1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/blkdev.h> /* for BLK_MAX_SEGMENT_SIZE */
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
22 * Wait a bit before trying to reconnect after a failure
23 * in order to give server time to finish clean up which
24 * leads to "false positives" failed reconnect attempts
26 #define RTRS_RECONNECT_BACKOFF 1000
28 MODULE_DESCRIPTION("RDMA Transport Client");
29 MODULE_LICENSE("GPL");
31 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
32 static struct rtrs_rdma_dev_pd dev_pd = {
36 static struct workqueue_struct *rtrs_wq;
37 static struct class *rtrs_clt_dev_class;
39 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
41 struct rtrs_clt_sess *sess;
42 bool connected = false;
45 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
46 connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
52 static struct rtrs_permit *
53 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
55 size_t max_depth = clt->queue_depth;
56 struct rtrs_permit *permit;
60 * Adapted from null_blk get_tag(). Callers from different cpus may
61 * grab the same bit, since find_first_zero_bit is not atomic.
62 * But then the test_and_set_bit_lock will fail for all the
63 * callers but one, so that they will loop again.
64 * This way an explicit spinlock is not required.
67 bit = find_first_zero_bit(clt->permits_map, max_depth);
68 if (unlikely(bit >= max_depth))
70 } while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
72 permit = get_permit(clt, bit);
73 WARN_ON(permit->mem_id != bit);
74 permit->cpu_id = raw_smp_processor_id();
75 permit->con_type = con_type;
80 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
81 struct rtrs_permit *permit)
83 clear_bit_unlock(permit->mem_id, clt->permits_map);
87 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
88 * @clt: Current session
89 * @con_type: Type of connection to use with the permit
90 * @can_wait: Wait type
93 * Allocates permit for the following RDMA operation. Permit is used
94 * to preallocate all resources and to propagate memory pressure
98 * Can sleep if @wait == RTRS_TAG_WAIT
100 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
101 enum rtrs_clt_con_type con_type,
104 struct rtrs_permit *permit;
107 permit = __rtrs_get_permit(clt, con_type);
108 if (likely(permit) || !can_wait)
112 prepare_to_wait(&clt->permits_wait, &wait,
113 TASK_UNINTERRUPTIBLE);
114 permit = __rtrs_get_permit(clt, con_type);
121 finish_wait(&clt->permits_wait, &wait);
125 EXPORT_SYMBOL(rtrs_clt_get_permit);
128 * rtrs_clt_put_permit() - puts allocated permit
129 * @clt: Current session
130 * @permit: Permit to be freed
135 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
137 if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
140 __rtrs_put_permit(clt, permit);
143 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
144 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
145 * it must have added itself to &clt->permits_wait before
146 * __rtrs_put_permit() finished.
147 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
149 if (waitqueue_active(&clt->permits_wait))
150 wake_up(&clt->permits_wait);
152 EXPORT_SYMBOL(rtrs_clt_put_permit);
154 void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
158 EXPORT_SYMBOL(rtrs_permit_to_pdu);
161 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
162 * @sess: client session pointer
163 * @permit: permit for the allocation of the RDMA buffer
165 * IO connection starts from 1.
166 * 0 connection is for user messages.
169 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
170 struct rtrs_permit *permit)
174 if (likely(permit->con_type == RTRS_IO_CON))
175 id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
177 return to_clt_con(sess->s.con[id]);
181 * __rtrs_clt_change_state() - change the session state through session state
184 * @sess: client session to change the state of.
185 * @new_state: state to change to.
187 * returns true if successful, false if the requested state can not be set.
190 * state_wq lock must be hold.
192 static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
193 enum rtrs_clt_state new_state)
195 enum rtrs_clt_state old_state;
196 bool changed = false;
198 lockdep_assert_held(&sess->state_wq.lock);
200 old_state = sess->state;
202 case RTRS_CLT_CONNECTING:
204 case RTRS_CLT_RECONNECTING:
211 case RTRS_CLT_RECONNECTING:
213 case RTRS_CLT_CONNECTED:
214 case RTRS_CLT_CONNECTING_ERR:
215 case RTRS_CLT_CLOSED:
222 case RTRS_CLT_CONNECTED:
224 case RTRS_CLT_CONNECTING:
231 case RTRS_CLT_CONNECTING_ERR:
233 case RTRS_CLT_CONNECTING:
240 case RTRS_CLT_CLOSING:
242 case RTRS_CLT_CONNECTING:
243 case RTRS_CLT_CONNECTING_ERR:
244 case RTRS_CLT_RECONNECTING:
245 case RTRS_CLT_CONNECTED:
252 case RTRS_CLT_CLOSED:
254 case RTRS_CLT_CLOSING:
263 case RTRS_CLT_CLOSED:
274 sess->state = new_state;
275 wake_up_locked(&sess->state_wq);
281 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
282 enum rtrs_clt_state old_state,
283 enum rtrs_clt_state new_state)
285 bool changed = false;
287 spin_lock_irq(&sess->state_wq.lock);
288 if (sess->state == old_state)
289 changed = __rtrs_clt_change_state(sess, new_state);
290 spin_unlock_irq(&sess->state_wq.lock);
295 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
297 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
299 if (rtrs_clt_change_state_from_to(sess,
301 RTRS_CLT_RECONNECTING)) {
302 struct rtrs_clt *clt = sess->clt;
303 unsigned int delay_ms;
306 * Normal scenario, reconnect if we were successfully connected
308 delay_ms = clt->reconnect_delay_sec * 1000;
309 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
310 msecs_to_jiffies(delay_ms));
313 * Error can happen just on establishing new connection,
314 * so notify waiter with error state, waiter is responsible
315 * for cleaning the rest and reconnect if needed.
317 rtrs_clt_change_state_from_to(sess,
319 RTRS_CLT_CONNECTING_ERR);
323 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
325 struct rtrs_clt_con *con = cq->cq_context;
327 if (unlikely(wc->status != IB_WC_SUCCESS)) {
328 rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
329 ib_wc_status_msg(wc->status));
330 rtrs_rdma_error_recovery(con);
334 static struct ib_cqe fast_reg_cqe = {
335 .done = rtrs_clt_fast_reg_done
338 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
339 bool notify, bool can_wait);
341 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
343 struct rtrs_clt_io_req *req =
344 container_of(wc->wr_cqe, typeof(*req), inv_cqe);
345 struct rtrs_clt_con *con = cq->cq_context;
347 if (unlikely(wc->status != IB_WC_SUCCESS)) {
348 rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
349 ib_wc_status_msg(wc->status));
350 rtrs_rdma_error_recovery(con);
352 req->need_inv = false;
353 if (likely(req->need_inv_comp))
354 complete(&req->inv_comp);
356 /* Complete request from INV callback */
357 complete_rdma_req(req, req->inv_errno, true, false);
360 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
362 struct rtrs_clt_con *con = req->con;
363 struct ib_send_wr wr = {
364 .opcode = IB_WR_LOCAL_INV,
365 .wr_cqe = &req->inv_cqe,
366 .send_flags = IB_SEND_SIGNALED,
367 .ex.invalidate_rkey = req->mr->rkey,
369 req->inv_cqe.done = rtrs_clt_inv_rkey_done;
371 return ib_post_send(con->c.qp, &wr, NULL);
374 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
375 bool notify, bool can_wait)
377 struct rtrs_clt_con *con = req->con;
378 struct rtrs_clt_sess *sess;
381 if (WARN_ON(!req->in_use))
383 if (WARN_ON(!req->con))
385 sess = to_clt_sess(con->c.sess);
388 if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
390 * We are here to invalidate read requests
391 * ourselves. In normal scenario server should
392 * send INV for all read requests, but
393 * we are here, thus two things could happen:
395 * 1. this is failover, when errno != 0
398 * 2. something totally bad happened and
399 * server forgot to send INV, so we
400 * should do that ourselves.
403 if (likely(can_wait)) {
404 req->need_inv_comp = true;
406 /* This should be IO path, so always notify */
408 /* Save errno for INV callback */
409 req->inv_errno = errno;
412 err = rtrs_inv_rkey(req);
414 rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
416 } else if (likely(can_wait)) {
417 wait_for_completion(&req->inv_comp);
420 * Something went wrong, so request will be
421 * completed from INV callback.
