4e7b3c027901bd21fec925ef029cb471a1cc887c
[platform/kernel/linux-rpi.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69
70 static unsigned int hfi1_lkey_table_size = 16;
71 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
72                    S_IRUGO);
73 MODULE_PARM_DESC(lkey_table_size,
74                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
75
76 static unsigned int hfi1_max_pds = 0xFFFF;
77 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_pds,
79                  "Maximum number of protection domains to support");
80
81 static unsigned int hfi1_max_ahs = 0xFFFF;
82 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
83 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
84
85 unsigned int hfi1_max_cqes = 0x2FFFFF;
86 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
87 MODULE_PARM_DESC(max_cqes,
88                  "Maximum number of completion queue entries to support");
89
90 unsigned int hfi1_max_cqs = 0x1FFFF;
91 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
92 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
93
94 unsigned int hfi1_max_qp_wrs = 0x3FFF;
95 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
96 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
97
98 unsigned int hfi1_max_qps = 32768;
99 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
100 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
101
102 unsigned int hfi1_max_sges = 0x60;
103 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
104 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
105
106 unsigned int hfi1_max_mcast_grps = 16384;
107 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_grps,
109                  "Maximum number of multicast groups to support");
110
111 unsigned int hfi1_max_mcast_qp_attached = 16;
112 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
113                    uint, S_IRUGO);
114 MODULE_PARM_DESC(max_mcast_qp_attached,
115                  "Maximum number of attached QPs to support");
116
117 unsigned int hfi1_max_srqs = 1024;
118 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
119 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
120
121 unsigned int hfi1_max_srq_sges = 128;
122 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
123 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
124
125 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
126 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
127 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
128
129 unsigned short piothreshold = 256;
130 module_param(piothreshold, ushort, S_IRUGO);
131 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
132
133 #define COPY_CACHELESS 1
134 #define COPY_ADAPTIVE  2
135 static unsigned int sge_copy_mode;
136 module_param(sge_copy_mode, uint, S_IRUGO);
137 MODULE_PARM_DESC(sge_copy_mode,
138                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
139
140 static void verbs_sdma_complete(
141         struct sdma_txreq *cookie,
142         int status);
143
144 static int pio_wait(struct rvt_qp *qp,
145                     struct send_context *sc,
146                     struct hfi1_pkt_state *ps,
147                     u32 flag);
148
149 /* Length of buffer to create verbs txreq cache name */
150 #define TXREQ_NAME_LEN 24
151
152 static uint wss_threshold;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158
159 /* memory working set size */
160 struct hfi1_wss {
161         unsigned long *entries;
162         atomic_t total_count;
163         atomic_t clean_counter;
164         atomic_t clean_entry;
165
166         int threshold;
167         int num_entries;
168         long pages_mask;
169 };
170
171 static struct hfi1_wss wss;
172
173 int hfi1_wss_init(void)
174 {
175         long llc_size;
176         long llc_bits;
177         long table_size;
178         long table_bits;
179
180         /* check for a valid percent range - default to 80 if none or invalid */
181         if (wss_threshold < 1 || wss_threshold > 100)
182                 wss_threshold = 80;
183         /* reject a wildly large period */
184         if (wss_clean_period > 1000000)
185                 wss_clean_period = 256;
186         /* reject a zero period */
187         if (wss_clean_period == 0)
188                 wss_clean_period = 1;
189
190         /*
191          * Calculate the table size - the next power of 2 larger than the
192          * LLC size.  LLC size is in KiB.
193          */
194         llc_size = wss_llc_size() * 1024;
195         table_size = roundup_pow_of_two(llc_size);
196
197         /* one bit per page in rounded up table */
198         llc_bits = llc_size / PAGE_SIZE;
199         table_bits = table_size / PAGE_SIZE;
200         wss.pages_mask = table_bits - 1;
201         wss.num_entries = table_bits / BITS_PER_LONG;
202
203         wss.threshold = (llc_bits * wss_threshold) / 100;
204         if (wss.threshold == 0)
205                 wss.threshold = 1;
206
207         atomic_set(&wss.clean_counter, wss_clean_period);
208
209         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
210                               GFP_KERNEL);
211         if (!wss.entries) {
212                 hfi1_wss_exit();
213                 return -ENOMEM;
214         }
215
216         return 0;
217 }
218
219 void hfi1_wss_exit(void)
220 {
221         /* coded to handle partially initialized and repeat callers */
222         kfree(wss.entries);
223         wss.entries = NULL;
224 }
225
226 /*
227  * Advance the clean counter.  When the clean period has expired,
228  * clean an entry.
