1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex);
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
50 static const unsigned int input_max_code[EV_CNT] = {
61 static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
64 return code <= max && test_bit(code, bm);
67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
73 if (value > old_val - fuzz && value < old_val + fuzz)
74 return (old_val * 3 + value) / 4;
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 return (old_val + value) / 2;
83 static void input_start_autorepeat(struct input_dev *dev, int code)
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 static void input_stop_autorepeat(struct input_dev *dev)
96 del_timer(&dev->timer);
100 * Pass event first through all filters and then, if event has not been
101 * filtered out, through all open handles. This function is called with
102 * dev->event_lock held and interrupts disabled.
104 static unsigned int input_to_handler(struct input_handle *handle,
105 struct input_value *vals, unsigned int count)
107 struct input_handler *handler = handle->handler;
108 struct input_value *end = vals;
109 struct input_value *v;
111 if (handler->filter) {
112 for (v = vals; v != vals + count; v++) {
113 if (handler->filter(handle, v->type, v->code, v->value))
126 handler->events(handle, vals, count);
127 else if (handler->event)
128 for (v = vals; v != vals + count; v++)
129 handler->event(handle, v->type, v->code, v->value);
135 * Pass values first through all filters and then, if event has not been
136 * filtered out, through all open handles. This function is called with
137 * dev->event_lock held and interrupts disabled.
139 static void input_pass_values(struct input_dev *dev,
140 struct input_value *vals, unsigned int count)
142 struct input_handle *handle;
143 struct input_value *v;
150 handle = rcu_dereference(dev->grab);
152 count = input_to_handler(handle, vals, count);
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
156 count = input_to_handler(handle, vals, count);
164 /* trigger auto repeat for key events */
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 for (v = vals; v != vals + count; v++) {
167 if (v->type == EV_KEY && v->value != 2) {
169 input_start_autorepeat(dev, v->code);
171 input_stop_autorepeat(dev);
177 static void input_pass_event(struct input_dev *dev,
178 unsigned int type, unsigned int code, int value)
180 struct input_value vals[] = { { type, code, value } };
182 input_pass_values(dev, vals, ARRAY_SIZE(vals));
186 * Generate software autorepeat event. Note that we take
187 * dev->event_lock here to avoid racing with input_event
188 * which may cause keys get "stuck".
190 static void input_repeat_key(struct timer_list *t)
192 struct input_dev *dev = from_timer(dev, t, timer);
195 spin_lock_irqsave(&dev->event_lock, flags);
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 struct input_value vals[] = {
200 { EV_KEY, dev->repeat_key, 2 },
204 input_set_timestamp(dev, ktime_get());
205 input_pass_values(dev, vals, ARRAY_SIZE(vals));
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
212 spin_unlock_irqrestore(&dev->event_lock, flags);
215 #define INPUT_IGNORE_EVENT 0
216 #define INPUT_PASS_TO_HANDLERS 1
217 #define INPUT_PASS_TO_DEVICE 2
219 #define INPUT_FLUSH 8
220 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
222 static int input_handle_abs_event(struct input_dev *dev,
223 unsigned int code, int *pval)
225 struct input_mt *mt = dev->mt;
229 if (code == ABS_MT_SLOT) {
231 * "Stage" the event; we'll flush it later, when we
232 * get actual touch data.
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
237 return INPUT_IGNORE_EVENT;
240 is_mt_event = input_is_mt_value(code);
243 pold = &dev->absinfo[code].value;
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
248 * Bypass filtering for multi-touch events when
249 * not employing slots.
255 *pval = input_defuzz_abs_event(*pval, *pold,
256 dev->absinfo[code].fuzz);
258 return INPUT_IGNORE_EVENT;
263 /* Flush pending "slot" event */
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
269 return INPUT_PASS_TO_HANDLERS;
272 static int input_get_disposition(struct input_dev *dev,
273 unsigned int type, unsigned int code, int *pval)
275 int disposition = INPUT_IGNORE_EVENT;
283 disposition = INPUT_PASS_TO_ALL;
287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
290 disposition = INPUT_PASS_TO_HANDLERS;
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
298 /* auto-repeat bypasses state updates */
300 disposition = INPUT_PASS_TO_HANDLERS;
304 if (!!test_bit(code, dev->key) != !!value) {
306 __change_bit(code, dev->key);
307 disposition = INPUT_PASS_TO_HANDLERS;
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
316 __change_bit(code, dev->sw);
317 disposition = INPUT_PASS_TO_HANDLERS;
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
323 disposition = input_handle_abs_event(dev, code, &value);
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 disposition = INPUT_PASS_TO_HANDLERS;
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 disposition = INPUT_PASS_TO_ALL;
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
343 __change_bit(code, dev->led);
344 disposition = INPUT_PASS_TO_ALL;
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
353 disposition = INPUT_PASS_TO_ALL;
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
360 disposition = INPUT_PASS_TO_ALL;
366 disposition = INPUT_PASS_TO_ALL;
370 disposition = INPUT_PASS_TO_ALL;
378 static void input_handle_event(struct input_dev *dev,
379 unsigned int type, unsigned int code, int value)
383 /* filter-out events from inhibited devices */
387 disposition = input_get_disposition(dev, type, code, &value);
388 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
389 add_input_randomness(type, code, value);
391 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
392 dev->event(dev, type, code, value);
397 if (disposition & INPUT_PASS_TO_HANDLERS) {
398 struct input_value *v;
400 if (disposition & INPUT_SLOT) {
401 v = &dev->vals[dev->num_vals++];
403 v->code = ABS_MT_SLOT;
404 v->value = dev->mt->slot;
407 v = &dev->vals[dev->num_vals++];
413 if (disposition & INPUT_FLUSH) {
414 if (dev->num_vals >= 2)
415 input_pass_values(dev, dev->vals, dev->num_vals);
418 * Reset the timestamp on flush so we won't end up
419 * with a stale one. Note we only need to reset the
420 * monolithic one as we use its presence when deciding
421 * whether to generate a synthetic timestamp.
423 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
424 } else if (dev->num_vals >= dev->max_vals - 2) {
425 dev->vals[dev->num_vals++] = input_value_sync;
426 input_pass_values(dev, dev->vals, dev->num_vals);
433 * input_event() - report new input event
434 * @dev: device that generated the event
435 * @type: type of the event
437 * @value: value of the event
439 * This function should be used by drivers implementing various input
440 * devices to report input events. See also input_inject_event().
