1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
13 #include <linux/module.h>
14 #include <linux/mempool.h>
19 MODULE_DESCRIPTION("RDMA Transport Server");
20 MODULE_LICENSE("GPL");
22 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
23 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
24 #define DEFAULT_SESS_QUEUE_DEPTH 512
25 #define MAX_HDR_SIZE PAGE_SIZE
27 /* We guarantee to serve 10 paths at least */
28 #define CHUNK_POOL_SZ 10
30 static struct rtrs_rdma_dev_pd dev_pd;
31 static mempool_t *chunk_pool;
32 struct class *rtrs_dev_class;
34 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
35 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
37 static bool always_invalidate = true;
38 module_param(always_invalidate, bool, 0444);
39 MODULE_PARM_DESC(always_invalidate,
40 "Invalidate memory registration for contiguous memory regions before accessing.");
42 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
43 MODULE_PARM_DESC(max_chunk_size,
44 "Max size for each IO request, when change the unit is in byte (default: "
45 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
47 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
48 MODULE_PARM_DESC(sess_queue_depth,
49 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
50 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
51 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
53 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
55 static struct workqueue_struct *rtrs_wq;
57 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
59 return container_of(c, struct rtrs_srv_con, c);
62 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
64 return container_of(s, struct rtrs_srv_sess, s);
67 static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
68 enum rtrs_srv_state new_state)
70 enum rtrs_srv_state old_state;
73 lockdep_assert_held(&sess->state_lock);
74 old_state = sess->state;
76 case RTRS_SRV_CONNECTED:
78 case RTRS_SRV_CONNECTING:
85 case RTRS_SRV_CLOSING:
87 case RTRS_SRV_CONNECTING:
88 case RTRS_SRV_CONNECTED:
97 case RTRS_SRV_CLOSING:
108 sess->state = new_state;
113 static bool rtrs_srv_change_state_get_old(struct rtrs_srv_sess *sess,
114 enum rtrs_srv_state new_state,
115 enum rtrs_srv_state *old_state)
119 spin_lock_irq(&sess->state_lock);
120 *old_state = sess->state;
121 changed = __rtrs_srv_change_state(sess, new_state);
122 spin_unlock_irq(&sess->state_lock);
127 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
128 enum rtrs_srv_state new_state)
130 enum rtrs_srv_state old_state;
132 return rtrs_srv_change_state_get_old(sess, new_state, &old_state);
135 static void free_id(struct rtrs_srv_op *id)
142 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
144 struct rtrs_srv *srv = sess->srv;
147 WARN_ON(atomic_read(&sess->ids_inflight));
149 for (i = 0; i < srv->queue_depth; i++)
150 free_id(sess->ops_ids[i]);
151 kfree(sess->ops_ids);
152 sess->ops_ids = NULL;
156 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
158 static struct ib_cqe io_comp_cqe = {
159 .done = rtrs_srv_rdma_done
162 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
164 struct rtrs_srv *srv = sess->srv;
165 struct rtrs_srv_op *id;
168 sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
173 for (i = 0; i < srv->queue_depth; ++i) {
174 id = kzalloc(sizeof(*id), GFP_KERNEL);
178 sess->ops_ids[i] = id;
180 init_waitqueue_head(&sess->ids_waitq);
181 atomic_set(&sess->ids_inflight, 0);
186 rtrs_srv_free_ops_ids(sess);
190 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
192 atomic_inc(&sess->ids_inflight);
195 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
197 if (atomic_dec_and_test(&sess->ids_inflight))
198 wake_up(&sess->ids_waitq);
201 static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
203 wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
207 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
209 struct rtrs_srv_con *con = cq->cq_context;
210 struct rtrs_sess *s = con->c.sess;
211 struct rtrs_srv_sess *sess = to_srv_sess(s);
213 if (unlikely(wc->status != IB_WC_SUCCESS)) {
214 rtrs_err(s, "REG MR failed: %s\n",
215 ib_wc_status_msg(wc->status));
221 static struct ib_cqe local_reg_cqe = {
222 .done = rtrs_srv_reg_mr_done
225 static int rdma_write_sg(struct rtrs_srv_op *id)
227 struct rtrs_sess *s = id->con->c.sess;
228 struct rtrs_srv_sess *sess = to_srv_sess(s);
229 dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
230 struct rtrs_srv_mr *srv_mr;
231 struct rtrs_srv *srv = sess->srv;
232 struct ib_send_wr inv_wr, imm_wr;
233 struct ib_rdma_wr *wr = NULL;
234 enum ib_send_flags flags;
239 struct ib_reg_wr rwr;
240 struct ib_sge *plist;
243 sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
244 need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
245 if (unlikely(sg_cnt != 1))
252 plist->addr = dma_addr + offset;
253 plist->length = le32_to_cpu(id->rd_msg->desc[0].len);
255 /* WR will fail with length error
258 if (unlikely(plist->length == 0)) {
259 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
263 plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
264 offset += plist->length;
266 wr->wr.sg_list = plist;
268 wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
269 wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key);
273 /* Only one key is actually used */
274 WARN_ON_ONCE(rkey != wr->rkey);
276 wr->wr.opcode = IB_WR_RDMA_WRITE;
277 wr->wr.ex.imm_data = 0;
278 wr->wr.send_flags = 0;
280 if (need_inval && always_invalidate) {
281 wr->wr.next = &rwr.wr;
282 rwr.wr.next = &inv_wr;
283 inv_wr.next = &imm_wr;
284 } else if (always_invalidate) {
285 wr->wr.next = &rwr.wr;
286 rwr.wr.next = &imm_wr;
287 } else if (need_inval) {
288 wr->wr.next = &inv_wr;
289 inv_wr.next = &imm_wr;
291 wr->wr.next = &imm_wr;
294 * From time to time we have to post signaled sends,
295 * or send queue will fill up and only QP reset can help.
