Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[platform/kernel/linux-starfive.git] / drivers / infiniband / ulp / rtrs / rtrs-srv.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43                  "Invalidate memory registration for contiguous memory regions before accessing.");
44
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47                  "Max size for each IO request, when change the unit is in byte (default: "
48                  __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52                  "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53                  __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54                  __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57
58 static struct workqueue_struct *rtrs_wq;
59
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62         return container_of(c, struct rtrs_srv_con, c);
63 }
64
65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67         return container_of(s, struct rtrs_srv_sess, s);
68 }
69
70 static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71                                      enum rtrs_srv_state new_state)
72 {
73         enum rtrs_srv_state old_state;
74         bool changed = false;
75
76         lockdep_assert_held(&sess->state_lock);
77         old_state = sess->state;
78         switch (new_state) {
79         case RTRS_SRV_CONNECTED:
80                 switch (old_state) {
81                 case RTRS_SRV_CONNECTING:
82                         changed = true;
83                         fallthrough;
84                 default:
85                         break;
86                 }
87                 break;
88         case RTRS_SRV_CLOSING:
89                 switch (old_state) {
90                 case RTRS_SRV_CONNECTING:
91                 case RTRS_SRV_CONNECTED:
92                         changed = true;
93                         fallthrough;
94                 default:
95                         break;
96                 }
97                 break;
98         case RTRS_SRV_CLOSED:
99                 switch (old_state) {
100                 case RTRS_SRV_CLOSING:
101                         changed = true;
102                         fallthrough;
103                 default:
104                         break;
105                 }
106                 break;
107         default:
108                 break;
109         }
110         if (changed)
111                 sess->state = new_state;
112
113         return changed;
114 }
115
116 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
117                                    enum rtrs_srv_state new_state)
118 {
119         bool changed;
120
121         spin_lock_irq(&sess->state_lock);
122         changed = __rtrs_srv_change_state(sess, new_state);
123         spin_unlock_irq(&sess->state_lock);
124
125         return changed;
126 }
127
128 static void free_id(struct rtrs_srv_op *id)
129 {
130         if (!id)
131                 return;
132         kfree(id);
133 }
134
135 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
136 {
137         struct rtrs_srv *srv = sess->srv;
138         int i;
139
140         WARN_ON(atomic_read(&sess->ids_inflight));
141         if (sess->ops_ids) {
142                 for (i = 0; i < srv->queue_depth; i++)
143                         free_id(sess->ops_ids[i]);
144                 kfree(sess->ops_ids);
145                 sess->ops_ids = NULL;
146         }
147 }
148
149 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
150
151 static struct ib_cqe io_comp_cqe = {
152         .done = rtrs_srv_rdma_done
153 };
154
155 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
156 {
157         struct rtrs_srv *srv = sess->srv;
158         struct rtrs_srv_op *id;
159         int i;
160
161         sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
162                                 GFP_KERNEL);
163         if (!sess->ops_ids)
164                 goto err;
165
166         for (i = 0; i < srv->queue_depth; ++i) {
167                 id = kzalloc(sizeof(*id), GFP_KERNEL);
168                 if (!id)
169                         goto err;
170
171                 sess->ops_ids[i] = id;
172         }
173         init_waitqueue_head(&sess->ids_waitq);
174         atomic_set(&sess->ids_inflight, 0);
175
176         return 0;
177
178 err:
179         rtrs_srv_free_ops_ids(sess);
180         return -ENOMEM;
181 }
182
183 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
184 {
185         atomic_inc(&sess->ids_inflight);
186 }
187
188 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
189 {
190         if (atomic_dec_and_test(&sess->ids_inflight))
191                 wake_up(&sess->ids_waitq);
192 }
193
194 static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
195 {
196         wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
197 }
198
199
200 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
201 {
202         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
203         struct rtrs_sess *s = con->c.sess;
204         struct rtrs_srv_sess *sess = to_srv_sess(s);
205
206         if (unlikely(wc->status != IB_WC_SUCCESS)) {
207                 rtrs_err(s, "REG MR failed: %s\n",
208                           ib_wc_status_msg(wc->status));
209                 close_sess(sess);
210                 return;
211         }
212 }
213
214 static struct ib_cqe local_reg_cqe = {
215         .done = rtrs_srv_reg_mr_done
216 };
217
218 static int rdma_write_sg(struct rtrs_srv_op *id)
219 {
220         struct rtrs_sess *s = id->con->c.sess;
221         struct rtrs_srv_sess *sess = to_srv_sess(s);
222         dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
223         struct rtrs_srv_mr *srv_mr;
224         struct rtrs_srv *srv = sess->srv;
225         struct ib_send_wr inv_wr;
226         struct ib_rdma_wr imm_wr;
227         struct ib_rdma_wr *wr = NULL;
228         enum ib_send_flags flags;
229         size_t sg_cnt;
230         int err, offset;
231         bool need_inval;
232         u32 rkey = 0;
233         struct ib_reg_wr rwr;
234         struct ib_sge *plist;
235         struct ib_sge list;
236
237         sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
238         need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
239         if (unlikely(sg_cnt != 1))
240                 return -EINVAL;
241
242         offset = 0;
243
244         wr              = &id->tx_wr;
245         plist           = &id->tx_sg;
246         plist->addr     = dma_addr + offset;
247         plist->length   = le32_to_cpu(id->rd_msg->desc[0].len);
248
249         /* WR will fail with length error
250          * if this is 0
251          */
252         if (unlikely(plist->length == 0)) {
253                 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
254                 return -EINVAL;
255         }
256
257         plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
258         offset += plist->length;
259
260         wr->wr.sg_list  = plist;
261         wr->wr.num_sge  = 1;
262         wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr);
263         wr->rkey        = le32_to_cpu(id->rd_msg->desc[0].key);
264         if (rkey == 0)
265                 rkey = wr->rkey;
266         else
267                 /* Only one key is actually used */
268                 WARN_ON_ONCE(rkey != wr->rkey);
269
270         wr->wr.opcode = IB_WR_RDMA_WRITE;
271         wr->wr.wr_cqe   = &io_comp_cqe;
272         wr->wr.ex.imm_data = 0;
273         wr->wr.send_flags  = 0;
274
275         if (need_inval && always_invalidate) {
276                 wr->wr.next = &rwr.wr;
277                 rwr.wr.next = &inv_wr;
278                 inv_wr.next = &imm_wr.wr;
279         } else if (always_invalidate) {
280                 wr->wr.next = &rwr.wr;
281                 rwr.wr.next = &imm_wr.wr;
282         } else if (need_inval) {
283                 wr->wr.next = &inv_wr;
284                 inv_wr.next = &imm_wr.wr;
285         } else {
286                 wr->wr.next = &imm_wr.wr;
287         }
288         /*
289          * From time to time we have to post signaled sends,
290          * or send queue will fill up and only QP reset can help.
291          */
292         flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
293                 0 : IB_SEND_SIGNALED;
294
295         if (need_inval) {
296                 inv_wr.sg_list = NULL;
297                 inv_wr.num_sge = 0;
298                 inv_wr.opcode = IB_WR_SEND_WITH_INV;
299                 inv_wr.wr_cqe   = &io_comp_cqe;
300                 inv_wr.send_flags = 0;
301                 inv_wr.ex.invalidate_rkey = rkey;
302         }
303
304         imm_wr.wr.next = NULL;
305         if (always_invalidate) {
306                 struct rtrs_msg_rkey_rsp *msg;
307
308                 srv_mr = &sess->mrs[id->msg_id];
309                 rwr.wr.opcode = IB_WR_REG_MR;
310                 rwr.wr.wr_cqe = &local_reg_cqe;
311                 rwr.wr.num_sge = 0;
312                 rwr.mr = srv_mr->mr;
313                 rwr.wr.send_flags = 0;
314                 rwr.key = srv_mr->mr->rkey;
315                 rwr.access = (IB_ACCESS_LOCAL_WRITE |
316                               IB_ACCESS_REMOTE_WRITE);
317                 msg = srv_mr->iu->buf;
318                 msg->buf_id = cpu_to_le16(id->msg_id);
319                 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
320                 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
321
322                 list.addr   = srv_mr->iu->dma_addr;
323                 list.length = sizeof(*msg);
324                 list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
325                 imm_wr.wr.sg_list = &list;
326                 imm_wr.wr.num_sge = 1;
327                 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
328                 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
329                                               srv_mr->iu->dma_addr,
330                                               srv_mr->iu->size, DMA_TO_DEVICE);
331         } else {
332                 imm_wr.wr.sg_list = NULL;
333                 imm_wr.wr.num_sge = 0;
334                 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
335         }
336         imm_wr.wr.send_flags = flags;
337         imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
338                                                              0, need_inval));
339
340         imm_wr.wr.wr_cqe   = &io_comp_cqe;
341         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
342                                       offset, DMA_BIDIRECTIONAL);
343
344         err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
345         if (unlikely(err))
346                 rtrs_err(s,
347                           "Posting RDMA-Write-Request to QP failed, err: %d\n",
348                           err);
349
350         return err;
351 }
352
353 /**
354  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
355  *                      requests or on successful WRITE request.