442 * NOTE: input_event() may be safely used right after input device was
443 * allocated with input_allocate_device(), even before it is registered
444 * with input_register_device(), but the event will not reach any of the
445 * input handlers. Such early invocation of input_event() may be used
446 * to 'seed' initial state of a switch or initial position of absolute
449 void input_event(struct input_dev *dev,
450 unsigned int type, unsigned int code, int value)
454 if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 spin_lock_irqsave(&dev->event_lock, flags);
457 input_handle_event(dev, type, code, value);
458 spin_unlock_irqrestore(&dev->event_lock, flags);
461 EXPORT_SYMBOL(input_event);
464 * input_inject_event() - send input event from input handler
465 * @handle: input handle to send event through
466 * @type: type of the event
468 * @value: value of the event
470 * Similar to input_event() but will ignore event if device is
471 * "grabbed" and handle injecting event is not the one that owns
474 void input_inject_event(struct input_handle *handle,
475 unsigned int type, unsigned int code, int value)
477 struct input_dev *dev = handle->dev;
478 struct input_handle *grab;
481 if (is_event_supported(type, dev->evbit, EV_MAX)) {
482 spin_lock_irqsave(&dev->event_lock, flags);
485 grab = rcu_dereference(dev->grab);
486 if (!grab || grab == handle)
487 input_handle_event(dev, type, code, value);
490 spin_unlock_irqrestore(&dev->event_lock, flags);
493 EXPORT_SYMBOL(input_inject_event);
496 * input_alloc_absinfo - allocates array of input_absinfo structs
497 * @dev: the input device emitting absolute events
499 * If the absinfo struct the caller asked for is already allocated, this
500 * functions will not do anything.
502 void input_alloc_absinfo(struct input_dev *dev)
507 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
509 dev_err(dev->dev.parent ?: &dev->dev,
510 "%s: unable to allocate memory\n", __func__);
512 * We will handle this allocation failure in
513 * input_register_device() when we refuse to register input
514 * device with ABS bits but without absinfo.
518 EXPORT_SYMBOL(input_alloc_absinfo);
520 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
521 int min, int max, int fuzz, int flat)
523 struct input_absinfo *absinfo;
525 input_alloc_absinfo(dev);
529 absinfo = &dev->absinfo[axis];
530 absinfo->minimum = min;
531 absinfo->maximum = max;
532 absinfo->fuzz = fuzz;
533 absinfo->flat = flat;
535 __set_bit(EV_ABS, dev->evbit);
536 __set_bit(axis, dev->absbit);
538 EXPORT_SYMBOL(input_set_abs_params);
542 * input_grab_device - grabs device for exclusive use
543 * @handle: input handle that wants to own the device
545 * When a device is grabbed by an input handle all events generated by
546 * the device are delivered only to this handle. Also events injected
547 * by other input handles are ignored while device is grabbed.
549 int input_grab_device(struct input_handle *handle)
551 struct input_dev *dev = handle->dev;
554 retval = mutex_lock_interruptible(&dev->mutex);
563 rcu_assign_pointer(dev->grab, handle);
566 mutex_unlock(&dev->mutex);
569 EXPORT_SYMBOL(input_grab_device);
571 static void __input_release_device(struct input_handle *handle)
573 struct input_dev *dev = handle->dev;
574 struct input_handle *grabber;
576 grabber = rcu_dereference_protected(dev->grab,
577 lockdep_is_held(&dev->mutex));
578 if (grabber == handle) {
579 rcu_assign_pointer(dev->grab, NULL);
580 /* Make sure input_pass_event() notices that grab is gone */
583 list_for_each_entry(handle, &dev->h_list, d_node)
584 if (handle->open && handle->handler->start)
585 handle->handler->start(handle);
590 * input_release_device - release previously grabbed device
591 * @handle: input handle that owns the device
593 * Releases previously grabbed device so that other input handles can
594 * start receiving input events. Upon release all handlers attached
595 * to the device have their start() method called so they have a change
596 * to synchronize device state with the rest of the system.
598 void input_release_device(struct input_handle *handle)
600 struct input_dev *dev = handle->dev;
602 mutex_lock(&dev->mutex);
603 __input_release_device(handle);
604 mutex_unlock(&dev->mutex);
606 EXPORT_SYMBOL(input_release_device);
609 * input_open_device - open input device
610 * @handle: handle through which device is being accessed
612 * This function should be called by input handlers when they
613 * want to start receive events from given input device.
615 int input_open_device(struct input_handle *handle)
617 struct input_dev *dev = handle->dev;
620 retval = mutex_lock_interruptible(&dev->mutex);
624 if (dev->going_away) {
631 if (dev->users++ || dev->inhibited) {
633 * Device is already opened and/or inhibited,
634 * so we can exit immediately and report success.
640 retval = dev->open(dev);
645 * Make sure we are not delivering any more events
646 * through this handle
654 input_dev_poller_start(dev->poller);
657 mutex_unlock(&dev->mutex);
660 EXPORT_SYMBOL(input_open_device);
662 int input_flush_device(struct input_handle *handle, struct file *file)
664 struct input_dev *dev = handle->dev;
667 retval = mutex_lock_interruptible(&dev->mutex);
672 retval = dev->flush(dev, file);
674 mutex_unlock(&dev->mutex);
677 EXPORT_SYMBOL(input_flush_device);
680 * input_close_device - close input device
681 * @handle: handle through which device is being accessed
683 * This function should be called by input handlers when they
684 * want to stop receive events from given input device.
686 void input_close_device(struct input_handle *handle)
688 struct input_dev *dev = handle->dev;
690 mutex_lock(&dev->mutex);
692 __input_release_device(handle);
694 if (!dev->inhibited && !--dev->users) {
696 input_dev_poller_stop(dev->poller);
701 if (!--handle->open) {
703 * synchronize_rcu() makes sure that input_pass_event()
704 * completed and that no more input events are delivered
705 * through this handle
710 mutex_unlock(&dev->mutex);
712 EXPORT_SYMBOL(input_close_device);
715 * Simulate keyup events for all keys that are marked as pressed.
716 * The function must be called with dev->event_lock held.
718 static void input_dev_release_keys(struct input_dev *dev)
720 bool need_sync = false;
723 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
724 for_each_set_bit(code, dev->key, KEY_CNT) {
725 input_pass_event(dev, EV_KEY, code, 0);
730 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
732 memset(dev->key, 0, sizeof(dev->key));
737 * Prepare device for unregistering
739 static void input_disconnect_device(struct input_dev *dev)
741 struct input_handle *handle;
744 * Mark device as going away. Note that we take dev->mutex here
745 * not to protect access to dev->going_away but rather to ensure
746 * that there are no threads in the middle of input_open_device()
748 mutex_lock(&dev->mutex);
749 dev->going_away = true;
750 mutex_unlock(&dev->mutex);
752 spin_lock_irq(&dev->event_lock);
755 * Simulate keyup events for all pressed keys so that handlers
756 * are not left with "stuck" keys. The driver may continue
757 * generate events even after we done here but they will not
758 * reach any handlers.
760 input_dev_release_keys(dev);
762 list_for_each_entry(handle, &dev->h_list, d_node)
765 spin_unlock_irq(&dev->event_lock);
769 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
770 * @ke: keymap entry containing scancode to be converted.
771 * @scancode: pointer to the location where converted scancode should
774 * This function is used to convert scancode stored in &struct keymap_entry
775 * into scalar form understood by legacy keymap handling methods. These
776 * methods expect scancodes to be represented as 'unsigned int'.