229  *
230  * This is implemented in atomics to avoid locking.  Because multiple
231  * variables are involved, it can be racy which can lead to slightly
232  * inaccurate information.  Since this is only a heuristic, this is
233  * OK.  Any innaccuracies will clean themselves out as the counter
234  * advances.  That said, it is unlikely the entry clean operation will
235  * race - the next possible racer will not start until the next clean
236  * period.
237  *
238  * The clean counter is implemented as a decrement to zero.  When zero
239  * is reached an entry is cleaned.
240  */
241 static void wss_advance_clean_counter(void)
242 {
243         int entry;
244         int weight;
245         unsigned long bits;
246
247         /* become the cleaner if we decrement the counter to zero */
248         if (atomic_dec_and_test(&wss.clean_counter)) {
249                 /*
250                  * Set, not add, the clean period.  This avoids an issue
251                  * where the counter could decrement below the clean period.
252                  * Doing a set can result in lost decrements, slowing the
253                  * clean advance.  Since this a heuristic, this possible
254                  * slowdown is OK.
255                  *
256                  * An alternative is to loop, advancing the counter by a
257                  * clean period until the result is > 0. However, this could
258                  * lead to several threads keeping another in the clean loop.
259                  * This could be mitigated by limiting the number of times
260                  * we stay in the loop.
261                  */
262                 atomic_set(&wss.clean_counter, wss_clean_period);
263
264                 /*
265                  * Uniquely grab the entry to clean and move to next.
266                  * The current entry is always the lower bits of
267                  * wss.clean_entry.  The table size, wss.num_entries,
268                  * is always a power-of-2.
269                  */
270                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
271                         & (wss.num_entries - 1);
272
273                 /* clear the entry and count the bits */
274                 bits = xchg(&wss.entries[entry], 0);
275                 weight = hweight64((u64)bits);
276                 /* only adjust the contended total count if needed */
277                 if (weight)
278                         atomic_sub(weight, &wss.total_count);
279         }
280 }
281
282 /*
283  * Insert the given address into the working set array.
284  */
285 static void wss_insert(void *address)
286 {
287         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
288         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
289         u32 nr = page & (BITS_PER_LONG - 1);
290
291         if (!test_and_set_bit(nr, &wss.entries[entry]))
292                 atomic_inc(&wss.total_count);
293
294         wss_advance_clean_counter();
295 }
296
297 /*
298  * Is the working set larger than the threshold?
299  */
300 static inline bool wss_exceeds_threshold(void)
301 {
302         return atomic_read(&wss.total_count) >= wss.threshold;
303 }
304
305 /*
306  * Translate ib_wr_opcode into ib_wc_opcode.
307  */
308 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
309         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
310         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
311         [IB_WR_SEND] = IB_WC_SEND,
312         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
313         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
314         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
315         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
316         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
317         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
318         [IB_WR_REG_MR] = IB_WC_REG_MR
319 };
320
321 /*
322  * Length of header by opcode, 0 --> not supported
323  */
324 const u8 hdr_len_by_opcode[256] = {
325         /* RC */
326         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
327         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
328         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
329         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
330         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
331         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
332         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
333         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
334         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
335         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
336         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
337         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
338         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
339         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
340         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
341         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
342         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
343         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
344         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
345         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
346         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
347         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
348         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
349         /* UC */
350         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
351         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
352         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
353         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
354         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
355         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
356         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
357         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
358         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
359         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
360         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
361         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
362         /* UD */
363         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
364         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
365 };
366
367 static const opcode_handler opcode_handler_tbl[256] = {
368         /* RC */
369         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
381         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
382         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
383         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
384         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
385         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
386         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
387         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
388         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
389         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
390         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
391         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
392         /* UC */
393         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
394         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
395         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
396         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
397         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
398         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
399         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
400         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
401         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
402         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
403         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
404         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
405         /* UD */
406         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
407         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
408         /* CNP */
409         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
410 };
411
412 #define OPMASK 0x1f
413
414 static const u32 pio_opmask[BIT(3)] = {
415         /* RC */
416         [IB_OPCODE_RC >> 5] =
417                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
418                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
419                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
420                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
421                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
422                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
423                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
424                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
425                 BIT(RC_OP(FETCH_ADD) & OPMASK),
426         /* UC */
427         [IB_OPCODE_UC >> 5] =
428                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
429                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
430                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
431                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
432 };
433
434 /*
435  * System image GUID.