428 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
429 req->sg_cnt, req->dir);
431 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
432 atomic_dec(&sess->stats->inflight);
438 req->conf(req->priv, errno);
441 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
442 struct rtrs_clt_io_req *req,
443 struct rtrs_rbuf *rbuf, u32 off,
444 u32 imm, struct ib_send_wr *wr)
446 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
447 enum ib_send_flags flags;
450 if (unlikely(!req->sg_size)) {
451 rtrs_wrn(con->c.sess,
452 "Doing RDMA Write failed, no data supplied\n");
456 /* user data and user message in the first list element */
457 sge.addr = req->iu->dma_addr;
458 sge.length = req->sg_size;
459 sge.lkey = sess->s.dev->ib_pd->local_dma_lkey;
462 * From time to time we have to post signalled sends,
463 * or send queue will fill up and only QP reset can help.
465 flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
466 0 : IB_SEND_SIGNALED;
468 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
469 req->sg_size, DMA_TO_DEVICE);
471 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
472 rbuf->rkey, rbuf->addr + off,
476 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
477 s16 errno, bool w_inval)
479 struct rtrs_clt_io_req *req;
481 if (WARN_ON(msg_id >= sess->queue_depth))
484 req = &sess->reqs[msg_id];
485 /* Drop need_inv if server responded with send with invalidation */
486 req->need_inv &= !w_inval;
487 complete_rdma_req(req, errno, true, false);
490 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
494 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
496 WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
497 iu = container_of(wc->wr_cqe, struct rtrs_iu,
499 err = rtrs_iu_post_recv(&con->c, iu);
501 rtrs_err(con->c.sess, "post iu failed %d\n", err);
502 rtrs_rdma_error_recovery(con);
506 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
508 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
509 struct rtrs_msg_rkey_rsp *msg;
510 u32 imm_type, imm_payload;
511 bool w_inval = false;
516 WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
518 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
520 if (unlikely(wc->byte_len < sizeof(*msg))) {
521 rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
525 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
526 iu->size, DMA_FROM_DEVICE);
528 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
529 rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
530 le16_to_cpu(msg->type));
533 buf_id = le16_to_cpu(msg->buf_id);
534 if (WARN_ON(buf_id >= sess->queue_depth))
537 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
538 if (likely(imm_type == RTRS_IO_RSP_IMM ||
539 imm_type == RTRS_IO_RSP_W_INV_IMM)) {
542 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
543 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
545 if (WARN_ON(buf_id != msg_id))
547 sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
548 process_io_rsp(sess, msg_id, err, w_inval);
550 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
551 iu->size, DMA_FROM_DEVICE);
552 return rtrs_clt_recv_done(con, wc);
554 rtrs_rdma_error_recovery(con);
557 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
559 static struct ib_cqe io_comp_cqe = {
560 .done = rtrs_clt_rdma_done
564 * Post x2 empty WRs: first is for this RDMA with IMM,
565 * second is for RECV with INV, which happened earlier.
567 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
569 struct ib_recv_wr wr_arr[2], *wr;
572 memset(wr_arr, 0, sizeof(wr_arr));
573 for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
577 /* Chain backwards */
578 wr->next = &wr_arr[i - 1];
581 return ib_post_recv(con->qp, wr, NULL);
584 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
586 struct rtrs_clt_con *con = cq->cq_context;
587 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
588 u32 imm_type, imm_payload;
589 bool w_inval = false;
592 if (unlikely(wc->status != IB_WC_SUCCESS)) {
593 if (wc->status != IB_WC_WR_FLUSH_ERR) {
594 rtrs_err(sess->clt, "RDMA failed: %s\n",
595 ib_wc_status_msg(wc->status));
596 rtrs_rdma_error_recovery(con);
600 rtrs_clt_update_wc_stats(con);
602 switch (wc->opcode) {
603 case IB_WC_RECV_RDMA_WITH_IMM:
605 * post_recv() RDMA write completions of IO reqs (read/write)
608 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
610 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
611 &imm_type, &imm_payload);
612 if (likely(imm_type == RTRS_IO_RSP_IMM ||
613 imm_type == RTRS_IO_RSP_W_INV_IMM)) {
616 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
617 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
619 process_io_rsp(sess, msg_id, err, w_inval);
620 } else if (imm_type == RTRS_HB_MSG_IMM) {
622 rtrs_send_hb_ack(&sess->s);
623 if (sess->flags == RTRS_MSG_NEW_RKEY_F)
624 return rtrs_clt_recv_done(con, wc);
625 } else if (imm_type == RTRS_HB_ACK_IMM) {
627 sess->s.hb_missed_cnt = 0;
628 if (sess->flags == RTRS_MSG_NEW_RKEY_F)
629 return rtrs_clt_recv_done(con, wc);
631 rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
636 * Post x2 empty WRs: first is for this RDMA with IMM,
637 * second is for RECV with INV, which happened earlier.
639 err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
641 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
643 rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
645 rtrs_rdma_error_recovery(con);
651 * Key invalidations from server side
653 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
654 wc->wc_flags & IB_WC_WITH_IMM));
655 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
656 if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
657 if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
658 return rtrs_clt_recv_done(con, wc);
660 return rtrs_clt_rkey_rsp_done(con, wc);
663 case IB_WC_RDMA_WRITE:
665 * post_send() RDMA write completions of IO reqs (read/write)
671 rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
676 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
679 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
681 for (i = 0; i < q_size; i++) {
682 if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
683 struct rtrs_iu *iu = &con->rsp_ius[i];
685 err = rtrs_iu_post_recv(&con->c, iu);
687 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
696 static int post_recv_sess(struct rtrs_clt_sess *sess)
701 for (cid = 0; cid < sess->s.con_num; cid++) {
703 q_size = SERVICE_CON_QUEUE_DEPTH;
705 q_size = sess->queue_depth;
708 * x2 for RDMA read responses + FR key invalidations,
709 * RDMA writes do not require any FR registrations.
713 err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
715 rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
725 struct list_head skip_list;
726 struct rtrs_clt *clt;
727 struct rtrs_clt_sess *(*next_path)(struct path_it *it);
730 #define do_each_path(path, clt, it) { \
731 path_it_init(it, clt); \
733 for ((it)->i = 0; ((path) = ((it)->next_path)(it)) && \
734 (it)->i < (it)->clt->paths_num; \
737 #define while_each_path(it) \
738 path_it_deinit(it); \
743 * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
744 * @head: the head for the list.
745 * @ptr: the list head to take the next element from.
746 * @type: the type of the struct this is embedded in.
747 * @memb: the name of the list_head within the struct.
749 * Next element returned in round-robin fashion, i.e. head will be skipped,
750 * but if list is observed as empty, NULL will be returned.
752 * This primitive may safely run concurrently with the _rcu list-mutation
753 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
755 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
757 list_next_or_null_rcu(head, ptr, type, memb) ?: \
758 list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
763 * get_next_path_rr() - Returns path in round-robin fashion.
764 * @it: the path pointer
766 * Related to @MP_POLICY_RR
769 * rcu_read_lock() must be hold.
771 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
773 struct rtrs_clt_sess __rcu **ppcpu_path;
774 struct rtrs_clt_sess *path;
775 struct rtrs_clt *clt;
780 * Here we use two RCU objects: @paths_list and @pcpu_path
781 * pointer. See rtrs_clt_remove_path_from_arr() for details
782 * how that is handled.
785 ppcpu_path = this_cpu_ptr(clt->pcpu_path);
786 path = rcu_dereference(*ppcpu_path);
788 path = list_first_or_null_rcu(&clt->paths_list,
789 typeof(*path), s.entry);
791 path = list_next_or_null_rr_rcu(&clt->paths_list,
795 rcu_assign_pointer(*ppcpu_path, path);
801 * get_next_path_min_inflight() - Returns path with minimal inflight count.
802 * @it: the path pointer
804 * Related to @MP_POLICY_MIN_INFLIGHT
807 * rcu_read_lock() must be hold.