778 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
779 unsigned int *scancode)
783 *scancode = *((u8 *)ke->scancode);
787 *scancode = *((u16 *)ke->scancode);
791 *scancode = *((u32 *)ke->scancode);
800 EXPORT_SYMBOL(input_scancode_to_scalar);
803 * Those routines handle the default case where no [gs]etkeycode() is
804 * defined. In this case, an array indexed by the scancode is used.
807 static unsigned int input_fetch_keycode(struct input_dev *dev,
810 switch (dev->keycodesize) {
812 return ((u8 *)dev->keycode)[index];
815 return ((u16 *)dev->keycode)[index];
818 return ((u32 *)dev->keycode)[index];
822 static int input_default_getkeycode(struct input_dev *dev,
823 struct input_keymap_entry *ke)
828 if (!dev->keycodesize)
831 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
834 error = input_scancode_to_scalar(ke, &index);
839 if (index >= dev->keycodemax)
842 ke->keycode = input_fetch_keycode(dev, index);
844 ke->len = sizeof(index);
845 memcpy(ke->scancode, &index, sizeof(index));
850 static int input_default_setkeycode(struct input_dev *dev,
851 const struct input_keymap_entry *ke,
852 unsigned int *old_keycode)
858 if (!dev->keycodesize)
861 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
864 error = input_scancode_to_scalar(ke, &index);
869 if (index >= dev->keycodemax)
872 if (dev->keycodesize < sizeof(ke->keycode) &&
873 (ke->keycode >> (dev->keycodesize * 8)))
876 switch (dev->keycodesize) {
878 u8 *k = (u8 *)dev->keycode;
879 *old_keycode = k[index];
880 k[index] = ke->keycode;
884 u16 *k = (u16 *)dev->keycode;
885 *old_keycode = k[index];
886 k[index] = ke->keycode;
890 u32 *k = (u32 *)dev->keycode;
891 *old_keycode = k[index];
892 k[index] = ke->keycode;
897 if (*old_keycode <= KEY_MAX) {
898 __clear_bit(*old_keycode, dev->keybit);
899 for (i = 0; i < dev->keycodemax; i++) {
900 if (input_fetch_keycode(dev, i) == *old_keycode) {
901 __set_bit(*old_keycode, dev->keybit);
902 /* Setting the bit twice is useless, so break */
908 __set_bit(ke->keycode, dev->keybit);
913 * input_get_keycode - retrieve keycode currently mapped to a given scancode
914 * @dev: input device which keymap is being queried
917 * This function should be called by anyone interested in retrieving current
918 * keymap. Presently evdev handlers use it.
920 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
925 spin_lock_irqsave(&dev->event_lock, flags);
926 retval = dev->getkeycode(dev, ke);
927 spin_unlock_irqrestore(&dev->event_lock, flags);
931 EXPORT_SYMBOL(input_get_keycode);
934 * input_set_keycode - attribute a keycode to a given scancode
935 * @dev: input device which keymap is being updated
936 * @ke: new keymap entry
938 * This function should be called by anyone needing to update current
939 * keymap. Presently keyboard and evdev handlers use it.
941 int input_set_keycode(struct input_dev *dev,
942 const struct input_keymap_entry *ke)
945 unsigned int old_keycode;
948 if (ke->keycode > KEY_MAX)
951 spin_lock_irqsave(&dev->event_lock, flags);
953 retval = dev->setkeycode(dev, ke, &old_keycode);
957 /* Make sure KEY_RESERVED did not get enabled. */
958 __clear_bit(KEY_RESERVED, dev->keybit);
961 * Simulate keyup event if keycode is not present
962 * in the keymap anymore
964 if (old_keycode > KEY_MAX) {
965 dev_warn(dev->dev.parent ?: &dev->dev,
966 "%s: got too big old keycode %#x\n",
967 __func__, old_keycode);
968 } else if (test_bit(EV_KEY, dev->evbit) &&
969 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
970 __test_and_clear_bit(old_keycode, dev->key)) {
971 struct input_value vals[] = {
972 { EV_KEY, old_keycode, 0 },
976 input_pass_values(dev, vals, ARRAY_SIZE(vals));
980 spin_unlock_irqrestore(&dev->event_lock, flags);
984 EXPORT_SYMBOL(input_set_keycode);
986 bool input_match_device_id(const struct input_dev *dev,
987 const struct input_device_id *id)
989 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
990 if (id->bustype != dev->id.bustype)
993 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
994 if (id->vendor != dev->id.vendor)
997 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
998 if (id->product != dev->id.product)
1001 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1002 if (id->version != dev->id.version)
1005 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1006 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1007 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1008 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1009 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1010 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1011 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1012 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1013 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1014 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1020 EXPORT_SYMBOL(input_match_device_id);
1022 static const struct input_device_id *input_match_device(struct input_handler *handler,
1023 struct input_dev *dev)
1025 const struct input_device_id *id;
1027 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1028 if (input_match_device_id(dev, id) &&
1029 (!handler->match || handler->match(handler, dev))) {
1037 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1039 const struct input_device_id *id;
1042 id = input_match_device(handler, dev);
1046 error = handler->connect(handler, dev, id);
1047 if (error && error != -ENODEV)
1048 pr_err("failed to attach handler %s to device %s, error: %d\n",
1049 handler->name, kobject_name(&dev->dev.kobj), error);
1054 #ifdef CONFIG_COMPAT
1056 static int input_bits_to_string(char *buf, int buf_size,
1057 unsigned long bits, bool skip_empty)
1061 if (in_compat_syscall()) {
1062 u32 dword = bits >> 32;
1063 if (dword || !skip_empty)
1064 len += snprintf(buf, buf_size, "%x ", dword);
1066 dword = bits & 0xffffffffUL;
1067 if (dword || !skip_empty || len)
1068 len += snprintf(buf + len, max(buf_size - len, 0),
1071 if (bits || !skip_empty)
1072 len += snprintf(buf, buf_size, "%lx", bits);
1078 #else /* !CONFIG_COMPAT */
1080 static int input_bits_to_string(char *buf, int buf_size,
1081 unsigned long bits, bool skip_empty)
1083 return bits || !skip_empty ?
1084 snprintf(buf, buf_size, "%lx", bits) : 0;
1089 #ifdef CONFIG_PROC_FS
1091 static struct proc_dir_entry *proc_bus_input_dir;
1092 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1093 static int input_devices_state;
1095 static inline void input_wakeup_procfs_readers(void)
1097 input_devices_state++;
1098 wake_up(&input_devices_poll_wait);
1101 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1103 poll_wait(file, &input_devices_poll_wait, wait);
1104 if (file->f_version != input_devices_state) {
1105 file->f_version = input_devices_state;
1106 return EPOLLIN | EPOLLRDNORM;
1112 union input_seq_state {
1115 bool mutex_acquired;
1120 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1122 union input_seq_state *state = (union input_seq_state *)&seq->private;
1125 /* We need to fit into seq->private pointer */
1126 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1128 error = mutex_lock_interruptible(&input_mutex);
1130 state->mutex_acquired = false;
1131 return ERR_PTR(error);
1134 state->mutex_acquired = true;
1136 return seq_list_start(&input_dev_list, *pos);
1139 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1141 return seq_list_next(v, &input_dev_list, pos);
1144 static void input_seq_stop(struct seq_file *seq, void *v)
1146 union input_seq_state *state = (union input_seq_state *)&seq->private;
1148 if (state->mutex_acquired)
1149 mutex_unlock(&input_mutex);
1152 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1153 unsigned long *bitmap, int max)
1156 bool skip_empty = true;
1159 seq_printf(seq, "B: %s=", name);
1161 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1162 if (input_bits_to_string(buf, sizeof(buf),
1163 bitmap[i], skip_empty)) {
1165 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1170 * If no output was produced print a single 0.