356  * @con:        the connection to send back result
357  * @id:         the id associated with the IO
358  * @errno:      the error number of the IO.
359  *
360  * Return 0 on success, errno otherwise.
361  */
362 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
363                             int errno)
364 {
365         struct rtrs_sess *s = con->c.sess;
366         struct rtrs_srv_sess *sess = to_srv_sess(s);
367         struct ib_send_wr inv_wr, *wr = NULL;
368         struct ib_rdma_wr imm_wr;
369         struct ib_reg_wr rwr;
370         struct rtrs_srv *srv = sess->srv;
371         struct rtrs_srv_mr *srv_mr;
372         bool need_inval = false;
373         enum ib_send_flags flags;
374         u32 imm;
375         int err;
376
377         if (id->dir == READ) {
378                 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
379                 size_t sg_cnt;
380
381                 need_inval = le16_to_cpu(rd_msg->flags) &
382                                 RTRS_MSG_NEED_INVAL_F;
383                 sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
384
385                 if (need_inval) {
386                         if (likely(sg_cnt)) {
387                                 inv_wr.wr_cqe   = &io_comp_cqe;
388                                 inv_wr.sg_list = NULL;
389                                 inv_wr.num_sge = 0;
390                                 inv_wr.opcode = IB_WR_SEND_WITH_INV;
391                                 inv_wr.send_flags = 0;
392                                 /* Only one key is actually used */
393                                 inv_wr.ex.invalidate_rkey =
394                                         le32_to_cpu(rd_msg->desc[0].key);
395                         } else {
396                                 WARN_ON_ONCE(1);
397                                 need_inval = false;
398                         }
399                 }
400         }
401
402         if (need_inval && always_invalidate) {
403                 wr = &inv_wr;
404                 inv_wr.next = &rwr.wr;
405                 rwr.wr.next = &imm_wr.wr;
406         } else if (always_invalidate) {
407                 wr = &rwr.wr;
408                 rwr.wr.next = &imm_wr.wr;
409         } else if (need_inval) {
410                 wr = &inv_wr;
411                 inv_wr.next = &imm_wr.wr;
412         } else {
413                 wr = &imm_wr.wr;
414         }
415         /*
416          * From time to time we have to post signalled sends,
417          * or send queue will fill up and only QP reset can help.
418          */
419         flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
420                 0 : IB_SEND_SIGNALED;
421         imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
422         imm_wr.wr.next = NULL;
423         if (always_invalidate) {
424                 struct ib_sge list;
425                 struct rtrs_msg_rkey_rsp *msg;
426
427                 srv_mr = &sess->mrs[id->msg_id];
428                 rwr.wr.next = &imm_wr.wr;
429                 rwr.wr.opcode = IB_WR_REG_MR;
430                 rwr.wr.wr_cqe = &local_reg_cqe;
431                 rwr.wr.num_sge = 0;
432                 rwr.wr.send_flags = 0;
433                 rwr.mr = srv_mr->mr;
434                 rwr.key = srv_mr->mr->rkey;
435                 rwr.access = (IB_ACCESS_LOCAL_WRITE |
436                               IB_ACCESS_REMOTE_WRITE);
437                 msg = srv_mr->iu->buf;
438                 msg->buf_id = cpu_to_le16(id->msg_id);
439                 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
440                 msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
441
442                 list.addr   = srv_mr->iu->dma_addr;
443                 list.length = sizeof(*msg);
444                 list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
445                 imm_wr.wr.sg_list = &list;
446                 imm_wr.wr.num_sge = 1;
447                 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
448                 ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
449                                               srv_mr->iu->dma_addr,
450                                               srv_mr->iu->size, DMA_TO_DEVICE);
451         } else {
452                 imm_wr.wr.sg_list = NULL;
453                 imm_wr.wr.num_sge = 0;
454                 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
455         }
456         imm_wr.wr.send_flags = flags;
457         imm_wr.wr.wr_cqe   = &io_comp_cqe;
458
459         imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
460
461         err = ib_post_send(id->con->c.qp, wr, NULL);
462         if (unlikely(err))
463                 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
464                              err);
465
466         return err;
467 }
468
469 void close_sess(struct rtrs_srv_sess *sess)
470 {
471         if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
472                 queue_work(rtrs_wq, &sess->close_work);
473         WARN_ON(sess->state != RTRS_SRV_CLOSING);
474 }
475
476 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
477 {
478         switch (state) {
479         case RTRS_SRV_CONNECTING:
480                 return "RTRS_SRV_CONNECTING";
481         case RTRS_SRV_CONNECTED:
482                 return "RTRS_SRV_CONNECTED";
483         case RTRS_SRV_CLOSING:
484                 return "RTRS_SRV_CLOSING";
485         case RTRS_SRV_CLOSED:
486                 return "RTRS_SRV_CLOSED";
487         default:
488                 return "UNKNOWN";
489         }
490 }
491
492 /**
493  * rtrs_srv_resp_rdma() - Finish an RDMA request
494  *
495  * @id:         Internal RTRS operation identifier
496  * @status:     Response Code sent to the other side for this operation.
497  *              0 = success, <=0 error
498  * Context: any
499  *
500  * Finish a RDMA operation. A message is sent to the client and the
501  * corresponding memory areas will be released.
502  */
503 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
504 {
505         struct rtrs_srv_sess *sess;
506         struct rtrs_srv_con *con;
507         struct rtrs_sess *s;
508         int err;
509
510         if (WARN_ON(!id))
511                 return true;
512
513         con = id->con;
514         s = con->c.sess;
515         sess = to_srv_sess(s);
516
517         id->status = status;
518
519         if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
520                 rtrs_err_rl(s,
521                             "Sending I/O response failed,  session %s is disconnected, sess state %s\n",
522                             kobject_name(&sess->kobj),
523                             rtrs_srv_state_str(sess->state));
524                 goto out;
525         }
526         if (always_invalidate) {
527                 struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
528
529                 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
530         }
531         if (unlikely(atomic_sub_return(1,
532                                        &con->sq_wr_avail) < 0)) {
533                 rtrs_err(s, "IB send queue full: sess=%s cid=%d\n",
534                          kobject_name(&sess->kobj),
535                          con->c.cid);
536                 atomic_add(1, &con->sq_wr_avail);
537                 spin_lock(&con->rsp_wr_wait_lock);
538                 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
539                 spin_unlock(&con->rsp_wr_wait_lock);
540                 return false;
541         }
542
543         if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
544                 err = send_io_resp_imm(con, id, status);
545         else
546                 err = rdma_write_sg(id);
547
548         if (unlikely(err)) {
549                 rtrs_err_rl(s, "IO response failed: %d: sess=%s\n", err,
550                             kobject_name(&sess->kobj));
551                 close_sess(sess);
552         }
553 out:
554         rtrs_srv_put_ops_ids(sess);
555         return true;
556 }
557 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
558
559 /**
560  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
561  * @srv:        Session pointer
562  * @priv:       The private pointer that is associated with the session.
563  */
564 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
565 {
566         srv->priv = priv;
567 }
568 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
569
570 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
571 {
572         int i;
573
574         for (i = 0; i < sess->mrs_num; i++) {
575                 struct rtrs_srv_mr *srv_mr;
576
577                 srv_mr = &sess->mrs[i];
578                 rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
579                 ib_dereg_mr(srv_mr->mr);
580                 ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
581                                 srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
582                 sg_free_table(&srv_mr->sgt);
583         }
584         kfree(sess->mrs);
585 }
586
587 static int map_cont_bufs(struct rtrs_srv_sess *sess)
588 {
589         struct rtrs_srv *srv = sess->srv;
590         struct rtrs_sess *ss = &sess->s;
591         int i, mri, err, mrs_num;
592         unsigned int chunk_bits;
593         int chunks_per_mr = 1;
594
595         /*
596          * Here we map queue_depth chunks to MR.  Firstly we have to
597          * figure out how many chunks can we map per MR.
598          */
599         if (always_invalidate) {
600                 /*
601                  * in order to do invalidate for each chunks of memory, we needs
602                  * more memory regions.