297 flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
298 0 : IB_SEND_SIGNALED;
301 inv_wr.sg_list = NULL;
303 inv_wr.opcode = IB_WR_SEND_WITH_INV;
304 inv_wr.send_flags = 0;
305 inv_wr.ex.invalidate_rkey = rkey;
309 if (always_invalidate) {
310 struct rtrs_msg_rkey_rsp *msg;
312 srv_mr = &sess->mrs[id->msg_id];
313 rwr.wr.opcode = IB_WR_REG_MR;
316 rwr.wr.send_flags = 0;
317 rwr.key = srv_mr->mr->rkey;
318 rwr.access = (IB_ACCESS_LOCAL_WRITE |
319 IB_ACCESS_REMOTE_WRITE);
320 msg = srv_mr->iu->buf;
321 msg->buf_id = cpu_to_le16(id->msg_id);
322 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
323 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
325 list.addr = srv_mr->iu->dma_addr;
326 list.length = sizeof(*msg);
327 list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
328 imm_wr.sg_list = &list;
330 imm_wr.opcode = IB_WR_SEND_WITH_IMM;
331 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
332 srv_mr->iu->dma_addr,
333 srv_mr->iu->size, DMA_TO_DEVICE);
335 imm_wr.sg_list = NULL;
337 imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
339 imm_wr.send_flags = flags;
340 imm_wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
343 imm_wr.wr_cqe = &io_comp_cqe;
344 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
345 offset, DMA_BIDIRECTIONAL);
347 err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
350 "Posting RDMA-Write-Request to QP failed, err: %d\n",
357 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
358 * requests or on successful WRITE request.
359 * @con: the connection to send back result
360 * @id: the id associated with the IO
361 * @errno: the error number of the IO.
363 * Return 0 on success, errno otherwise.
365 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
368 struct rtrs_sess *s = con->c.sess;
369 struct rtrs_srv_sess *sess = to_srv_sess(s);
370 struct ib_send_wr inv_wr, imm_wr, *wr = NULL;
371 struct ib_reg_wr rwr;
372 struct rtrs_srv *srv = sess->srv;
373 struct rtrs_srv_mr *srv_mr;
374 bool need_inval = false;
375 enum ib_send_flags flags;
379 if (id->dir == READ) {
380 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
383 need_inval = le16_to_cpu(rd_msg->flags) &
384 RTRS_MSG_NEED_INVAL_F;
385 sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
388 if (likely(sg_cnt)) {
389 inv_wr.sg_list = NULL;
391 inv_wr.opcode = IB_WR_SEND_WITH_INV;
392 inv_wr.send_flags = 0;
393 /* Only one key is actually used */
394 inv_wr.ex.invalidate_rkey =
395 le32_to_cpu(rd_msg->desc[0].key);
403 if (need_inval && always_invalidate) {
405 inv_wr.next = &rwr.wr;
406 rwr.wr.next = &imm_wr;
407 } else if (always_invalidate) {
409 rwr.wr.next = &imm_wr;
410 } else if (need_inval) {
412 inv_wr.next = &imm_wr;
417 * From time to time we have to post signalled sends,
418 * or send queue will fill up and only QP reset can help.
420 flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
421 0 : IB_SEND_SIGNALED;
422 imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
424 if (always_invalidate) {
426 struct rtrs_msg_rkey_rsp *msg;
428 srv_mr = &sess->mrs[id->msg_id];
429 rwr.wr.next = &imm_wr;
430 rwr.wr.opcode = IB_WR_REG_MR;
432 rwr.wr.send_flags = 0;
434 rwr.key = srv_mr->mr->rkey;
435 rwr.access = (IB_ACCESS_LOCAL_WRITE |
436 IB_ACCESS_REMOTE_WRITE);
437 msg = srv_mr->iu->buf;
438 msg->buf_id = cpu_to_le16(id->msg_id);
439 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
440 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
442 list.addr = srv_mr->iu->dma_addr;
443 list.length = sizeof(*msg);
444 list.lkey = sess->s.dev->ib_pd->local_dma_lkey;
445 imm_wr.sg_list = &list;
447 imm_wr.opcode = IB_WR_SEND_WITH_IMM;
448 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
449 srv_mr->iu->dma_addr,
450 srv_mr->iu->size, DMA_TO_DEVICE);
452 imm_wr.sg_list = NULL;
454 imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
456 imm_wr.send_flags = flags;
457 imm_wr.wr_cqe = &io_comp_cqe;
459 imm_wr.ex.imm_data = cpu_to_be32(imm);
461 err = ib_post_send(id->con->c.qp, wr, NULL);
463 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
469 void close_sess(struct rtrs_srv_sess *sess)
471 enum rtrs_srv_state old_state;
473 if (rtrs_srv_change_state_get_old(sess, RTRS_SRV_CLOSING,
475 queue_work(rtrs_wq, &sess->close_work);
476 WARN_ON(sess->state != RTRS_SRV_CLOSING);
479 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
482 case RTRS_SRV_CONNECTING:
483 return "RTRS_SRV_CONNECTING";
484 case RTRS_SRV_CONNECTED:
485 return "RTRS_SRV_CONNECTED";
486 case RTRS_SRV_CLOSING:
487 return "RTRS_SRV_CLOSING";
488 case RTRS_SRV_CLOSED:
489 return "RTRS_SRV_CLOSED";
496 * rtrs_srv_resp_rdma() - Finish an RDMA request
498 * @id: Internal RTRS operation identifier
499 * @status: Response Code sent to the other side for this operation.
500 * 0 = success, <=0 error
503 * Finish a RDMA operation. A message is sent to the client and the
504 * corresponding memory areas will be released.
506 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
508 struct rtrs_srv_sess *sess;
509 struct rtrs_srv_con *con;
518 sess = to_srv_sess(s);
522 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
524 "Sending I/O response failed, session is disconnected, sess state %s\n",
525 rtrs_srv_state_str(sess->state));
528 if (always_invalidate) {
529 struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
531 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
533 if (unlikely(atomic_sub_return(1,
534 &con->sq_wr_avail) < 0)) {
535 pr_err("IB send queue full\n");
536 atomic_add(1, &con->sq_wr_avail);
537 spin_lock(&con->rsp_wr_wait_lock);
538 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
539 spin_unlock(&con->rsp_wr_wait_lock);
543 if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
544 err = send_io_resp_imm(con, id, status);
546 err = rdma_write_sg(id);
549 rtrs_err_rl(s, "IO response failed: %d\n", err);
553 rtrs_srv_put_ops_ids(sess);
556 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
559 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
560 * @srv: Session pointer
561 * @priv: The private pointer that is associated with the session.
