1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static const unsigned int input_max_code[EV_CNT] = {
64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
67 return code <= max && test_bit(code, bm);
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
86 static void input_start_autorepeat(struct input_dev *dev, int code)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
97 static void input_stop_autorepeat(struct input_dev *dev)
99 del_timer(&dev->timer);
103 * Pass event first through all filters and then, if event has not been
104 * filtered out, through all open handles. This function is called with
105 * dev->event_lock held and interrupts disabled.
107 static unsigned int input_to_handler(struct input_handle *handle,
108 struct input_value *vals, unsigned int count)
110 struct input_handler *handler = handle->handler;
111 struct input_value *end = vals;
112 struct input_value *v;
114 if (handler->filter) {
115 for (v = vals; v != vals + count; v++) {
116 if (handler->filter(handle, v->type, v->code, v->value))
129 handler->events(handle, vals, count);
130 else if (handler->event)
131 for (v = vals; v != vals + count; v++)
132 handler->event(handle, v->type, v->code, v->value);
138 * Pass values first through all filters and then, if event has not been
139 * filtered out, through all open handles. This function is called with
140 * dev->event_lock held and interrupts disabled.
142 static void input_pass_values(struct input_dev *dev,
143 struct input_value *vals, unsigned int count)
145 struct input_handle *handle;
146 struct input_value *v;
148 lockdep_assert_held(&dev->event_lock);
155 handle = rcu_dereference(dev->grab);
157 count = input_to_handler(handle, vals, count);
159 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
161 count = input_to_handler(handle, vals, count);
169 /* trigger auto repeat for key events */
170 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
171 for (v = vals; v != vals + count; v++) {
172 if (v->type == EV_KEY && v->value != 2) {
174 input_start_autorepeat(dev, v->code);
176 input_stop_autorepeat(dev);
182 #define INPUT_IGNORE_EVENT 0
183 #define INPUT_PASS_TO_HANDLERS 1
184 #define INPUT_PASS_TO_DEVICE 2
186 #define INPUT_FLUSH 8
187 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
189 static int input_handle_abs_event(struct input_dev *dev,
190 unsigned int code, int *pval)
192 struct input_mt *mt = dev->mt;
193 bool is_new_slot = false;
197 if (code == ABS_MT_SLOT) {
199 * "Stage" the event; we'll flush it later, when we
200 * get actual touch data.
202 if (mt && *pval >= 0 && *pval < mt->num_slots)
205 return INPUT_IGNORE_EVENT;
208 is_mt_event = input_is_mt_value(code);
211 pold = &dev->absinfo[code].value;
213 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
214 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
217 * Bypass filtering for multi-touch events when
218 * not employing slots.
224 *pval = input_defuzz_abs_event(*pval, *pold,
225 dev->absinfo[code].fuzz);
227 return INPUT_IGNORE_EVENT;
232 /* Flush pending "slot" event */
234 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
235 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
238 return INPUT_PASS_TO_HANDLERS;
241 static int input_get_disposition(struct input_dev *dev,
242 unsigned int type, unsigned int code, int *pval)
244 int disposition = INPUT_IGNORE_EVENT;
247 /* filter-out events from inhibited devices */
249 return INPUT_IGNORE_EVENT;
256 disposition = INPUT_PASS_TO_ALL;
260 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
263 disposition = INPUT_PASS_TO_HANDLERS;
269 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
271 /* auto-repeat bypasses state updates */
273 disposition = INPUT_PASS_TO_HANDLERS;
277 if (!!test_bit(code, dev->key) != !!value) {
279 __change_bit(code, dev->key);
280 disposition = INPUT_PASS_TO_HANDLERS;
286 if (is_event_supported(code, dev->swbit, SW_MAX) &&
287 !!test_bit(code, dev->sw) != !!value) {
289 __change_bit(code, dev->sw);
290 disposition = INPUT_PASS_TO_HANDLERS;
295 if (is_event_supported(code, dev->absbit, ABS_MAX))
296 disposition = input_handle_abs_event(dev, code, &value);
301 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
302 disposition = INPUT_PASS_TO_HANDLERS;
307 if (is_event_supported(code, dev->mscbit, MSC_MAX))
308 disposition = INPUT_PASS_TO_ALL;
313 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
314 !!test_bit(code, dev->led) != !!value) {
316 __change_bit(code, dev->led);
317 disposition = INPUT_PASS_TO_ALL;
322 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
324 if (!!test_bit(code, dev->snd) != !!value)
325 __change_bit(code, dev->snd);
326 disposition = INPUT_PASS_TO_ALL;
331 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
332 dev->rep[code] = value;
333 disposition = INPUT_PASS_TO_ALL;
339 disposition = INPUT_PASS_TO_ALL;
343 disposition = INPUT_PASS_TO_ALL;
351 static void input_event_dispose(struct input_dev *dev, int disposition,
352 unsigned int type, unsigned int code, int value)
354 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
355 dev->event(dev, type, code, value);
360 if (disposition & INPUT_PASS_TO_HANDLERS) {
361 struct input_value *v;
363 if (disposition & INPUT_SLOT) {
364 v = &dev->vals[dev->num_vals++];
366 v->code = ABS_MT_SLOT;
367 v->value = dev->mt->slot;
370 v = &dev->vals[dev->num_vals++];
376 if (disposition & INPUT_FLUSH) {
377 if (dev->num_vals >= 2)
378 input_pass_values(dev, dev->vals, dev->num_vals);
381 * Reset the timestamp on flush so we won't end up
382 * with a stale one. Note we only need to reset the
383 * monolithic one as we use its presence when deciding
384 * whether to generate a synthetic timestamp.
386 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
387 } else if (dev->num_vals >= dev->max_vals - 2) {
388 dev->vals[dev->num_vals++] = input_value_sync;
389 input_pass_values(dev, dev->vals, dev->num_vals);
394 void input_handle_event(struct input_dev *dev,
395 unsigned int type, unsigned int code, int value)
399 lockdep_assert_held(&dev->event_lock);
401 disposition = input_get_disposition(dev, type, code, &value);
402 if (disposition != INPUT_IGNORE_EVENT) {
404 add_input_randomness(type, code, value);
406 input_event_dispose(dev, disposition, type, code, value);
411 * input_event() - report new input event
412 * @dev: device that generated the event
413 * @type: type of the event
415 * @value: value of the event
417 * This function should be used by drivers implementing various input
418 * devices to report input events. See also input_inject_event().
420 * NOTE: input_event() may be safely used right after input device was
421 * allocated with input_allocate_device(), even before it is registered
422 * with input_register_device(), but the event will not reach any of the
423 * input handlers. Such early invocation of input_event() may be used
424 * to 'seed' initial state of a switch or initial position of absolute
427 void input_event(struct input_dev *dev,
428 unsigned int type, unsigned int code, int value)
432 if (is_event_supported(type, dev->evbit, EV_MAX)) {
434 spin_lock_irqsave(&dev->event_lock, flags);
435 input_handle_event(dev, type, code, value);
436 spin_unlock_irqrestore(&dev->event_lock, flags);
439 EXPORT_SYMBOL(input_event);
442 * input_inject_event() - send input event from input handler
443 * @handle: input handle to send event through
444 * @type: type of the event
446 * @value: value of the event
448 * Similar to input_event() but will ignore event if device is
449 * "grabbed" and handle injecting event is not the one that owns
452 void input_inject_event(struct input_handle *handle,
453 unsigned int type, unsigned int code, int value)
455 struct input_dev *dev = handle->dev;
456 struct input_handle *grab;
459 if (is_event_supported(type, dev->evbit, EV_MAX)) {
460 spin_lock_irqsave(&dev->event_lock, flags);
463 grab = rcu_dereference(dev->grab);
464 if (!grab || grab == handle)
465 input_handle_event(dev, type, code, value);
468 spin_unlock_irqrestore(&dev->event_lock, flags);
471 EXPORT_SYMBOL(input_inject_event);
474 * input_alloc_absinfo - allocates array of input_absinfo structs
475 * @dev: the input device emitting absolute events
477 * If the absinfo struct the caller asked for is already allocated, this
478 * functions will not do anything.