1175 seq_putc(seq, '\n');
1178 static int input_devices_seq_show(struct seq_file *seq, void *v)
1180 struct input_dev *dev = container_of(v, struct input_dev, node);
1181 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1182 struct input_handle *handle;
1184 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1185 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1187 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1188 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1189 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1190 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1191 seq_puts(seq, "H: Handlers=");
1193 list_for_each_entry(handle, &dev->h_list, d_node)
1194 seq_printf(seq, "%s ", handle->name);
1195 seq_putc(seq, '\n');
1197 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1199 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1200 if (test_bit(EV_KEY, dev->evbit))
1201 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1202 if (test_bit(EV_REL, dev->evbit))
1203 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1204 if (test_bit(EV_ABS, dev->evbit))
1205 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1206 if (test_bit(EV_MSC, dev->evbit))
1207 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1208 if (test_bit(EV_LED, dev->evbit))
1209 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1210 if (test_bit(EV_SND, dev->evbit))
1211 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1212 if (test_bit(EV_FF, dev->evbit))
1213 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1214 if (test_bit(EV_SW, dev->evbit))
1215 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1217 seq_putc(seq, '\n');
1223 static const struct seq_operations input_devices_seq_ops = {
1224 .start = input_devices_seq_start,
1225 .next = input_devices_seq_next,
1226 .stop = input_seq_stop,
1227 .show = input_devices_seq_show,
1230 static int input_proc_devices_open(struct inode *inode, struct file *file)
1232 return seq_open(file, &input_devices_seq_ops);
1235 static const struct proc_ops input_devices_proc_ops = {
1236 .proc_open = input_proc_devices_open,
1237 .proc_poll = input_proc_devices_poll,
1238 .proc_read = seq_read,
1239 .proc_lseek = seq_lseek,
1240 .proc_release = seq_release,
1243 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1245 union input_seq_state *state = (union input_seq_state *)&seq->private;
1248 /* We need to fit into seq->private pointer */
1249 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1251 error = mutex_lock_interruptible(&input_mutex);
1253 state->mutex_acquired = false;
1254 return ERR_PTR(error);
1257 state->mutex_acquired = true;
1260 return seq_list_start(&input_handler_list, *pos);
1263 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1265 union input_seq_state *state = (union input_seq_state *)&seq->private;
1267 state->pos = *pos + 1;
1268 return seq_list_next(v, &input_handler_list, pos);
1271 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1273 struct input_handler *handler = container_of(v, struct input_handler, node);
1274 union input_seq_state *state = (union input_seq_state *)&seq->private;
1276 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1277 if (handler->filter)
1278 seq_puts(seq, " (filter)");
1279 if (handler->legacy_minors)
1280 seq_printf(seq, " Minor=%d", handler->minor);
1281 seq_putc(seq, '\n');
1286 static const struct seq_operations input_handlers_seq_ops = {
1287 .start = input_handlers_seq_start,
1288 .next = input_handlers_seq_next,
1289 .stop = input_seq_stop,
1290 .show = input_handlers_seq_show,
1293 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1295 return seq_open(file, &input_handlers_seq_ops);
1298 static const struct proc_ops input_handlers_proc_ops = {
1299 .proc_open = input_proc_handlers_open,
1300 .proc_read = seq_read,
1301 .proc_lseek = seq_lseek,
1302 .proc_release = seq_release,
1305 static int __init input_proc_init(void)
1307 struct proc_dir_entry *entry;
1309 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1310 if (!proc_bus_input_dir)
1313 entry = proc_create("devices", 0, proc_bus_input_dir,
1314 &input_devices_proc_ops);
1318 entry = proc_create("handlers", 0, proc_bus_input_dir,
1319 &input_handlers_proc_ops);
1325 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1326 fail1: remove_proc_entry("bus/input", NULL);
1330 static void input_proc_exit(void)
1332 remove_proc_entry("devices", proc_bus_input_dir);
1333 remove_proc_entry("handlers", proc_bus_input_dir);
1334 remove_proc_entry("bus/input", NULL);
1337 #else /* !CONFIG_PROC_FS */
1338 static inline void input_wakeup_procfs_readers(void) { }
1339 static inline int input_proc_init(void) { return 0; }
1340 static inline void input_proc_exit(void) { }
1343 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1344 static ssize_t input_dev_show_##name(struct device *dev, \
1345 struct device_attribute *attr, \
1348 struct input_dev *input_dev = to_input_dev(dev); \
1350 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1351 input_dev->name ? input_dev->name : ""); \
1353 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1355 INPUT_DEV_STRING_ATTR_SHOW(name);
1356 INPUT_DEV_STRING_ATTR_SHOW(phys);
1357 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1359 static int input_print_modalias_bits(char *buf, int size,
1360 char name, unsigned long *bm,
1361 unsigned int min_bit, unsigned int max_bit)
1365 len += snprintf(buf, max(size, 0), "%c", name);
1366 for (i = min_bit; i < max_bit; i++)
1367 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1368 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1372 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1377 len = snprintf(buf, max(size, 0),
1378 "input:b%04Xv%04Xp%04Xe%04X-",
1379 id->id.bustype, id->id.vendor,
1380 id->id.product, id->id.version);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 'e', id->evbit, 0, EV_MAX);
1384 len += input_print_modalias_bits(buf + len, size - len,
1385 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1386 len += input_print_modalias_bits(buf + len, size - len,
1387 'r', id->relbit, 0, REL_MAX);
1388 len += input_print_modalias_bits(buf + len, size - len,
1389 'a', id->absbit, 0, ABS_MAX);
1390 len += input_print_modalias_bits(buf + len, size - len,
1391 'm', id->mscbit, 0, MSC_MAX);
1392 len += input_print_modalias_bits(buf + len, size - len,
1393 'l', id->ledbit, 0, LED_MAX);
1394 len += input_print_modalias_bits(buf + len, size - len,
1395 's', id->sndbit, 0, SND_MAX);
1396 len += input_print_modalias_bits(buf + len, size - len,
1397 'f', id->ffbit, 0, FF_MAX);
1398 len += input_print_modalias_bits(buf + len, size - len,
1399 'w', id->swbit, 0, SW_MAX);
1402 len += snprintf(buf + len, max(size - len, 0), "\n");
1407 static ssize_t input_dev_show_modalias(struct device *dev,
1408 struct device_attribute *attr,
1411 struct input_dev *id = to_input_dev(dev);
1414 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1416 return min_t(int, len, PAGE_SIZE);
1418 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1420 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1421 int max, int add_cr);