809 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
811 struct rtrs_clt_sess *min_path = NULL;
812 struct rtrs_clt *clt = it->clt;
813 struct rtrs_clt_sess *sess;
814 int min_inflight = INT_MAX;
817 list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
818 if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
821 inflight = atomic_read(&sess->stats->inflight);
823 if (inflight < min_inflight) {
824 min_inflight = inflight;
830 * add the path to the skip list, so that next time we can get
834 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
839 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
841 INIT_LIST_HEAD(&it->skip_list);
845 if (clt->mp_policy == MP_POLICY_RR)
846 it->next_path = get_next_path_rr;
848 it->next_path = get_next_path_min_inflight;
851 static inline void path_it_deinit(struct path_it *it)
853 struct list_head *skip, *tmp;
855 * The skip_list is used only for the MIN_INFLIGHT policy.
856 * We need to remove paths from it, so that next IO can insert
857 * paths (->mp_skip_entry) into a skip_list again.
859 list_for_each_safe(skip, tmp, &it->skip_list)
864 * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
865 * about an inflight IO.
866 * The user buffer holding user control message (not data) is copied into
867 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
868 * also hold the control message of rtrs.
869 * @req: an io request holding information about IO.
870 * @sess: client session
871 * @conf: conformation callback function to notify upper layer.
872 * @permit: permit for allocation of RDMA remote buffer
873 * @priv: private pointer
874 * @vec: kernel vector containing control message
875 * @usr_len: length of the user message
876 * @sg: scater list for IO data
877 * @sg_cnt: number of scater list entries
878 * @data_len: length of the IO data
879 * @dir: direction of the IO.
881 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
882 struct rtrs_clt_sess *sess,
883 void (*conf)(void *priv, int errno),
884 struct rtrs_permit *permit, void *priv,
885 const struct kvec *vec, size_t usr_len,
886 struct scatterlist *sg, size_t sg_cnt,
887 size_t data_len, int dir)
889 struct iov_iter iter;
892 req->permit = permit;
894 req->usr_len = usr_len;
895 req->data_len = data_len;
897 req->sg_cnt = sg_cnt;
900 req->con = rtrs_permit_to_clt_con(sess, permit);
902 req->need_inv = false;
903 req->need_inv_comp = false;
906 iov_iter_kvec(&iter, READ, vec, 1, usr_len);
907 len = _copy_from_iter(req->iu->buf, usr_len, &iter);
908 WARN_ON(len != usr_len);
910 reinit_completion(&req->inv_comp);
913 static struct rtrs_clt_io_req *
914 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
915 void (*conf)(void *priv, int errno),
916 struct rtrs_permit *permit, void *priv,
917 const struct kvec *vec, size_t usr_len,
918 struct scatterlist *sg, size_t sg_cnt,
919 size_t data_len, int dir)
921 struct rtrs_clt_io_req *req;
923 req = &sess->reqs[permit->mem_id];
924 rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
925 sg, sg_cnt, data_len, dir);
929 static struct rtrs_clt_io_req *
930 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
931 struct rtrs_clt_io_req *fail_req)
933 struct rtrs_clt_io_req *req;
935 .iov_base = fail_req->iu->buf,
936 .iov_len = fail_req->usr_len
939 req = &alive_sess->reqs[fail_req->permit->mem_id];
940 rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
941 fail_req->priv, &vec, fail_req->usr_len,
942 fail_req->sglist, fail_req->sg_cnt,
943 fail_req->data_len, fail_req->dir);
947 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
948 struct rtrs_clt_io_req *req,
949 struct rtrs_rbuf *rbuf,
952 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
953 struct ib_sge *sge = req->sge;
954 enum ib_send_flags flags;
955 struct scatterlist *sg;
959 for_each_sg(req->sglist, sg, req->sg_cnt, i) {
960 sge[i].addr = sg_dma_address(sg);
961 sge[i].length = sg_dma_len(sg);
962 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
964 sge[i].addr = req->iu->dma_addr;
965 sge[i].length = size;
966 sge[i].lkey = sess->s.dev->ib_pd->local_dma_lkey;
968 num_sge = 1 + req->sg_cnt;
971 * From time to time we have to post signalled sends,
972 * or send queue will fill up and only QP reset can help.
974 flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
975 0 : IB_SEND_SIGNALED;
977 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
978 size, DMA_TO_DEVICE);
980 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
981 rbuf->rkey, rbuf->addr, imm,
985 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
987 struct rtrs_clt_con *con = req->con;
988 struct rtrs_sess *s = con->c.sess;
989 struct rtrs_clt_sess *sess = to_clt_sess(s);
990 struct rtrs_msg_rdma_write *msg;
992 struct rtrs_rbuf *rbuf;
996 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
998 if (unlikely(tsize > sess->chunk_size)) {
999 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1000 tsize, sess->chunk_size);
1004 count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1005 req->sg_cnt, req->dir);
1006 if (unlikely(!count)) {
1007 rtrs_wrn(s, "Write request failed, map failed\n");
1011 /* put rtrs msg after sg and user message */
1012 msg = req->iu->buf + req->usr_len;
1013 msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1014 msg->usr_len = cpu_to_le16(req->usr_len);
1016 /* rtrs message on server side will be after user data and message */
1017 imm = req->permit->mem_off + req->data_len + req->usr_len;
1018 imm = rtrs_to_io_req_imm(imm);
1019 buf_id = req->permit->mem_id;
1020 req->sg_size = tsize;
1021 rbuf = &sess->rbufs[buf_id];
1024 * Update stats now, after request is successfully sent it is not
1025 * safe anymore to touch it.
1027 rtrs_clt_update_all_stats(req, WRITE);
1029 ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1030 req->usr_len + sizeof(*msg),
1032 if (unlikely(ret)) {
1033 rtrs_err(s, "Write request failed: %d\n", ret);
1034 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1035 atomic_dec(&sess->stats->inflight);
1037 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1038 req->sg_cnt, req->dir);
1044 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1048 /* Align the MR to a 4K page size to match the block virt boundary */
1049 nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1050 if (unlikely(nr < req->sg_cnt)) {
1055 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1060 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1062 struct rtrs_clt_con *con = req->con;
1063 struct rtrs_sess *s = con->c.sess;
1064 struct rtrs_clt_sess *sess = to_clt_sess(s);
1065 struct rtrs_msg_rdma_read *msg;
1066 struct rtrs_ib_dev *dev;
1068 struct ib_reg_wr rwr;
1069 struct ib_send_wr *wr = NULL;
1074 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1079 if (unlikely(tsize > sess->chunk_size)) {
1081 "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1082 tsize, sess->chunk_size);
1087 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1089 if (unlikely(!count)) {
1091 "Read request failed, dma map failed\n");
1095 /* put our message into req->buf after user message*/
1096 msg = req->iu->buf + req->usr_len;
1097 msg->type = cpu_to_le16(RTRS_MSG_READ);
1098 msg->usr_len = cpu_to_le16(req->usr_len);
1101 ret = rtrs_map_sg_fr(req, count);
1104 "Read request failed, failed to map fast reg. data, err: %d\n",
1106 ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1110 rwr = (struct ib_reg_wr) {
1111 .wr.opcode = IB_WR_REG_MR,
1112 .wr.wr_cqe = &fast_reg_cqe,
1114 .key = req->mr->rkey,
1115 .access = (IB_ACCESS_LOCAL_WRITE |
1116 IB_ACCESS_REMOTE_WRITE),
1120 msg->sg_cnt = cpu_to_le16(1);
1121 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1123 msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1124 msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1125 msg->desc[0].len = cpu_to_le32(req->mr->length);
1127 /* Further invalidation is required */
1128 req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1135 * rtrs message will be after the space reserved for disk data and
1138 imm = req->permit->mem_off + req->data_len + req->usr_len;
1139 imm = rtrs_to_io_req_imm(imm);
1140 buf_id = req->permit->mem_id;
1142 req->sg_size = sizeof(*msg);
1143 req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1144 req->sg_size += req->usr_len;
1147 * Update stats now, after request is successfully sent it is not
1148 * safe anymore to touch it.
1150 rtrs_clt_update_all_stats(req, READ);
1152 ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1153 req->data_len, imm, wr);
1154 if (unlikely(ret)) {
1155 rtrs_err(s, "Read request failed: %d\n", ret);
1156 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1157 atomic_dec(&sess->stats->inflight);
1158 req->need_inv = false;
1160 ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1161 req->sg_cnt, req->dir);
1168 * rtrs_clt_failover_req() Try to find an active path for a failed request
1170 * @fail_req: a failed io request.
