV_SND, dev->evbit))
1601 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1602 if (test_bit(EV_FF, dev->evbit))
1603 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1604 if (test_bit(EV_SW, dev->evbit))
1605 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1607 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1612 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1617 if (!test_bit(EV_##type, dev->evbit)) \
1620 for (i = 0; i < type##_MAX; i++) { \
1621 if (!test_bit(i, dev->bits##bit)) \
1624 active = test_bit(i, dev->bits); \
1625 if (!active && !on) \
1628 dev->event(dev, EV_##type, i, on ? active : 0); \
1632 static void input_dev_toggle(struct input_dev *dev, bool activate)
1637 INPUT_DO_TOGGLE(dev, LED, led, activate);
1638 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1640 if (activate && test_bit(EV_REP, dev->evbit)) {
1641 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1642 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1647 * input_reset_device() - reset/restore the state of input device
1648 * @dev: input device whose state needs to be reset
1650 * This function tries to reset the state of an opened input device and
1651 * bring internal state and state if the hardware in sync with each other.
1652 * We mark all keys as released, restore LED state, repeat rate, etc.
1654 void input_reset_device(struct input_dev *dev)
1656 mutex_lock(&dev->mutex);
1659 input_dev_toggle(dev, true);
1662 * Keys that have been pressed at suspend time are unlikely
1663 * to be still pressed when we resume.
1665 spin_lock_irq(&dev->event_lock);
1666 input_dev_release_keys(dev);
1667 spin_unlock_irq(&dev->event_lock);
1670 mutex_unlock(&dev->mutex);
1672 EXPORT_SYMBOL(input_reset_device);
1675 static int input_dev_suspend(struct device *dev)
1677 struct input_dev *input_dev = to_input_dev(dev);
1679 mutex_lock(&input_dev->mutex);
1681 if (input_dev->users)
1682 input_dev_toggle(input_dev, false);
1684 mutex_unlock(&input_dev->mutex);
1689 static int input_dev_resume(struct device *dev)
1691 struct input_dev *input_dev = to_input_dev(dev);
1693 input_reset_device(input_dev);
1698 static const struct dev_pm_ops input_dev_pm_ops = {
1699 .suspend = input_dev_suspend,
1700 .resume = input_dev_resume,
1701 .poweroff = input_dev_suspend,
1702 .restore = input_dev_resume,
1704 #endif /* CONFIG_PM */
1706 static struct device_type input_dev_type = {
1707 .groups = input_dev_attr_groups,
1708 .release = input_dev_release,
1709 .uevent = input_dev_uevent,
1711 .pm = &input_dev_pm_ops,
1715 static char *input_devnode(struct device *dev, umode_t *mode)
1717 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1720 struct class input_class = {
1722 .devnode = input_devnode,
1724 EXPORT_SYMBOL_GPL(input_class);
1727 * input_allocate_device - allocate memory for new input device
1729 * Returns prepared struct input_dev or %NULL.
1731 * NOTE: Use input_free_device() to free devices that have not been
1732 * registered; input_unregister_device() should be used for already
1733 * registered devices.
1735 struct input_dev *input_allocate_device(void)
1737 static atomic_t input_no = ATOMIC_INIT(0);
1738 struct input_dev *dev;
1740 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1742 dev->dev.type = &input_dev_type;
1743 dev->dev.class = &input_class;
1744 device_initialize(&dev->dev);
1745 mutex_init(&dev->mutex);
1746 spin_lock_init(&dev->event_lock);
1747 init_timer(&dev->timer);
1748 INIT_LIST_HEAD(&dev->h_list);
1749 INIT_LIST_HEAD(&dev->node);
1751 dev_set_name(&dev->dev, "input%ld",
1752 (unsigned long) atomic_inc_return(&input_no) - 1);
1754 __module_get(THIS_MODULE);
1759 EXPORT_SYMBOL(input_allocate_device);
1761 struct input_devres {
1762 struct input_dev *input;
1765 static int devm_input_device_match(struct device *dev, void *res, void *data)
1767 struct input_devres *devres = res;
1769 return devres->input == data;
1772 static void devm_input_device_release(struct device *dev, void *res)
1774 struct input_devres *devres = res;
1775 struct input_dev *input = devres->input;
1777 dev_dbg(dev, "%s: dropping reference to %s\n",
1778 __func__, dev_name(&input->dev));
1779 input_put_device(input);
1783 * devm_input_allocate_device - allocate managed input device
1784 * @dev: device owning the input device being created
1786 * Returns prepared struct input_dev or %NULL.