1423 static ssize_t input_dev_show_properties(struct device *dev,
1424 struct device_attribute *attr,
1427 struct input_dev *input_dev = to_input_dev(dev);
1428 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1429 INPUT_PROP_MAX, true);
1430 return min_t(int, len, PAGE_SIZE);
1432 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1434 static int input_inhibit_device(struct input_dev *dev);
1435 static int input_uninhibit_device(struct input_dev *dev);
1437 static ssize_t inhibited_show(struct device *dev,
1438 struct device_attribute *attr,
1441 struct input_dev *input_dev = to_input_dev(dev);
1443 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1446 static ssize_t inhibited_store(struct device *dev,
1447 struct device_attribute *attr, const char *buf,
1450 struct input_dev *input_dev = to_input_dev(dev);
1454 if (strtobool(buf, &inhibited))
1458 rv = input_inhibit_device(input_dev);
1460 rv = input_uninhibit_device(input_dev);
1468 static DEVICE_ATTR_RW(inhibited);
1470 static struct attribute *input_dev_attrs[] = {
1471 &dev_attr_name.attr,
1472 &dev_attr_phys.attr,
1473 &dev_attr_uniq.attr,
1474 &dev_attr_modalias.attr,
1475 &dev_attr_properties.attr,
1476 &dev_attr_inhibited.attr,
1480 static const struct attribute_group input_dev_attr_group = {
1481 .attrs = input_dev_attrs,
1484 #define INPUT_DEV_ID_ATTR(name) \
1485 static ssize_t input_dev_show_id_##name(struct device *dev, \
1486 struct device_attribute *attr, \
1489 struct input_dev *input_dev = to_input_dev(dev); \
1490 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1492 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1494 INPUT_DEV_ID_ATTR(bustype);
1495 INPUT_DEV_ID_ATTR(vendor);
1496 INPUT_DEV_ID_ATTR(product);
1497 INPUT_DEV_ID_ATTR(version);
1499 static struct attribute *input_dev_id_attrs[] = {
1500 &dev_attr_bustype.attr,
1501 &dev_attr_vendor.attr,
1502 &dev_attr_product.attr,
1503 &dev_attr_version.attr,
1507 static const struct attribute_group input_dev_id_attr_group = {
1509 .attrs = input_dev_id_attrs,
1512 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1513 int max, int add_cr)
1517 bool skip_empty = true;
1519 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1520 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1521 bitmap[i], skip_empty);
1525 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1530 * If no output was produced print a single 0.
1533 len = snprintf(buf, buf_size, "%d", 0);
1536 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1541 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1542 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1543 struct device_attribute *attr, \
1546 struct input_dev *input_dev = to_input_dev(dev); \
1547 int len = input_print_bitmap(buf, PAGE_SIZE, \
1548 input_dev->bm##bit, ev##_MAX, \
1550 return min_t(int, len, PAGE_SIZE); \
1552 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1554 INPUT_DEV_CAP_ATTR(EV, ev);
1555 INPUT_DEV_CAP_ATTR(KEY, key);
1556 INPUT_DEV_CAP_ATTR(REL, rel);
1557 INPUT_DEV_CAP_ATTR(ABS, abs);
1558 INPUT_DEV_CAP_ATTR(MSC, msc);
1559 INPUT_DEV_CAP_ATTR(LED, led);
1560 INPUT_DEV_CAP_ATTR(SND, snd);
1561 INPUT_DEV_CAP_ATTR(FF, ff);
1562 INPUT_DEV_CAP_ATTR(SW, sw);
1564 static struct attribute *input_dev_caps_attrs[] = {
1577 static const struct attribute_group input_dev_caps_attr_group = {
1578 .name = "capabilities",
1579 .attrs = input_dev_caps_attrs,
1582 static const struct attribute_group *input_dev_attr_groups[] = {
1583 &input_dev_attr_group,
1584 &input_dev_id_attr_group,
1585 &input_dev_caps_attr_group,
1586 &input_poller_attribute_group,
1590 static void input_dev_release(struct device *device)
1592 struct input_dev *dev = to_input_dev(device);
1594 input_ff_destroy(dev);
1595 input_mt_destroy_slots(dev);
1597 kfree(dev->absinfo);
1601 module_put(THIS_MODULE);
1605 * Input uevent interface - loading event handlers based on
1608 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1609 const char *name, unsigned long *bitmap, int max)
1613 if (add_uevent_var(env, "%s", name))
1616 len = input_print_bitmap(&env->buf[env->buflen - 1],
1617 sizeof(env->buf) - env->buflen,
1618 bitmap, max, false);
1619 if (len >= (sizeof(env->buf) - env->buflen))
1626 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1627 struct input_dev *dev)
1631 if (add_uevent_var(env, "MODALIAS="))
1634 len = input_print_modalias(&env->buf[env->buflen - 1],
1635 sizeof(env->buf) - env->buflen,
1637 if (len >= (sizeof(env->buf) - env->buflen))
1644 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1646 int err = add_uevent_var(env, fmt, val); \
1651 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1653 int err = input_add_uevent_bm_var(env, name, bm, max); \
1658 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1660 int err = input_add_uevent_modalias_var(env, dev); \
1665 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1667 struct input_dev *dev = to_input_dev(device);
1669 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1670 dev->id.bustype, dev->id.vendor,
1671 dev->id.product, dev->id.version);
1673 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1675 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1677 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1679 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1681 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1682 if (test_bit(EV_KEY, dev->evbit))
1683 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1684 if (test_bit(EV_REL, dev->evbit))
1685 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1686 if (test_bit(EV_ABS, dev->evbit))
1687 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1688 if (test_bit(EV_MSC, dev->evbit))
1689 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1690 if (test_bit(EV_LED, dev->evbit))
1691 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1692 if (test_bit(EV_SND, dev->evbit))
1693 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1694 if (test_bit(EV_FF, dev->evbit))
1695 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1696 if (test_bit(EV_SW, dev->evbit))
1697 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1699 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1704 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1709 if (!test_bit(EV_##type, dev->evbit)) \
1712 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1713 active = test_bit(i, dev->bits); \
1714 if (!active && !on) \
1717 dev->event(dev, EV_##type, i, on ? active : 0); \
1721 static void input_dev_toggle(struct input_dev *dev, bool activate)
1726 INPUT_DO_TOGGLE(dev, LED, led, activate);
1727 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1729 if (activate && test_bit(EV_REP, dev->evbit)) {
1730 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1731 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1736 * input_reset_device() - reset/restore the state of input device
1737 * @dev: input device whose state needs to be reset
1739 * This function tries to reset the state of an opened input device and
1740 * bring internal state and state if the hardware in sync with each other.
1741 * We mark all keys as released, restore LED state, repeat rate, etc.