1172 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1173 struct rtrs_clt_io_req *fail_req)
1175 struct rtrs_clt_sess *alive_sess;
1176 struct rtrs_clt_io_req *req;
1177 int err = -ECONNABORTED;
1180 do_each_path(alive_sess, clt, &it) {
1181 if (unlikely(READ_ONCE(alive_sess->state) !=
1182 RTRS_CLT_CONNECTED))
1184 req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1185 if (req->dir == DMA_TO_DEVICE)
1186 err = rtrs_clt_write_req(req);
1188 err = rtrs_clt_read_req(req);
1189 if (unlikely(err)) {
1190 req->in_use = false;
1194 rtrs_clt_inc_failover_cnt(alive_sess->stats);
1196 } while_each_path(&it);
1201 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1203 struct rtrs_clt *clt = sess->clt;
1204 struct rtrs_clt_io_req *req;
1209 for (i = 0; i < sess->queue_depth; ++i) {
1210 req = &sess->reqs[i];
1215 * Safely (without notification) complete failed request.
1216 * After completion this request is still useble and can
1217 * be failovered to another path.
1219 complete_rdma_req(req, -ECONNABORTED, false, true);
1221 err = rtrs_clt_failover_req(clt, req);
1223 /* Failover failed, notify anyway */
1224 req->conf(req->priv, err);
1228 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1230 struct rtrs_clt_io_req *req;
1235 for (i = 0; i < sess->queue_depth; ++i) {
1236 req = &sess->reqs[i];
1238 ib_dereg_mr(req->mr);
1240 rtrs_iu_free(req->iu, DMA_TO_DEVICE,
1241 sess->s.dev->ib_dev, 1);
1247 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1249 struct rtrs_clt_io_req *req;
1250 struct rtrs_clt *clt = sess->clt;
1251 int i, err = -ENOMEM;
1253 sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1258 for (i = 0; i < sess->queue_depth; ++i) {
1259 req = &sess->reqs[i];
1260 req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1261 sess->s.dev->ib_dev,
1263 rtrs_clt_rdma_done);
1267 req->sge = kmalloc_array(clt->max_segments + 1,
1268 sizeof(*req->sge), GFP_KERNEL);
1272 req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1273 sess->max_pages_per_mr);
1274 if (IS_ERR(req->mr)) {
1275 err = PTR_ERR(req->mr);
1277 pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1278 sess->max_pages_per_mr);
1282 init_completion(&req->inv_comp);
1288 free_sess_reqs(sess);
1293 static int alloc_permits(struct rtrs_clt *clt)
1295 unsigned int chunk_bits;
1298 clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1299 sizeof(long), GFP_KERNEL);
1300 if (!clt->permits_map) {
1304 clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1305 if (!clt->permits) {
1309 chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1310 for (i = 0; i < clt->queue_depth; i++) {
1311 struct rtrs_permit *permit;
1313 permit = get_permit(clt, i);
1315 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1321 kfree(clt->permits_map);
1322 clt->permits_map = NULL;
1327 static void free_permits(struct rtrs_clt *clt)
1329 kfree(clt->permits_map);
1330 clt->permits_map = NULL;
1331 kfree(clt->permits);
1332 clt->permits = NULL;
1335 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1337 struct ib_device *ib_dev;
1338 u64 max_pages_per_mr;
1341 ib_dev = sess->s.dev->ib_dev;
1344 * Use the smallest page size supported by the HCA, down to a
1345 * minimum of 4096 bytes. We're unlikely to build large sglists
1346 * out of smaller entries.
1348 mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1349 max_pages_per_mr = ib_dev->attrs.max_mr_size;
1350 do_div(max_pages_per_mr, (1ull << mr_page_shift));
1351 sess->max_pages_per_mr =
1352 min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1353 ib_dev->attrs.max_fast_reg_page_list_len);
1354 sess->max_send_sge = ib_dev->attrs.max_send_sge;
1357 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1358 enum rtrs_clt_state new_state,
1359 enum rtrs_clt_state *old_state)
1363 spin_lock_irq(&sess->state_wq.lock);
1364 *old_state = sess->state;
1365 changed = __rtrs_clt_change_state(sess, new_state);
1366 spin_unlock_irq(&sess->state_wq.lock);
1371 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
1372 enum rtrs_clt_state new_state)
1374 enum rtrs_clt_state old_state;
1376 return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
1379 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1381 struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1383 rtrs_rdma_error_recovery(con);
1386 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1388 rtrs_init_hb(&sess->s, &io_comp_cqe,
1389 RTRS_HB_INTERVAL_MS,
1391 rtrs_clt_hb_err_handler,
1395 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1397 rtrs_start_hb(&sess->s);
1400 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1402 rtrs_stop_hb(&sess->s);
1405 static void rtrs_clt_reconnect_work(struct work_struct *work);
1406 static void rtrs_clt_close_work(struct work_struct *work);
1408 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1409 const struct rtrs_addr *path,
1410 size_t con_num, u16 max_segments)
1412 struct rtrs_clt_sess *sess;
1416 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1420 /* Extra connection for user messages */
1423 sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1427 sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1431 mutex_init(&sess->init_mutex);
1432 uuid_gen(&sess->s.uuid);
1433 memcpy(&sess->s.dst_addr, path->dst,
1434 rdma_addr_size((struct sockaddr *)path->dst));
1437 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1438 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1439 * the sess->src_addr will contain only zeros, which is then fine.
1442 memcpy(&sess->s.src_addr, path->src,
1443 rdma_addr_size((struct sockaddr *)path->src));
1444 strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1445 sess->s.con_num = con_num;
1447 sess->max_pages_per_mr = max_segments * BLK_MAX_SEGMENT_SIZE >> 12;
1448 init_waitqueue_head(&sess->state_wq);
1449 sess->state = RTRS_CLT_CONNECTING;
1450 atomic_set(&sess->connected_cnt, 0);
1451 INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1452 INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1453 rtrs_clt_init_hb(sess);
1455 sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1456 if (!sess->mp_skip_entry)
1457 goto err_free_stats;
1459 for_each_possible_cpu(cpu)
1460 INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1462 err = rtrs_clt_init_stats(sess->stats);
1464 goto err_free_percpu;
1469 free_percpu(sess->mp_skip_entry);
1477 return ERR_PTR(err);
1480 void free_sess(struct rtrs_clt_sess *sess)
1482 free_percpu(sess->mp_skip_entry);
1483 mutex_destroy(&sess->init_mutex);
1489 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1491 struct rtrs_clt_con *con;
1493 con = kzalloc(sizeof(*con), GFP_KERNEL);
1497 /* Map first two connections to the first CPU */
1498 con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids;
1500 con->c.sess = &sess->s;
1501 atomic_set(&con->io_cnt, 0);
1503 sess->s.con[cid] = &con->c;
1508 static void destroy_con(struct rtrs_clt_con *con)
1510 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1512 sess->s.con[con->c.cid] = NULL;
1516 static int create_con_cq_qp(struct rtrs_clt_con *con)
1518 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1521 struct rtrs_msg_rkey_rsp *rsp;
1524 * This function can fail, but still destroy_con_cq_qp() should
1525 * be called, this is because create_con_cq_qp() is called on cm
1526 * event path, thus caller/waiter never knows: have we failed before
1527 * create_con_cq_qp() or after. To solve this dilemma without
1528 * creating any additional flags just allow destroy_con_cq_qp() be
1529 * called many times.
1532 if (con->c.cid == 0) {
1534 * One completion for each receive and two for each send
1535 * (send request + registration)
1536 * + 2 for drain and heartbeat
1537 * in case qp gets into error state
1539 wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1540 /* We must be the first here */
1541 if (WARN_ON(sess->s.dev))
1545 * The whole session uses device from user connection.
1546 * Be careful not to close user connection before ib dev
1547 * is gracefully put.
1549 sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1553 "rtrs_ib_dev_find_get_or_add(): no memory\n");
1556 sess->s.dev_ref = 1;
1557 query_fast_reg_mode(sess);
1560 * Here we assume that session members are correctly set.
1561 * This is always true if user connection (cid == 0) is
1562 * established first.