480 void input_alloc_absinfo(struct input_dev *dev)
485 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
487 dev_err(dev->dev.parent ?: &dev->dev,
488 "%s: unable to allocate memory\n", __func__);
490 * We will handle this allocation failure in
491 * input_register_device() when we refuse to register input
492 * device with ABS bits but without absinfo.
496 EXPORT_SYMBOL(input_alloc_absinfo);
498 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
499 int min, int max, int fuzz, int flat)
501 struct input_absinfo *absinfo;
503 __set_bit(EV_ABS, dev->evbit);
504 __set_bit(axis, dev->absbit);
506 input_alloc_absinfo(dev);
510 absinfo = &dev->absinfo[axis];
511 absinfo->minimum = min;
512 absinfo->maximum = max;
513 absinfo->fuzz = fuzz;
514 absinfo->flat = flat;
516 EXPORT_SYMBOL(input_set_abs_params);
519 * input_copy_abs - Copy absinfo from one input_dev to another
520 * @dst: Destination input device to copy the abs settings to
521 * @dst_axis: ABS_* value selecting the destination axis
522 * @src: Source input device to copy the abs settings from
523 * @src_axis: ABS_* value selecting the source axis
525 * Set absinfo for the selected destination axis by copying it from
526 * the specified source input device's source axis.
527 * This is useful to e.g. setup a pen/stylus input-device for combined
528 * touchscreen/pen hardware where the pen uses the same coordinates as
531 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
532 const struct input_dev *src, unsigned int src_axis)
534 /* src must have EV_ABS and src_axis set */
535 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
536 test_bit(src_axis, src->absbit))))
540 * input_alloc_absinfo() may have failed for the source. Our caller is
541 * expected to catch this when registering the input devices, which may
542 * happen after the input_copy_abs() call.
547 input_set_capability(dst, EV_ABS, dst_axis);
551 dst->absinfo[dst_axis] = src->absinfo[src_axis];
553 EXPORT_SYMBOL(input_copy_abs);
556 * input_grab_device - grabs device for exclusive use
557 * @handle: input handle that wants to own the device
559 * When a device is grabbed by an input handle all events generated by
560 * the device are delivered only to this handle. Also events injected
561 * by other input handles are ignored while device is grabbed.
563 int input_grab_device(struct input_handle *handle)
565 struct input_dev *dev = handle->dev;
568 retval = mutex_lock_interruptible(&dev->mutex);
577 rcu_assign_pointer(dev->grab, handle);
580 mutex_unlock(&dev->mutex);
583 EXPORT_SYMBOL(input_grab_device);
585 static void __input_release_device(struct input_handle *handle)
587 struct input_dev *dev = handle->dev;
588 struct input_handle *grabber;
590 grabber = rcu_dereference_protected(dev->grab,
591 lockdep_is_held(&dev->mutex));
592 if (grabber == handle) {
593 rcu_assign_pointer(dev->grab, NULL);
594 /* Make sure input_pass_values() notices that grab is gone */
597 list_for_each_entry(handle, &dev->h_list, d_node)
598 if (handle->open && handle->handler->start)
599 handle->handler->start(handle);
604 * input_release_device - release previously grabbed device
605 * @handle: input handle that owns the device
607 * Releases previously grabbed device so that other input handles can
608 * start receiving input events. Upon release all handlers attached
609 * to the device have their start() method called so they have a change
610 * to synchronize device state with the rest of the system.
612 void input_release_device(struct input_handle *handle)
614 struct input_dev *dev = handle->dev;
616 mutex_lock(&dev->mutex);
617 __input_release_device(handle);
618 mutex_unlock(&dev->mutex);
620 EXPORT_SYMBOL(input_release_device);
623 * input_open_device - open input device
624 * @handle: handle through which device is being accessed
626 * This function should be called by input handlers when they
627 * want to start receive events from given input device.
629 int input_open_device(struct input_handle *handle)
631 struct input_dev *dev = handle->dev;
634 retval = mutex_lock_interruptible(&dev->mutex);
638 if (dev->going_away) {
645 if (dev->users++ || dev->inhibited) {
647 * Device is already opened and/or inhibited,
648 * so we can exit immediately and report success.
654 retval = dev->open(dev);
659 * Make sure we are not delivering any more events
660 * through this handle
668 input_dev_poller_start(dev->poller);
671 mutex_unlock(&dev->mutex);
674 EXPORT_SYMBOL(input_open_device);
676 int input_flush_device(struct input_handle *handle, struct file *file)
678 struct input_dev *dev = handle->dev;
681 retval = mutex_lock_interruptible(&dev->mutex);
686 retval = dev->flush(dev, file);
688 mutex_unlock(&dev->mutex);
691 EXPORT_SYMBOL(input_flush_device);
694 * input_close_device - close input device
695 * @handle: handle through which device is being accessed
697 * This function should be called by input handlers when they
698 * want to stop receive events from given input device.
700 void input_close_device(struct input_handle *handle)
702 struct input_dev *dev = handle->dev;
704 mutex_lock(&dev->mutex);
706 __input_release_device(handle);
708 if (!--dev->users && !dev->inhibited) {
710 input_dev_poller_stop(dev->poller);
715 if (!--handle->open) {
717 * synchronize_rcu() makes sure that input_pass_values()
718 * completed and that no more input events are delivered
719 * through this handle
724 mutex_unlock(&dev->mutex);
726 EXPORT_SYMBOL(input_close_device);
729 * Simulate keyup events for all keys that are marked as pressed.
730 * The function must be called with dev->event_lock held.
732 static bool input_dev_release_keys(struct input_dev *dev)
734 bool need_sync = false;
737 lockdep_assert_held(&dev->event_lock);
739 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
740 for_each_set_bit(code, dev->key, KEY_CNT) {
741 input_handle_event(dev, EV_KEY, code, 0);
750 * Prepare device for unregistering
752 static void input_disconnect_device(struct input_dev *dev)
754 struct input_handle *handle;
757 * Mark device as going away. Note that we take dev->mutex here
758 * not to protect access to dev->going_away but rather to ensure
759 * that there are no threads in the middle of input_open_device()
761 mutex_lock(&dev->mutex);
762 dev->going_away = true;
763 mutex_unlock(&dev->mutex);
765 spin_lock_irq(&dev->event_lock);
768 * Simulate keyup events for all pressed keys so that handlers
769 * are not left with "stuck" keys. The driver may continue
770 * generate events even after we done here but they will not
771 * reach any handlers.