436  */
437 __be64 ib_hfi1_sys_image_guid;
438
439 /**
440  * hfi1_copy_sge - copy data to SGE memory
441  * @ss: the SGE state
442  * @data: the data to copy
443  * @length: the length of the data
444  * @release: boolean to release MR
445  * @copy_last: do a separate copy of the last 8 bytes
446  */
447 void hfi1_copy_sge(
448         struct rvt_sge_state *ss,
449         void *data, u32 length,
450         bool release,
451         bool copy_last)
452 {
453         struct rvt_sge *sge = &ss->sge;
454         int i;
455         bool in_last = false;
456         bool cacheless_copy = false;
457
458         if (sge_copy_mode == COPY_CACHELESS) {
459                 cacheless_copy = length >= PAGE_SIZE;
460         } else if (sge_copy_mode == COPY_ADAPTIVE) {
461                 if (length >= PAGE_SIZE) {
462                         /*
463                          * NOTE: this *assumes*:
464                          * o The first vaddr is the dest.
465                          * o If multiple pages, then vaddr is sequential.
466                          */
467                         wss_insert(sge->vaddr);
468                         if (length >= (2 * PAGE_SIZE))
469                                 wss_insert(sge->vaddr + PAGE_SIZE);
470
471                         cacheless_copy = wss_exceeds_threshold();
472                 } else {
473                         wss_advance_clean_counter();
474                 }
475         }
476         if (copy_last) {
477                 if (length > 8) {
478                         length -= 8;
479                 } else {
480                         copy_last = false;
481                         in_last = true;
482                 }
483         }
484
485 again:
486         while (length) {
487                 u32 len = rvt_get_sge_length(sge, length);
488
489                 WARN_ON_ONCE(len == 0);
490                 if (unlikely(in_last)) {
491                         /* enforce byte transfer ordering */
492                         for (i = 0; i < len; i++)
493                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
494                 } else if (cacheless_copy) {
495                         cacheless_memcpy(sge->vaddr, data, len);
496                 } else {
497                         memcpy(sge->vaddr, data, len);
498                 }
499                 rvt_update_sge(ss, len, release);
500                 data += len;
501                 length -= len;
502         }
503
504         if (copy_last) {
505                 copy_last = false;
506                 in_last = true;
507                 length = 8;
508                 goto again;
509         }
510 }
511
512 /*
513  * Make sure the QP is ready and able to accept the given opcode.
514  */
515 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
516 {
517         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
518                 return NULL;
519         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
520              packet->qp->allowed_ops) ||
521             (packet->opcode == IB_OPCODE_CNP))
522                 return opcode_handler_tbl[packet->opcode];
523
524         return NULL;
525 }
526
527 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
528 {
529 #ifdef CONFIG_FAULT_INJECTION
530         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
531                 /*
532                  * In order to drop non-IB traffic we
533                  * set PbcInsertHrc to NONE (0x2).
534                  * The packet will still be delivered
535                  * to the receiving node but a
536                  * KHdrHCRCErr (KDETH packet with a bad
537                  * HCRC) will be triggered and the
538                  * packet will not be delivered to the
539                  * correct context.
540                  */
541                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
542         else
543                 /*
544                  * In order to drop regular verbs
545                  * traffic we set the PbcTestEbp
546                  * flag. The packet will still be
547                  * delivered to the receiving node but
548                  * a 'late ebp error' will be
549                  * triggered and will be dropped.