603                  */
604                 mrs_num = srv->queue_depth;
605         } else {
606                 chunks_per_mr =
607                         sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
608                 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
609                 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
610         }
611
612         sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
613         if (!sess->mrs)
614                 return -ENOMEM;
615
616         sess->mrs_num = mrs_num;
617
618         for (mri = 0; mri < mrs_num; mri++) {
619                 struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
620                 struct sg_table *sgt = &srv_mr->sgt;
621                 struct scatterlist *s;
622                 struct ib_mr *mr;
623                 int nr, chunks;
624
625                 chunks = chunks_per_mr * mri;
626                 if (!always_invalidate)
627                         chunks_per_mr = min_t(int, chunks_per_mr,
628                                               srv->queue_depth - chunks);
629
630                 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
631                 if (err)
632                         goto err;
633
634                 for_each_sg(sgt->sgl, s, chunks_per_mr, i)
635                         sg_set_page(s, srv->chunks[chunks + i],
636                                     max_chunk_size, 0);
637
638                 nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
639                                    sgt->nents, DMA_BIDIRECTIONAL);
640                 if (nr < sgt->nents) {
641                         err = nr < 0 ? nr : -EINVAL;
642                         goto free_sg;
643                 }
644                 mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
645                                  sgt->nents);
646                 if (IS_ERR(mr)) {
647                         err = PTR_ERR(mr);
648                         goto unmap_sg;
649                 }
650                 nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
651                                   NULL, max_chunk_size);
652                 if (nr < 0 || nr < sgt->nents) {
653                         err = nr < 0 ? nr : -EINVAL;
654                         goto dereg_mr;
655                 }
656
657                 if (always_invalidate) {
658                         srv_mr->iu = rtrs_iu_alloc(1,
659                                         sizeof(struct rtrs_msg_rkey_rsp),
660                                         GFP_KERNEL, sess->s.dev->ib_dev,
661                                         DMA_TO_DEVICE, rtrs_srv_rdma_done);
662                         if (!srv_mr->iu) {
663                                 err = -ENOMEM;
664                                 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
665                                 goto dereg_mr;
666                         }
667                 }
668                 /* Eventually dma addr for each chunk can be cached */
669                 for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
670                         sess->dma_addr[chunks + i] = sg_dma_address(s);
671
672                 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
673                 srv_mr->mr = mr;
674
675                 continue;
676 err:
677                 while (mri--) {
678                         srv_mr = &sess->mrs[mri];
679                         sgt = &srv_mr->sgt;
680                         mr = srv_mr->mr;
681                         rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
682 dereg_mr:
683                         ib_dereg_mr(mr);
684 unmap_sg:
685                         ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
686                                         sgt->nents, DMA_BIDIRECTIONAL);
687 free_sg:
688                         sg_free_table(sgt);
689                 }
690                 kfree(sess->mrs);
691
692                 return err;
693         }
694
695         chunk_bits = ilog2(srv->queue_depth - 1) + 1;
696         sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
697
698         return 0;
699 }
700
701 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
702 {
703         close_sess(to_srv_sess(c->sess));
704 }
705
706 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
707 {
708         rtrs_init_hb(&sess->s, &io_comp_cqe,
709                       RTRS_HB_INTERVAL_MS,
710                       RTRS_HB_MISSED_MAX,
711                       rtrs_srv_hb_err_handler,
712                       rtrs_wq);
713 }
714
715 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
716 {
717         rtrs_start_hb(&sess->s);
718 }
719
720 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
721 {
722         rtrs_stop_hb(&sess->s);
723 }
724
725 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
726 {
727         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
728         struct rtrs_sess *s = con->c.sess;
729         struct rtrs_srv_sess *sess = to_srv_sess(s);
730         struct rtrs_iu *iu;
731
732         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
733         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
734
735         if (unlikely(wc->status != IB_WC_SUCCESS)) {
736                 rtrs_err(s, "Sess info response send failed: %s\n",
737                           ib_wc_status_msg(wc->status));
738                 close_sess(sess);
739                 return;
740         }
741         WARN_ON(wc->opcode != IB_WC_SEND);
742 }
743
744 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
745 {
746         struct rtrs_srv *srv = sess->srv;
747         struct rtrs_srv_ctx *ctx = srv->ctx;
748         int up;
749
750         mutex_lock(&srv->paths_ev_mutex);
751         up = ++srv->paths_up;
752         if (up == 1)
753                 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
754         mutex_unlock(&srv->paths_ev_mutex);
755
756         /* Mark session as established */
757         sess->established = true;
758 }
759
760 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
761 {
762         struct rtrs_srv *srv = sess->srv;
763         struct rtrs_srv_ctx *ctx = srv->ctx;
764
765         if (!sess->established)
766                 return;
767
768         sess->established = false;
769         mutex_lock(&srv->paths_ev_mutex);
770         WARN_ON(!srv->paths_up);
771         if (--srv->paths_up == 0)
772                 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
773         mutex_unlock(&srv->paths_ev_mutex);
774 }
775
776 static int post_recv_sess(struct rtrs_srv_sess *sess);
777
778 static int process_info_req(struct rtrs_srv_con *con,
779                             struct rtrs_msg_info_req *msg)
780 {
781         struct rtrs_sess *s = con->c.sess;
782         struct rtrs_srv_sess *sess = to_srv_sess(s);
783         struct ib_send_wr *reg_wr = NULL;
784         struct rtrs_msg_info_rsp *rsp;
785         struct rtrs_iu *tx_iu;
786         struct ib_reg_wr *rwr;
787         int mri, err;
788         size_t tx_sz;
789
790         err = post_recv_sess(sess);
791         if (unlikely(err)) {
792                 rtrs_err(s, "post_recv_sess(), err: %d\n", err);
793                 return err;
794         }
795         rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
796         if (unlikely(!rwr))
797                 return -ENOMEM;
798         strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
799
800         tx_sz  = sizeof(*rsp);
801         tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
802         tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
803                                DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
804         if (unlikely(!tx_iu)) {
805                 err = -ENOMEM;
806                 goto rwr_free;
807         }
808
809         rsp = tx_iu->buf;
810         rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
811         rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
812
813         for (mri = 0; mri < sess->mrs_num; mri++) {
814                 struct ib_mr *mr = sess->mrs[mri].mr;
815
816                 rsp->desc[mri].addr = cpu_to_le64(mr->iova);
817                 rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
818                 rsp->desc[mri].len  = cpu_to_le32(mr->length);
819
820                 /*
821                  * Fill in reg MR request and chain them *backwards*
822                  */
823                 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
824                 rwr[mri].wr.opcode = IB_WR_REG_MR;
825                 rwr[mri].wr.wr_cqe = &local_reg_cqe;
826                 rwr[mri].wr.num_sge = 0;
827                 rwr[mri].wr.send_flags = 0;
828                 rwr[mri].mr = mr;
829                 rwr[mri].key = mr->rkey;
830                 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
831                                    IB_ACCESS_REMOTE_WRITE);
832                 reg_wr = &rwr[mri].wr;
833         }
834
835         err = rtrs_srv_create_sess_files(sess);
836         if (unlikely(err))
837                 goto iu_free;
838         kobject_get(&sess->kobj);
839         get_device(&sess->srv->dev);
840         rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
841         rtrs_srv_start_hb(sess);
842
843         /*
844          * We do not account number of established connections at the current
845          * moment, we rely on the client, which should send info request when
846          * all connections are successfully established.  Thus, simply notify
847          * listener with a proper event if we are the first path.