773 if (input_dev_release_keys(dev))
774 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
776 list_for_each_entry(handle, &dev->h_list, d_node)
779 spin_unlock_irq(&dev->event_lock);
783 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
784 * @ke: keymap entry containing scancode to be converted.
785 * @scancode: pointer to the location where converted scancode should
788 * This function is used to convert scancode stored in &struct keymap_entry
789 * into scalar form understood by legacy keymap handling methods. These
790 * methods expect scancodes to be represented as 'unsigned int'.
792 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
793 unsigned int *scancode)
797 *scancode = *((u8 *)ke->scancode);
801 *scancode = *((u16 *)ke->scancode);
805 *scancode = *((u32 *)ke->scancode);
814 EXPORT_SYMBOL(input_scancode_to_scalar);
817 * Those routines handle the default case where no [gs]etkeycode() is
818 * defined. In this case, an array indexed by the scancode is used.
821 static unsigned int input_fetch_keycode(struct input_dev *dev,
824 switch (dev->keycodesize) {
826 return ((u8 *)dev->keycode)[index];
829 return ((u16 *)dev->keycode)[index];
832 return ((u32 *)dev->keycode)[index];
836 static int input_default_getkeycode(struct input_dev *dev,
837 struct input_keymap_entry *ke)
842 if (!dev->keycodesize)
845 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
848 error = input_scancode_to_scalar(ke, &index);
853 if (index >= dev->keycodemax)
856 ke->keycode = input_fetch_keycode(dev, index);
858 ke->len = sizeof(index);
859 memcpy(ke->scancode, &index, sizeof(index));
864 static int input_default_setkeycode(struct input_dev *dev,
865 const struct input_keymap_entry *ke,
866 unsigned int *old_keycode)
872 if (!dev->keycodesize)
875 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
878 error = input_scancode_to_scalar(ke, &index);
883 if (index >= dev->keycodemax)
886 if (dev->keycodesize < sizeof(ke->keycode) &&
887 (ke->keycode >> (dev->keycodesize * 8)))
890 switch (dev->keycodesize) {
892 u8 *k = (u8 *)dev->keycode;
893 *old_keycode = k[index];
894 k[index] = ke->keycode;
898 u16 *k = (u16 *)dev->keycode;
899 *old_keycode = k[index];
900 k[index] = ke->keycode;
904 u32 *k = (u32 *)dev->keycode;
905 *old_keycode = k[index];
906 k[index] = ke->keycode;
911 if (*old_keycode <= KEY_MAX) {
912 __clear_bit(*old_keycode, dev->keybit);
913 for (i = 0; i < dev->keycodemax; i++) {
914 if (input_fetch_keycode(dev, i) == *old_keycode) {
915 __set_bit(*old_keycode, dev->keybit);
916 /* Setting the bit twice is useless, so break */
922 __set_bit(ke->keycode, dev->keybit);
927 * input_get_keycode - retrieve keycode currently mapped to a given scancode
928 * @dev: input device which keymap is being queried
931 * This function should be called by anyone interested in retrieving current
932 * keymap. Presently evdev handlers use it.
934 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
939 spin_lock_irqsave(&dev->event_lock, flags);
940 retval = dev->getkeycode(dev, ke);
941 spin_unlock_irqrestore(&dev->event_lock, flags);
945 EXPORT_SYMBOL(input_get_keycode);
948 * input_set_keycode - attribute a keycode to a given scancode
949 * @dev: input device which keymap is being updated
950 * @ke: new keymap entry
952 * This function should be called by anyone needing to update current
953 * keymap. Presently keyboard and evdev handlers use it.
955 int input_set_keycode(struct input_dev *dev,
956 const struct input_keymap_entry *ke)
959 unsigned int old_keycode;
962 if (ke->keycode > KEY_MAX)
965 spin_lock_irqsave(&dev->event_lock, flags);
967 retval = dev->setkeycode(dev, ke, &old_keycode);
971 /* Make sure KEY_RESERVED did not get enabled. */
972 __clear_bit(KEY_RESERVED, dev->keybit);
975 * Simulate keyup event if keycode is not present
976 * in the keymap anymore
978 if (old_keycode > KEY_MAX) {
979 dev_warn(dev->dev.parent ?: &dev->dev,
980 "%s: got too big old keycode %#x\n",
981 __func__, old_keycode);
982 } else if (test_bit(EV_KEY, dev->evbit) &&
983 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
984 __test_and_clear_bit(old_keycode, dev->key)) {
986 * We have to use input_event_dispose() here directly instead
987 * of input_handle_event() because the key we want to release
988 * here is considered no longer supported by the device and
989 * input_handle_event() will ignore it.
991 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
992 EV_KEY, old_keycode, 0);
993 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
994 EV_SYN, SYN_REPORT, 1);
998 spin_unlock_irqrestore(&dev->event_lock, flags);
1002 EXPORT_SYMBOL(input_set_keycode);
1004 bool input_match_device_id(const struct input_dev *dev,
1005 const struct input_device_id *id)
1007 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1008 if (id->bustype != dev->id.bustype)
1011 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1012 if (id->vendor != dev->id.vendor)
1015 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1016 if (id->product != dev->id.product)
1019 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1020 if (id->version != dev->id.version)
1023 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1024 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1025 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1026 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1027 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1028 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1029 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1030 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1031 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1032 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1038 EXPORT_SYMBOL(input_match_device_id);
1040 static const struct input_device_id *input_match_device(struct input_handler *handler,
1041 struct input_dev *dev)
1043 const struct input_device_id *id;
1045 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1046 if (input_match_device_id(dev, id) &&
1047 (!handler->match || handler->match(handler, dev))) {
1055 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1057 const struct input_device_id *id;
1060 id = input_match_device(handler, dev);
1064 error = handler->connect(handler, dev, id);
1065 if (error && error != -ENODEV)
1066 pr_err("failed to attach handler %s to device %s, error: %d\n",
1067 handler->name, kobject_name(&dev->dev.kobj), error);
1072 #ifdef CONFIG_COMPAT
1074 static int input_bits_to_string(char *buf, int buf_size,
1075 unsigned long bits, bool skip_empty)
1079 if (in_compat_syscall()) {
1080 u32 dword = bits >> 32;
1081 if (dword || !skip_empty)
1082 len += snprintf(buf, buf_size, "%x ", dword);
1084 dword = bits & 0xffffffffUL;
1085 if (dword || !skip_empty || len)
1086 len += snprintf(buf + len, max(buf_size - len, 0),
1089 if (bits || !skip_empty)
1090 len += snprintf(buf, buf_size, "%lx", bits);
1096 #else /* !CONFIG_COMPAT */
1098 static int input_bits_to_string(char *buf, int buf_size,
1099 unsigned long bits, bool skip_empty)
1101 return bits || !skip_empty ?
