2 * Copyright(c) 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
56 * rvt_driver_mr_init - Init MR resources per driver
57 * @rdi: rvt dev struct
59 * Do any intilization needed when a driver registers with rdmavt.
61 * Return: 0 on success or errno on failure
63 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
70 * The top hfi1_lkey_table_size bits are used to index the
71 * table. The lower 8 bits can be owned by the user (copied from
72 * the LKEY). The remaining bits act as a generation number or tag.
77 spin_lock_init(&rdi->lkey_table.lock);
79 /* ensure generation is at least 4 bits */
80 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
81 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
82 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
83 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
84 lkey_table_size = rdi->dparms.lkey_table_size;
86 rdi->lkey_table.max = 1 << lkey_table_size;
87 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
88 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
89 vmalloc_node(lk_tab_size, rdi->dparms.node);
90 if (!rdi->lkey_table.table)
93 RCU_INIT_POINTER(rdi->dma_mr, NULL);
94 for (i = 0; i < rdi->lkey_table.max; i++)
95 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
101 *rvt_mr_exit: clean up MR
102 *@rdi: rvt dev structure
104 * called when drivers have unregistered or perhaps failed to register with us
106 void rvt_mr_exit(struct rvt_dev_info *rdi)
109 rvt_pr_err(rdi, "DMA MR not null!\n");
111 vfree(rdi->lkey_table.table);
114 static void rvt_deinit_mregion(struct rvt_mregion *mr)
123 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
127 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
130 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
132 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
135 rvt_deinit_mregion(mr);
140 init_completion(&mr->comp);
141 /* count returning the ptr to user */
142 atomic_set(&mr->refcount, 1);
143 atomic_set(&mr->lkey_invalid, 0);
145 mr->max_segs = count;
150 * rvt_alloc_lkey - allocate an lkey
151 * @mr: memory region that this lkey protects
152 * @dma_region: 0->normal key, 1->restricted DMA key
154 * Returns 0 if successful, otherwise returns -errno.
156 * Increments mr reference count as required.
158 * Sets the lkey field mr for non-dma regions.
161 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
167 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
168 struct rvt_lkey_table *rkt = &dev->lkey_table;
171 spin_lock_irqsave(&rkt->lock, flags);
173 /* special case for dma_mr lkey == 0 */
175 struct rvt_mregion *tmr;
177 tmr = rcu_access_pointer(dev->dma_mr);
179 rcu_assign_pointer(dev->dma_mr, mr);
180 mr->lkey_published = 1;
187 /* Find the next available LKEY */
191 if (!rcu_access_pointer(rkt->table[r]))
193 r = (r + 1) & (rkt->max - 1);
197 rkt->next = (r + 1) & (rkt->max - 1);
199 * Make sure lkey is never zero which is reserved to indicate an
204 * bits are capped to ensure enough bits for generation number
206 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
207 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
213 rcu_assign_pointer(rkt->table[r], mr);
214 mr->lkey_published = 1;
216 spin_unlock_irqrestore(&rkt->lock, flags);
221 spin_unlock_irqrestore(&rkt->lock, flags);
227 * rvt_free_lkey - free an lkey
228 * @mr: mr to free from tables
230 static void rvt_free_lkey(struct rvt_mregion *mr)
235 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
236 struct rvt_lkey_table *rkt = &dev->lkey_table;
239 spin_lock_irqsave(&rkt->lock, flags);
240 if (!mr->lkey_published)
243 RCU_INIT_POINTER(dev->dma_mr, NULL);
245 r = lkey >> (32 - dev->dparms.lkey_table_size);
246 RCU_INIT_POINTER(rkt->table[r], NULL);
248 mr->lkey_published = 0;
251 spin_unlock_irqrestore(&rkt->lock, flags);
258 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
264 /* Allocate struct plus pointers to first level page tables. */
265 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
266 mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
270 rval = rvt_init_mregion(&mr->mr, pd, count);
274 * ib_reg_phys_mr() will initialize mr->ibmr except for
277 rval = rvt_alloc_lkey(&mr->mr, 0);
280 mr->ibmr.lkey = mr->mr.lkey;
281 mr->ibmr.rkey = mr->mr.lkey;
286 rvt_deinit_mregion(&mr->mr);
293 static void __rvt_free_mr(struct rvt_mr *mr)
295 rvt_deinit_mregion(&mr->mr);
296 rvt_free_lkey(&mr->mr);
301 * rvt_get_dma_mr - get a DMA memory region
302 * @pd: protection domain for this memory region
305 * Return: the memory region on success, otherwise returns an errno.