848          */
849         rtrs_srv_sess_up(sess);
850
851         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
852                                       tx_iu->size, DMA_TO_DEVICE);
853
854         /* Send info response */
855         err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
856         if (unlikely(err)) {
857                 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
858 iu_free:
859                 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
860         }
861 rwr_free:
862         kfree(rwr);
863
864         return err;
865 }
866
867 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
868 {
869         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
870         struct rtrs_sess *s = con->c.sess;
871         struct rtrs_srv_sess *sess = to_srv_sess(s);
872         struct rtrs_msg_info_req *msg;
873         struct rtrs_iu *iu;
874         int err;
875
876         WARN_ON(con->c.cid);
877
878         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
879         if (unlikely(wc->status != IB_WC_SUCCESS)) {
880                 rtrs_err(s, "Sess info request receive failed: %s\n",
881                           ib_wc_status_msg(wc->status));
882                 goto close;
883         }
884         WARN_ON(wc->opcode != IB_WC_RECV);
885
886         if (unlikely(wc->byte_len < sizeof(*msg))) {
887                 rtrs_err(s, "Sess info request is malformed: size %d\n",
888                           wc->byte_len);
889                 goto close;
890         }
891         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
892                                    iu->size, DMA_FROM_DEVICE);
893         msg = iu->buf;
894         if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
895                 rtrs_err(s, "Sess info request is malformed: type %d\n",
896                           le16_to_cpu(msg->type));
897                 goto close;
898         }
899         err = process_info_req(con, msg);
900         if (unlikely(err))
901                 goto close;
902
903 out:
904         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
905         return;
906 close:
907         close_sess(sess);
908         goto out;
909 }
910
911 static int post_recv_info_req(struct rtrs_srv_con *con)
912 {
913         struct rtrs_sess *s = con->c.sess;
914         struct rtrs_srv_sess *sess = to_srv_sess(s);
915         struct rtrs_iu *rx_iu;
916         int err;
917
918         rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
919                                GFP_KERNEL, sess->s.dev->ib_dev,
920                                DMA_FROM_DEVICE, rtrs_srv_info_req_done);
921         if (unlikely(!rx_iu))
922                 return -ENOMEM;
923         /* Prepare for getting info response */
924         err = rtrs_iu_post_recv(&con->c, rx_iu);
925         if (unlikely(err)) {
926                 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
927                 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
928                 return err;
929         }
930
931         return 0;
932 }
933
934 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
935 {
936         int i, err;
937
938         for (i = 0; i < q_size; i++) {
939                 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
940                 if (unlikely(err))
941                         return err;
942         }
943
944         return 0;
945 }
946
947 static int post_recv_sess(struct rtrs_srv_sess *sess)
948 {
949         struct rtrs_srv *srv = sess->srv;
950         struct rtrs_sess *s = &sess->s;
951         size_t q_size;
952         int err, cid;
953
954         for (cid = 0; cid < sess->s.con_num; cid++) {
955                 if (cid == 0)
956                         q_size = SERVICE_CON_QUEUE_DEPTH;
957                 else
958                         q_size = srv->queue_depth;
959
960                 err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
961                 if (unlikely(err)) {
962                         rtrs_err(s, "post_recv_io(), err: %d\n", err);
963                         return err;
964                 }
965         }
966
967         return 0;
968 }
969
970 static void process_read(struct rtrs_srv_con *con,
971                          struct rtrs_msg_rdma_read *msg,
972                          u32 buf_id, u32 off)
973 {
974         struct rtrs_sess *s = con->c.sess;
975         struct rtrs_srv_sess *sess = to_srv_sess(s);
976         struct rtrs_srv *srv = sess->srv;
977         struct rtrs_srv_ctx *ctx = srv->ctx;
978         struct rtrs_srv_op *id;
979
980         size_t usr_len, data_len;
981         void *data;
982         int ret;
983
984         if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
985                 rtrs_err_rl(s,
986                              "Processing read request failed,  session is disconnected, sess state %s\n",
987                              rtrs_srv_state_str(sess->state));
988                 return;
989         }
990         if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
991                 rtrs_err_rl(s,
992                             "Processing read request failed, invalid message\n");
993                 return;
994         }
995         rtrs_srv_get_ops_ids(sess);
996         rtrs_srv_update_rdma_stats(sess->stats, off, READ);
997         id = sess->ops_ids[buf_id];
998         id->con         = con;
999         id->dir         = READ;
1000         id->msg_id      = buf_id;
1001         id->rd_msg      = msg;
1002         usr_len = le16_to_cpu(msg->usr_len);
1003         data_len = off - usr_len;
1004         data = page_address(srv->chunks[buf_id]);
1005         ret = ctx->ops.rdma_ev(srv->priv, id, READ, data, data_len,
1006                            data + data_len, usr_len);
1007
1008         if (unlikely(ret)) {
1009                 rtrs_err_rl(s,
1010                              "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1011                              buf_id, ret);
1012                 goto send_err_msg;
1013         }
1014
1015         return;
1016
1017 send_err_msg:
1018         ret = send_io_resp_imm(con, id, ret);
1019         if (ret < 0) {
1020                 rtrs_err_rl(s,
1021                              "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1022                              buf_id, ret);
1023                 close_sess(sess);
1024         }
1025         rtrs_srv_put_ops_ids(sess);
1026 }
1027
1028 static void process_write(struct rtrs_srv_con *con,
1029                           struct rtrs_msg_rdma_write *req,
1030                           u32 buf_id, u32 off)
1031 {
1032         struct rtrs_sess *s = con->c.sess;
1033         struct rtrs_srv_sess *sess = to_srv_sess(s);
1034         struct rtrs_srv *srv = sess->srv;
1035         struct rtrs_srv_ctx *ctx = srv->ctx;
1036         struct rtrs_srv_op *id;
1037
1038         size_t data_len, usr_len;
1039         void *data;
1040         int ret;
1041
1042         if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
1043                 rtrs_err_rl(s,
1044                              "Processing write request failed,  session is disconnected, sess state %s\n",
1045                              rtrs_srv_state_str(sess->state));
1046                 return;
1047         }
1048         rtrs_srv_get_ops_ids(sess);
1049         rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1050         id = sess->ops_ids[buf_id];
1051         id->con    = con;
1052         id->dir    = WRITE;
1053         id->msg_id = buf_id;
1054
1055         usr_len = le16_to_cpu(req->usr_len);
1056         data_len = off - usr_len;
1057         data = page_address(srv->chunks[buf_id]);
1058         ret = ctx->ops.rdma_ev(srv->priv, id, WRITE, data, data_len,
1059                            data + data_len, usr_len);
1060         if (unlikely(ret)) {
1061                 rtrs_err_rl(s,
1062                              "Processing write request failed, user module callback reports err: %d\n",
1063                              ret);
1064                 goto send_err_msg;
1065         }
1066
1067         return;
1068
1069 send_err_msg:
1070         ret = send_io_resp_imm(con, id, ret);
1071         if (ret < 0) {
1072                 rtrs_err_rl(s,
1073                              "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1074                              buf_id, ret);
1075                 close_sess(sess);
1076         }
1077         rtrs_srv_put_ops_ids(sess);
1078 }
1079
1080 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1081                            u32 id, u32 off)
1082 {
1083         struct rtrs_sess *s = con->c.sess;
1084         struct rtrs_srv_sess *sess = to_srv_sess(s);
1085         struct rtrs_msg_rdma_hdr *hdr;
1086         unsigned int type;
1087
1088         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1089                                    max_chunk_size, DMA_BIDIRECTIONAL);
1090         hdr = msg;
1091         type = le16_to_cpu(hdr->type);
1092
1093         switch (type) {
1094         case RTRS_MSG_WRITE:
1095                 process_write(con, msg, id, off);
1096                 break;
1097         case RTRS_MSG_READ:
1098                 process_read(con, msg, id, off);
1099                 break;
1100         default:
1101                 rtrs_err(s,
1102                           "Processing I/O request failed, unknown message type received: 0x%02x\n",
1103                           type);
1104                 goto err;
1105         }
1106
1107         return;
1108
1109 err:
1110         close_sess(sess);
1111 }
1112
1113 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1114 {
1115         struct rtrs_srv_mr *mr =
1116                 container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1117         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1118         struct rtrs_sess *s = con->c.sess;
1119         struct rtrs_srv_sess *sess = to_srv_sess(s);
1120         struct rtrs_srv *srv = sess->srv;
1121         u32 msg_id, off;
1122         void *data;
1123
1124         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1125                 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1126                           ib_wc_status_msg(wc->status));
1127                 close_sess(sess);
1128         }