1788 * Managed input devices do not need to be explicitly unregistered or
1789 * freed as it will be done automatically when owner device unbinds from
1790 * its driver (or binding fails). Once managed input device is allocated,
1791 * it is ready to be set up and registered in the same fashion as regular
1792 * input device. There are no special devm_input_device_[un]register()
1793 * variants, regular ones work with both managed and unmanaged devices,
1794 * should you need them. In most cases however, managed input device need
1795 * not be explicitly unregistered or freed.
1797 * NOTE: the owner device is set up as parent of input device and users
1798 * should not override it.
1800 struct input_dev *devm_input_allocate_device(struct device *dev)
1802 struct input_dev *input;
1803 struct input_devres *devres;
1805 devres = devres_alloc(devm_input_device_release,
1806 sizeof(struct input_devres), GFP_KERNEL);
1810 input = input_allocate_device();
1812 devres_free(devres);
1816 input->dev.parent = dev;
1817 input->devres_managed = true;
1819 devres->input = input;
1820 devres_add(dev, devres);
1824 EXPORT_SYMBOL(devm_input_allocate_device);
1827 * input_free_device - free memory occupied by input_dev structure
1828 * @dev: input device to free
1830 * This function should only be used if input_register_device()
1831 * was not called yet or if it failed. Once device was registered
1832 * use input_unregister_device() and memory will be freed once last
1833 * reference to the device is dropped.
1835 * Device should be allocated by input_allocate_device().
1837 * NOTE: If there are references to the input device then memory
1838 * will not be freed until last reference is dropped.
1840 void input_free_device(struct input_dev *dev)
1843 if (dev->devres_managed)
1844 WARN_ON(devres_destroy(dev->dev.parent,
1845 devm_input_device_release,
1846 devm_input_device_match,
1848 input_put_device(dev);
1851 EXPORT_SYMBOL(input_free_device);
1854 * input_set_capability - mark device as capable of a certain event
1855 * @dev: device that is capable of emitting or accepting event
1856 * @type: type of the event (EV_KEY, EV_REL, etc...)
1859 * In addition to setting up corresponding bit in appropriate capability
1860 * bitmap the function also adjusts dev->evbit.
1862 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1866 __set_bit(code, dev->keybit);
1870 __set_bit(code, dev->relbit);
1874 input_alloc_absinfo(dev);
1878 __set_bit(code, dev->absbit);
1882 __set_bit(code, dev->mscbit);
1886 __set_bit(code, dev->swbit);
1890 __set_bit(code, dev->ledbit);
1894 __set_bit(code, dev->sndbit);
1898 __set_bit(code, dev->ffbit);
1906 pr_err("input_set_capability: unknown type %u (code %u)\n",
1912 __set_bit(type, dev->evbit);
1914 EXPORT_SYMBOL(input_set_capability);
1916 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1920 unsigned int events;
1923 mt_slots = dev->mt->num_slots;
1924 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1925 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1926 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1927 mt_slots = clamp(mt_slots, 2, 32);
1928 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1934 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1936 for (i = 0; i < ABS_CNT; i++) {
1937 if (test_bit(i, dev->absbit)) {
1938 if (input_is_mt_axis(i))
1945 for (i = 0; i < REL_CNT; i++)
1946 if (test_bit(i, dev->relbit))
1949 /* Make room for KEY and MSC events */
1955 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1957 if (!test_bit(EV_##type, dev->evbit)) \
1958 memset(dev->bits##bit, 0, \
1959 sizeof(dev->bits##bit)); \
1962 static void input_cleanse_bitmasks(struct input_dev *dev)
1964 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1965 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1966 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1967 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1968 INPUT_CLEANSE_BITMASK(dev, LED, led);
1969 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1970 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1971 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1974 static void __input_unregister_device(struct input_dev *dev)
1976 struct input_handle *handle, *next;
1978 input_disconnect_device(dev);
1980 mutex_lock(&input_mutex);
1982 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1983 handle->handler->disconnect(handle);
1984 WARN_ON(!list_empty(&dev->h_list));
1986 del_timer_sync(&dev->timer);
1987 list_del_init(&dev->node);
1989 input_wakeup_procfs_readers();
1991 mutex_unlock(&input_mutex);
1993 device_del(&dev->dev);
1996 static void devm_input_device_unregister(struct device *dev, void *res)
1998 struct input_devres *devres = res;
1999 struct input_dev *input = devres->input;
2001 dev_dbg(dev, "%s: unregistering device %s\n",
2002 __func__, dev_name(&input->dev));
2003 __input_unregister_device(input);
2007 * input_register_device - register device with input core
2008 * @dev: device to be registered
2010 * This function registers device with input core. The device must be
2011 * allocated with input_allocate_device() and all it's capabilities
2012 * set up before registering.
2013 * If function fails the device must be freed with input_free_device().