563 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
567 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
569 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
573 for (i = 0; i < sess->mrs_num; i++) {
574 struct rtrs_srv_mr *srv_mr;
576 srv_mr = &sess->mrs[i];
577 rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
578 sess->s.dev->ib_dev, 1);
579 ib_dereg_mr(srv_mr->mr);
580 ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
581 srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
582 sg_free_table(&srv_mr->sgt);
587 static int map_cont_bufs(struct rtrs_srv_sess *sess)
589 struct rtrs_srv *srv = sess->srv;
590 struct rtrs_sess *ss = &sess->s;
591 int i, mri, err, mrs_num;
592 unsigned int chunk_bits;
593 int chunks_per_mr = 1;
596 * Here we map queue_depth chunks to MR. Firstly we have to
597 * figure out how many chunks can we map per MR.
599 if (always_invalidate) {
601 * in order to do invalidate for each chunks of memory, we needs
602 * more memory regions.
604 mrs_num = srv->queue_depth;
607 sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
608 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
609 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
612 sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
616 sess->mrs_num = mrs_num;
618 for (mri = 0; mri < mrs_num; mri++) {
619 struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
620 struct sg_table *sgt = &srv_mr->sgt;
621 struct scatterlist *s;
625 chunks = chunks_per_mr * mri;
626 if (!always_invalidate)
627 chunks_per_mr = min_t(int, chunks_per_mr,
628 srv->queue_depth - chunks);
630 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
634 for_each_sg(sgt->sgl, s, chunks_per_mr, i)
635 sg_set_page(s, srv->chunks[chunks + i],
638 nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
639 sgt->nents, DMA_BIDIRECTIONAL);
640 if (nr < sgt->nents) {
641 err = nr < 0 ? nr : -EINVAL;
644 mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
650 nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
651 NULL, max_chunk_size);
652 if (nr < sgt->nents) {
653 err = nr < 0 ? nr : -EINVAL;
657 if (always_invalidate) {
658 srv_mr->iu = rtrs_iu_alloc(1,
659 sizeof(struct rtrs_msg_rkey_rsp),
660 GFP_KERNEL, sess->s.dev->ib_dev,
661 DMA_TO_DEVICE, rtrs_srv_rdma_done);
663 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n",
668 /* Eventually dma addr for each chunk can be cached */
669 for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
670 sess->dma_addr[chunks + i] = sg_dma_address(s);
672 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
678 srv_mr = &sess->mrs[mri];
682 rtrs_iu_free(srv_mr->iu, DMA_TO_DEVICE,
683 sess->s.dev->ib_dev, 1);
687 ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
688 sgt->nents, DMA_BIDIRECTIONAL);
697 chunk_bits = ilog2(srv->queue_depth - 1) + 1;
698 sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
703 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
705 close_sess(to_srv_sess(c->sess));
708 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
710 rtrs_init_hb(&sess->s, &io_comp_cqe,
713 rtrs_srv_hb_err_handler,
717 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
719 rtrs_start_hb(&sess->s);
722 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
724 rtrs_stop_hb(&sess->s);
727 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
729 struct rtrs_srv_con *con = cq->cq_context;
730 struct rtrs_sess *s = con->c.sess;
731 struct rtrs_srv_sess *sess = to_srv_sess(s);
734 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
735 rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
737 if (unlikely(wc->status != IB_WC_SUCCESS)) {
738 rtrs_err(s, "Sess info response send failed: %s\n",
739 ib_wc_status_msg(wc->status));
743 WARN_ON(wc->opcode != IB_WC_SEND);
746 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
748 struct rtrs_srv *srv = sess->srv;
749 struct rtrs_srv_ctx *ctx = srv->ctx;
752 mutex_lock(&srv->paths_ev_mutex);
753 up = ++srv->paths_up;
755 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
756 mutex_unlock(&srv->paths_ev_mutex);
758 /* Mark session as established */
759 sess->established = true;
762 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
764 struct rtrs_srv *srv = sess->srv;
765 struct rtrs_srv_ctx *ctx = srv->ctx;
767 if (!sess->established)
770 sess->established = false;
771 mutex_lock(&srv->paths_ev_mutex);
772 WARN_ON(!srv->paths_up);
773 if (--srv->paths_up == 0)
774 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
775 mutex_unlock(&srv->paths_ev_mutex);
778 static int post_recv_sess(struct rtrs_srv_sess *sess);
780 static int process_info_req(struct rtrs_srv_con *con,
781 struct rtrs_msg_info_req *msg)
783 struct rtrs_sess *s = con->c.sess;
784 struct rtrs_srv_sess *sess = to_srv_sess(s);
785 struct ib_send_wr *reg_wr = NULL;
786 struct rtrs_msg_info_rsp *rsp;
787 struct rtrs_iu *tx_iu;
788 struct ib_reg_wr *rwr;
792 err = post_recv_sess(sess);
794 rtrs_err(s, "post_recv_sess(), err: %d\n", err);
797 rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
800 strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
802 tx_sz = sizeof(*rsp);
803 tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
804 tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
805 DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
806 if (unlikely(!tx_iu)) {
812 rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
813 rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
815 for (mri = 0; mri < sess->mrs_num; mri++) {
816 struct ib_mr *mr = sess->mrs[mri].mr;
818 rsp->desc[mri].addr = cpu_to_le64(mr->iova);
819 rsp->desc[mri].key = cpu_to_le32(mr->rkey);
820 rsp->desc[mri].len = cpu_to_le32(mr->length);
823 * Fill in reg MR request and chain them *backwards*
825 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
826 rwr[mri].wr.opcode = IB_WR_REG_MR;
827 rwr[mri].wr.wr_cqe = &local_reg_cqe;
828 rwr[mri].wr.num_sge = 0;
829 rwr[mri].wr.send_flags = mri ? 0 : IB_SEND_SIGNALED;
831 rwr[mri].key = mr->rkey;
832 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
833 IB_ACCESS_REMOTE_WRITE);
834 reg_wr = &rwr[mri].wr;
837 err = rtrs_srv_create_sess_files(sess);
840 kobject_get(&sess->kobj);
841 get_device(&sess->srv->dev);
842 rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
843 rtrs_srv_start_hb(sess);
846 * We do not account number of established connections at the current
847 * moment, we rely on the client, which should send info request when
848 * all connections are successfully established. Thus, simply notify
849 * listener with a proper event if we are the first path.