1129         msg_id = mr->msg_id;
1130         off = mr->msg_off;
1131         data = page_address(srv->chunks[msg_id]) + off;
1132         process_io_req(con, data, msg_id, off);
1133 }
1134
1135 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1136                               struct rtrs_srv_mr *mr)
1137 {
1138         struct ib_send_wr wr = {
1139                 .opcode             = IB_WR_LOCAL_INV,
1140                 .wr_cqe             = &mr->inv_cqe,
1141                 .send_flags         = IB_SEND_SIGNALED,
1142                 .ex.invalidate_rkey = mr->mr->rkey,
1143         };
1144         mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1145
1146         return ib_post_send(con->c.qp, &wr, NULL);
1147 }
1148
1149 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1150 {
1151         spin_lock(&con->rsp_wr_wait_lock);
1152         while (!list_empty(&con->rsp_wr_wait_list)) {
1153                 struct rtrs_srv_op *id;
1154                 int ret;
1155
1156                 id = list_entry(con->rsp_wr_wait_list.next,
1157                                 struct rtrs_srv_op, wait_list);
1158                 list_del(&id->wait_list);
1159
1160                 spin_unlock(&con->rsp_wr_wait_lock);
1161                 ret = rtrs_srv_resp_rdma(id, id->status);
1162                 spin_lock(&con->rsp_wr_wait_lock);
1163
1164                 if (!ret) {
1165                         list_add(&id->wait_list, &con->rsp_wr_wait_list);
1166                         break;
1167                 }
1168         }
1169         spin_unlock(&con->rsp_wr_wait_lock);
1170 }
1171
1172 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1173 {
1174         struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1175         struct rtrs_sess *s = con->c.sess;
1176         struct rtrs_srv_sess *sess = to_srv_sess(s);
1177         struct rtrs_srv *srv = sess->srv;
1178         u32 imm_type, imm_payload;
1179         int err;
1180
1181         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1182                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1183                         rtrs_err(s,
1184                                   "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1185                                   ib_wc_status_msg(wc->status), wc->wr_cqe,
1186                                   wc->opcode, wc->vendor_err, wc->byte_len);
1187                         close_sess(sess);
1188                 }
1189                 return;
1190         }
1191
1192         switch (wc->opcode) {
1193         case IB_WC_RECV_RDMA_WITH_IMM:
1194                 /*
1195                  * post_recv() RDMA write completions of IO reqs (read/write)
1196                  * and hb
1197                  */
1198                 if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1199                         return;
1200                 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1201                 if (unlikely(err)) {
1202                         rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1203                         close_sess(sess);
1204                         break;
1205                 }
1206                 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1207                                &imm_type, &imm_payload);
1208                 if (likely(imm_type == RTRS_IO_REQ_IMM)) {
1209                         u32 msg_id, off;
1210                         void *data;
1211
1212                         msg_id = imm_payload >> sess->mem_bits;
1213                         off = imm_payload & ((1 << sess->mem_bits) - 1);
1214                         if (unlikely(msg_id >= srv->queue_depth ||
1215                                      off >= max_chunk_size)) {
1216                                 rtrs_err(s, "Wrong msg_id %u, off %u\n",
1217                                           msg_id, off);
1218                                 close_sess(sess);
1219                                 return;
1220                         }
1221                         if (always_invalidate) {
1222                                 struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1223
1224                                 mr->msg_off = off;
1225                                 mr->msg_id = msg_id;
1226                                 err = rtrs_srv_inv_rkey(con, mr);
1227                                 if (unlikely(err)) {
1228                                         rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1229                                                   err);
1230                                         close_sess(sess);
1231                                         break;
1232                                 }
1233                         } else {
1234                                 data = page_address(srv->chunks[msg_id]) + off;
1235                                 process_io_req(con, data, msg_id, off);
1236                         }
1237                 } else if (imm_type == RTRS_HB_MSG_IMM) {
1238                         WARN_ON(con->c.cid);
1239                         rtrs_send_hb_ack(&sess->s);
1240                 } else if (imm_type == RTRS_HB_ACK_IMM) {
1241                         WARN_ON(con->c.cid);
1242                         sess->s.hb_missed_cnt = 0;
1243                 } else {
1244                         rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1245                 }
1246                 break;
1247         case IB_WC_RDMA_WRITE:
1248         case IB_WC_SEND:
1249                 /*
1250                  * post_send() RDMA write completions of IO reqs (read/write)
1251                  */
1252                 atomic_add(srv->queue_depth, &con->sq_wr_avail);
1253
1254                 if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
1255                         rtrs_rdma_process_wr_wait_list(con);
1256
1257                 break;
1258         default:
1259                 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1260                 return;
1261         }
1262 }
1263
1264 /**
1265  * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1266  * @srv:        Session
1267  * @sessname:   Sessname buffer
1268  * @len:        Length of sessname buffer
1269  */
1270 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1271 {
1272         struct rtrs_srv_sess *sess;
1273         int err = -ENOTCONN;
1274
1275         mutex_lock(&srv->paths_mutex);
1276         list_for_each_entry(sess, &srv->paths_list, s.entry) {
1277                 if (sess->state != RTRS_SRV_CONNECTED)
1278                         continue;
1279                 strlcpy(sessname, sess->s.sessname,
1280                        min_t(size_t, sizeof(sess->s.sessname), len));
1281                 err = 0;
1282                 break;
1283         }
1284         mutex_unlock(&srv->paths_mutex);
1285
1286         return err;
1287 }
1288 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1289
1290 /**
1291  * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
1292  * @srv:        Session
1293  */
1294 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1295 {
1296         return srv->queue_depth;
1297 }
1298 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1299
1300 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1301 {
1302         struct ib_device *ib_dev = sess->s.dev->ib_dev;
1303         int v;
1304
1305         v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1306         if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1307                 v = cpumask_first(&cq_affinity_mask);
1308         return v;
1309 }
1310
1311 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1312 {
1313         sess->cur_cq_vector = find_next_bit_ring(sess);
1314
1315         return sess->cur_cq_vector;
1316 }
1317
1318 static void rtrs_srv_dev_release(struct device *dev)
1319 {
1320         struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1321
1322         kfree(srv);
1323 }
1324
1325 static void free_srv(struct rtrs_srv *srv)
1326 {
1327         int i;
1328
1329         WARN_ON(refcount_read(&srv->refcount));
1330         for (i = 0; i < srv->queue_depth; i++)
1331                 mempool_free(srv->chunks[i], chunk_pool);
1332         kfree(srv->chunks);
1333         mutex_destroy(&srv->paths_mutex);
1334         mutex_destroy(&srv->paths_ev_mutex);
1335         /* last put to release the srv structure */
1336         put_device(&srv->dev);
1337 }
1338
1339 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1340                                           const uuid_t *paths_uuid,
1341                                           bool first_conn)
1342 {
1343         struct rtrs_srv *srv;
1344         int i;
1345
1346         mutex_lock(&ctx->srv_mutex);
1347         list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1348                 if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1349                     refcount_inc_not_zero(&srv->refcount)) {
1350                         mutex_unlock(&ctx->srv_mutex);
1351                         return srv;
1352                 }
1353         }
1354         mutex_unlock(&ctx->srv_mutex);
1355         /*
1356          * If this request is not the first connection request from the
1357          * client for this session then fail and return error.
1358          */
1359         if (!first_conn)
1360                 return ERR_PTR(-ENXIO);
1361
1362         /* need to allocate a new srv */
1363         srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1364         if  (!srv)
1365                 return ERR_PTR(-ENOMEM);
1366
1367         INIT_LIST_HEAD(&srv->paths_list);
1368         mutex_init(&srv->paths_mutex);
1369         mutex_init(&srv->paths_ev_mutex);
1370         uuid_copy(&srv->paths_uuid, paths_uuid);
1371         srv->queue_depth = sess_queue_depth;
1372         srv->ctx = ctx;
1373         device_initialize(&srv->dev);
1374         srv->dev.release = rtrs_srv_dev_release;
1375
1376         srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1377                               GFP_KERNEL);
1378         if (!srv->chunks)
1379                 goto err_free_srv;
1380
1381         for (i = 0; i < srv->queue_depth; i++) {
1382                 srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1383                 if (!srv->chunks[i])
1384                         goto err_free_chunks;