1564 if (WARN_ON(!sess->s.dev))
1566 if (WARN_ON(!sess->queue_depth))
1569 /* Shared between connections */
1572 min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1573 /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1574 sess->queue_depth * 3 + 1);
1576 /* alloc iu to recv new rkey reply when server reports flags set */
1577 if (sess->flags == RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1578 con->rsp_ius = rtrs_iu_alloc(wr_queue_size, sizeof(*rsp),
1579 GFP_KERNEL, sess->s.dev->ib_dev,
1581 rtrs_clt_rdma_done);
1584 con->queue_size = wr_queue_size;
1586 cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1587 err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1588 cq_vector, wr_queue_size, wr_queue_size,
1591 * In case of error we do not bother to clean previous allocations,
1592 * since destroy_con_cq_qp() must be called.
1600 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1602 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1605 * Be careful here: destroy_con_cq_qp() can be called even
1606 * create_con_cq_qp() failed, see comments there.
1609 rtrs_cq_qp_destroy(&con->c);
1611 rtrs_iu_free(con->rsp_ius, DMA_FROM_DEVICE,
1612 sess->s.dev->ib_dev, con->queue_size);
1613 con->rsp_ius = NULL;
1614 con->queue_size = 0;
1616 if (sess->s.dev_ref && !--sess->s.dev_ref) {
1617 rtrs_ib_dev_put(sess->s.dev);
1622 static void stop_cm(struct rtrs_clt_con *con)
1624 rdma_disconnect(con->c.cm_id);
1626 ib_drain_qp(con->c.qp);
1629 static void destroy_cm(struct rtrs_clt_con *con)
1631 rdma_destroy_id(con->c.cm_id);
1632 con->c.cm_id = NULL;
1635 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1637 struct rtrs_sess *s = con->c.sess;
1640 err = create_con_cq_qp(con);
1642 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1645 err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1647 rtrs_err(s, "Resolving route failed, err: %d\n", err);
1648 destroy_con_cq_qp(con);
1654 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1656 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1657 struct rtrs_clt *clt = sess->clt;
1658 struct rtrs_msg_conn_req msg;
1659 struct rdma_conn_param param;
1663 param = (struct rdma_conn_param) {
1665 .rnr_retry_count = 7,
1666 .private_data = &msg,
1667 .private_data_len = sizeof(msg),
1670 msg = (struct rtrs_msg_conn_req) {
1671 .magic = cpu_to_le16(RTRS_MAGIC),
1672 .version = cpu_to_le16(RTRS_PROTO_VER),
1673 .cid = cpu_to_le16(con->c.cid),
1674 .cid_num = cpu_to_le16(sess->s.con_num),
1675 .recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1677 uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1678 uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1680 err = rdma_connect(con->c.cm_id, ¶m);
1682 rtrs_err(clt, "rdma_connect(): %d\n", err);
1687 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1688 struct rdma_cm_event *ev)
1690 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1691 struct rtrs_clt *clt = sess->clt;
1692 const struct rtrs_msg_conn_rsp *msg;
1693 u16 version, queue_depth;
1697 msg = ev->param.conn.private_data;
1698 len = ev->param.conn.private_data_len;
1699 if (len < sizeof(*msg)) {
1700 rtrs_err(clt, "Invalid RTRS connection response\n");
1703 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1704 rtrs_err(clt, "Invalid RTRS magic\n");
1707 version = le16_to_cpu(msg->version);
1708 if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1709 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1710 version >> 8, RTRS_PROTO_VER_MAJOR);
1713 errno = le16_to_cpu(msg->errno);
1715 rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1719 if (con->c.cid == 0) {
1720 queue_depth = le16_to_cpu(msg->queue_depth);
1722 if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1723 rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1727 if (!sess->rbufs || sess->queue_depth < queue_depth) {
1729 sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1734 sess->queue_depth = queue_depth;
1735 sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1736 sess->max_io_size = le32_to_cpu(msg->max_io_size);
1737 sess->flags = le32_to_cpu(msg->flags);
1738 sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1741 * Global queue depth and IO size is always a minimum.
1742 * If while a reconnection server sends us a value a bit
1743 * higher - client does not care and uses cached minimum.
1745 * Since we can have several sessions (paths) restablishing
1746 * connections in parallel, use lock.
1748 mutex_lock(&clt->paths_mutex);
1749 clt->queue_depth = min_not_zero(sess->queue_depth,
1751 clt->max_io_size = min_not_zero(sess->max_io_size,
1753 mutex_unlock(&clt->paths_mutex);
1756 * Cache the hca_port and hca_name for sysfs
1758 sess->hca_port = con->c.cm_id->port_num;
1759 scnprintf(sess->hca_name, sizeof(sess->hca_name),
1760 sess->s.dev->ib_dev->name);
1761 sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1767 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1769 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1771 atomic_inc(&sess->connected_cnt);
1775 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1776 struct rdma_cm_event *ev)
1778 struct rtrs_sess *s = con->c.sess;
1779 const struct rtrs_msg_conn_rsp *msg;
1780 const char *rej_msg;
1784 status = ev->status;
1785 rej_msg = rdma_reject_msg(con->c.cm_id, status);
1786 msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1788 if (msg && data_len >= sizeof(*msg)) {
1789 errno = (int16_t)le16_to_cpu(msg->errno);
1790 if (errno == -EBUSY)
1792 "Previous session is still exists on the server, please reconnect later\n");
1795 "Connect rejected: status %d (%s), rtrs errno %d\n",
1796 status, rej_msg, errno);
1799 "Connect rejected but with malformed message: status %d (%s)\n",
1806 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1808 if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
1809 queue_work(rtrs_wq, &sess->close_work);
1811 flush_work(&sess->close_work);
1814 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1816 if (con->cm_err == 1) {
1817 struct rtrs_clt_sess *sess;
1819 sess = to_clt_sess(con->c.sess);
1820 if (atomic_dec_and_test(&sess->connected_cnt))
1822 wake_up(&sess->state_wq);
1824 con->cm_err = cm_err;
1827 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1828 struct rdma_cm_event *ev)
1830 struct rtrs_clt_con *con = cm_id->context;
1831 struct rtrs_sess *s = con->c.sess;
1832 struct rtrs_clt_sess *sess = to_clt_sess(s);
1835 switch (ev->event) {
1836 case RDMA_CM_EVENT_ADDR_RESOLVED:
1837 cm_err = rtrs_rdma_addr_resolved(con);
1839 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1840 cm_err = rtrs_rdma_route_resolved(con);
1842 case RDMA_CM_EVENT_ESTABLISHED:
1843 con->cm_err = rtrs_rdma_conn_established(con, ev);
1844 if (likely(!con->cm_err)) {
1846 * Report success and wake up. Here we abuse state_wq,
1847 * i.e. wake up without state change, but we set cm_err.
1849 flag_success_on_conn(con);
1850 wake_up(&sess->state_wq);
1854 case RDMA_CM_EVENT_REJECTED:
1855 cm_err = rtrs_rdma_conn_rejected(con, ev);
1857 case RDMA_CM_EVENT_CONNECT_ERROR:
1858 case RDMA_CM_EVENT_UNREACHABLE:
1859 rtrs_wrn(s, "CM error event %d\n", ev->event);
1860 cm_err = -ECONNRESET;
1862 case RDMA_CM_EVENT_ADDR_ERROR:
1863 case RDMA_CM_EVENT_ROUTE_ERROR:
1864 cm_err = -EHOSTUNREACH;
1866 case RDMA_CM_EVENT_DISCONNECTED:
1867 case RDMA_CM_EVENT_ADDR_CHANGE:
1868 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1869 cm_err = -ECONNRESET;
1871 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1873 * Device removal is a special case. Queue close and return 0.
1875 rtrs_clt_close_conns(sess, false);
1878 rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1879 cm_err = -ECONNRESET;
1885 * cm error makes sense only on connection establishing,
1886 * in other cases we rely on normal procedure of reconnecting.
1888 flag_error_on_conn(con, cm_err);
1889 rtrs_rdma_error_recovery(con);
1895 static int create_cm(struct rtrs_clt_con *con)
1897 struct rtrs_sess *s = con->c.sess;
1898 struct rtrs_clt_sess *sess = to_clt_sess(s);
1899 struct rdma_cm_id *cm_id;
1902 cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1903 sess->s.dst_addr.ss_family == AF_IB ?