306 * Note that all DMA addresses should be created via the
307 * struct ib_dma_mapping_ops functions (see dma.c).
309 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
315 if (ibpd_to_rvtpd(pd)->user)
316 return ERR_PTR(-EPERM);
318 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
320 ret = ERR_PTR(-ENOMEM);
324 rval = rvt_init_mregion(&mr->mr, pd, 0);
330 rval = rvt_alloc_lkey(&mr->mr, 1);
336 mr->mr.access_flags = acc;
342 rvt_deinit_mregion(&mr->mr);
349 * rvt_reg_user_mr - register a userspace memory region
350 * @pd: protection domain for this memory region
351 * @start: starting userspace address
352 * @length: length of region to register
353 * @mr_access_flags: access flags for this memory region
354 * @udata: unused by the driver
356 * Return: the memory region on success, otherwise returns an errno.
358 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
359 u64 virt_addr, int mr_access_flags,
360 struct ib_udata *udata)
363 struct ib_umem *umem;
364 struct scatterlist *sg;
369 return ERR_PTR(-EINVAL);
371 umem = ib_umem_get(pd->uobject->context, start, length,
378 mr = __rvt_alloc_mr(n, pd);
380 ret = (struct ib_mr *)mr;
384 mr->mr.user_base = start;
385 mr->mr.iova = virt_addr;
386 mr->mr.length = length;
387 mr->mr.offset = ib_umem_offset(umem);
388 mr->mr.access_flags = mr_access_flags;
391 if (is_power_of_2(umem->page_size))
392 mr->mr.page_shift = ilog2(umem->page_size);
395 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
398 vaddr = page_address(sg_page(sg));
400 ret = ERR_PTR(-EINVAL);
403 mr->mr.map[m]->segs[n].vaddr = vaddr;
404 mr->mr.map[m]->segs[n].length = umem->page_size;
406 if (n == RVT_SEGSZ) {
417 ib_umem_release(umem);
423 * rvt_dereg_mr - unregister and free a memory region
424 * @ibmr: the memory region to free
427 * Note that this is called to free MRs created by rvt_get_dma_mr()
428 * or rvt_reg_user_mr().
430 * Returns 0 on success.
432 int rvt_dereg_mr(struct ib_mr *ibmr)
434 struct rvt_mr *mr = to_imr(ibmr);
435 struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
437 unsigned long timeout;
439 rvt_free_lkey(&mr->mr);
441 rvt_put_mr(&mr->mr); /* will set completion if last */
442 timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
445 "rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
446 mr, mr->mr.pd, atomic_read(&mr->mr.refcount));
451 rvt_deinit_mregion(&mr->mr);
453 ib_umem_release(mr->umem);
460 * rvt_alloc_mr - Allocate a memory region usable with the
461 * @pd: protection domain for this memory region
462 * @mr_type: mem region type
463 * @max_num_sg: Max number of segments allowed
465 * Return: the memory region on success, otherwise return an errno.
467 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
468 enum ib_mr_type mr_type,
473 if (mr_type != IB_MR_TYPE_MEM_REG)
474 return ERR_PTR(-EINVAL);
476 mr = __rvt_alloc_mr(max_num_sg, pd);
478 return (struct ib_mr *)mr;
484 * rvt_set_page - page assignment function called by ib_sg_to_pages
485 * @ibmr: memory region
486 * @addr: dma address of mapped page
488 * Return: 0 on success
490 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
492 struct rvt_mr *mr = to_imr(ibmr);
493 u32 ps = 1 << mr->mr.page_shift;
494 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
497 if (unlikely(mapped_segs == mr->mr.max_segs))
500 if (mr->mr.length == 0) {
501 mr->mr.user_base = addr;
505 m = mapped_segs / RVT_SEGSZ;
506 n = mapped_segs % RVT_SEGSZ;
507 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
508 mr->mr.map[m]->segs[n].length = ps;
515 * rvt_map_mr_sg - map sg list and set it the memory region
516 * @ibmr: memory region
517 * @sg: dma mapped scatterlist
518 * @sg_nents: number of entries in sg
519 * @sg_offset: offset in bytes into sg
521 * Return: number of sg elements mapped to the memory region
523 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
524 int sg_nents, unsigned int *sg_offset)
526 struct rvt_mr *mr = to_imr(ibmr);
529 mr->mr.page_shift = PAGE_SHIFT;
530 return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
535 * rvt_fast_reg_mr - fast register physical MR
536 * @qp: the queue pair where the work request comes from
537 * @ibmr: the memory region to be registered
538 * @key: updated key for this memory region
539 * @access: access flags for this memory region
541 * Returns 0 on success.