1385         }
1386         refcount_set(&srv->refcount, 1);
1387         mutex_lock(&ctx->srv_mutex);
1388         list_add(&srv->ctx_list, &ctx->srv_list);
1389         mutex_unlock(&ctx->srv_mutex);
1390
1391         return srv;
1392
1393 err_free_chunks:
1394         while (i--)
1395                 mempool_free(srv->chunks[i], chunk_pool);
1396         kfree(srv->chunks);
1397
1398 err_free_srv:
1399         kfree(srv);
1400         return ERR_PTR(-ENOMEM);
1401 }
1402
1403 static void put_srv(struct rtrs_srv *srv)
1404 {
1405         if (refcount_dec_and_test(&srv->refcount)) {
1406                 struct rtrs_srv_ctx *ctx = srv->ctx;
1407
1408                 WARN_ON(srv->dev.kobj.state_in_sysfs);
1409
1410                 mutex_lock(&ctx->srv_mutex);
1411                 list_del(&srv->ctx_list);
1412                 mutex_unlock(&ctx->srv_mutex);
1413                 free_srv(srv);
1414         }
1415 }
1416
1417 static void __add_path_to_srv(struct rtrs_srv *srv,
1418                               struct rtrs_srv_sess *sess)
1419 {
1420         list_add_tail(&sess->s.entry, &srv->paths_list);
1421         srv->paths_num++;
1422         WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1423 }
1424
1425 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1426 {
1427         struct rtrs_srv *srv = sess->srv;
1428
1429         if (WARN_ON(!srv))
1430                 return;
1431
1432         mutex_lock(&srv->paths_mutex);
1433         list_del(&sess->s.entry);
1434         WARN_ON(!srv->paths_num);
1435         srv->paths_num--;
1436         mutex_unlock(&srv->paths_mutex);
1437 }
1438
1439 /* return true if addresses are the same, error other wise */
1440 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1441 {
1442         switch (a->sa_family) {
1443         case AF_IB:
1444                 return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1445                               &((struct sockaddr_ib *)b)->sib_addr,
1446                               sizeof(struct ib_addr)) &&
1447                         (b->sa_family == AF_IB);
1448         case AF_INET:
1449                 return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1450                               &((struct sockaddr_in *)b)->sin_addr,
1451                               sizeof(struct in_addr)) &&
1452                         (b->sa_family == AF_INET);
1453         case AF_INET6:
1454                 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1455                               &((struct sockaddr_in6 *)b)->sin6_addr,
1456                               sizeof(struct in6_addr)) &&
1457                         (b->sa_family == AF_INET6);
1458         default:
1459                 return -ENOENT;
1460         }
1461 }
1462
1463 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1464                                     struct rdma_addr *addr)
1465 {
1466         struct rtrs_srv_sess *sess;
1467
1468         list_for_each_entry(sess, &srv->paths_list, s.entry)
1469                 if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1470                                   (struct sockaddr *)&addr->dst_addr) &&
1471                     !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1472                                   (struct sockaddr *)&addr->src_addr))
1473                         return true;
1474
1475         return false;
1476 }
1477
1478 static void free_sess(struct rtrs_srv_sess *sess)
1479 {
1480         if (sess->kobj.state_in_sysfs) {
1481                 kobject_del(&sess->kobj);
1482                 kobject_put(&sess->kobj);
1483         } else {
1484                 kfree(sess);
1485         }
1486 }
1487
1488 static void rtrs_srv_close_work(struct work_struct *work)
1489 {
1490         struct rtrs_srv_sess *sess;
1491         struct rtrs_srv_con *con;
1492         int i;
1493
1494         sess = container_of(work, typeof(*sess), close_work);
1495
1496         rtrs_srv_destroy_sess_files(sess);
1497         rtrs_srv_stop_hb(sess);
1498
1499         for (i = 0; i < sess->s.con_num; i++) {
1500                 if (!sess->s.con[i])
1501                         continue;
1502                 con = to_srv_con(sess->s.con[i]);
1503                 rdma_disconnect(con->c.cm_id);
1504                 ib_drain_qp(con->c.qp);
1505         }
1506         /* Wait for all inflights */
1507         rtrs_srv_wait_ops_ids(sess);
1508
1509         /* Notify upper layer if we are the last path */
1510         rtrs_srv_sess_down(sess);
1511
1512         unmap_cont_bufs(sess);
1513         rtrs_srv_free_ops_ids(sess);
1514
1515         for (i = 0; i < sess->s.con_num; i++) {
1516                 if (!sess->s.con[i])
1517                         continue;
1518                 con = to_srv_con(sess->s.con[i]);
1519                 rtrs_cq_qp_destroy(&con->c);
1520                 rdma_destroy_id(con->c.cm_id);
1521                 kfree(con);
1522         }
1523         rtrs_ib_dev_put(sess->s.dev);
1524
1525         del_path_from_srv(sess);
1526         put_srv(sess->srv);
1527         sess->srv = NULL;
1528         rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1529
1530         kfree(sess->dma_addr);
1531         kfree(sess->s.con);
1532         free_sess(sess);
1533 }
1534
1535 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1536                                struct rdma_cm_id *cm_id)
1537 {
1538         struct rtrs_srv *srv = sess->srv;
1539         struct rtrs_msg_conn_rsp msg;
1540         struct rdma_conn_param param;
1541         int err;
1542
1543         param = (struct rdma_conn_param) {
1544                 .rnr_retry_count = 7,
1545                 .private_data = &msg,
1546                 .private_data_len = sizeof(msg),
1547         };
1548
1549         msg = (struct rtrs_msg_conn_rsp) {
1550                 .magic = cpu_to_le16(RTRS_MAGIC),
1551                 .version = cpu_to_le16(RTRS_PROTO_VER),
1552                 .queue_depth = cpu_to_le16(srv->queue_depth),
1553                 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1554                 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1555         };
1556
1557         if (always_invalidate)
1558                 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1559
1560         err = rdma_accept(cm_id, &param);
1561         if (err)
1562                 pr_err("rdma_accept(), err: %d\n", err);
1563
1564         return err;
1565 }
1566
1567 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1568 {
1569         struct rtrs_msg_conn_rsp msg;
1570         int err;
1571
1572         msg = (struct rtrs_msg_conn_rsp) {
1573                 .magic = cpu_to_le16(RTRS_MAGIC),
1574                 .version = cpu_to_le16(RTRS_PROTO_VER),
1575                 .errno = cpu_to_le16(errno),
1576         };
1577
1578         err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1579         if (err)
1580                 pr_err("rdma_reject(), err: %d\n", err);
1581
1582         /* Bounce errno back */
1583         return errno;
1584 }
1585
1586 static struct rtrs_srv_sess *
1587 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1588 {
1589         struct rtrs_srv_sess *sess;
1590
1591         list_for_each_entry(sess, &srv->paths_list, s.entry) {
1592                 if (uuid_equal(&sess->s.uuid, sess_uuid))
1593                         return sess;
1594         }
1595
1596         return NULL;
1597 }
1598
1599 static int create_con(struct rtrs_srv_sess *sess,
1600                       struct rdma_cm_id *cm_id,
1601                       unsigned int cid)
1602 {
1603         struct rtrs_srv *srv = sess->srv;
1604         struct rtrs_sess *s = &sess->s;
1605         struct rtrs_srv_con *con;
1606
1607         u32 cq_size, wr_queue_size;
1608         int err, cq_vector;
1609
1610         con = kzalloc(sizeof(*con), GFP_KERNEL);
1611         if (!con) {
1612                 err = -ENOMEM;
1613                 goto err;
1614         }
1615
1616         spin_lock_init(&con->rsp_wr_wait_lock);
1617         INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1618         con->c.cm_id = cm_id;
1619         con->c.sess = &sess->s;
1620         con->c.cid = cid;
1621         atomic_set(&con->wr_cnt, 1);
1622
1623         if (con->c.cid == 0) {
1624                 /*
1625                  * All receive and all send (each requiring invalidate)
1626                  * + 2 for drain and heartbeat
1627                  */
1628                 wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1629                 cq_size = wr_queue_size;
1630         } else {
1631                 /*
1632                  * If we have all receive requests posted and
1633                  * all write requests posted and each read request
1634                  * requires an invalidate request + drain
1635                  * and qp gets into error state.
1636                  */
1637                 cq_size = srv->queue_depth * 3 + 1;
1638                 /*
1639                  * In theory we might have queue_depth * 32
1640                  * outstanding requests if an unsafe global key is used
1641                  * and we have queue_depth read requests each consisting
1642                  * of 32 different addresses. div 3 for mlx5.
1643                  */
1644                 wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
1645         }
1646         atomic_set(&con->sq_wr_avail, wr_queue_size);
1647         cq_vector = rtrs_srv_get_next_cq_vector(sess);
1648
1649         /* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1650         err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
1651                                  wr_queue_size, wr_queue_size,
1652                                  IB_POLL_WORKQUEUE);
1653         if (err) {
1654                 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1655                 goto free_con;
1656         }
1657         if (con->c.cid == 0) {
1658                 err = post_recv_info_req(con);
1659                 if (err)
1660                         goto free_cqqp;
1661         }
1662         WARN_ON(sess->s.con[cid]);
1663         sess->s.con[cid] = &con->c;
1664
1665         /*
1666          * Change context from server to current connection.  The other
1667          * way is to use cm_id->qp->qp_context, which does not work on OFED.