1102 snprintf(buf, buf_size, "%lx", bits) : 0;
1107 #ifdef CONFIG_PROC_FS
1109 static struct proc_dir_entry *proc_bus_input_dir;
1110 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1111 static int input_devices_state;
1113 static inline void input_wakeup_procfs_readers(void)
1115 input_devices_state++;
1116 wake_up(&input_devices_poll_wait);
1119 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1121 poll_wait(file, &input_devices_poll_wait, wait);
1122 if (file->f_version != input_devices_state) {
1123 file->f_version = input_devices_state;
1124 return EPOLLIN | EPOLLRDNORM;
1130 union input_seq_state {
1133 bool mutex_acquired;
1138 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1140 union input_seq_state *state = (union input_seq_state *)&seq->private;
1143 /* We need to fit into seq->private pointer */
1144 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1146 error = mutex_lock_interruptible(&input_mutex);
1148 state->mutex_acquired = false;
1149 return ERR_PTR(error);
1152 state->mutex_acquired = true;
1154 return seq_list_start(&input_dev_list, *pos);
1157 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1159 return seq_list_next(v, &input_dev_list, pos);
1162 static void input_seq_stop(struct seq_file *seq, void *v)
1164 union input_seq_state *state = (union input_seq_state *)&seq->private;
1166 if (state->mutex_acquired)
1167 mutex_unlock(&input_mutex);
1170 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1171 unsigned long *bitmap, int max)
1174 bool skip_empty = true;
1177 seq_printf(seq, "B: %s=", name);
1179 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1180 if (input_bits_to_string(buf, sizeof(buf),
1181 bitmap[i], skip_empty)) {
1183 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1188 * If no output was produced print a single 0.
1193 seq_putc(seq, '\n');
1196 static int input_devices_seq_show(struct seq_file *seq, void *v)
1198 struct input_dev *dev = container_of(v, struct input_dev, node);
1199 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1200 struct input_handle *handle;
1202 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1203 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1205 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1206 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1207 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1208 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1209 seq_puts(seq, "H: Handlers=");
1211 list_for_each_entry(handle, &dev->h_list, d_node)
1212 seq_printf(seq, "%s ", handle->name);
1213 seq_putc(seq, '\n');
1215 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1217 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1218 if (test_bit(EV_KEY, dev->evbit))
1219 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1220 if (test_bit(EV_REL, dev->evbit))
1221 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1222 if (test_bit(EV_ABS, dev->evbit))
1223 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1224 if (test_bit(EV_MSC, dev->evbit))
1225 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1226 if (test_bit(EV_LED, dev->evbit))
1227 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1228 if (test_bit(EV_SND, dev->evbit))
1229 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1230 if (test_bit(EV_FF, dev->evbit))
1231 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1232 if (test_bit(EV_SW, dev->evbit))
1233 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1235 seq_putc(seq, '\n');
1241 static const struct seq_operations input_devices_seq_ops = {
1242 .start = input_devices_seq_start,
1243 .next = input_devices_seq_next,
1244 .stop = input_seq_stop,
1245 .show = input_devices_seq_show,
1248 static int input_proc_devices_open(struct inode *inode, struct file *file)
1250 return seq_open(file, &input_devices_seq_ops);
1253 static const struct proc_ops input_devices_proc_ops = {
1254 .proc_open = input_proc_devices_open,
1255 .proc_poll = input_proc_devices_poll,
1256 .proc_read = seq_read,
1257 .proc_lseek = seq_lseek,
1258 .proc_release = seq_release,
1261 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1263 union input_seq_state *state = (union input_seq_state *)&seq->private;
1266 /* We need to fit into seq->private pointer */
1267 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1269 error = mutex_lock_interruptible(&input_mutex);
1271 state->mutex_acquired = false;
1272 return ERR_PTR(error);
1275 state->mutex_acquired = true;
1278 return seq_list_start(&input_handler_list, *pos);
1281 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1283 union input_seq_state *state = (union input_seq_state *)&seq->private;
1285 state->pos = *pos + 1;
1286 return seq_list_next(v, &input_handler_list, pos);
1289 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1291 struct input_handler *handler = container_of(v, struct input_handler, node);
1292 union input_seq_state *state = (union input_seq_state *)&seq->private;
1294 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1295 if (handler->filter)
1296 seq_puts(seq, " (filter)");
1297 if (handler->legacy_minors)
1298 seq_printf(seq, " Minor=%d", handler->minor);
1299 seq_putc(seq, '\n');
1304 static const struct seq_operations input_handlers_seq_ops = {
1305 .start = input_handlers_seq_start,
1306 .next = input_handlers_seq_next,
1307 .stop = input_seq_stop,
1308 .show = input_handlers_seq_show,
1311 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1313 return seq_open(file, &input_handlers_seq_ops);
1316 static const struct proc_ops input_handlers_proc_ops = {
1317 .proc_open = input_proc_handlers_open,
1318 .proc_read = seq_read,
1319 .proc_lseek = seq_lseek,
1320 .proc_release = seq_release,
1323 static int __init input_proc_init(void)
1325 struct proc_dir_entry *entry;
1327 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1328 if (!proc_bus_input_dir)
1331 entry = proc_create("devices", 0, proc_bus_input_dir,
1332 &input_devices_proc_ops);
1336 entry = proc_create("handlers", 0, proc_bus_input_dir,
1337 &input_handlers_proc_ops);
1343 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1344 fail1: remove_proc_entry("bus/input", NULL);
1348 static void input_proc_exit(void)
1350 remove_proc_entry("devices", proc_bus_input_dir);
1351 remove_proc_entry("handlers", proc_bus_input_dir);
1352 remove_proc_entry("bus/input", NULL);
1355 #else /* !CONFIG_PROC_FS */
1356 static inline void input_wakeup_procfs_readers(void) { }
1357 static inline int input_proc_init(void) { return 0; }
1358 static inline void input_proc_exit(void) { }
1361 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1362 static ssize_t input_dev_show_##name(struct device *dev, \
1363 struct device_attribute *attr, \
1366 struct input_dev *input_dev = to_input_dev(dev); \
1368 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1369 input_dev->name ? input_dev->name : ""); \
1371 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1373 INPUT_DEV_STRING_ATTR_SHOW(name);
1374 INPUT_DEV_STRING_ATTR_SHOW(phys);
1375 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1377 static int input_print_modalias_bits(char *buf, int size,
1378 char name, const unsigned long *bm,
1379 unsigned int min_bit, unsigned int max_bit)
1383 len += snprintf(buf, max(size, 0), "%c", name);
1384 for (i = min_bit; i < max_bit; i++)
1385 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1386 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1390 static int input_print_modalias(char *buf, int size, const struct input_dev *id,
1395 len = snprintf(buf, max(size, 0),
1396 "input:b%04Xv%04Xp%04Xe%04X-",
1397 id->id.bustype, id->id.vendor,
1398 id->id.product, id->id.version);
1400 len += input_print_modalias_bits(buf + len, size - len,
1401 'e', id->evbit, 0, EV_MAX);
1402 len += input_print_modalias_bits(buf + len, size - len,
1403 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1404 len += input_print_modalias_bits(buf + len, size - len,
1405 'r', id->relbit, 0, REL_MAX);
1406 len += input_print_modalias_bits(buf + len, size - len,
1407 'a', id->absbit, 0, ABS_MAX);