851 rtrs_srv_sess_up(sess);
853 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
854 tx_iu->size, DMA_TO_DEVICE);
856 /* Send info response */
857 err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
859 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
861 rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
869 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
871 struct rtrs_srv_con *con = cq->cq_context;
872 struct rtrs_sess *s = con->c.sess;
873 struct rtrs_srv_sess *sess = to_srv_sess(s);
874 struct rtrs_msg_info_req *msg;
880 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
881 if (unlikely(wc->status != IB_WC_SUCCESS)) {
882 rtrs_err(s, "Sess info request receive failed: %s\n",
883 ib_wc_status_msg(wc->status));
886 WARN_ON(wc->opcode != IB_WC_RECV);
888 if (unlikely(wc->byte_len < sizeof(*msg))) {
889 rtrs_err(s, "Sess info request is malformed: size %d\n",
893 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
894 iu->size, DMA_FROM_DEVICE);
896 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
897 rtrs_err(s, "Sess info request is malformed: type %d\n",
898 le16_to_cpu(msg->type));
901 err = process_info_req(con, msg);
906 rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
913 static int post_recv_info_req(struct rtrs_srv_con *con)
915 struct rtrs_sess *s = con->c.sess;
916 struct rtrs_srv_sess *sess = to_srv_sess(s);
917 struct rtrs_iu *rx_iu;
920 rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
921 GFP_KERNEL, sess->s.dev->ib_dev,
922 DMA_FROM_DEVICE, rtrs_srv_info_req_done);
923 if (unlikely(!rx_iu))
925 /* Prepare for getting info response */
926 err = rtrs_iu_post_recv(&con->c, rx_iu);
928 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
929 rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
936 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
940 for (i = 0; i < q_size; i++) {
941 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
949 static int post_recv_sess(struct rtrs_srv_sess *sess)
951 struct rtrs_srv *srv = sess->srv;
952 struct rtrs_sess *s = &sess->s;
956 for (cid = 0; cid < sess->s.con_num; cid++) {
958 q_size = SERVICE_CON_QUEUE_DEPTH;
960 q_size = srv->queue_depth;
962 err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
964 rtrs_err(s, "post_recv_io(), err: %d\n", err);
972 static void process_read(struct rtrs_srv_con *con,
973 struct rtrs_msg_rdma_read *msg,
976 struct rtrs_sess *s = con->c.sess;
977 struct rtrs_srv_sess *sess = to_srv_sess(s);
978 struct rtrs_srv *srv = sess->srv;
979 struct rtrs_srv_ctx *ctx = srv->ctx;
980 struct rtrs_srv_op *id;
982 size_t usr_len, data_len;
986 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
988 "Processing read request failed, session is disconnected, sess state %s\n",
989 rtrs_srv_state_str(sess->state));
992 if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
994 "Processing read request failed, invalid message\n");
997 rtrs_srv_get_ops_ids(sess);
998 rtrs_srv_update_rdma_stats(sess->stats, off, READ);
999 id = sess->ops_ids[buf_id];
1002 id->msg_id = buf_id;
1004 usr_len = le16_to_cpu(msg->usr_len);
1005 data_len = off - usr_len;
1006 data = page_address(srv->chunks[buf_id]);
1007 ret = ctx->ops.rdma_ev(srv, srv->priv, id, READ, data, data_len,
1008 data + data_len, usr_len);
1010 if (unlikely(ret)) {
1012 "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1020 ret = send_io_resp_imm(con, id, ret);
1023 "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1027 rtrs_srv_put_ops_ids(sess);
1030 static void process_write(struct rtrs_srv_con *con,
1031 struct rtrs_msg_rdma_write *req,
1032 u32 buf_id, u32 off)
1034 struct rtrs_sess *s = con->c.sess;
1035 struct rtrs_srv_sess *sess = to_srv_sess(s);
1036 struct rtrs_srv *srv = sess->srv;
1037 struct rtrs_srv_ctx *ctx = srv->ctx;
1038 struct rtrs_srv_op *id;
1040 size_t data_len, usr_len;
1044 if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
1046 "Processing write request failed, session is disconnected, sess state %s\n",
1047 rtrs_srv_state_str(sess->state));
1050 rtrs_srv_get_ops_ids(sess);
1051 rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1052 id = sess->ops_ids[buf_id];
1055 id->msg_id = buf_id;
1057 usr_len = le16_to_cpu(req->usr_len);
1058 data_len = off - usr_len;
1059 data = page_address(srv->chunks[buf_id]);
1060 ret = ctx->ops.rdma_ev(srv, srv->priv, id, WRITE, data, data_len,
1061 data + data_len, usr_len);
1062 if (unlikely(ret)) {
1064 "Processing write request failed, user module callback reports err: %d\n",
1072 ret = send_io_resp_imm(con, id, ret);
1075 "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1079 rtrs_srv_put_ops_ids(sess);
1082 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1085 struct rtrs_sess *s = con->c.sess;
1086 struct rtrs_srv_sess *sess = to_srv_sess(s);
1087 struct rtrs_msg_rdma_hdr *hdr;
1090 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1091 max_chunk_size, DMA_BIDIRECTIONAL);
1093 type = le16_to_cpu(hdr->type);
1096 case RTRS_MSG_WRITE:
1097 process_write(con, msg, id, off);
1100 process_read(con, msg, id, off);
1104 "Processing I/O request failed, unknown message type received: 0x%02x\n",
1115 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1117 struct rtrs_srv_mr *mr =
1118 container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1119 struct rtrs_srv_con *con = cq->cq_context;
1120 struct rtrs_sess *s = con->c.sess;
1121 struct rtrs_srv_sess *sess = to_srv_sess(s);
1122 struct rtrs_srv *srv = sess->srv;
1126 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1127 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1128 ib_wc_status_msg(wc->status));