1668          */
1669         cm_id->context = &con->c;
1670
1671         return 0;
1672
1673 free_cqqp:
1674         rtrs_cq_qp_destroy(&con->c);
1675 free_con:
1676         kfree(con);
1677
1678 err:
1679         return err;
1680 }
1681
1682 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1683                                            struct rdma_cm_id *cm_id,
1684                                            unsigned int con_num,
1685                                            unsigned int recon_cnt,
1686                                            const uuid_t *uuid)
1687 {
1688         struct rtrs_srv_sess *sess;
1689         int err = -ENOMEM;
1690         char str[NAME_MAX];
1691         struct rtrs_addr path;
1692
1693         if (srv->paths_num >= MAX_PATHS_NUM) {
1694                 err = -ECONNRESET;
1695                 goto err;
1696         }
1697         if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1698                 err = -EEXIST;
1699                 pr_err("Path with same addr exists\n");
1700                 goto err;
1701         }
1702         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1703         if (!sess)
1704                 goto err;
1705
1706         sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1707         if (!sess->stats)
1708                 goto err_free_sess;
1709
1710         sess->stats->sess = sess;
1711
1712         sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1713                                  GFP_KERNEL);
1714         if (!sess->dma_addr)
1715                 goto err_free_stats;
1716
1717         sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1718         if (!sess->s.con)
1719                 goto err_free_dma_addr;
1720
1721         sess->state = RTRS_SRV_CONNECTING;
1722         sess->srv = srv;
1723         sess->cur_cq_vector = -1;
1724         sess->s.dst_addr = cm_id->route.addr.dst_addr;
1725         sess->s.src_addr = cm_id->route.addr.src_addr;
1726
1727         /* temporary until receiving session-name from client */
1728         path.src = &sess->s.src_addr;
1729         path.dst = &sess->s.dst_addr;
1730         rtrs_addr_to_str(&path, str, sizeof(str));
1731         strlcpy(sess->s.sessname, str, sizeof(sess->s.sessname));
1732
1733         sess->s.con_num = con_num;
1734         sess->s.recon_cnt = recon_cnt;
1735         uuid_copy(&sess->s.uuid, uuid);
1736         spin_lock_init(&sess->state_lock);
1737         INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1738         rtrs_srv_init_hb(sess);
1739
1740         sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1741         if (!sess->s.dev) {
1742                 err = -ENOMEM;
1743                 goto err_free_con;
1744         }
1745         err = map_cont_bufs(sess);
1746         if (err)
1747                 goto err_put_dev;
1748
1749         err = rtrs_srv_alloc_ops_ids(sess);
1750         if (err)
1751                 goto err_unmap_bufs;
1752
1753         __add_path_to_srv(srv, sess);
1754
1755         return sess;
1756
1757 err_unmap_bufs:
1758         unmap_cont_bufs(sess);
1759 err_put_dev:
1760         rtrs_ib_dev_put(sess->s.dev);
1761 err_free_con:
1762         kfree(sess->s.con);
1763 err_free_dma_addr:
1764         kfree(sess->dma_addr);
1765 err_free_stats:
1766         kfree(sess->stats);
1767 err_free_sess:
1768         kfree(sess);
1769 err:
1770         return ERR_PTR(err);
1771 }
1772
1773 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1774                               const struct rtrs_msg_conn_req *msg,
1775                               size_t len)
1776 {
1777         struct rtrs_srv_ctx *ctx = cm_id->context;
1778         struct rtrs_srv_sess *sess;
1779         struct rtrs_srv *srv;
1780
1781         u16 version, con_num, cid;
1782         u16 recon_cnt;
1783         int err;
1784
1785         if (len < sizeof(*msg)) {
1786                 pr_err("Invalid RTRS connection request\n");
1787                 goto reject_w_econnreset;
1788         }
1789         if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1790                 pr_err("Invalid RTRS magic\n");
1791                 goto reject_w_econnreset;
1792         }
1793         version = le16_to_cpu(msg->version);
1794         if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1795                 pr_err("Unsupported major RTRS version: %d, expected %d\n",
1796                        version >> 8, RTRS_PROTO_VER_MAJOR);
1797                 goto reject_w_econnreset;
1798         }
1799         con_num = le16_to_cpu(msg->cid_num);
1800         if (con_num > 4096) {
1801                 /* Sanity check */
1802                 pr_err("Too many connections requested: %d\n", con_num);
1803                 goto reject_w_econnreset;
1804         }
1805         cid = le16_to_cpu(msg->cid);
1806         if (cid >= con_num) {
1807                 /* Sanity check */
1808                 pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1809                 goto reject_w_econnreset;
1810         }
1811         recon_cnt = le16_to_cpu(msg->recon_cnt);
1812         srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1813         if (IS_ERR(srv)) {
1814                 err = PTR_ERR(srv);
1815                 goto reject_w_err;
1816         }
1817         mutex_lock(&srv->paths_mutex);
1818         sess = __find_sess(srv, &msg->sess_uuid);
1819         if (sess) {
1820                 struct rtrs_sess *s = &sess->s;
1821
1822                 /* Session already holds a reference */
1823                 put_srv(srv);
1824
1825                 if (sess->state != RTRS_SRV_CONNECTING) {
1826                         rtrs_err(s, "Session in wrong state: %s\n",
1827                                   rtrs_srv_state_str(sess->state));
1828                         mutex_unlock(&srv->paths_mutex);
1829                         goto reject_w_econnreset;
1830                 }
1831                 /*
1832                  * Sanity checks
1833                  */
1834                 if (con_num != s->con_num || cid >= s->con_num) {
1835                         rtrs_err(s, "Incorrect request: %d, %d\n",
1836                                   cid, con_num);
1837                         mutex_unlock(&srv->paths_mutex);
1838                         goto reject_w_econnreset;
1839                 }
1840                 if (s->con[cid]) {
1841                         rtrs_err(s, "Connection already exists: %d\n",
1842                                   cid);
1843                         mutex_unlock(&srv->paths_mutex);
1844                         goto reject_w_econnreset;
1845                 }
1846         } else {
1847                 sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1848                                     &msg->sess_uuid);
1849                 if (IS_ERR(sess)) {
1850                         mutex_unlock(&srv->paths_mutex);
1851                         put_srv(srv);
1852                         err = PTR_ERR(sess);
1853                         goto reject_w_err;
1854                 }
1855         }
1856         err = create_con(sess, cm_id, cid);
1857         if (err) {
1858                 (void)rtrs_rdma_do_reject(cm_id, err);
1859                 /*
1860                  * Since session has other connections we follow normal way
1861                  * through workqueue, but still return an error to tell cma.c
1862                  * to call rdma_destroy_id() for current connection.
1863                  */
1864                 goto close_and_return_err;
1865         }
1866         err = rtrs_rdma_do_accept(sess, cm_id);
1867         if (err) {
1868                 (void)rtrs_rdma_do_reject(cm_id, err);
1869                 /*
1870                  * Since current connection was successfully added to the
1871                  * session we follow normal way through workqueue to close the
1872                  * session, thus return 0 to tell cma.c we call
1873                  * rdma_destroy_id() ourselves.
1874                  */
1875                 err = 0;
1876                 goto close_and_return_err;
1877         }
1878         mutex_unlock(&srv->paths_mutex);
1879
1880         return 0;
1881
1882 reject_w_err:
1883         return rtrs_rdma_do_reject(cm_id, err);
1884
1885 reject_w_econnreset:
1886         return rtrs_rdma_do_reject(cm_id, -ECONNRESET);
1887
1888 close_and_return_err:
1889         mutex_unlock(&srv->paths_mutex);
1890         close_sess(sess);
1891
1892         return err;
1893 }
1894
1895 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1896                                      struct rdma_cm_event *ev)
1897 {
1898         struct rtrs_srv_sess *sess = NULL;
1899         struct rtrs_sess *s = NULL;
1900
1901         if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1902                 struct rtrs_con *c = cm_id->context;
1903
1904                 s = c->sess;
1905                 sess = to_srv_sess(s);
1906         }
1907
1908         switch (ev->event) {
1909         case RDMA_CM_EVENT_CONNECT_REQUEST:
1910                 /*
1911                  * In case of error cma.c will destroy cm_id,
1912                  * see cma_process_remove()
1913                  */
1914                 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1915                                           ev->param.conn.private_data_len);
1916         case RDMA_CM_EVENT_ESTABLISHED:
1917                 /* Nothing here */
1918                 break;
1919         case RDMA_CM_EVENT_REJECTED:
1920         case RDMA_CM_EVENT_CONNECT_ERROR:
1921         case RDMA_CM_EVENT_UNREACHABLE:
1922                 rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1923                           rdma_event_msg(ev->event), ev->status);
1924                 fallthrough;
1925         case RDMA_CM_EVENT_DISCONNECTED:
1926         case RDMA_CM_EVENT_ADDR_CHANGE:
1927         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1928         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1929                 close_sess(sess);
1930                 break;
1931         default:
1932                 pr_err("Ignoring unexpected CM event %s, err %d\n",
1933                        rdma_event_msg(ev->event), ev->status);
1934                 break;
1935         }
1936
1937         return 0;
1938 }
1939
1940 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1941                                             struct sockaddr *addr,
1942                                             enum rdma_ucm_port_space ps)
1943 {
1944         struct rdma_cm_id *cm_id;
1945         int ret;
1946
1947         cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1948                                ctx, ps, IB_QPT_RC);
1949         if (IS_ERR(cm_id)) {
1950                 ret = PTR_ERR(cm_id);
1951                 pr_err("Creating id for RDMA connection failed, err: %d\n",
1952                        ret);
1953                 goto err_out;
1954         }
1955         ret = rdma_bind_addr(cm_id, addr);
1956         if (ret) {
1957                 pr_err("Binding RDMA address failed, err: %d\n", ret);
1958                 goto err_cm;
1959         }
1960         ret = rdma_listen(cm_id, 64);
1961         if (ret) {
1962                 pr_err("Listening on RDMA connection failed, err: %d\n",
1963                        ret);
1964                 goto err_cm;
1965         }
1966
1967         return cm_id;
1968
1969 err_cm:
1970         rdma_destroy_id(cm_id);
1971 err_out:
1972
1973         return ERR_PTR(ret);
1974 }
1975
1976 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
1977 {
1978         struct sockaddr_in6 sin = {
1979                 .sin6_family    = AF_INET6,
1980                 .sin6_addr      = IN6ADDR_ANY_INIT,
1981                 .sin6_port      = htons(port),
1982         };
1983         struct sockaddr_ib sib = {
1984                 .sib_family                     = AF_IB,
1985                 .sib_sid        = cpu_to_be64(RDMA_IB_IP_PS_IB | port),
1986                 .sib_sid_mask   = cpu_to_be64(0xffffffffffffffffULL),
1987                 .sib_pkey       = cpu_to_be16(0xffff),
1988         };
1989         struct rdma_cm_id *cm_ip, *cm_ib;
1990         int ret;
1991
1992         /*
1993          * We accept both IPoIB and IB connections, so we need to keep
1994          * two cm id's, one for each socket type and port space.