1408 len += input_print_modalias_bits(buf + len, size - len,
1409 'm', id->mscbit, 0, MSC_MAX);
1410 len += input_print_modalias_bits(buf + len, size - len,
1411 'l', id->ledbit, 0, LED_MAX);
1412 len += input_print_modalias_bits(buf + len, size - len,
1413 's', id->sndbit, 0, SND_MAX);
1414 len += input_print_modalias_bits(buf + len, size - len,
1415 'f', id->ffbit, 0, FF_MAX);
1416 len += input_print_modalias_bits(buf + len, size - len,
1417 'w', id->swbit, 0, SW_MAX);
1420 len += snprintf(buf + len, max(size - len, 0), "\n");
1425 static ssize_t input_dev_show_modalias(struct device *dev,
1426 struct device_attribute *attr,
1429 struct input_dev *id = to_input_dev(dev);
1432 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1434 return min_t(int, len, PAGE_SIZE);
1436 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1438 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1439 int max, int add_cr);
1441 static ssize_t input_dev_show_properties(struct device *dev,
1442 struct device_attribute *attr,
1445 struct input_dev *input_dev = to_input_dev(dev);
1446 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1447 INPUT_PROP_MAX, true);
1448 return min_t(int, len, PAGE_SIZE);
1450 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1452 static int input_inhibit_device(struct input_dev *dev);
1453 static int input_uninhibit_device(struct input_dev *dev);
1455 static ssize_t inhibited_show(struct device *dev,
1456 struct device_attribute *attr,
1459 struct input_dev *input_dev = to_input_dev(dev);
1461 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1464 static ssize_t inhibited_store(struct device *dev,
1465 struct device_attribute *attr, const char *buf,
1468 struct input_dev *input_dev = to_input_dev(dev);
1472 if (kstrtobool(buf, &inhibited))
1476 rv = input_inhibit_device(input_dev);
1478 rv = input_uninhibit_device(input_dev);
1486 static DEVICE_ATTR_RW(inhibited);
1488 static struct attribute *input_dev_attrs[] = {
1489 &dev_attr_name.attr,
1490 &dev_attr_phys.attr,
1491 &dev_attr_uniq.attr,
1492 &dev_attr_modalias.attr,
1493 &dev_attr_properties.attr,
1494 &dev_attr_inhibited.attr,
1498 static const struct attribute_group input_dev_attr_group = {
1499 .attrs = input_dev_attrs,
1502 #define INPUT_DEV_ID_ATTR(name) \
1503 static ssize_t input_dev_show_id_##name(struct device *dev, \
1504 struct device_attribute *attr, \
1507 struct input_dev *input_dev = to_input_dev(dev); \
1508 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1510 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1512 INPUT_DEV_ID_ATTR(bustype);
1513 INPUT_DEV_ID_ATTR(vendor);
1514 INPUT_DEV_ID_ATTR(product);
1515 INPUT_DEV_ID_ATTR(version);
1517 static struct attribute *input_dev_id_attrs[] = {
1518 &dev_attr_bustype.attr,
1519 &dev_attr_vendor.attr,
1520 &dev_attr_product.attr,
1521 &dev_attr_version.attr,
1525 static const struct attribute_group input_dev_id_attr_group = {
1527 .attrs = input_dev_id_attrs,
1530 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1531 int max, int add_cr)
1535 bool skip_empty = true;
1537 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1538 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1539 bitmap[i], skip_empty);
1543 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1548 * If no output was produced print a single 0.
1551 len = snprintf(buf, buf_size, "%d", 0);
1554 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1559 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1560 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1561 struct device_attribute *attr, \
1564 struct input_dev *input_dev = to_input_dev(dev); \
1565 int len = input_print_bitmap(buf, PAGE_SIZE, \
1566 input_dev->bm##bit, ev##_MAX, \
1568 return min_t(int, len, PAGE_SIZE); \
1570 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1572 INPUT_DEV_CAP_ATTR(EV, ev);
1573 INPUT_DEV_CAP_ATTR(KEY, key);
1574 INPUT_DEV_CAP_ATTR(REL, rel);
1575 INPUT_DEV_CAP_ATTR(ABS, abs);
1576 INPUT_DEV_CAP_ATTR(MSC, msc);
1577 INPUT_DEV_CAP_ATTR(LED, led);
1578 INPUT_DEV_CAP_ATTR(SND, snd);
1579 INPUT_DEV_CAP_ATTR(FF, ff);
1580 INPUT_DEV_CAP_ATTR(SW, sw);
1582 static struct attribute *input_dev_caps_attrs[] = {
1595 static const struct attribute_group input_dev_caps_attr_group = {
1596 .name = "capabilities",
1597 .attrs = input_dev_caps_attrs,
1600 static const struct attribute_group *input_dev_attr_groups[] = {
1601 &input_dev_attr_group,
1602 &input_dev_id_attr_group,
1603 &input_dev_caps_attr_group,
1604 &input_poller_attribute_group,
1608 static void input_dev_release(struct device *device)
1610 struct input_dev *dev = to_input_dev(device);
1612 input_ff_destroy(dev);
1613 input_mt_destroy_slots(dev);
1615 kfree(dev->absinfo);
1619 module_put(THIS_MODULE);
1623 * Input uevent interface - loading event handlers based on
1626 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1627 const char *name, const unsigned long *bitmap, int max)
1631 if (add_uevent_var(env, "%s", name))
1634 len = input_print_bitmap(&env->buf[env->buflen - 1],
1635 sizeof(env->buf) - env->buflen,
1636 bitmap, max, false);
1637 if (len >= (sizeof(env->buf) - env->buflen))
1644 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1645 const struct input_dev *dev)
1649 if (add_uevent_var(env, "MODALIAS="))
1652 len = input_print_modalias(&env->buf[env->buflen - 1],
1653 sizeof(env->buf) - env->buflen,
1655 if (len >= (sizeof(env->buf) - env->buflen))
1662 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1664 int err = add_uevent_var(env, fmt, val); \
1669 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1671 int err = input_add_uevent_bm_var(env, name, bm, max); \
1676 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1678 int err = input_add_uevent_modalias_var(env, dev); \
1683 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1685 const struct input_dev *dev = to_input_dev(device);
1687 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1688 dev->id.bustype, dev->id.vendor,
1689 dev->id.product, dev->id.version);
1691 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1693 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1695 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1697 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1699 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1700 if (test_bit(EV_KEY, dev->evbit))
1701 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1702 if (test_bit(EV_REL, dev->evbit))
1703 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1704 if (test_bit(EV_ABS, dev->evbit))
1705 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1706 if (test_bit(EV_MSC, dev->evbit))
1707 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1708 if (test_bit(EV_LED, dev->evbit))
1709 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1710 if (test_bit(EV_SND, dev->evbit))
1711 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1712 if (test_bit(EV_FF, dev->evbit))
1713 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1714 if (test_bit(EV_SW, dev->evbit))
1715 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1717 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1722 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1727 if (!test_bit(EV_##type, dev->evbit)) \
1730 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1731 active = test_bit(i, dev->bits); \
1732 if (!active && !on) \
1735 dev->event(dev, EV_##type, i, on ? active : 0); \
1739 static void input_dev_toggle(struct input_dev *dev, bool activate)
1744 INPUT_DO_TOGGLE(dev, LED, led, activate);
1745 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1747 if (activate && test_bit(EV_REP, dev->evbit)) {
1748 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1749 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1754 * input_reset_device() - reset/restore the state of input device
1755 * @dev: input device whose state needs to be reset
1757 * This function tries to reset the state of an opened input device and
1758 * bring internal state and state if the hardware in sync with each other.
1759 * We mark all keys as released, restore LED state, repeat rate, etc.