1904 RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1905 if (IS_ERR(cm_id)) {
1906 err = PTR_ERR(cm_id);
1907 rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1911 con->c.cm_id = cm_id;
1913 /* allow the port to be reused */
1914 err = rdma_set_reuseaddr(cm_id, 1);
1916 rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1919 err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1920 (struct sockaddr *)&sess->s.dst_addr,
1921 RTRS_CONNECT_TIMEOUT_MS);
1923 rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1927 * Combine connection status and session events. This is needed
1928 * for waiting two possible cases: cm_err has something meaningful
1929 * or session state was really changed to error by device removal.
1931 err = wait_event_interruptible_timeout(
1933 con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1934 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1935 if (err == 0 || err == -ERESTARTSYS) {
1938 /* Timedout or interrupted */
1941 if (con->cm_err < 0) {
1945 if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1946 /* Device removal */
1947 err = -ECONNABORTED;
1955 /* Is safe to call destroy if cq_qp is not inited */
1956 destroy_con_cq_qp(con);
1963 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1965 struct rtrs_clt *clt = sess->clt;
1969 * We can fire RECONNECTED event only when all paths were
1970 * connected on rtrs_clt_open(), then each was disconnected
1971 * and the first one connected again. That's why this nasty
1972 * game with counter value.
1975 mutex_lock(&clt->paths_ev_mutex);
1976 up = ++clt->paths_up;
1978 * Here it is safe to access paths num directly since up counter
1979 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1980 * in progress, thus paths removals are impossible.
1982 if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1983 clt->paths_up = clt->paths_num;
1985 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
1986 mutex_unlock(&clt->paths_ev_mutex);
1988 /* Mark session as established */
1989 sess->established = true;
1990 sess->reconnect_attempts = 0;
1991 sess->stats->reconnects.successful_cnt++;
1994 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
1996 struct rtrs_clt *clt = sess->clt;
1998 if (!sess->established)
2001 sess->established = false;
2002 mutex_lock(&clt->paths_ev_mutex);
2003 WARN_ON(!clt->paths_up);
2004 if (--clt->paths_up == 0)
2005 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2006 mutex_unlock(&clt->paths_ev_mutex);
2009 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2011 struct rtrs_clt_con *con;
2014 WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2017 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2018 * exactly in between. Start destroying after it finishes.
2020 mutex_lock(&sess->init_mutex);
2021 mutex_unlock(&sess->init_mutex);
2024 * All IO paths must observe !CONNECTED state before we
2029 rtrs_clt_stop_hb(sess);
2032 * The order it utterly crucial: firstly disconnect and complete all
2033 * rdma requests with error (thus set in_use=false for requests),
2034 * then fail outstanding requests checking in_use for each, and
2035 * eventually notify upper layer about session disconnection.
2038 for (cid = 0; cid < sess->s.con_num; cid++) {
2039 if (!sess->s.con[cid])
2041 con = to_clt_con(sess->s.con[cid]);
2044 fail_all_outstanding_reqs(sess);
2045 free_sess_reqs(sess);
2046 rtrs_clt_sess_down(sess);
2049 * Wait for graceful shutdown, namely when peer side invokes
2050 * rdma_disconnect(). 'connected_cnt' is decremented only on
2051 * CM events, thus if other side had crashed and hb has detected
2052 * something is wrong, here we will stuck for exactly timeout ms,
2053 * since CM does not fire anything. That is fine, we are not in
2056 wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2057 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2059 for (cid = 0; cid < sess->s.con_num; cid++) {
2060 if (!sess->s.con[cid])
2062 con = to_clt_con(sess->s.con[cid]);
2063 destroy_con_cq_qp(con);
2069 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2070 struct rtrs_clt_sess *sess,
2071 struct rtrs_clt_sess *next)
2073 struct rtrs_clt_sess **ppcpu_path;
2075 /* Call cmpxchg() without sparse warnings */
2076 ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2077 return sess == cmpxchg(ppcpu_path, sess, next);
2080 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2082 struct rtrs_clt *clt = sess->clt;
2083 struct rtrs_clt_sess *next;
2084 bool wait_for_grace = false;
2087 mutex_lock(&clt->paths_mutex);
2088 list_del_rcu(&sess->s.entry);
2090 /* Make sure everybody observes path removal. */
2094 * At this point nobody sees @sess in the list, but still we have
2095 * dangling pointer @pcpu_path which _can_ point to @sess. Since
2096 * nobody can observe @sess in the list, we guarantee that IO path
2097 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2098 * to @sess, but can never again become @sess.
2102 * Decrement paths number only after grace period, because
2103 * caller of do_each_path() must firstly observe list without
2104 * path and only then decremented paths number.
2106 * Otherwise there can be the following situation:
2107 * o Two paths exist and IO is coming.
2108 * o One path is removed:
2110 * do_each_path(): rtrs_clt_remove_path_from_arr():
2111 * path = get_next_path()
2112 * ^^^ list_del_rcu(path)
2113 * [!CONNECTED path] clt->paths_num--
2115 * load clt->paths_num from 2 to 1
2119 * path is observed as !CONNECTED, but do_each_path() loop
2120 * ends, because expression i < clt->paths_num is false.
2125 * Get @next connection from current @sess which is going to be
2126 * removed. If @sess is the last element, then @next is NULL.
2129 next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2130 typeof(*next), s.entry);
2134 * @pcpu paths can still point to the path which is going to be
2135 * removed, so change the pointer manually.
2137 for_each_possible_cpu(cpu) {
2138 struct rtrs_clt_sess __rcu **ppcpu_path;
2140 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2141 if (rcu_dereference_protected(*ppcpu_path,
2142 lockdep_is_held(&clt->paths_mutex)) != sess)
2144 * synchronize_rcu() was called just after deleting
2145 * entry from the list, thus IO code path cannot
2146 * change pointer back to the pointer which is going
2147 * to be removed, we are safe here.
2152 * We race with IO code path, which also changes pointer,
2153 * thus we have to be careful not to overwrite it.
2155 if (xchg_sessions(ppcpu_path, sess, next))
2157 * @ppcpu_path was successfully replaced with @next,
2158 * that means that someone could also pick up the
2159 * @sess and dereferencing it right now, so wait for
2160 * a grace period is required.
2162 wait_for_grace = true;
2167 mutex_unlock(&clt->paths_mutex);
2170 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess,
2171 struct rtrs_addr *addr)
2173 struct rtrs_clt *clt = sess->clt;
2175 mutex_lock(&clt->paths_mutex);
2178 list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2179 mutex_unlock(&clt->paths_mutex);
2182 static void rtrs_clt_close_work(struct work_struct *work)
2184 struct rtrs_clt_sess *sess;
2186 sess = container_of(work, struct rtrs_clt_sess, close_work);
2188 cancel_delayed_work_sync(&sess->reconnect_dwork);
2189 rtrs_clt_stop_and_destroy_conns(sess);
2190 rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
2193 static int init_conns(struct rtrs_clt_sess *sess)
2199 * On every new session connections increase reconnect counter
2200 * to avoid clashes with previous sessions not yet closed
2201 * sessions on a server side.
2203 sess->s.recon_cnt++;
2205 /* Establish all RDMA connections */
2206 for (cid = 0; cid < sess->s.con_num; cid++) {
2207 err = create_con(sess, cid);
2211 err = create_cm(to_clt_con(sess->s.con[cid]));
2213 destroy_con(to_clt_con(sess->s.con[cid]));
2217 err = alloc_sess_reqs(sess);
2221 rtrs_clt_start_hb(sess);
2227 struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2230 destroy_con_cq_qp(con);
2235 * If we've never taken async path and got an error, say,
2236 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2237 * manually to keep reconnecting.
2239 rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2244 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2246 struct rtrs_clt_con *con = cq->cq_context;
2247 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2250 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2251 rtrs_iu_free(iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
2253 if (unlikely(wc->status != IB_WC_SUCCESS)) {
2254 rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2255 ib_wc_status_msg(wc->status));
2256 rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2260 rtrs_clt_update_wc_stats(con);
2263 static int process_info_rsp(struct rtrs_clt_sess *sess,
2264 const struct rtrs_msg_info_rsp *msg)
2266 unsigned int sg_cnt, total_len;
2269 sg_cnt = le16_to_cpu(msg->sg_cnt);
2270 if (unlikely(!sg_cnt))
2273 * Check if IB immediate data size is enough to hold the mem_id and
2274 * the offset inside the memory chunk.