1995          * If the cm initialization of one of the id's fails, we abort
1996          * everything.
1997          */
1998         cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
1999         if (IS_ERR(cm_ip))
2000                 return PTR_ERR(cm_ip);
2001
2002         cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2003         if (IS_ERR(cm_ib)) {
2004                 ret = PTR_ERR(cm_ib);
2005                 goto free_cm_ip;
2006         }
2007
2008         ctx->cm_id_ip = cm_ip;
2009         ctx->cm_id_ib = cm_ib;
2010
2011         return 0;
2012
2013 free_cm_ip:
2014         rdma_destroy_id(cm_ip);
2015
2016         return ret;
2017 }
2018
2019 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2020 {
2021         struct rtrs_srv_ctx *ctx;
2022
2023         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2024         if (!ctx)
2025                 return NULL;
2026
2027         ctx->ops = *ops;
2028         mutex_init(&ctx->srv_mutex);
2029         INIT_LIST_HEAD(&ctx->srv_list);
2030
2031         return ctx;
2032 }
2033
2034 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2035 {
2036         WARN_ON(!list_empty(&ctx->srv_list));
2037         mutex_destroy(&ctx->srv_mutex);
2038         kfree(ctx);
2039 }
2040
2041 static int rtrs_srv_add_one(struct ib_device *device)
2042 {
2043         struct rtrs_srv_ctx *ctx;
2044         int ret = 0;
2045
2046         mutex_lock(&ib_ctx.ib_dev_mutex);
2047         if (ib_ctx.ib_dev_count)
2048                 goto out;
2049
2050         /*
2051          * Since our CM IDs are NOT bound to any ib device we will create them
2052          * only once
2053          */
2054         ctx = ib_ctx.srv_ctx;
2055         ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2056         if (ret) {
2057                 /*
2058                  * We errored out here.
2059                  * According to the ib code, if we encounter an error here then the
2060                  * error code is ignored, and no more calls to our ops are made.
2061                  */
2062                 pr_err("Failed to initialize RDMA connection");
2063                 goto err_out;
2064         }
2065
2066 out:
2067         /*
2068          * Keep a track on the number of ib devices added
2069          */
2070         ib_ctx.ib_dev_count++;
2071
2072 err_out:
2073         mutex_unlock(&ib_ctx.ib_dev_mutex);
2074         return ret;
2075 }
2076
2077 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2078 {
2079         struct rtrs_srv_ctx *ctx;
2080
2081         mutex_lock(&ib_ctx.ib_dev_mutex);
2082         ib_ctx.ib_dev_count--;
2083
2084         if (ib_ctx.ib_dev_count)
2085                 goto out;
2086
2087         /*
2088          * Since our CM IDs are NOT bound to any ib device we will remove them
2089          * only once, when the last device is removed
2090          */
2091         ctx = ib_ctx.srv_ctx;
2092         rdma_destroy_id(ctx->cm_id_ip);
2093         rdma_destroy_id(ctx->cm_id_ib);
2094
2095 out:
2096         mutex_unlock(&ib_ctx.ib_dev_mutex);
2097 }
2098
2099 static struct ib_client rtrs_srv_client = {
2100         .name   = "rtrs_server",
2101         .add    = rtrs_srv_add_one,
2102         .remove = rtrs_srv_remove_one
2103 };
2104
2105 /**
2106  * rtrs_srv_open() - open RTRS server context
2107  * @ops:                callback functions
2108  * @port:               port to listen on
2109  *
2110  * Creates server context with specified callbacks.
2111  *
2112  * Return a valid pointer on success otherwise PTR_ERR.
2113  */
2114 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2115 {
2116         struct rtrs_srv_ctx *ctx;
2117         int err;
2118
2119         ctx = alloc_srv_ctx(ops);
2120         if (!ctx)
2121                 return ERR_PTR(-ENOMEM);
2122
2123         mutex_init(&ib_ctx.ib_dev_mutex);
2124         ib_ctx.srv_ctx = ctx;
2125         ib_ctx.port = port;
2126
2127         err = ib_register_client(&rtrs_srv_client);
2128         if (err) {
2129                 free_srv_ctx(ctx);
2130                 return ERR_PTR(err);
2131         }
2132
2133         return ctx;
2134 }
2135 EXPORT_SYMBOL(rtrs_srv_open);
2136
2137 static void close_sessions(struct rtrs_srv *srv)
2138 {
2139         struct rtrs_srv_sess *sess;
2140
2141         mutex_lock(&srv->paths_mutex);
2142         list_for_each_entry(sess, &srv->paths_list, s.entry)
2143                 close_sess(sess);
2144         mutex_unlock(&srv->paths_mutex);
2145 }
2146
2147 static void close_ctx(struct rtrs_srv_ctx *ctx)
2148 {
2149         struct rtrs_srv *srv;
2150
2151         mutex_lock(&ctx->srv_mutex);
2152         list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2153                 close_sessions(srv);
2154         mutex_unlock(&ctx->srv_mutex);
2155         flush_workqueue(rtrs_wq);
2156 }
2157
2158 /**
2159  * rtrs_srv_close() - close RTRS server context
2160  * @ctx: pointer to server context
2161  *
2162  * Closes RTRS server context with all client sessions.
2163  */
2164 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2165 {
2166         ib_unregister_client(&rtrs_srv_client);
2167         mutex_destroy(&ib_ctx.ib_dev_mutex);
2168         close_ctx(ctx);
2169         free_srv_ctx(ctx);
2170 }
2171 EXPORT_SYMBOL(rtrs_srv_close);
2172
2173 static int check_module_params(void)
2174 {
2175         if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2176                 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2177                        sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2178                 return -EINVAL;
2179         }
2180         if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
2181                 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2182                        max_chunk_size, 4096);
2183                 return -EINVAL;
2184         }
2185
2186         /*
2187          * Check if IB immediate data size is enough to hold the mem_id and the
2188          * offset inside the memory chunk
2189          */
2190         if ((ilog2(sess_queue_depth - 1) + 1) +
2191             (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2192                 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2193                        MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2194                 return -EINVAL;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int __init rtrs_server_init(void)
2201 {
2202         int err;
2203
2204         pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2205                 KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2206                 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2207                 sess_queue_depth, always_invalidate);
2208
2209         rtrs_rdma_dev_pd_init(0, &dev_pd);
2210
2211         err = check_module_params();
2212         if (err) {
2213                 pr_err("Failed to load module, invalid module parameters, err: %d\n",
2214                        err);
2215                 return err;
2216         }
2217         chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2218                                               get_order(max_chunk_size));
2219         if (!chunk_pool)
2220                 return -ENOMEM;
2221         rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2222         if (IS_ERR(rtrs_dev_class)) {
2223                 err = PTR_ERR(rtrs_dev_class);
2224                 goto out_chunk_pool;
2225         }
2226         rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2227         if (!rtrs_wq) {
2228                 err = -ENOMEM;
2229                 goto out_dev_class;
2230         }
2231
2232         return 0;
2233
2234 out_dev_class:
2235         class_destroy(rtrs_dev_class);
2236 out_chunk_pool:
2237         mempool_destroy(chunk_pool);
2238
2239         return err;
2240 }
2241
2242 static void __exit rtrs_server_exit(void)
2243 {
2244         destroy_workqueue(rtrs_wq);
2245         class_destroy(rtrs_dev_class);
2246         mempool_destroy(chunk_pool);
2247         rtrs_rdma_dev_pd_deinit(&dev_pd);
2248 }
2249
2250 module_init(rtrs_server_init);
2251 module_exit(rtrs_server_exit);