1743 void input_reset_device(struct input_dev *dev)
1745 unsigned long flags;
1747 mutex_lock(&dev->mutex);
1748 spin_lock_irqsave(&dev->event_lock, flags);
1750 input_dev_toggle(dev, true);
1751 input_dev_release_keys(dev);
1753 spin_unlock_irqrestore(&dev->event_lock, flags);
1754 mutex_unlock(&dev->mutex);
1756 EXPORT_SYMBOL(input_reset_device);
1758 static int input_inhibit_device(struct input_dev *dev)
1762 mutex_lock(&dev->mutex);
1771 input_dev_poller_stop(dev->poller);
1774 spin_lock_irq(&dev->event_lock);
1775 input_dev_release_keys(dev);
1776 input_dev_toggle(dev, false);
1777 spin_unlock_irq(&dev->event_lock);
1779 dev->inhibited = true;
1782 mutex_unlock(&dev->mutex);
1786 static int input_uninhibit_device(struct input_dev *dev)
1790 mutex_lock(&dev->mutex);
1792 if (!dev->inhibited)
1797 ret = dev->open(dev);
1802 input_dev_poller_start(dev->poller);
1805 dev->inhibited = false;
1806 spin_lock_irq(&dev->event_lock);
1807 input_dev_toggle(dev, true);
1808 spin_unlock_irq(&dev->event_lock);
1811 mutex_unlock(&dev->mutex);
1815 #ifdef CONFIG_PM_SLEEP
1816 static int input_dev_suspend(struct device *dev)
1818 struct input_dev *input_dev = to_input_dev(dev);
1820 spin_lock_irq(&input_dev->event_lock);
1823 * Keys that are pressed now are unlikely to be
1824 * still pressed when we resume.
1826 input_dev_release_keys(input_dev);
1828 /* Turn off LEDs and sounds, if any are active. */
1829 input_dev_toggle(input_dev, false);
1831 spin_unlock_irq(&input_dev->event_lock);
1836 static int input_dev_resume(struct device *dev)
1838 struct input_dev *input_dev = to_input_dev(dev);
1840 spin_lock_irq(&input_dev->event_lock);
1842 /* Restore state of LEDs and sounds, if any were active. */
1843 input_dev_toggle(input_dev, true);
1845 spin_unlock_irq(&input_dev->event_lock);
1850 static int input_dev_freeze(struct device *dev)
1852 struct input_dev *input_dev = to_input_dev(dev);
1854 spin_lock_irq(&input_dev->event_lock);
1857 * Keys that are pressed now are unlikely to be
1858 * still pressed when we resume.
1860 input_dev_release_keys(input_dev);
1862 spin_unlock_irq(&input_dev->event_lock);
1867 static int input_dev_poweroff(struct device *dev)
1869 struct input_dev *input_dev = to_input_dev(dev);
1871 spin_lock_irq(&input_dev->event_lock);
1873 /* Turn off LEDs and sounds, if any are active. */
1874 input_dev_toggle(input_dev, false);
1876 spin_unlock_irq(&input_dev->event_lock);
1881 static const struct dev_pm_ops input_dev_pm_ops = {
1882 .suspend = input_dev_suspend,
1883 .resume = input_dev_resume,
1884 .freeze = input_dev_freeze,
1885 .poweroff = input_dev_poweroff,
1886 .restore = input_dev_resume,
1888 #endif /* CONFIG_PM */
1890 static const struct device_type input_dev_type = {
1891 .groups = input_dev_attr_groups,
1892 .release = input_dev_release,
1893 .uevent = input_dev_uevent,
1894 #ifdef CONFIG_PM_SLEEP
1895 .pm = &input_dev_pm_ops,
1899 static char *input_devnode(struct device *dev, umode_t *mode)
1901 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1904 struct class input_class = {
1906 .devnode = input_devnode,
1908 EXPORT_SYMBOL_GPL(input_class);
1911 * input_allocate_device - allocate memory for new input device
1913 * Returns prepared struct input_dev or %NULL.
1915 * NOTE: Use input_free_device() to free devices that have not been
1916 * registered; input_unregister_device() should be used for already
1917 * registered devices.
1919 struct input_dev *input_allocate_device(void)
1921 static atomic_t input_no = ATOMIC_INIT(-1);
1922 struct input_dev *dev;
1924 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1926 dev->dev.type = &input_dev_type;
1927 dev->dev.class = &input_class;
1928 device_initialize(&dev->dev);
1929 mutex_init(&dev->mutex);
1930 spin_lock_init(&dev->event_lock);
1931 timer_setup(&dev->timer, NULL, 0);
1932 INIT_LIST_HEAD(&dev->h_list);
1933 INIT_LIST_HEAD(&dev->node);
1935 dev_set_name(&dev->dev, "input%lu",
1936 (unsigned long)atomic_inc_return(&input_no));
1938 __module_get(THIS_MODULE);
1943 EXPORT_SYMBOL(input_allocate_device);
1945 struct input_devres {
1946 struct input_dev *input;
1949 static int devm_input_device_match(struct device *dev, void *res, void *data)
1951 struct input_devres *devres = res;
1953 return devres->input == data;
1956 static void devm_input_device_release(struct device *dev, void *res)
1958 struct input_devres *devres = res;
1959 struct input_dev *input = devres->input;
1961 dev_dbg(dev, "%s: dropping reference to %s\n",
1962 __func__, dev_name(&input->dev));
1963 input_put_device(input);
1967 * devm_input_allocate_device - allocate managed input device
1968 * @dev: device owning the input device being created
1970 * Returns prepared struct input_dev or %NULL.
1972 * Managed input devices do not need to be explicitly unregistered or
1973 * freed as it will be done automatically when owner device unbinds from
1974 * its driver (or binding fails). Once managed input device is allocated,
1975 * it is ready to be set up and registered in the same fashion as regular
1976 * input device. There are no special devm_input_device_[un]register()
1977 * variants, regular ones work with both managed and unmanaged devices,
1978 * should you need them. In most cases however, managed input device need
1979 * not be explicitly unregistered or freed.
1981 * NOTE: the owner device is set up as parent of input device and users
1982 * should not override it.
1984 struct input_dev *devm_input_allocate_device(struct device *dev)
1986 struct input_dev *input;
1987 struct input_devres *devres;
1989 devres = devres_alloc(devm_input_device_release,
1990 sizeof(*devres), GFP_KERNEL);
1994 input = input_allocate_device();
1996 devres_free(devres);
2000 input->dev.parent = dev;
2001 input->devres_managed = true;
2003 devres->input = input;
2004 devres_add(dev, devres);
2008 EXPORT_SYMBOL(devm_input_allocate_device);
2011 * input_free_device - free memory occupied by input_dev structure
2012 * @dev: input device to free
2014 * This function should only be used if input_register_device()
2015 * was not called yet or if it failed. Once device was registered
2016 * use input_unregister_device() and memory will be freed once last
2017 * reference to the device is dropped.
2019 * Device should be allocated by input_allocate_device().
2021 * NOTE: If there are references to the input device then memory
2022 * will not be freed until last reference is dropped.