543 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
546 struct rvt_mr *mr = to_imr(ibmr);
548 if (qp->ibqp.pd != mr->mr.pd)
551 /* not applicable to dma MR or user MR */
552 if (!mr->mr.lkey || mr->umem)
555 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
561 mr->mr.access_flags = access;
562 atomic_set(&mr->mr.lkey_invalid, 0);
566 EXPORT_SYMBOL(rvt_fast_reg_mr);
569 * rvt_invalidate_rkey - invalidate an MR rkey
570 * @qp: queue pair associated with the invalidate op
571 * @rkey: rkey to invalidate
573 * Returns 0 on success.
575 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
577 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
578 struct rvt_lkey_table *rkt = &dev->lkey_table;
579 struct rvt_mregion *mr;
585 mr = rcu_dereference(
586 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
587 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
590 atomic_set(&mr->lkey_invalid, 1);
598 EXPORT_SYMBOL(rvt_invalidate_rkey);
601 * rvt_alloc_fmr - allocate a fast memory region
602 * @pd: the protection domain for this memory region
603 * @mr_access_flags: access flags for this memory region
604 * @fmr_attr: fast memory region attributes
606 * Return: the memory region on success, otherwise returns an errno.
608 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
609 struct ib_fmr_attr *fmr_attr)
616 /* Allocate struct plus pointers to first level page tables. */
617 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
618 fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
622 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages);
627 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
630 rval = rvt_alloc_lkey(&fmr->mr, 0);
633 fmr->ibfmr.rkey = fmr->mr.lkey;
634 fmr->ibfmr.lkey = fmr->mr.lkey;
636 * Resources are allocated but no valid mapping (RKEY can't be
639 fmr->mr.access_flags = mr_access_flags;
640 fmr->mr.max_segs = fmr_attr->max_pages;
641 fmr->mr.page_shift = fmr_attr->page_shift;
648 rvt_deinit_mregion(&fmr->mr);
656 * rvt_map_phys_fmr - set up a fast memory region
657 * @ibmfr: the fast memory region to set up
658 * @page_list: the list of pages to associate with the fast memory region
659 * @list_len: the number of pages to associate with the fast memory region
660 * @iova: the virtual address of the start of the fast memory region
662 * This may be called from interrupt context.
664 * Return: 0 on success
667 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
668 int list_len, u64 iova)
670 struct rvt_fmr *fmr = to_ifmr(ibfmr);
671 struct rvt_lkey_table *rkt;
675 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
677 i = atomic_read(&fmr->mr.refcount);
681 if (list_len > fmr->mr.max_segs)
684 rkt = &rdi->lkey_table;
685 spin_lock_irqsave(&rkt->lock, flags);
686 fmr->mr.user_base = iova;
688 ps = 1 << fmr->mr.page_shift;
689 fmr->mr.length = list_len * ps;
692 for (i = 0; i < list_len; i++) {
693 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
694 fmr->mr.map[m]->segs[n].length = ps;
695 if (++n == RVT_SEGSZ) {
700 spin_unlock_irqrestore(&rkt->lock, flags);
705 * rvt_unmap_fmr - unmap fast memory regions
706 * @fmr_list: the list of fast memory regions to unmap
708 * Return: 0 on success.
710 int rvt_unmap_fmr(struct list_head *fmr_list)
713 struct rvt_lkey_table *rkt;
715 struct rvt_dev_info *rdi;
717 list_for_each_entry(fmr, fmr_list, ibfmr.list) {
718 rdi = ib_to_rvt(fmr->ibfmr.device);
719 rkt = &rdi->lkey_table;
720 spin_lock_irqsave(&rkt->lock, flags);
721 fmr->mr.user_base = 0;
724 spin_unlock_irqrestore(&rkt->lock, flags);
730 * rvt_dealloc_fmr - deallocate a fast memory region
731 * @ibfmr: the fast memory region to deallocate
733 * Return: 0 on success.