2276 if (unlikely((ilog2(sg_cnt - 1) + 1) +
2277 (ilog2(sess->chunk_size - 1) + 1) >
2278 MAX_IMM_PAYL_BITS)) {
2280 "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2281 MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2284 if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2285 rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2290 for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2291 const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2295 addr = le64_to_cpu(desc->addr);
2296 rkey = le32_to_cpu(desc->key);
2297 len = le32_to_cpu(desc->len);
2301 if (unlikely(!len || (len % sess->chunk_size))) {
2302 rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2306 for ( ; len && i < sess->queue_depth; i++) {
2307 sess->rbufs[i].addr = addr;
2308 sess->rbufs[i].rkey = rkey;
2310 len -= sess->chunk_size;
2311 addr += sess->chunk_size;
2315 if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2316 rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2319 if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2320 rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2327 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2329 struct rtrs_clt_con *con = cq->cq_context;
2330 struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2331 struct rtrs_msg_info_rsp *msg;
2332 enum rtrs_clt_state state;
2337 state = RTRS_CLT_CONNECTING_ERR;
2339 WARN_ON(con->c.cid);
2340 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2341 if (unlikely(wc->status != IB_WC_SUCCESS)) {
2342 rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2343 ib_wc_status_msg(wc->status));
2346 WARN_ON(wc->opcode != IB_WC_RECV);
2348 if (unlikely(wc->byte_len < sizeof(*msg))) {
2349 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2353 ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2354 iu->size, DMA_FROM_DEVICE);
2356 if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2357 rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2358 le16_to_cpu(msg->type));
2361 rx_sz = sizeof(*msg);
2362 rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2363 if (unlikely(wc->byte_len < rx_sz)) {
2364 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2368 err = process_info_rsp(sess, msg);
2372 err = post_recv_sess(sess);
2376 state = RTRS_CLT_CONNECTED;
2379 rtrs_clt_update_wc_stats(con);
2380 rtrs_iu_free(iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
2381 rtrs_clt_change_state(sess, state);
2384 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2386 struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2387 struct rtrs_msg_info_req *msg;
2388 struct rtrs_iu *tx_iu, *rx_iu;
2392 rx_sz = sizeof(struct rtrs_msg_info_rsp);
2393 rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2395 tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2396 sess->s.dev->ib_dev, DMA_TO_DEVICE,
2397 rtrs_clt_info_req_done);
2398 rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2399 DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2400 if (unlikely(!tx_iu || !rx_iu)) {
2404 /* Prepare for getting info response */
2405 err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2406 if (unlikely(err)) {
2407 rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2413 msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2414 memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2416 ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2417 tx_iu->size, DMA_TO_DEVICE);
2419 /* Send info request */
2420 err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2421 if (unlikely(err)) {
2422 rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2427 /* Wait for state change */
2428 wait_event_interruptible_timeout(sess->state_wq,
2429 sess->state != RTRS_CLT_CONNECTING,
2431 RTRS_CONNECT_TIMEOUT_MS));
2432 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2433 if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2442 rtrs_iu_free(tx_iu, DMA_TO_DEVICE, sess->s.dev->ib_dev, 1);
2444 rtrs_iu_free(rx_iu, DMA_FROM_DEVICE, sess->s.dev->ib_dev, 1);
2446 /* If we've never taken async path because of malloc problems */
2447 rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2453 * init_sess() - establishes all session connections and does handshake
2454 * @sess: client session.
2455 * In case of error full close or reconnect procedure should be taken,
2456 * because reconnect or close async works can be started.
2458 static int init_sess(struct rtrs_clt_sess *sess)
2462 mutex_lock(&sess->init_mutex);
2463 err = init_conns(sess);
2465 rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2468 err = rtrs_send_sess_info(sess);
2470 rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2473 rtrs_clt_sess_up(sess);
2475 mutex_unlock(&sess->init_mutex);
2480 static void rtrs_clt_reconnect_work(struct work_struct *work)
2482 struct rtrs_clt_sess *sess;
2483 struct rtrs_clt *clt;
2484 unsigned int delay_ms;
2487 sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2491 if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2494 if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2495 /* Close a session completely if max attempts is reached */
2496 rtrs_clt_close_conns(sess, false);
2499 sess->reconnect_attempts++;
2501 /* Stop everything */
2502 rtrs_clt_stop_and_destroy_conns(sess);
2503 msleep(RTRS_RECONNECT_BACKOFF);
2504 if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
2505 err = init_sess(sess);
2507 goto reconnect_again;
2513 if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
2514 sess->stats->reconnects.fail_cnt++;
2515 delay_ms = clt->reconnect_delay_sec * 1000;
2516 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2517 msecs_to_jiffies(delay_ms));
2521 static void rtrs_clt_dev_release(struct device *dev)
2523 struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2528 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2529 u16 port, size_t pdu_sz, void *priv,
2530 void (*link_ev)(void *priv,
2531 enum rtrs_clt_link_ev ev),
2532 unsigned int max_segments,
2533 unsigned int reconnect_delay_sec,
2534 unsigned int max_reconnect_attempts)
2536 struct rtrs_clt *clt;
2539 if (!paths_num || paths_num > MAX_PATHS_NUM)
2540 return ERR_PTR(-EINVAL);
2542 if (strlen(sessname) >= sizeof(clt->sessname))
2543 return ERR_PTR(-EINVAL);
2545 clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2547 return ERR_PTR(-ENOMEM);
2549 clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2550 if (!clt->pcpu_path) {
2552 return ERR_PTR(-ENOMEM);
2555 uuid_gen(&clt->paths_uuid);
2556 INIT_LIST_HEAD_RCU(&clt->paths_list);
2557 clt->paths_num = paths_num;
2558 clt->paths_up = MAX_PATHS_NUM;
2560 clt->pdu_sz = pdu_sz;
2561 clt->max_segments = max_segments;
2562 clt->reconnect_delay_sec = reconnect_delay_sec;
2563 clt->max_reconnect_attempts = max_reconnect_attempts;
2565 clt->link_ev = link_ev;
2566 clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2567 strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2568 init_waitqueue_head(&clt->permits_wait);
2569 mutex_init(&clt->paths_ev_mutex);
2570 mutex_init(&clt->paths_mutex);
2572 clt->dev.class = rtrs_clt_dev_class;
2573 clt->dev.release = rtrs_clt_dev_release;
2574 err = dev_set_name(&clt->dev, "%s", sessname);
2576 free_percpu(clt->pcpu_path);
2578 return ERR_PTR(err);
2581 * Suppress user space notification until
2582 * sysfs files are created
2584 dev_set_uevent_suppress(&clt->dev, true);
2585 err = device_register(&clt->dev);
2587 free_percpu(clt->pcpu_path);
2588 put_device(&clt->dev);
2589 return ERR_PTR(err);
2592 clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2593 if (!clt->kobj_paths) {
2594 free_percpu(clt->pcpu_path);
2595 device_unregister(&clt->dev);
2598 err = rtrs_clt_create_sysfs_root_files(clt);
2600 free_percpu(clt->pcpu_path);
2601 kobject_del(clt->kobj_paths);
2602 kobject_put(clt->kobj_paths);
2603 device_unregister(&clt->dev);
2604 return ERR_PTR(err);
2606 dev_set_uevent_suppress(&clt->dev, false);
2607 kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2612 static void wait_for_inflight_permits(struct rtrs_clt *clt)
2614 if (clt->permits_map) {
2615 size_t sz = clt->queue_depth;
2617 wait_event(clt->permits_wait,
2618 find_first_bit(clt->permits_map, sz) >= sz);
2622 static void free_clt(struct rtrs_clt *clt)
2624 wait_for_inflight_permits(clt);
2626 free_percpu(clt->pcpu_path);
2627 mutex_destroy(&clt->paths_ev_mutex);
2628 mutex_destroy(&clt->paths_mutex);
2629 /* release callback will free clt in last put */
2630 device_unregister(&clt->dev);
2634 * rtrs_clt_open() - Open a session to an RTRS server
2635 * @ops: holds the link event callback and the private pointer.
2636 * @sessname: name of the session
2637 * @paths: Paths to be established defined by their src and dst addresses
2638 * @paths_num: Number of elements in the @paths array
2639 * @port: port to be used by the RTRS session
2640 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2641 * @reconnect_delay_sec: time between reconnect tries
2642 * @max_segments: Max. number of segments per IO request
2643 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2644 * up, 0 for * disabled, -1 for forever
2646 * Starts session establishment with the rtrs_server. The function can block
2647 * up to ~2000ms before it returns.