1131 msg_id = mr->msg_id;
1133 data = page_address(srv->chunks[msg_id]) + off;
1134 process_io_req(con, data, msg_id, off);
1137 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1138 struct rtrs_srv_mr *mr)
1140 struct ib_send_wr wr = {
1141 .opcode = IB_WR_LOCAL_INV,
1142 .wr_cqe = &mr->inv_cqe,
1143 .send_flags = IB_SEND_SIGNALED,
1144 .ex.invalidate_rkey = mr->mr->rkey,
1146 mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1148 return ib_post_send(con->c.qp, &wr, NULL);
1151 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1153 spin_lock(&con->rsp_wr_wait_lock);
1154 while (!list_empty(&con->rsp_wr_wait_list)) {
1155 struct rtrs_srv_op *id;
1158 id = list_entry(con->rsp_wr_wait_list.next,
1159 struct rtrs_srv_op, wait_list);
1160 list_del(&id->wait_list);
1162 spin_unlock(&con->rsp_wr_wait_lock);
1163 ret = rtrs_srv_resp_rdma(id, id->status);
1164 spin_lock(&con->rsp_wr_wait_lock);
1167 list_add(&id->wait_list, &con->rsp_wr_wait_list);
1171 spin_unlock(&con->rsp_wr_wait_lock);
1174 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1176 struct rtrs_srv_con *con = cq->cq_context;
1177 struct rtrs_sess *s = con->c.sess;
1178 struct rtrs_srv_sess *sess = to_srv_sess(s);
1179 struct rtrs_srv *srv = sess->srv;
1180 u32 imm_type, imm_payload;
1183 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1184 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1186 "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1187 ib_wc_status_msg(wc->status), wc->wr_cqe,
1188 wc->opcode, wc->vendor_err, wc->byte_len);
1194 switch (wc->opcode) {
1195 case IB_WC_RECV_RDMA_WITH_IMM:
1197 * post_recv() RDMA write completions of IO reqs (read/write)
1200 if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1202 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1203 if (unlikely(err)) {
1204 rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1208 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1209 &imm_type, &imm_payload);
1210 if (likely(imm_type == RTRS_IO_REQ_IMM)) {
1214 msg_id = imm_payload >> sess->mem_bits;
1215 off = imm_payload & ((1 << sess->mem_bits) - 1);
1216 if (unlikely(msg_id > srv->queue_depth ||
1217 off > max_chunk_size)) {
1218 rtrs_err(s, "Wrong msg_id %u, off %u\n",
1223 if (always_invalidate) {
1224 struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1227 mr->msg_id = msg_id;
1228 err = rtrs_srv_inv_rkey(con, mr);
1229 if (unlikely(err)) {
1230 rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1236 data = page_address(srv->chunks[msg_id]) + off;
1237 process_io_req(con, data, msg_id, off);
1239 } else if (imm_type == RTRS_HB_MSG_IMM) {
1240 WARN_ON(con->c.cid);
1241 rtrs_send_hb_ack(&sess->s);
1242 } else if (imm_type == RTRS_HB_ACK_IMM) {
1243 WARN_ON(con->c.cid);
1244 sess->s.hb_missed_cnt = 0;
1246 rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1249 case IB_WC_RDMA_WRITE:
1252 * post_send() RDMA write completions of IO reqs (read/write)
1255 atomic_add(srv->queue_depth, &con->sq_wr_avail);
1257 if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
1258 rtrs_rdma_process_wr_wait_list(con);
1262 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1268 * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1270 * @sessname: Sessname buffer
1271 * @len: Length of sessname buffer
1273 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1275 struct rtrs_srv_sess *sess;
1276 int err = -ENOTCONN;
1278 mutex_lock(&srv->paths_mutex);
1279 list_for_each_entry(sess, &srv->paths_list, s.entry) {
1280 if (sess->state != RTRS_SRV_CONNECTED)
1282 strlcpy(sessname, sess->s.sessname,
1283 min_t(size_t, sizeof(sess->s.sessname), len));
1287 mutex_unlock(&srv->paths_mutex);
1291 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1294 * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
1297 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1299 return srv->queue_depth;
1301 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1303 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1305 struct ib_device *ib_dev = sess->s.dev->ib_dev;
1308 v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1309 if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1310 v = cpumask_first(&cq_affinity_mask);
1314 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1316 sess->cur_cq_vector = find_next_bit_ring(sess);
1318 return sess->cur_cq_vector;
1321 static struct rtrs_srv *__alloc_srv(struct rtrs_srv_ctx *ctx,
1322 const uuid_t *paths_uuid)
1324 struct rtrs_srv *srv;
1327 srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1331 refcount_set(&srv->refcount, 1);
1332 INIT_LIST_HEAD(&srv->paths_list);
1333 mutex_init(&srv->paths_mutex);
1334 mutex_init(&srv->paths_ev_mutex);
1335 uuid_copy(&srv->paths_uuid, paths_uuid);
1336 srv->queue_depth = sess_queue_depth;
1339 srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1344 for (i = 0; i < srv->queue_depth; i++) {
1345 srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1346 if (!srv->chunks[i])
1347 goto err_free_chunks;
1349 list_add(&srv->ctx_list, &ctx->srv_list);
1355 mempool_free(srv->chunks[i], chunk_pool);
1364 static void free_srv(struct rtrs_srv *srv)
1368 WARN_ON(refcount_read(&srv->refcount));
1369 for (i = 0; i < srv->queue_depth; i++)
1370 mempool_free(srv->chunks[i], chunk_pool);
1372 mutex_destroy(&srv->paths_mutex);
1373 mutex_destroy(&srv->paths_ev_mutex);
1374 /* last put to release the srv structure */
1375 put_device(&srv->dev);
1378 static inline struct rtrs_srv *__find_srv_and_get(struct rtrs_srv_ctx *ctx,
1379 const uuid_t *paths_uuid)