2024 void input_free_device(struct input_dev *dev)
2027 if (dev->devres_managed)
2028 WARN_ON(devres_destroy(dev->dev.parent,
2029 devm_input_device_release,
2030 devm_input_device_match,
2032 input_put_device(dev);
2035 EXPORT_SYMBOL(input_free_device);
2038 * input_set_timestamp - set timestamp for input events
2039 * @dev: input device to set timestamp for
2040 * @timestamp: the time at which the event has occurred
2041 * in CLOCK_MONOTONIC
2043 * This function is intended to provide to the input system a more
2044 * accurate time of when an event actually occurred. The driver should
2045 * call this function as soon as a timestamp is acquired ensuring
2046 * clock conversions in input_set_timestamp are done correctly.
2048 * The system entering suspend state between timestamp acquisition and
2049 * calling input_set_timestamp can result in inaccurate conversions.
2051 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2053 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2054 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2055 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2058 EXPORT_SYMBOL(input_set_timestamp);
2061 * input_get_timestamp - get timestamp for input events
2062 * @dev: input device to get timestamp from
2064 * A valid timestamp is a timestamp of non-zero value.
2066 ktime_t *input_get_timestamp(struct input_dev *dev)
2068 const ktime_t invalid_timestamp = ktime_set(0, 0);
2070 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2071 input_set_timestamp(dev, ktime_get());
2073 return dev->timestamp;
2075 EXPORT_SYMBOL(input_get_timestamp);
2078 * input_set_capability - mark device as capable of a certain event
2079 * @dev: device that is capable of emitting or accepting event
2080 * @type: type of the event (EV_KEY, EV_REL, etc...)
2083 * In addition to setting up corresponding bit in appropriate capability
2084 * bitmap the function also adjusts dev->evbit.
2086 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2088 if (type < EV_CNT && input_max_code[type] &&
2089 code > input_max_code[type]) {
2090 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2098 __set_bit(code, dev->keybit);
2102 __set_bit(code, dev->relbit);
2106 input_alloc_absinfo(dev);
2110 __set_bit(code, dev->absbit);
2114 __set_bit(code, dev->mscbit);
2118 __set_bit(code, dev->swbit);
2122 __set_bit(code, dev->ledbit);
2126 __set_bit(code, dev->sndbit);
2130 __set_bit(code, dev->ffbit);
2138 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2143 __set_bit(type, dev->evbit);
2145 EXPORT_SYMBOL(input_set_capability);
2147 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2151 unsigned int events;
2154 mt_slots = dev->mt->num_slots;
2155 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2156 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2157 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2158 mt_slots = clamp(mt_slots, 2, 32);
2159 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2165 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2167 if (test_bit(EV_ABS, dev->evbit))
2168 for_each_set_bit(i, dev->absbit, ABS_CNT)
2169 events += input_is_mt_axis(i) ? mt_slots : 1;
2171 if (test_bit(EV_REL, dev->evbit))
2172 events += bitmap_weight(dev->relbit, REL_CNT);
2174 /* Make room for KEY and MSC events */
2180 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2182 if (!test_bit(EV_##type, dev->evbit)) \
2183 memset(dev->bits##bit, 0, \
2184 sizeof(dev->bits##bit)); \
2187 static void input_cleanse_bitmasks(struct input_dev *dev)
2189 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2190 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2191 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2192 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2193 INPUT_CLEANSE_BITMASK(dev, LED, led);
2194 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2195 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2196 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2199 static void __input_unregister_device(struct input_dev *dev)
2201 struct input_handle *handle, *next;
2203 input_disconnect_device(dev);
2205 mutex_lock(&input_mutex);
2207 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2208 handle->handler->disconnect(handle);
2209 WARN_ON(!list_empty(&dev->h_list));
2211 del_timer_sync(&dev->timer);
2212 list_del_init(&dev->node);
2214 input_wakeup_procfs_readers();
2216 mutex_unlock(&input_mutex);
2218 device_del(&dev->dev);
2221 static void devm_input_device_unregister(struct device *dev, void *res)
2223 struct input_devres *devres = res;
2224 struct input_dev *input = devres->input;
2226 dev_dbg(dev, "%s: unregistering device %s\n",
2227 __func__, dev_name(&input->dev));
2228 __input_unregister_device(input);
2232 * input_enable_softrepeat - enable software autorepeat
2233 * @dev: input device
2234 * @delay: repeat delay
2235 * @period: repeat period
2237 * Enable software autorepeat on the input device.
2239 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2241 dev->timer.function = input_repeat_key;
2242 dev->rep[REP_DELAY] = delay;
2243 dev->rep[REP_PERIOD] = period;
2245 EXPORT_SYMBOL(input_enable_softrepeat);
2247 bool input_device_enabled(struct input_dev *dev)
2249 lockdep_assert_held(&dev->mutex);
2251 return !dev->inhibited && dev->users > 0;
2253 EXPORT_SYMBOL_GPL(input_device_enabled);
2256 * input_register_device - register device with input core
2257 * @dev: device to be registered
2259 * This function registers device with input core. The device must be
2260 * allocated with input_allocate_device() and all it's capabilities
2261 * set up before registering.
2262 * If function fails the device must be freed with input_free_device().
2263 * Once device has been successfully registered it can be unregistered
2264 * with input_unregister_device(); input_free_device() should not be
2265 * called in this case.
2267 * Note that this function is also used to register managed input devices
2268 * (ones allocated with devm_input_allocate_device()). Such managed input
2269 * devices need not be explicitly unregistered or freed, their tear down
2270 * is controlled by the devres infrastructure. It is also worth noting
2271 * that tear down of managed input devices is internally a 2-step process:
2272 * registered managed input device is first unregistered, but stays in
2273 * memory and can still handle input_event() calls (although events will
2274 * not be delivered anywhere). The freeing of managed input device will
2275 * happen later, when devres stack is unwound to the point where device
2276 * allocation was made.
2278 int input_register_device(struct input_dev *dev)
2280 struct input_devres *devres = NULL;
2281 struct input_handler *handler;
2282 unsigned int packet_size;
2286 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2288 "Absolute device without dev->absinfo, refusing to register\n");
2292 if (dev->devres_managed) {
2293 devres = devres_alloc(devm_input_device_unregister,
2294 sizeof(*devres), GFP_KERNEL);
2298 devres->input = dev;
2301 /* Every input device generates EV_SYN/SYN_REPORT events. */
2302 __set_bit(EV_SYN, dev->evbit);
2304 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2305 __clear_bit(KEY_RESERVED, dev->keybit);
2307 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2308 input_cleanse_bitmasks(dev);
2310 packet_size = input_estimate_events_per_packet(dev);
2311 if (dev->hint_events_per_packet < packet_size)
2312 dev->hint_events_per_packet = packet_size;
2314 dev->max_vals = dev->hint_events_per_packet + 2;
2315 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2318 goto err_devres_free;
2322 * If delay and period are pre-set by the driver, then autorepeating
2323 * is handled by the driver itself and we don't do it in input.c.