550                  */
551                 pbc |= PBC_TEST_EBP;
552 #endif
553         return pbc;
554 }
555
556 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
557 {
558         struct hfi1_ctxtdata *rcd = packet->rcd;
559         struct hfi1_pportdata *ppd = rcd->ppd;
560         struct hfi1_16b_header *hdr = packet->hdr;
561         u16 pkey;
562
563         /* Pkey check needed only for bypass packets */
564         if (packet->etype != RHF_RCV_TYPE_BYPASS)
565                 return 0;
566
567         /* Perform pkey check */
568         pkey = hfi1_16B_get_pkey(hdr);
569         return ingress_pkey_check(ppd, pkey, packet->sc,
570                                   packet->qp->s_pkey_index,
571                                   packet->slid, true);
572 }
573
574 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
575                                       bool is_mcast)
576 {
577         u32 qp_num;
578         struct hfi1_ctxtdata *rcd = packet->rcd;
579         struct hfi1_pportdata *ppd = rcd->ppd;
580         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
581         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
582         opcode_handler packet_handler;
583         unsigned long flags;
584
585         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
586
587         if (unlikely(is_mcast)) {
588                 struct rvt_mcast *mcast;
589                 struct rvt_mcast_qp *p;
590
591                 if (!packet->grh)
592                         goto drop;
593                 mcast = rvt_mcast_find(&ibp->rvp,
594                                        &packet->grh->dgid,
595                                        opa_get_lid(packet->dlid, 9B));
596                 if (!mcast)
597                         goto drop;
598                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
599                         packet->qp = p->qp;
600                         if (hfi1_do_pkey_check(packet))
601                                 goto drop;
602                         spin_lock_irqsave(&packet->qp->r_lock, flags);
603                         packet_handler = qp_ok(packet);
604                         if (likely(packet_handler))
605                                 packet_handler(packet);
606                         else
607                                 ibp->rvp.n_pkt_drops++;
608                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
609                 }
610                 /*
611                  * Notify rvt_multicast_detach() if it is waiting for us
612                  * to finish.
613                  */
614                 if (atomic_dec_return(&mcast->refcount) <= 1)
615                         wake_up(&mcast->wait);
616         } else {
617                 /* Get the destination QP number. */
618                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
619                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
620                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
621                 else
622                         qp_num = ib_bth_get_qpn(packet->ohdr);
623
624                 rcu_read_lock();
625                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
626                 if (!packet->qp)
627                         goto unlock_drop;
628
629                 if (hfi1_do_pkey_check(packet))
630                         goto unlock_drop;
631
632                 spin_lock_irqsave(&packet->qp->r_lock, flags);
633                 packet_handler = qp_ok(packet);
634                 if (likely(packet_handler))
635                         packet_handler(packet);
636                 else
637                         ibp->rvp.n_pkt_drops++;
638                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
639                 rcu_read_unlock();
640         }
641         return;
642 unlock_drop:
643         rcu_read_unlock();
644 drop:
645         ibp->rvp.n_pkt_drops++;
646 }
647
648 /**
649  * hfi1_ib_rcv - process an incoming packet
650  * @packet: data packet information
651  *
652  * This is called to process an incoming packet at interrupt level.
653  */
654 void hfi1_ib_rcv(struct hfi1_packet *packet)
655 {
656         struct hfi1_ctxtdata *rcd = packet->rcd;
657
658         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
659         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
660 }
661
662 void hfi1_16B_rcv(struct hfi1_packet *packet)
663 {
664         struct hfi1_ctxtdata *rcd = packet->rcd;
665
666         trace_input_ibhdr(rcd->dd, packet, false);
667         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
668 }
669
670 /*
671  * This is called from a timer to check for QPs
672  * which need kernel memory in order to send a packet.
673  */
674 static void mem_timer(struct timer_list *t)
675 {
676         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
677         struct list_head *list = &dev->memwait;
678         struct rvt_qp *qp = NULL;
679         struct iowait *wait;
680         unsigned long flags;
681         struct hfi1_qp_priv *priv;
682
683         write_seqlock_irqsave(&dev->iowait_lock, flags);
684         if (!list_empty(list)) {
685                 wait = list_first_entry(list, struct iowait, list);
686                 qp = iowait_to_qp(wait);
687                 priv = qp->priv;
688                 list_del_init(&priv->s_iowait.list);
689                 priv->s_iowait.lock = NULL;
690                 /* refcount held until actual wake up */
691                 if (!list_empty(list))
692                         mod_timer(&dev->mem_timer, jiffies + 1);
693         }
694         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
695
696         if (qp)
697                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
698 }
699
700 /*
701  * This is called with progress side lock held.