1381 struct rtrs_srv *srv;
1383 list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1384 if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1385 refcount_inc_not_zero(&srv->refcount))
1392 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1393 const uuid_t *paths_uuid)
1395 struct rtrs_srv *srv;
1397 mutex_lock(&ctx->srv_mutex);
1398 srv = __find_srv_and_get(ctx, paths_uuid);
1400 srv = __alloc_srv(ctx, paths_uuid);
1401 mutex_unlock(&ctx->srv_mutex);
1406 static void put_srv(struct rtrs_srv *srv)
1408 if (refcount_dec_and_test(&srv->refcount)) {
1409 struct rtrs_srv_ctx *ctx = srv->ctx;
1411 WARN_ON(srv->dev.kobj.state_in_sysfs);
1413 mutex_lock(&ctx->srv_mutex);
1414 list_del(&srv->ctx_list);
1415 mutex_unlock(&ctx->srv_mutex);
1420 static void __add_path_to_srv(struct rtrs_srv *srv,
1421 struct rtrs_srv_sess *sess)
1423 list_add_tail(&sess->s.entry, &srv->paths_list);
1425 WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1428 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1430 struct rtrs_srv *srv = sess->srv;
1435 mutex_lock(&srv->paths_mutex);
1436 list_del(&sess->s.entry);
1437 WARN_ON(!srv->paths_num);
1439 mutex_unlock(&srv->paths_mutex);
1442 /* return true if addresses are the same, error other wise */
1443 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1445 switch (a->sa_family) {
1447 return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1448 &((struct sockaddr_ib *)b)->sib_addr,
1449 sizeof(struct ib_addr)) &&
1450 (b->sa_family == AF_IB);
1452 return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1453 &((struct sockaddr_in *)b)->sin_addr,
1454 sizeof(struct in_addr)) &&
1455 (b->sa_family == AF_INET);
1457 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1458 &((struct sockaddr_in6 *)b)->sin6_addr,
1459 sizeof(struct in6_addr)) &&
1460 (b->sa_family == AF_INET6);
1466 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1467 struct rdma_addr *addr)
1469 struct rtrs_srv_sess *sess;
1471 list_for_each_entry(sess, &srv->paths_list, s.entry)
1472 if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1473 (struct sockaddr *)&addr->dst_addr) &&
1474 !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1475 (struct sockaddr *)&addr->src_addr))
1481 static void free_sess(struct rtrs_srv_sess *sess)
1483 if (sess->kobj.state_in_sysfs)
1484 kobject_put(&sess->kobj);
1489 static void rtrs_srv_close_work(struct work_struct *work)
1491 struct rtrs_srv_sess *sess;
1492 struct rtrs_srv_con *con;
1495 sess = container_of(work, typeof(*sess), close_work);
1497 rtrs_srv_destroy_sess_files(sess);
1498 rtrs_srv_stop_hb(sess);
1500 for (i = 0; i < sess->s.con_num; i++) {
1501 if (!sess->s.con[i])
1503 con = to_srv_con(sess->s.con[i]);
1504 rdma_disconnect(con->c.cm_id);
1505 ib_drain_qp(con->c.qp);
1507 /* Wait for all inflights */
1508 rtrs_srv_wait_ops_ids(sess);
1510 /* Notify upper layer if we are the last path */
1511 rtrs_srv_sess_down(sess);
1513 unmap_cont_bufs(sess);
1514 rtrs_srv_free_ops_ids(sess);
1516 for (i = 0; i < sess->s.con_num; i++) {
1517 if (!sess->s.con[i])
1519 con = to_srv_con(sess->s.con[i]);
1520 rtrs_cq_qp_destroy(&con->c);
1521 rdma_destroy_id(con->c.cm_id);
1524 rtrs_ib_dev_put(sess->s.dev);
1526 del_path_from_srv(sess);
1529 rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1531 kfree(sess->dma_addr);
1536 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1537 struct rdma_cm_id *cm_id)
1539 struct rtrs_srv *srv = sess->srv;
1540 struct rtrs_msg_conn_rsp msg;
1541 struct rdma_conn_param param;
1544 param = (struct rdma_conn_param) {
1545 .rnr_retry_count = 7,
1546 .private_data = &msg,
1547 .private_data_len = sizeof(msg),
1550 msg = (struct rtrs_msg_conn_rsp) {
1551 .magic = cpu_to_le16(RTRS_MAGIC),
1552 .version = cpu_to_le16(RTRS_PROTO_VER),
1553 .queue_depth = cpu_to_le16(srv->queue_depth),
1554 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1555 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1558 if (always_invalidate)
1559 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1561 err = rdma_accept(cm_id, ¶m);
1563 pr_err("rdma_accept(), err: %d\n", err);
1568 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1570 struct rtrs_msg_conn_rsp msg;
1573 msg = (struct rtrs_msg_conn_rsp) {
1574 .magic = cpu_to_le16(RTRS_MAGIC),
1575 .version = cpu_to_le16(RTRS_PROTO_VER),
1576 .errno = cpu_to_le16(errno),
1579 err = rdma_reject(cm_id, &msg, sizeof(msg));
1581 pr_err("rdma_reject(), err: %d\n", err);
1583 /* Bounce errno back */
1587 static struct rtrs_srv_sess *
1588 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1590 struct rtrs_srv_sess *sess;
1592 list_for_each_entry(sess, &srv->paths_list, s.entry) {
1593 if (uuid_equal(&sess->s.uuid, sess_uuid))
1600 static int create_con(struct rtrs_srv_sess *sess,
1601 struct rdma_cm_id *cm_id,
1604 struct rtrs_srv *srv = sess->srv;
1605 struct rtrs_sess *s = &sess->s;
1606 struct rtrs_srv_con *con;
1608 u16 cq_size, wr_queue_size;
1611 con = kzalloc(sizeof(*con), GFP_KERNEL);
1617 spin_lock_init(&con->rsp_wr_wait_lock);
1618 INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1619 con->c.cm_id = cm_id;
1620 con->c.sess = &sess->s;
1622 atomic_set(&con->wr_cnt, 0);
1624 if (con->c.cid == 0) {
1626 * All receive and all send (each requiring invalidate)
1627 * + 2 for drain and heartbeat
1629 wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1630 cq_size = wr_queue_size;
1633 * If we have all receive requests posted and
1634 * all write requests posted and each read request
1635 * requires an invalidate request + drain
1636 * and qp gets into error state.