735 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
737 struct rvt_fmr *fmr = to_ifmr(ibfmr);
739 unsigned long timeout;
741 rvt_free_lkey(&fmr->mr);
742 rvt_put_mr(&fmr->mr); /* will set completion if last */
743 timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
745 rvt_get_mr(&fmr->mr);
749 rvt_deinit_mregion(&fmr->mr);
756 * rvt_lkey_ok - check IB SGE for validity and initialize
757 * @rkt: table containing lkey to check SGE against
758 * @pd: protection domain
759 * @isge: outgoing internal SGE
763 * Check the IB SGE for validity and initialize our internal version
766 * Return: 1 if valid and successful, otherwise returns 0.
768 * increments the reference count upon success
771 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
772 struct rvt_sge *isge, struct ib_sge *sge, int acc)
774 struct rvt_mregion *mr;
777 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
780 * We use LKEY == zero for kernel virtual addresses
781 * (see rvt_get_dma_mr and dma.c).
784 if (sge->lkey == 0) {
787 mr = rcu_dereference(dev->dma_mr);
790 atomic_inc(&mr->refcount);
794 isge->vaddr = (void *)sge->addr;
795 isge->length = sge->length;
796 isge->sge_length = sge->length;
801 mr = rcu_dereference(
802 rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]);
803 if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
804 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
807 off = sge->addr - mr->user_base;
808 if (unlikely(sge->addr < mr->user_base ||
809 off + sge->length > mr->length ||
810 (mr->access_flags & acc) != acc))
812 atomic_inc(&mr->refcount);
816 if (mr->page_shift) {
818 * page sizes are uniform power of 2 so no loop is necessary
819 * entries_spanned_by_off is the number of times the loop below
820 * would have executed.
822 size_t entries_spanned_by_off;
824 entries_spanned_by_off = off >> mr->page_shift;
825 off -= (entries_spanned_by_off << mr->page_shift);
826 m = entries_spanned_by_off / RVT_SEGSZ;
827 n = entries_spanned_by_off % RVT_SEGSZ;
831 while (off >= mr->map[m]->segs[n].length) {
832 off -= mr->map[m]->segs[n].length;
834 if (n >= RVT_SEGSZ) {
841 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
842 isge->length = mr->map[m]->segs[n].length - off;
843 isge->sge_length = sge->length;
852 EXPORT_SYMBOL(rvt_lkey_ok);
855 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
856 * @qp: qp for validation
858 * @len: length of data
859 * @vaddr: virtual address to place data
860 * @rkey: rkey to check
863 * Return: 1 if successful, otherwise 0.
865 * increments the reference count upon success
867 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
868 u32 len, u64 vaddr, u32 rkey, int acc)
870 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
871 struct rvt_lkey_table *rkt = &dev->lkey_table;
872 struct rvt_mregion *mr;
877 * We use RKEY == zero for kernel virtual addresses
878 * (see rvt_get_dma_mr and dma.c).
882 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
883 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
887 mr = rcu_dereference(rdi->dma_mr);
890 atomic_inc(&mr->refcount);
894 sge->vaddr = (void *)vaddr;
896 sge->sge_length = len;
902 mr = rcu_dereference(
903 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
904 if (unlikely(!mr || atomic_read(&mr->lkey_invalid) ||
905 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
908 off = vaddr - mr->iova;
909 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
910 (mr->access_flags & acc) == 0))
912 atomic_inc(&mr->refcount);
916 if (mr->page_shift) {
918 * page sizes are uniform power of 2 so no loop is necessary
919 * entries_spanned_by_off is the number of times the loop below
920 * would have executed.
922 size_t entries_spanned_by_off;
924 entries_spanned_by_off = off >> mr->page_shift;
925 off -= (entries_spanned_by_off << mr->page_shift);
926 m = entries_spanned_by_off / RVT_SEGSZ;
927 n = entries_spanned_by_off % RVT_SEGSZ;
931 while (off >= mr->map[m]->segs[n].length) {
932 off -= mr->map[m]->segs[n].length;
934 if (n >= RVT_SEGSZ) {
941 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
942 sge->length = mr->map[m]->segs[n].length - off;
943 sge->sge_length = len;
952 EXPORT_SYMBOL(rvt_rkey_ok);