2649 * Return a valid pointer on success otherwise PTR_ERR.
2651 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2652 const char *sessname,
2653 const struct rtrs_addr *paths,
2654 size_t paths_num, u16 port,
2655 size_t pdu_sz, u8 reconnect_delay_sec,
2657 s16 max_reconnect_attempts)
2659 struct rtrs_clt_sess *sess, *tmp;
2660 struct rtrs_clt *clt;
2663 clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2665 max_segments, reconnect_delay_sec,
2666 max_reconnect_attempts);
2671 for (i = 0; i < paths_num; i++) {
2672 struct rtrs_clt_sess *sess;
2674 sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2677 err = PTR_ERR(sess);
2678 goto close_all_sess;
2680 list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2682 err = init_sess(sess);
2684 list_del_rcu(&sess->s.entry);
2685 rtrs_clt_close_conns(sess, true);
2687 goto close_all_sess;
2690 err = rtrs_clt_create_sess_files(sess);
2692 list_del_rcu(&sess->s.entry);
2693 rtrs_clt_close_conns(sess, true);
2695 goto close_all_sess;
2698 err = alloc_permits(clt);
2700 goto close_all_sess;
2705 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2706 rtrs_clt_destroy_sess_files(sess, NULL);
2707 rtrs_clt_close_conns(sess, true);
2708 kobject_put(&sess->kobj);
2710 rtrs_clt_destroy_sysfs_root_files(clt);
2711 rtrs_clt_destroy_sysfs_root_folders(clt);
2715 return ERR_PTR(err);
2717 EXPORT_SYMBOL(rtrs_clt_open);
2720 * rtrs_clt_close() - Close a session
2721 * @clt: Session handle. Session is freed upon return.
2723 void rtrs_clt_close(struct rtrs_clt *clt)
2725 struct rtrs_clt_sess *sess, *tmp;
2727 /* Firstly forbid sysfs access */
2728 rtrs_clt_destroy_sysfs_root_files(clt);
2729 rtrs_clt_destroy_sysfs_root_folders(clt);
2731 /* Now it is safe to iterate over all paths without locks */
2732 list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2733 rtrs_clt_destroy_sess_files(sess, NULL);
2734 rtrs_clt_close_conns(sess, true);
2735 kobject_put(&sess->kobj);
2739 EXPORT_SYMBOL(rtrs_clt_close);
2741 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2743 enum rtrs_clt_state old_state;
2747 changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2750 sess->reconnect_attempts = 0;
2751 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2753 if (changed || old_state == RTRS_CLT_RECONNECTING) {
2755 * flush_delayed_work() queues pending work for immediate
2756 * execution, so do the flush if we have queued something
2757 * right now or work is pending.
2759 flush_delayed_work(&sess->reconnect_dwork);
2760 err = (READ_ONCE(sess->state) ==
2761 RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2767 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2769 rtrs_clt_close_conns(sess, true);
2774 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2775 const struct attribute *sysfs_self)
2777 enum rtrs_clt_state old_state;
2781 * Continue stopping path till state was changed to DEAD or
2782 * state was observed as DEAD:
2783 * 1. State was changed to DEAD - we were fast and nobody
2784 * invoked rtrs_clt_reconnect(), which can again start
2786 * 2. State was observed as DEAD - we have someone in parallel
2787 * removing the path.
2790 rtrs_clt_close_conns(sess, true);
2791 changed = rtrs_clt_change_state_get_old(sess,
2794 } while (!changed && old_state != RTRS_CLT_DEAD);
2796 if (likely(changed)) {
2797 rtrs_clt_destroy_sess_files(sess, sysfs_self);
2798 rtrs_clt_remove_path_from_arr(sess);
2799 kobject_put(&sess->kobj);
2805 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2807 clt->max_reconnect_attempts = (unsigned int)value;
2810 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2812 return (int)clt->max_reconnect_attempts;
2816 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2819 * @ops: callback function to be called as confirmation, and the pointer.
2821 * @permit: Preallocated permit
2822 * @vec: Message that is sent to server together with the request.
2823 * Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2824 * Since the msg is copied internally it can be allocated on stack.
2825 * @nr: Number of elements in @vec.
2826 * @data_len: length of data sent to/from server
2827 * @sg: Pages to be sent/received to/from server.
2828 * @sg_cnt: Number of elements in the @sg
2834 * On dir=READ rtrs client will request a data transfer from Server to client.
2835 * The data that the server will respond with will be stored in @sg when
2836 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2837 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2839 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2840 struct rtrs_clt *clt, struct rtrs_permit *permit,
2841 const struct kvec *vec, size_t nr, size_t data_len,
2842 struct scatterlist *sg, unsigned int sg_cnt)
2844 struct rtrs_clt_io_req *req;
2845 struct rtrs_clt_sess *sess;
2847 enum dma_data_direction dma_dir;
2848 int err = -ECONNABORTED, i;
2849 size_t usr_len, hdr_len;
2852 /* Get kvec length */
2853 for (i = 0, usr_len = 0; i < nr; i++)
2854 usr_len += vec[i].iov_len;
2857 hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2858 sg_cnt * sizeof(struct rtrs_sg_desc);
2859 dma_dir = DMA_FROM_DEVICE;
2861 hdr_len = sizeof(struct rtrs_msg_rdma_write);
2862 dma_dir = DMA_TO_DEVICE;
2865 do_each_path(sess, clt, &it) {
2866 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2869 if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2870 rtrs_wrn_rl(sess->clt,
2871 "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2872 dir == READ ? "Read" : "Write",
2873 usr_len, hdr_len, sess->max_hdr_size);
2877 req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2878 vec, usr_len, sg, sg_cnt, data_len,
2881 err = rtrs_clt_read_req(req);
2883 err = rtrs_clt_write_req(req);
2884 if (unlikely(err)) {
2885 req->in_use = false;
2890 } while_each_path(&it);
2894 EXPORT_SYMBOL(rtrs_clt_request);
2897 * rtrs_clt_query() - queries RTRS session attributes
2898 *@clt: session pointer
2899 *@attr: query results for session attributes.
2902 * -ECOMM no connection to the server
2904 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2906 if (!rtrs_clt_is_connected(clt))
2909 attr->queue_depth = clt->queue_depth;
2910 attr->max_io_size = clt->max_io_size;
2911 attr->sess_kobj = &clt->dev.kobj;
2912 strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2916 EXPORT_SYMBOL(rtrs_clt_query);
2918 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2919 struct rtrs_addr *addr)
2921 struct rtrs_clt_sess *sess;
2924 sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments);
2926 return PTR_ERR(sess);
2929 * It is totally safe to add path in CONNECTING state: coming
2930 * IO will never grab it. Also it is very important to add
2931 * path before init, since init fires LINK_CONNECTED event.
2933 rtrs_clt_add_path_to_arr(sess, addr);
2935 err = init_sess(sess);
2939 err = rtrs_clt_create_sess_files(sess);
2946 rtrs_clt_remove_path_from_arr(sess);
2947 rtrs_clt_close_conns(sess, true);
2953 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2955 if (!(dev->ib_dev->attrs.device_cap_flags &
2956 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2957 pr_err("Memory registrations not supported.\n");
2964 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2965 .init = rtrs_clt_ib_dev_init
2968 static int __init rtrs_client_init(void)
2970 rtrs_rdma_dev_pd_init(0, &dev_pd);
2972 rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
2973 if (IS_ERR(rtrs_clt_dev_class)) {
2974 pr_err("Failed to create rtrs-client dev class\n");
2975 return PTR_ERR(rtrs_clt_dev_class);
2977 rtrs_wq = alloc_workqueue("rtrs_client_wq", WQ_MEM_RECLAIM, 0);
2979 class_destroy(rtrs_clt_dev_class);
2986 static void __exit rtrs_client_exit(void)
2988 destroy_workqueue(rtrs_wq);
2989 class_destroy(rtrs_clt_dev_class);
2990 rtrs_rdma_dev_pd_deinit(&dev_pd);
2993 module_init(rtrs_client_init);
2994 module_exit(rtrs_client_exit);