1638 cq_size = srv->queue_depth * 3 + 1;
1640 * In theory we might have queue_depth * 32
1641 * outstanding requests if an unsafe global key is used
1642 * and we have queue_depth read requests each consisting
1643 * of 32 different addresses. div 3 for mlx5.
1645 wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
1647 atomic_set(&con->sq_wr_avail, wr_queue_size);
1648 cq_vector = rtrs_srv_get_next_cq_vector(sess);
1650 /* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1651 err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
1652 wr_queue_size, IB_POLL_WORKQUEUE);
1654 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1657 if (con->c.cid == 0) {
1658 err = post_recv_info_req(con);
1662 WARN_ON(sess->s.con[cid]);
1663 sess->s.con[cid] = &con->c;
1666 * Change context from server to current connection. The other
1667 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1669 cm_id->context = &con->c;
1674 rtrs_cq_qp_destroy(&con->c);
1682 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1683 struct rdma_cm_id *cm_id,
1684 unsigned int con_num,
1685 unsigned int recon_cnt,
1688 struct rtrs_srv_sess *sess;
1691 if (srv->paths_num >= MAX_PATHS_NUM) {
1695 if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1697 pr_err("Path with same addr exists\n");
1700 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1704 sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1708 sess->stats->sess = sess;
1710 sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1712 if (!sess->dma_addr)
1713 goto err_free_stats;
1715 sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1717 goto err_free_dma_addr;
1719 sess->state = RTRS_SRV_CONNECTING;
1721 sess->cur_cq_vector = -1;
1722 sess->s.dst_addr = cm_id->route.addr.dst_addr;
1723 sess->s.src_addr = cm_id->route.addr.src_addr;
1724 sess->s.con_num = con_num;
1725 sess->s.recon_cnt = recon_cnt;
1726 uuid_copy(&sess->s.uuid, uuid);
1727 spin_lock_init(&sess->state_lock);
1728 INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1729 rtrs_srv_init_hb(sess);
1731 sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1736 err = map_cont_bufs(sess);
1740 err = rtrs_srv_alloc_ops_ids(sess);
1742 goto err_unmap_bufs;
1744 __add_path_to_srv(srv, sess);
1749 unmap_cont_bufs(sess);
1751 rtrs_ib_dev_put(sess->s.dev);
1755 kfree(sess->dma_addr);
1761 return ERR_PTR(err);
1764 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1765 const struct rtrs_msg_conn_req *msg,
1768 struct rtrs_srv_ctx *ctx = cm_id->context;
1769 struct rtrs_srv_sess *sess;
1770 struct rtrs_srv *srv;
1772 u16 version, con_num, cid;
1776 if (len < sizeof(*msg)) {
1777 pr_err("Invalid RTRS connection request\n");
1778 goto reject_w_econnreset;
1780 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1781 pr_err("Invalid RTRS magic\n");
1782 goto reject_w_econnreset;
1784 version = le16_to_cpu(msg->version);
1785 if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1786 pr_err("Unsupported major RTRS version: %d, expected %d\n",
1787 version >> 8, RTRS_PROTO_VER_MAJOR);
1788 goto reject_w_econnreset;
1790 con_num = le16_to_cpu(msg->cid_num);
1791 if (con_num > 4096) {
1793 pr_err("Too many connections requested: %d\n", con_num);
1794 goto reject_w_econnreset;
1796 cid = le16_to_cpu(msg->cid);
1797 if (cid >= con_num) {
1799 pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1800 goto reject_w_econnreset;
1802 recon_cnt = le16_to_cpu(msg->recon_cnt);
1803 srv = get_or_create_srv(ctx, &msg->paths_uuid);
1808 mutex_lock(&srv->paths_mutex);
1809 sess = __find_sess(srv, &msg->sess_uuid);
1811 struct rtrs_sess *s = &sess->s;
1813 /* Session already holds a reference */
1816 if (sess->state != RTRS_SRV_CONNECTING) {
1817 rtrs_err(s, "Session in wrong state: %s\n",
1818 rtrs_srv_state_str(sess->state));
1819 mutex_unlock(&srv->paths_mutex);
1820 goto reject_w_econnreset;
1825 if (con_num != sess->s.con_num || cid >= sess->s.con_num) {
1826 rtrs_err(s, "Incorrect request: %d, %d\n",
1828 mutex_unlock(&srv->paths_mutex);
1829 goto reject_w_econnreset;
1831 if (sess->s.con[cid]) {
1832 rtrs_err(s, "Connection already exists: %d\n",
1834 mutex_unlock(&srv->paths_mutex);
1835 goto reject_w_econnreset;
1838 sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1841 mutex_unlock(&srv->paths_mutex);
1843 err = PTR_ERR(sess);
1847 err = create_con(sess, cm_id, cid);
1849 (void)rtrs_rdma_do_reject(cm_id, err);
1851 * Since session has other connections we follow normal way
1852 * through workqueue, but still return an error to tell cma.c
1853 * to call rdma_destroy_id() for current connection.
1855 goto close_and_return_err;
1857 err = rtrs_rdma_do_accept(sess, cm_id);
1859 (void)rtrs_rdma_do_reject(cm_id, err);
1861 * Since current connection was successfully added to the
1862 * session we follow normal way through workqueue to close the
1863 * session, thus return 0 to tell cma.c we call
1864 * rdma_destroy_id() ourselves.