2014 * Once device has been successfully registered it can be unregistered
2015 * with input_unregister_device(); input_free_device() should not be
2016 * called in this case.
2018 * Note that this function is also used to register managed input devices
2019 * (ones allocated with devm_input_allocate_device()). Such managed input
2020 * devices need not be explicitly unregistered or freed, their tear down
2021 * is controlled by the devres infrastructure. It is also worth noting
2022 * that tear down of managed input devices is internally a 2-step process:
2023 * registered managed input device is first unregistered, but stays in
2024 * memory and can still handle input_event() calls (although events will
2025 * not be delivered anywhere). The freeing of managed input device will
2026 * happen later, when devres stack is unwound to the point where device
2027 * allocation was made.
2029 int input_register_device(struct input_dev *dev)
2031 struct input_devres *devres = NULL;
2032 struct input_handler *handler;
2033 unsigned int packet_size;
2037 if (dev->devres_managed) {
2038 devres = devres_alloc(devm_input_device_unregister,
2039 sizeof(struct input_devres), GFP_KERNEL);
2043 devres->input = dev;
2046 /* Every input device generates EV_SYN/SYN_REPORT events. */
2047 __set_bit(EV_SYN, dev->evbit);
2049 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2050 __clear_bit(KEY_RESERVED, dev->keybit);
2052 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2053 input_cleanse_bitmasks(dev);
2055 packet_size = input_estimate_events_per_packet(dev);
2056 if (dev->hint_events_per_packet < packet_size)
2057 dev->hint_events_per_packet = packet_size;
2059 dev->max_vals = dev->hint_events_per_packet + 2;
2060 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2063 goto err_devres_free;
2067 * If delay and period are pre-set by the driver, then autorepeating
2068 * is handled by the driver itself and we don't do it in input.c.
2070 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2071 dev->timer.data = (long) dev;
2072 dev->timer.function = input_repeat_key;
2073 dev->rep[REP_DELAY] = 250;
2074 dev->rep[REP_PERIOD] = 33;
2077 if (!dev->getkeycode)
2078 dev->getkeycode = input_default_getkeycode;
2080 if (!dev->setkeycode)
2081 dev->setkeycode = input_default_setkeycode;
2083 error = device_add(&dev->dev);
2087 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2088 pr_info("%s as %s\n",
2089 dev->name ? dev->name : "Unspecified device",
2090 path ? path : "N/A");
2093 error = mutex_lock_interruptible(&input_mutex);
2095 goto err_device_del;
2097 list_add_tail(&dev->node, &input_dev_list);
2099 list_for_each_entry(handler, &input_handler_list, node)
2100 input_attach_handler(dev, handler);
2102 input_wakeup_procfs_readers();
2104 mutex_unlock(&input_mutex);
2106 if (dev->devres_managed) {
2107 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2108 __func__, dev_name(&dev->dev));
2109 devres_add(dev->dev.parent, devres);
2114 device_del(&dev->dev);
2119 devres_free(devres);
2122 EXPORT_SYMBOL(input_register_device);
2125 * input_unregister_device - unregister previously registered device
2126 * @dev: device to be unregistered
2128 * This function unregisters an input device. Once device is unregistered
2129 * the caller should not try to access it as it may get freed at any moment.
2131 void input_unregister_device(struct input_dev *dev)
2133 if (dev->devres_managed) {
2134 WARN_ON(devres_destroy(dev->dev.parent,
2135 devm_input_device_unregister,
2136 devm_input_device_match,
2138 __input_unregister_device(dev);
2140 * We do not do input_put_device() here because it will be done
2141 * when 2nd devres fires up.
2144 __input_unregister_device(dev);
2145 input_put_device(dev);
2148 EXPORT_SYMBOL(input_unregister_device);
2151 * input_register_handler - register a new input handler
2152 * @handler: handler to be registered
2154 * This function registers a new input handler (interface) for input
2155 * devices in the system and attaches it to all input devices that
2156 * are compatible with the handler.
2158 int input_register_handler(struct input_handler *handler)
2160 struct input_dev *dev;
2163 error = mutex_lock_interruptible(&input_mutex);
2167 INIT_LIST_HEAD(&handler->h_list);
2169 list_add_tail(&handler->node, &input_handler_list);
2171 list_for_each_entry(dev, &input_dev_list, node)
2172 input_attach_handler(dev, handler);
2174 input_wakeup_procfs_readers();
2176 mutex_unlock(&input_mutex);
2179 EXPORT_SYMBOL(input_register_handler);
2182 * input_unregister_handler - unregisters an input handler
2183 * @handler: handler to be unregistered
2185 * This function disconnects a handler from its input devices and
2186 * removes it from lists of known handlers.