2325 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2326 input_enable_softrepeat(dev, 250, 33);
2328 if (!dev->getkeycode)
2329 dev->getkeycode = input_default_getkeycode;
2331 if (!dev->setkeycode)
2332 dev->setkeycode = input_default_setkeycode;
2335 input_dev_poller_finalize(dev->poller);
2337 error = device_add(&dev->dev);
2341 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2342 pr_info("%s as %s\n",
2343 dev->name ? dev->name : "Unspecified device",
2344 path ? path : "N/A");
2347 error = mutex_lock_interruptible(&input_mutex);
2349 goto err_device_del;
2351 list_add_tail(&dev->node, &input_dev_list);
2353 list_for_each_entry(handler, &input_handler_list, node)
2354 input_attach_handler(dev, handler);
2356 input_wakeup_procfs_readers();
2358 mutex_unlock(&input_mutex);
2360 if (dev->devres_managed) {
2361 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2362 __func__, dev_name(&dev->dev));
2363 devres_add(dev->dev.parent, devres);
2368 device_del(&dev->dev);
2373 devres_free(devres);
2376 EXPORT_SYMBOL(input_register_device);
2379 * input_unregister_device - unregister previously registered device
2380 * @dev: device to be unregistered
2382 * This function unregisters an input device. Once device is unregistered
2383 * the caller should not try to access it as it may get freed at any moment.
2385 void input_unregister_device(struct input_dev *dev)
2387 if (dev->devres_managed) {
2388 WARN_ON(devres_destroy(dev->dev.parent,
2389 devm_input_device_unregister,
2390 devm_input_device_match,
2392 __input_unregister_device(dev);
2394 * We do not do input_put_device() here because it will be done
2395 * when 2nd devres fires up.
2398 __input_unregister_device(dev);
2399 input_put_device(dev);
2402 EXPORT_SYMBOL(input_unregister_device);
2405 * input_register_handler - register a new input handler
2406 * @handler: handler to be registered
2408 * This function registers a new input handler (interface) for input
2409 * devices in the system and attaches it to all input devices that
2410 * are compatible with the handler.
2412 int input_register_handler(struct input_handler *handler)
2414 struct input_dev *dev;
2417 error = mutex_lock_interruptible(&input_mutex);
2421 INIT_LIST_HEAD(&handler->h_list);
2423 list_add_tail(&handler->node, &input_handler_list);
2425 list_for_each_entry(dev, &input_dev_list, node)
2426 input_attach_handler(dev, handler);
2428 input_wakeup_procfs_readers();
2430 mutex_unlock(&input_mutex);
2433 EXPORT_SYMBOL(input_register_handler);
2436 * input_unregister_handler - unregisters an input handler
2437 * @handler: handler to be unregistered
2439 * This function disconnects a handler from its input devices and
2440 * removes it from lists of known handlers.
2442 void input_unregister_handler(struct input_handler *handler)
2444 struct input_handle *handle, *next;
2446 mutex_lock(&input_mutex);
2448 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2449 handler->disconnect(handle);
2450 WARN_ON(!list_empty(&handler->h_list));
2452 list_del_init(&handler->node);
2454 input_wakeup_procfs_readers();
2456 mutex_unlock(&input_mutex);
2458 EXPORT_SYMBOL(input_unregister_handler);
2461 * input_handler_for_each_handle - handle iterator
2462 * @handler: input handler to iterate
2463 * @data: data for the callback
2464 * @fn: function to be called for each handle
2466 * Iterate over @bus's list of devices, and call @fn for each, passing
2467 * it @data and stop when @fn returns a non-zero value. The function is
2468 * using RCU to traverse the list and therefore may be using in atomic
2469 * contexts. The @fn callback is invoked from RCU critical section and
2470 * thus must not sleep.
2472 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2473 int (*fn)(struct input_handle *, void *))
2475 struct input_handle *handle;
2480 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2481 retval = fn(handle, data);
2490 EXPORT_SYMBOL(input_handler_for_each_handle);
2493 * input_register_handle - register a new input handle
2494 * @handle: handle to register
2496 * This function puts a new input handle onto device's
2497 * and handler's lists so that events can flow through
2498 * it once it is opened using input_open_device().
2500 * This function is supposed to be called from handler's
2503 int input_register_handle(struct input_handle *handle)
2505 struct input_handler *handler = handle->handler;
2506 struct input_dev *dev = handle->dev;
2510 * We take dev->mutex here to prevent race with
2511 * input_release_device().
2513 error = mutex_lock_interruptible(&dev->mutex);
2518 * Filters go to the head of the list, normal handlers
2521 if (handler->filter)
2522 list_add_rcu(&handle->d_node, &dev->h_list);
2524 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2526 mutex_unlock(&dev->mutex);
2529 * Since we are supposed to be called from ->connect()
2530 * which is mutually exclusive with ->disconnect()
2531 * we can't be racing with input_unregister_handle()
2532 * and so separate lock is not needed here.
2534 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2537 handler->start(handle);
2541 EXPORT_SYMBOL(input_register_handle);
2544 * input_unregister_handle - unregister an input handle
2545 * @handle: handle to unregister
2547 * This function removes input handle from device's
2548 * and handler's lists.
2550 * This function is supposed to be called from handler's
2551 * disconnect() method.
2553 void input_unregister_handle(struct input_handle *handle)
2555 struct input_dev *dev = handle->dev;
2557 list_del_rcu(&handle->h_node);
2560 * Take dev->mutex to prevent race with input_release_device().
2562 mutex_lock(&dev->mutex);
2563 list_del_rcu(&handle->d_node);
2564 mutex_unlock(&dev->mutex);
2568 EXPORT_SYMBOL(input_unregister_handle);
2571 * input_get_new_minor - allocates a new input minor number
2572 * @legacy_base: beginning or the legacy range to be searched
2573 * @legacy_num: size of legacy range
2574 * @allow_dynamic: whether we can also take ID from the dynamic range
2576 * This function allocates a new device minor for from input major namespace.
2577 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2578 * parameters and whether ID can be allocated from dynamic range if there are
2579 * no free IDs in legacy range.
2581 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2585 * This function should be called from input handler's ->connect()
2586 * methods, which are serialized with input_mutex, so no additional
2587 * locking is needed here.
2589 if (legacy_base >= 0) {
2590 int minor = ida_simple_get(&input_ida,
2592 legacy_base + legacy_num,
2594 if (minor >= 0 || !allow_dynamic)
2598 return ida_simple_get(&input_ida,
2599 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2602 EXPORT_SYMBOL(input_get_new_minor);
2605 * input_free_minor - release previously allocated minor
2606 * @minor: minor to be released
2608 * This function releases previously allocated input minor so that it can be
2611 void input_free_minor(unsigned int minor)
2613 ida_simple_remove(&input_ida, minor);
2615 EXPORT_SYMBOL(input_free_minor);
2617 static int __init input_init(void)
2621 err = class_register(&input_class);
2623 pr_err("unable to register input_dev class\n");
2627 err = input_proc_init();
2631 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2632 INPUT_MAX_CHAR_DEVICES, "input");
2634 pr_err("unable to register char major %d", INPUT_MAJOR);
2640 fail2: input_proc_exit();
2641 fail1: class_unregister(&input_class);
2645 static void __exit input_exit(void)
2648 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2649 INPUT_MAX_CHAR_DEVICES);
2650 class_unregister(&input_class);
2653 subsys_initcall(input_init);
2654 module_exit(input_exit);