1867 goto close_and_return_err;
1869 mutex_unlock(&srv->paths_mutex);
1874 return rtrs_rdma_do_reject(cm_id, err);
1876 reject_w_econnreset:
1877 return rtrs_rdma_do_reject(cm_id, -ECONNRESET);
1879 close_and_return_err:
1881 mutex_unlock(&srv->paths_mutex);
1886 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1887 struct rdma_cm_event *ev)
1889 struct rtrs_srv_sess *sess = NULL;
1890 struct rtrs_sess *s = NULL;
1892 if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1893 struct rtrs_con *c = cm_id->context;
1896 sess = to_srv_sess(s);
1899 switch (ev->event) {
1900 case RDMA_CM_EVENT_CONNECT_REQUEST:
1902 * In case of error cma.c will destroy cm_id,
1903 * see cma_process_remove()
1905 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1906 ev->param.conn.private_data_len);
1907 case RDMA_CM_EVENT_ESTABLISHED:
1910 case RDMA_CM_EVENT_REJECTED:
1911 case RDMA_CM_EVENT_CONNECT_ERROR:
1912 case RDMA_CM_EVENT_UNREACHABLE:
1913 rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1914 rdma_event_msg(ev->event), ev->status);
1917 case RDMA_CM_EVENT_DISCONNECTED:
1918 case RDMA_CM_EVENT_ADDR_CHANGE:
1919 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1922 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1926 pr_err("Ignoring unexpected CM event %s, err %d\n",
1927 rdma_event_msg(ev->event), ev->status);
1934 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1935 struct sockaddr *addr,
1936 enum rdma_ucm_port_space ps)
1938 struct rdma_cm_id *cm_id;
1941 cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1942 ctx, ps, IB_QPT_RC);
1943 if (IS_ERR(cm_id)) {
1944 ret = PTR_ERR(cm_id);
1945 pr_err("Creating id for RDMA connection failed, err: %d\n",
1949 ret = rdma_bind_addr(cm_id, addr);
1951 pr_err("Binding RDMA address failed, err: %d\n", ret);
1954 ret = rdma_listen(cm_id, 64);
1956 pr_err("Listening on RDMA connection failed, err: %d\n",
1964 rdma_destroy_id(cm_id);
1967 return ERR_PTR(ret);
1970 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
1972 struct sockaddr_in6 sin = {
1973 .sin6_family = AF_INET6,
1974 .sin6_addr = IN6ADDR_ANY_INIT,
1975 .sin6_port = htons(port),
1977 struct sockaddr_ib sib = {
1978 .sib_family = AF_IB,
1979 .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
1980 .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL),
1981 .sib_pkey = cpu_to_be16(0xffff),
1983 struct rdma_cm_id *cm_ip, *cm_ib;
1987 * We accept both IPoIB and IB connections, so we need to keep
1988 * two cm id's, one for each socket type and port space.
1989 * If the cm initialization of one of the id's fails, we abort
1992 cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
1994 return PTR_ERR(cm_ip);
1996 cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
1997 if (IS_ERR(cm_ib)) {
1998 ret = PTR_ERR(cm_ib);
2002 ctx->cm_id_ip = cm_ip;
2003 ctx->cm_id_ib = cm_ib;
2008 rdma_destroy_id(cm_ip);
2013 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2015 struct rtrs_srv_ctx *ctx;
2017 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2022 mutex_init(&ctx->srv_mutex);
2023 INIT_LIST_HEAD(&ctx->srv_list);
2028 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2030 WARN_ON(!list_empty(&ctx->srv_list));
2031 mutex_destroy(&ctx->srv_mutex);
2036 * rtrs_srv_open() - open RTRS server context
2037 * @ops: callback functions
2038 * @port: port to listen on
2040 * Creates server context with specified callbacks.
2042 * Return a valid pointer on success otherwise PTR_ERR.
2044 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2046 struct rtrs_srv_ctx *ctx;
2049 ctx = alloc_srv_ctx(ops);
2051 return ERR_PTR(-ENOMEM);
2053 err = rtrs_srv_rdma_init(ctx, port);
2056 return ERR_PTR(err);
2061 EXPORT_SYMBOL(rtrs_srv_open);
2063 static void close_sessions(struct rtrs_srv *srv)
2065 struct rtrs_srv_sess *sess;
2067 mutex_lock(&srv->paths_mutex);
2068 list_for_each_entry(sess, &srv->paths_list, s.entry)
2070 mutex_unlock(&srv->paths_mutex);
2073 static void close_ctx(struct rtrs_srv_ctx *ctx)
2075 struct rtrs_srv *srv;
2077 mutex_lock(&ctx->srv_mutex);
2078 list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2079 close_sessions(srv);
2080 mutex_unlock(&ctx->srv_mutex);
2081 flush_workqueue(rtrs_wq);
2085 * rtrs_srv_close() - close RTRS server context
2086 * @ctx: pointer to server context
2088 * Closes RTRS server context with all client sessions.
2090 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2092 rdma_destroy_id(ctx->cm_id_ip);
2093 rdma_destroy_id(ctx->cm_id_ib);
2097 EXPORT_SYMBOL(rtrs_srv_close);
2099 static int check_module_params(void)
2101 if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2102 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2103 sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2106 if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
2107 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2108 max_chunk_size, 4096);
2113 * Check if IB immediate data size is enough to hold the mem_id and the
2114 * offset inside the memory chunk
2116 if ((ilog2(sess_queue_depth - 1) + 1) +
2117 (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2118 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2119 MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2126 static int __init rtrs_server_init(void)
2130 pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2131 KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2132 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2133 sess_queue_depth, always_invalidate);
2135 rtrs_rdma_dev_pd_init(0, &dev_pd);
2137 err = check_module_params();
2139 pr_err("Failed to load module, invalid module parameters, err: %d\n",
2143 chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2144 get_order(max_chunk_size));
2147 rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2148 if (IS_ERR(rtrs_dev_class)) {
2149 err = PTR_ERR(rtrs_dev_class);
2150 goto out_chunk_pool;
2152 rtrs_wq = alloc_workqueue("rtrs_server_wq", WQ_MEM_RECLAIM, 0);
2159 class_destroy(rtrs_dev_class);
2161 mempool_destroy(chunk_pool);
2166 static void __exit rtrs_server_exit(void)
2168 destroy_workqueue(rtrs_wq);
2169 class_destroy(rtrs_dev_class);
2170 mempool_destroy(chunk_pool);
2171 rtrs_rdma_dev_pd_deinit(&dev_pd);
2174 module_init(rtrs_server_init);
2175 module_exit(rtrs_server_exit);