1761 void input_reset_device(struct input_dev *dev)
1763 unsigned long flags;
1765 mutex_lock(&dev->mutex);
1766 spin_lock_irqsave(&dev->event_lock, flags);
1768 input_dev_toggle(dev, true);
1769 if (input_dev_release_keys(dev))
1770 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1772 spin_unlock_irqrestore(&dev->event_lock, flags);
1773 mutex_unlock(&dev->mutex);
1775 EXPORT_SYMBOL(input_reset_device);
1777 static int input_inhibit_device(struct input_dev *dev)
1779 mutex_lock(&dev->mutex);
1788 input_dev_poller_stop(dev->poller);
1791 spin_lock_irq(&dev->event_lock);
1792 input_mt_release_slots(dev);
1793 input_dev_release_keys(dev);
1794 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1795 input_dev_toggle(dev, false);
1796 spin_unlock_irq(&dev->event_lock);
1798 dev->inhibited = true;
1801 mutex_unlock(&dev->mutex);
1805 static int input_uninhibit_device(struct input_dev *dev)
1809 mutex_lock(&dev->mutex);
1811 if (!dev->inhibited)
1816 ret = dev->open(dev);
1821 input_dev_poller_start(dev->poller);
1824 dev->inhibited = false;
1825 spin_lock_irq(&dev->event_lock);
1826 input_dev_toggle(dev, true);
1827 spin_unlock_irq(&dev->event_lock);
1830 mutex_unlock(&dev->mutex);
1834 static int input_dev_suspend(struct device *dev)
1836 struct input_dev *input_dev = to_input_dev(dev);
1838 spin_lock_irq(&input_dev->event_lock);
1841 * Keys that are pressed now are unlikely to be
1842 * still pressed when we resume.
1844 if (input_dev_release_keys(input_dev))
1845 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1847 /* Turn off LEDs and sounds, if any are active. */
1848 input_dev_toggle(input_dev, false);
1850 spin_unlock_irq(&input_dev->event_lock);
1855 static int input_dev_resume(struct device *dev)
1857 struct input_dev *input_dev = to_input_dev(dev);
1859 spin_lock_irq(&input_dev->event_lock);
1861 /* Restore state of LEDs and sounds, if any were active. */
1862 input_dev_toggle(input_dev, true);
1864 spin_unlock_irq(&input_dev->event_lock);
1869 static int input_dev_freeze(struct device *dev)
1871 struct input_dev *input_dev = to_input_dev(dev);
1873 spin_lock_irq(&input_dev->event_lock);
1876 * Keys that are pressed now are unlikely to be
1877 * still pressed when we resume.
1879 if (input_dev_release_keys(input_dev))
1880 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1882 spin_unlock_irq(&input_dev->event_lock);
1887 static int input_dev_poweroff(struct device *dev)
1889 struct input_dev *input_dev = to_input_dev(dev);
1891 spin_lock_irq(&input_dev->event_lock);
1893 /* Turn off LEDs and sounds, if any are active. */
1894 input_dev_toggle(input_dev, false);
1896 spin_unlock_irq(&input_dev->event_lock);
1901 static const struct dev_pm_ops input_dev_pm_ops = {
1902 .suspend = input_dev_suspend,
1903 .resume = input_dev_resume,
1904 .freeze = input_dev_freeze,
1905 .poweroff = input_dev_poweroff,
1906 .restore = input_dev_resume,
1909 static const struct device_type input_dev_type = {
1910 .groups = input_dev_attr_groups,
1911 .release = input_dev_release,
1912 .uevent = input_dev_uevent,
1913 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1916 static char *input_devnode(const struct device *dev, umode_t *mode)
1918 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1921 struct class input_class = {
1923 .devnode = input_devnode,
1925 EXPORT_SYMBOL_GPL(input_class);
1928 * input_allocate_device - allocate memory for new input device
1930 * Returns prepared struct input_dev or %NULL.
1932 * NOTE: Use input_free_device() to free devices that have not been
1933 * registered; input_unregister_device() should be used for already
1934 * registered devices.
1936 struct input_dev *input_allocate_device(void)
1938 static atomic_t input_no = ATOMIC_INIT(-1);
1939 struct input_dev *dev;
1941 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1943 dev->dev.type = &input_dev_type;
1944 dev->dev.class = &input_class;
1945 device_initialize(&dev->dev);
1946 mutex_init(&dev->mutex);
1947 spin_lock_init(&dev->event_lock);
1948 timer_setup(&dev->timer, NULL, 0);
1949 INIT_LIST_HEAD(&dev->h_list);
1950 INIT_LIST_HEAD(&dev->node);
1952 dev_set_name(&dev->dev, "input%lu",
1953 (unsigned long)atomic_inc_return(&input_no));
1955 __module_get(THIS_MODULE);
1960 EXPORT_SYMBOL(input_allocate_device);
1962 struct input_devres {
1963 struct input_dev *input;
1966 static int devm_input_device_match(struct device *dev, void *res, void *data)
1968 struct input_devres *devres = res;
1970 return devres->input == data;
1973 static void devm_input_device_release(struct device *dev, void *res)
1975 struct input_devres *devres = res;
1976 struct input_dev *input = devres->input;
1978 dev_dbg(dev, "%s: dropping reference to %s\n",
1979 __func__, dev_name(&input->dev));
1980 input_put_device(input);
1984 * devm_input_allocate_device - allocate managed input device
1985 * @dev: device owning the input device being created
1987 * Returns prepared struct input_dev or %NULL.
1989 * Managed input devices do not need to be explicitly unregistered or
1990 * freed as it will be done automatically when owner device unbinds from
1991 * its driver (or binding fails). Once managed input device is allocated,
1992 * it is ready to be set up and registered in the same fashion as regular
1993 * input device. There are no special devm_input_device_[un]register()
1994 * variants, regular ones work with both managed and unmanaged devices,
1995 * should you need them. In most cases however, managed input device need
1996 * not be explicitly unregistered or freed.
1998 * NOTE: the owner device is set up as parent of input device and users
1999 * should not override it.
2001 struct input_dev *devm_input_allocate_device(struct device *dev)
2003 struct input_dev *input;
2004 struct input_devres *devres;
2006 devres = devres_alloc(devm_input_device_release,
2007 sizeof(*devres), GFP_KERNEL);
2011 input = input_allocate_device();
2013 devres_free(devres);
2017 input->dev.parent = dev;
2018 input->devres_managed = true;
2020 devres->input = input;
2021 devres_add(dev, devres);
2025 EXPORT_SYMBOL(devm_input_allocate_device);
2028 * input_free_device - free memory occupied by input_dev structure
2029 * @dev: input device to free
2031 * This function should only be used if input_register_device()
2032 * was not called yet or if it failed. Once device was registered
2033 * use input_unregister_device() and memory will be freed once last
2034 * reference to the device is dropped.
2036 * Device should be allocated by input_allocate_device().
2038 * NOTE: If there are references to the input device then memory
2039 * will not be freed until last reference is dropped.
2041 void input_free_device(struct input_dev *dev)
2044 if (dev->devres_managed)
2045 WARN_ON(devres_destroy(dev->dev.parent,
2046 devm_input_device_release,
2047 devm_input_device_match,
2049 input_put_device(dev);
2052 EXPORT_SYMBOL(input_free_device);
2055 * input_set_timestamp - set timestamp for input events
2056 * @dev: input device to set timestamp for
2057 * @timestamp: the time at which the event has occurred
2058 * in CLOCK_MONOTONIC
2060 * This function is intended to provide to the input system a more
2061 * accurate time of when an event actually occurred. The driver should
2062 * call this function as soon as a timestamp is acquired ensuring
2063 * clock conversions in input_set_timestamp are done correctly.