702  */
703 /* New API */
704 static void verbs_sdma_complete(
705         struct sdma_txreq *cookie,
706         int status)
707 {
708         struct verbs_txreq *tx =
709                 container_of(cookie, struct verbs_txreq, txreq);
710         struct rvt_qp *qp = tx->qp;
711
712         spin_lock(&qp->s_lock);
713         if (tx->wqe) {
714                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
715         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
716                 struct hfi1_opa_header *hdr;
717
718                 hdr = &tx->phdr.hdr;
719                 hfi1_rc_send_complete(qp, hdr);
720         }
721         spin_unlock(&qp->s_lock);
722
723         hfi1_put_txreq(tx);
724 }
725
726 static int wait_kmem(struct hfi1_ibdev *dev,
727                      struct rvt_qp *qp,
728                      struct hfi1_pkt_state *ps)
729 {
730         struct hfi1_qp_priv *priv = qp->priv;
731         unsigned long flags;
732         int ret = 0;
733
734         spin_lock_irqsave(&qp->s_lock, flags);
735         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
736                 write_seqlock(&dev->iowait_lock);
737                 list_add_tail(&ps->s_txreq->txreq.list,
738                               &priv->s_iowait.tx_head);
739                 if (list_empty(&priv->s_iowait.list)) {
740                         if (list_empty(&dev->memwait))
741                                 mod_timer(&dev->mem_timer, jiffies + 1);
742                         qp->s_flags |= RVT_S_WAIT_KMEM;
743                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
744                         priv->s_iowait.lock = &dev->iowait_lock;
745                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
746                         rvt_get_qp(qp);
747                 }
748                 write_sequnlock(&dev->iowait_lock);
749                 qp->s_flags &= ~RVT_S_BUSY;
750                 ret = -EBUSY;
751         }
752         spin_unlock_irqrestore(&qp->s_lock, flags);
753
754         return ret;
755 }
756
757 /*
758  * This routine calls txadds for each sg entry.
759  *
760  * Add failures will revert the sge cursor
761  */
762 static noinline int build_verbs_ulp_payload(
763         struct sdma_engine *sde,
764         u32 length,
765         struct verbs_txreq *tx)
766 {
767         struct rvt_sge_state *ss = tx->ss;
768         struct rvt_sge *sg_list = ss->sg_list;
769         struct rvt_sge sge = ss->sge;
770         u8 num_sge = ss->num_sge;
771         u32 len;
772         int ret = 0;
773
774         while (length) {
775                 len = ss->sge.length;
776                 if (len > length)
777                         len = length;
778                 if (len > ss->sge.sge_length)
779                         len = ss->sge.sge_length;
780                 WARN_ON_ONCE(len == 0);
781                 ret = sdma_txadd_kvaddr(
782                         sde->dd,
783                         &tx->txreq,
784                         ss->sge.vaddr,
785                         len);
786                 if (ret)
787                         goto bail_txadd;
788                 rvt_update_sge(ss, len, false);
789                 length -= len;
790         }
791         return ret;
792 bail_txadd:
793         /* unwind cursor */
794         ss->sge = sge;
795         ss->num_sge = num_sge;
796         ss->sg_list = sg_list;
797         return ret;
798 }
799
800 /**
801  * update_tx_opstats - record stats by opcode
802  * @qp; the qp
803  * @ps: transmit packet state
804  * @plen: the plen in dwords
805  *
806  * This is a routine to record the tx opstats after a
807  * packet has been presented to the egress mechanism.
808  */
809 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
810                               u32 plen)
811 {
812 #ifdef CONFIG_DEBUG_FS
813         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
814         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
815
816         inc_opstats(plen * 4, &s->stats[ps->opcode]);
817         put_cpu_ptr(s);
818 #endif
819 }
820
821 /*
822  * Build the number of DMA descriptors needed to send length bytes of data.
823  *
824  * NOTE: DMA mapping is held in the tx until completed in the ring or
825  *       the tx desc is freed without having been submitted to the ring
826  *
827  * This routine ensures all the helper routine calls succeed.
828  */
829 /* New API */
830 static int build_verbs_tx_desc(
831         struct sdma_engine *sde,
832         u32 length,
833         struct verbs_txreq *tx,
834         struct hfi1_ahg_info *ahg_info,
835         u64 pbc)
836 {
837         int ret = 0;
838         struct hfi1_sdma_header *phdr = &tx->phdr;
839         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
840         u8 extra_bytes = 0;
841
842         if (tx->phdr.hdr.hdr_type) {
843                 /*
844                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
845                  * before calculating padding.