2188 void input_unregister_handler(struct input_handler *handler)
2190 struct input_handle *handle, *next;
2192 mutex_lock(&input_mutex);
2194 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2195 handler->disconnect(handle);
2196 WARN_ON(!list_empty(&handler->h_list));
2198 list_del_init(&handler->node);
2200 input_wakeup_procfs_readers();
2202 mutex_unlock(&input_mutex);
2204 EXPORT_SYMBOL(input_unregister_handler);
2207 * input_handler_for_each_handle - handle iterator
2208 * @handler: input handler to iterate
2209 * @data: data for the callback
2210 * @fn: function to be called for each handle
2212 * Iterate over @bus's list of devices, and call @fn for each, passing
2213 * it @data and stop when @fn returns a non-zero value. The function is
2214 * using RCU to traverse the list and therefore may be usind in atonic
2215 * contexts. The @fn callback is invoked from RCU critical section and
2216 * thus must not sleep.
2218 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2219 int (*fn)(struct input_handle *, void *))
2221 struct input_handle *handle;
2226 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2227 retval = fn(handle, data);
2236 EXPORT_SYMBOL(input_handler_for_each_handle);
2239 * input_register_handle - register a new input handle
2240 * @handle: handle to register
2242 * This function puts a new input handle onto device's
2243 * and handler's lists so that events can flow through
2244 * it once it is opened using input_open_device().
2246 * This function is supposed to be called from handler's
2249 int input_register_handle(struct input_handle *handle)
2251 struct input_handler *handler = handle->handler;
2252 struct input_dev *dev = handle->dev;
2256 * We take dev->mutex here to prevent race with
2257 * input_release_device().
2259 error = mutex_lock_interruptible(&dev->mutex);
2264 * Filters go to the head of the list, normal handlers
2267 if (handler->filter)
2268 list_add_rcu(&handle->d_node, &dev->h_list);
2270 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2272 mutex_unlock(&dev->mutex);
2275 * Since we are supposed to be called from ->connect()
2276 * which is mutually exclusive with ->disconnect()
2277 * we can't be racing with input_unregister_handle()
2278 * and so separate lock is not needed here.
2280 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2283 handler->start(handle);
2287 EXPORT_SYMBOL(input_register_handle);
2290 * input_unregister_handle - unregister an input handle
2291 * @handle: handle to unregister
2293 * This function removes input handle from device's
2294 * and handler's lists.
2296 * This function is supposed to be called from handler's
2297 * disconnect() method.
2299 void input_unregister_handle(struct input_handle *handle)
2301 struct input_dev *dev = handle->dev;
2303 list_del_rcu(&handle->h_node);
2306 * Take dev->mutex to prevent race with input_release_device().
2308 mutex_lock(&dev->mutex);
2309 list_del_rcu(&handle->d_node);
2310 mutex_unlock(&dev->mutex);
2314 EXPORT_SYMBOL(input_unregister_handle);
2317 * input_get_new_minor - allocates a new input minor number
2318 * @legacy_base: beginning or the legacy range to be searched
2319 * @legacy_num: size of legacy range
2320 * @allow_dynamic: whether we can also take ID from the dynamic range
2322 * This function allocates a new device minor for from input major namespace.
2323 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2324 * parameters and whether ID can be allocated from dynamic range if there are
2325 * no free IDs in legacy range.
2327 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2331 * This function should be called from input handler's ->connect()
2332 * methods, which are serialized with input_mutex, so no additional
2333 * locking is needed here.
2335 if (legacy_base >= 0) {
2336 int minor = ida_simple_get(&input_ida,
2338 legacy_base + legacy_num,
2340 if (minor >= 0 || !allow_dynamic)
2344 return ida_simple_get(&input_ida,
2345 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2348 EXPORT_SYMBOL(input_get_new_minor);
2351 * input_free_minor - release previously allocated minor
2352 * @minor: minor to be released
2354 * This function releases previously allocated input minor so that it can be
2357 void input_free_minor(unsigned int minor)
2359 ida_simple_remove(&input_ida, minor);
2361 EXPORT_SYMBOL(input_free_minor);
2363 static int __init input_init(void)
2367 err = class_register(&input_class);
2369 pr_err("unable to register input_dev class\n");
2373 err = input_proc_init();
2377 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2378 INPUT_MAX_CHAR_DEVICES, "input");
2380 pr_err("unable to register char major %d", INPUT_MAJOR);
2386 fail2: input_proc_exit();
2387 fail1: class_unregister(&input_class);
2391 static void __exit input_exit(void)
2394 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2395 INPUT_MAX_CHAR_DEVICES);
2396 class_unregister(&input_class);
2399 subsys_initcall(input_init);
2400 module_exit(input_exit);