2065 * The system entering suspend state between timestamp acquisition and
2066 * calling input_set_timestamp can result in inaccurate conversions.
2068 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2070 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2071 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2072 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2075 EXPORT_SYMBOL(input_set_timestamp);
2078 * input_get_timestamp - get timestamp for input events
2079 * @dev: input device to get timestamp from
2081 * A valid timestamp is a timestamp of non-zero value.
2083 ktime_t *input_get_timestamp(struct input_dev *dev)
2085 const ktime_t invalid_timestamp = ktime_set(0, 0);
2087 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2088 input_set_timestamp(dev, ktime_get());
2090 return dev->timestamp;
2092 EXPORT_SYMBOL(input_get_timestamp);
2095 * input_set_capability - mark device as capable of a certain event
2096 * @dev: device that is capable of emitting or accepting event
2097 * @type: type of the event (EV_KEY, EV_REL, etc...)
2100 * In addition to setting up corresponding bit in appropriate capability
2101 * bitmap the function also adjusts dev->evbit.
2103 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2105 if (type < EV_CNT && input_max_code[type] &&
2106 code > input_max_code[type]) {
2107 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2115 __set_bit(code, dev->keybit);
2119 __set_bit(code, dev->relbit);
2123 input_alloc_absinfo(dev);
2124 __set_bit(code, dev->absbit);
2128 __set_bit(code, dev->mscbit);
2132 __set_bit(code, dev->swbit);
2136 __set_bit(code, dev->ledbit);
2140 __set_bit(code, dev->sndbit);
2144 __set_bit(code, dev->ffbit);
2152 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2157 __set_bit(type, dev->evbit);
2159 EXPORT_SYMBOL(input_set_capability);
2161 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2165 unsigned int events;
2168 mt_slots = dev->mt->num_slots;
2169 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2170 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2171 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2172 mt_slots = clamp(mt_slots, 2, 32);
2173 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2179 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2181 if (test_bit(EV_ABS, dev->evbit))
2182 for_each_set_bit(i, dev->absbit, ABS_CNT)
2183 events += input_is_mt_axis(i) ? mt_slots : 1;
2185 if (test_bit(EV_REL, dev->evbit))
2186 events += bitmap_weight(dev->relbit, REL_CNT);
2188 /* Make room for KEY and MSC events */
2194 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2196 if (!test_bit(EV_##type, dev->evbit)) \
2197 memset(dev->bits##bit, 0, \
2198 sizeof(dev->bits##bit)); \
2201 static void input_cleanse_bitmasks(struct input_dev *dev)
2203 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2204 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2205 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2206 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2207 INPUT_CLEANSE_BITMASK(dev, LED, led);
2208 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2209 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2210 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2213 static void __input_unregister_device(struct input_dev *dev)
2215 struct input_handle *handle, *next;
2217 input_disconnect_device(dev);
2219 mutex_lock(&input_mutex);
2221 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2222 handle->handler->disconnect(handle);
2223 WARN_ON(!list_empty(&dev->h_list));
2225 del_timer_sync(&dev->timer);
2226 list_del_init(&dev->node);
2228 input_wakeup_procfs_readers();
2230 mutex_unlock(&input_mutex);
2232 device_del(&dev->dev);
2235 static void devm_input_device_unregister(struct device *dev, void *res)
2237 struct input_devres *devres = res;
2238 struct input_dev *input = devres->input;
2240 dev_dbg(dev, "%s: unregistering device %s\n",
2241 __func__, dev_name(&input->dev));
2242 __input_unregister_device(input);
2246 * Generate software autorepeat event. Note that we take
2247 * dev->event_lock here to avoid racing with input_event
2248 * which may cause keys get "stuck".
2250 static void input_repeat_key(struct timer_list *t)
2252 struct input_dev *dev = from_timer(dev, t, timer);
2253 unsigned long flags;
2255 spin_lock_irqsave(&dev->event_lock, flags);
2257 if (!dev->inhibited &&
2258 test_bit(dev->repeat_key, dev->key) &&
2259 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2261 input_set_timestamp(dev, ktime_get());
2262 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2263 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2265 if (dev->rep[REP_PERIOD])
2266 mod_timer(&dev->timer, jiffies +
2267 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2270 spin_unlock_irqrestore(&dev->event_lock, flags);
2274 * input_enable_softrepeat - enable software autorepeat
2275 * @dev: input device
2276 * @delay: repeat delay
2277 * @period: repeat period
2279 * Enable software autorepeat on the input device.
2281 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2283 dev->timer.function = input_repeat_key;
2284 dev->rep[REP_DELAY] = delay;
2285 dev->rep[REP_PERIOD] = period;
2287 EXPORT_SYMBOL(input_enable_softrepeat);
2289 bool input_device_enabled(struct input_dev *dev)
2291 lockdep_assert_held(&dev->mutex);
2293 return !dev->inhibited && dev->users > 0;
2295 EXPORT_SYMBOL_GPL(input_device_enabled);
2298 * input_register_device - register device with input core
2299 * @dev: device to be registered
2301 * This function registers device with input core. The device must be
2302 * allocated with input_allocate_device() and all it's capabilities
2303 * set up before registering.
2304 * If function fails the device must be freed with input_free_device().
2305 * Once device has been successfully registered it can be unregistered
2306 * with input_unregister_device(); input_free_device() should not be
2307 * called in this case.
2309 * Note that this function is also used to register managed input devices
2310 * (ones allocated with devm_input_allocate_device()). Such managed input
2311 * devices need not be explicitly unregistered or freed, their tear down
2312 * is controlled by the devres infrastructure. It is also worth noting
2313 * that tear down of managed input devices is internally a 2-step process:
2314 * registered managed input device is first unregistered, but stays in
2315 * memory and can still handle input_event() calls (although events will
2316 * not be delivered anywhere). The freeing of managed input device will
2317 * happen later, when devres stack is unwound to the point where device
2318 * allocation was made.
2320 int input_register_device(struct input_dev *dev)
2322 struct input_devres *devres = NULL;
2323 struct input_handler *handler;
2324 unsigned int packet_size;
2328 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2330 "Absolute device without dev->absinfo, refusing to register\n");
2334 if (dev->devres_managed) {
2335 devres = devres_alloc(devm_input_device_unregister,
2336 sizeof(*devres), GFP_KERNEL);
2340 devres->input = dev;
2343 /* Every input device generates EV_SYN/SYN_REPORT events. */
2344 __set_bit(EV_SYN, dev->evbit);
2346 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2347 __clear_bit(KEY_RESERVED, dev->keybit);
2349 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2350 input_cleanse_bitmasks(dev);
2352 packet_size = input_estimate_events_per_packet(dev);
2353 if (dev->hint_events_per_packet < packet_size)
2354 dev->hint_events_per_packet = packet_size;
2356 dev->max_vals = dev->hint_events_per_packet + 2;
2357 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2360 goto err_devres_free;
2364 * If delay and period are pre-set by the driver, then autorepeating
2365 * is handled by the driver itself and we don't do it in input.c.
2367 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2368 input_enable_softrepeat(dev, 250, 33);
2370 if (!dev->getkeycode)
2371 dev->getkeycode = input_default_getkeycode;
2373 if (!dev->setkeycode)
2374 dev->setkeycode = input_default_setkeycode;
2377 input_dev_poller_finalize(dev->poller);
2379 error = device_add(&dev->dev);
2383 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2384 pr_info("%s as %s\n",
2385 dev->name ? dev->name : "Unspecified device",
2386 path ? path : "N/A");
2389 error = mutex_lock_interruptible(&input_mutex);
2391 goto err_device_del;
2393 list_add_tail(&dev->node, &input_dev_list);
2395 list_for_each_entry(handler, &input_handler_list, node)
2396 input_attach_handler(dev, handler);
2398 input_wakeup_procfs_readers();
2400 mutex_unlock(&input_mutex);
2402 if (dev->devres_managed) {
2403 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2404 __func__, dev_name(&dev->dev));
2405 devres_add(dev->dev.parent, devres);
2410 device_del(&dev->dev);
2415 devres_free(devres);
2418 EXPORT_SYMBOL(input_register_device);
2421 * input_unregister_device - unregister previously registered device
2422 * @dev: device to be unregistered
2424 * This function unregisters an input device. Once device is unregistered
2425 * the caller should not try to access it as it may get freed at any moment.
2427 void input_unregister_device(struct input_dev *dev)
2429 if (dev->devres_managed) {
2430 WARN_ON(devres_destroy(dev->dev.parent,
2431 devm_input_device_unregister,
2432 devm_input_device_match,
2434 __input_unregister_device(dev);
2436 * We do not do input_put_device() here because it will be done
2437 * when 2nd devres fires up.
2440 __input_unregister_device(dev);
2441 input_put_device(dev);
2444 EXPORT_SYMBOL(input_unregister_device);
2447 * input_register_handler - register a new input handler
2448 * @handler: handler to be registered
2450 * This function registers a new input handler (interface) for input
2451 * devices in the system and attaches it to all input devices that
2452 * are compatible with the handler.
2454 int input_register_handler(struct input_handler *handler)
2456 struct input_dev *dev;
2459 error = mutex_lock_interruptible(&input_mutex);
2463 INIT_LIST_HEAD(&handler->h_list);
2465 list_add_tail(&handler->node, &input_handler_list);
2467 list_for_each_entry(dev, &input_dev_list, node)
2468 input_attach_handler(dev, handler);
2470 input_wakeup_procfs_readers();
2472 mutex_unlock(&input_mutex);
2475 EXPORT_SYMBOL(input_register_handler);
2478 * input_unregister_handler - unregisters an input handler
2479 * @handler: handler to be unregistered
2481 * This function disconnects a handler from its input devices and
2482 * removes it from lists of known handlers.
2484 void input_unregister_handler(struct input_handler *handler)
2486 struct input_handle *handle, *next;
2488 mutex_lock(&input_mutex);
2490 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2491 handler->disconnect(handle);
2492 WARN_ON(!list_empty(&handler->h_list));
2494 list_del_init(&handler->node);
2496 input_wakeup_procfs_readers();
2498 mutex_unlock(&input_mutex);
2500 EXPORT_SYMBOL(input_unregister_handler);
2503 * input_handler_for_each_handle - handle iterator
2504 * @handler: input handler to iterate
2505 * @data: data for the callback
2506 * @fn: function to be called for each handle
2508 * Iterate over @bus's list of devices, and call @fn for each, passing
2509 * it @data and stop when @fn returns a non-zero value. The function is
2510 * using RCU to traverse the list and therefore may be using in atomic
2511 * contexts. The @fn callback is invoked from RCU critical section and
2512 * thus must not sleep.
2514 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2515 int (*fn)(struct input_handle *, void *))
2517 struct input_handle *handle;
2522 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2523 retval = fn(handle, data);
2532 EXPORT_SYMBOL(input_handler_for_each_handle);
2535 * input_register_handle - register a new input handle
2536 * @handle: handle to register
2538 * This function puts a new input handle onto device's
2539 * and handler's lists so that events can flow through
2540 * it once it is opened using input_open_device().
2542 * This function is supposed to be called from handler's
2545 int input_register_handle(struct input_handle *handle)
2547 struct input_handler *handler = handle->handler;
2548 struct input_dev *dev = handle->dev;
2552 * We take dev->mutex here to prevent race with
2553 * input_release_device().
2555 error = mutex_lock_interruptible(&dev->mutex);
2560 * Filters go to the head of the list, normal handlers
2563 if (handler->filter)
2564 list_add_rcu(&handle->d_node, &dev->h_list);
2566 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2568 mutex_unlock(&dev->mutex);
2571 * Since we are supposed to be called from ->connect()
2572 * which is mutually exclusive with ->disconnect()
2573 * we can't be racing with input_unregister_handle()
2574 * and so separate lock is not needed here.
2576 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2579 handler->start(handle);
2583 EXPORT_SYMBOL(input_register_handle);
2586 * input_unregister_handle - unregister an input handle
2587 * @handle: handle to unregister
2589 * This function removes input handle from device's
2590 * and handler's lists.
2592 * This function is supposed to be called from handler's
2593 * disconnect() method.
2595 void input_unregister_handle(struct input_handle *handle)
2597 struct input_dev *dev = handle->dev;
2599 list_del_rcu(&handle->h_node);
2602 * Take dev->mutex to prevent race with input_release_device().
2604 mutex_lock(&dev->mutex);
2605 list_del_rcu(&handle->d_node);
2606 mutex_unlock(&dev->mutex);
2610 EXPORT_SYMBOL(input_unregister_handle);
2613 * input_get_new_minor - allocates a new input minor number
2614 * @legacy_base: beginning or the legacy range to be searched
2615 * @legacy_num: size of legacy range
2616 * @allow_dynamic: whether we can also take ID from the dynamic range
2618 * This function allocates a new device minor for from input major namespace.
2619 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2620 * parameters and whether ID can be allocated from dynamic range if there are
2621 * no free IDs in legacy range.
2623 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2627 * This function should be called from input handler's ->connect()
2628 * methods, which are serialized with input_mutex, so no additional
2629 * locking is needed here.
2631 if (legacy_base >= 0) {
2632 int minor = ida_simple_get(&input_ida,
2634 legacy_base + legacy_num,
2636 if (minor >= 0 || !allow_dynamic)
2640 return ida_simple_get(&input_ida,
2641 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2644 EXPORT_SYMBOL(input_get_new_minor);
2647 * input_free_minor - release previously allocated minor
2648 * @minor: minor to be released
2650 * This function releases previously allocated input minor so that it can be
2653 void input_free_minor(unsigned int minor)
2655 ida_simple_remove(&input_ida, minor);
2657 EXPORT_SYMBOL(input_free_minor);
2659 static int __init input_init(void)
2663 err = class_register(&input_class);
2665 pr_err("unable to register input_dev class\n");
2669 err = input_proc_init();
2673 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2674 INPUT_MAX_CHAR_DEVICES, "input");
2676 pr_err("unable to register char major %d", INPUT_MAJOR);
2682 fail2: input_proc_exit();
2683 fail1: class_unregister(&input_class);
2687 static void __exit input_exit(void)
2690 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2691 INPUT_MAX_CHAR_DEVICES);
2692 class_unregister(&input_class);
2695 subsys_initcall(input_init);
2696 module_exit(input_exit);