846                  */
847                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
848                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
849         }
850         if (!ahg_info->ahgcount) {
851                 ret = sdma_txinit_ahg(
852                         &tx->txreq,
853                         ahg_info->tx_flags,
854                         hdrbytes + length +
855                         extra_bytes,
856                         ahg_info->ahgidx,
857                         0,
858                         NULL,
859                         0,
860                         verbs_sdma_complete);
861                 if (ret)
862                         goto bail_txadd;
863                 phdr->pbc = cpu_to_le64(pbc);
864                 ret = sdma_txadd_kvaddr(
865                         sde->dd,
866                         &tx->txreq,
867                         phdr,
868                         hdrbytes);
869                 if (ret)
870                         goto bail_txadd;
871         } else {
872                 ret = sdma_txinit_ahg(
873                         &tx->txreq,
874                         ahg_info->tx_flags,
875                         length,
876                         ahg_info->ahgidx,
877                         ahg_info->ahgcount,
878                         ahg_info->ahgdesc,
879                         hdrbytes,
880                         verbs_sdma_complete);
881                 if (ret)
882                         goto bail_txadd;
883         }
884         /* add the ulp payload - if any. tx->ss can be NULL for acks */
885         if (tx->ss) {
886                 ret = build_verbs_ulp_payload(sde, length, tx);
887                 if (ret)
888                         goto bail_txadd;
889         }
890
891         /* add icrc, lt byte, and padding to flit */
892         if (extra_bytes)
893                 ret = sdma_txadd_daddr(sde->dd, &tx->txreq,
894                                        sde->dd->sdma_pad_phys, extra_bytes);
895
896 bail_txadd:
897         return ret;
898 }
899
900 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
901                         u64 pbc)
902 {
903         struct hfi1_qp_priv *priv = qp->priv;
904         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
905         u32 hdrwords = ps->s_txreq->hdr_dwords;
906         u32 len = ps->s_txreq->s_cur_size;
907         u32 plen;
908         struct hfi1_ibdev *dev = ps->dev;
909         struct hfi1_pportdata *ppd = ps->ppd;
910         struct verbs_txreq *tx;
911         u8 sc5 = priv->s_sc;
912         int ret;
913         u32 dwords;
914
915         if (ps->s_txreq->phdr.hdr.hdr_type) {
916                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
917
918                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
919                           SIZE_OF_LT) >> 2;
920         } else {
921                 dwords = (len + 3) >> 2;
922         }
923         plen = hdrwords + dwords + sizeof(pbc) / 4;
924
925         tx = ps->s_txreq;
926         if (!sdma_txreq_built(&tx->txreq)) {
927                 if (likely(pbc == 0)) {
928                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
929
930                         /* No vl15 here */
931                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
932                         if (ps->s_txreq->phdr.hdr.hdr_type)
933                                 pbc |= PBC_PACKET_BYPASS |
934                                        PBC_INSERT_BYPASS_ICRC;
935                         else
936                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
937
938                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
939                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
940                         pbc = create_pbc(ppd,
941                                          pbc,
942                                          qp->srate_mbps,
943                                          vl,
944                                          plen);
945                 }
946                 tx->wqe = qp->s_wqe;
947                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
948                 if (unlikely(ret))
949                         goto bail_build;
950         }
951         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq,
952                                ps->pkts_sent);
953         if (unlikely(ret < 0)) {
954                 if (ret == -ECOMM)
955                         goto bail_ecomm;
956                 return ret;
957         }
958
959         update_tx_opstats(qp, ps, plen);
960         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
961                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
962         return ret;
963
964 bail_ecomm:
965         /* The current one got "sent" */
966         return 0;
967 bail_build:
968         ret = wait_kmem(dev, qp, ps);
969         if (!ret) {
970                 /* free txreq - bad state */
971                 hfi1_put_txreq(ps->s_txreq);
972                 ps->s_txreq = NULL;
973         }
974         return ret;
975 }
976
977 /*
978  * If we are now in the error state, return zero to flush the
979  * send work request.
980  */
981 static int pio_wait(struct rvt_qp *qp,
982                     struct send_context *sc,
983                     struct hfi1_pkt_state *ps,
984                     u32 flag)
985 {
986         struct hfi1_qp_priv *priv = qp->priv;
987         struct hfi1_devdata *dd = sc->dd;
988         struct hfi1_ibdev *dev = &dd->verbs_dev;
989         unsigned long flags;
990         int ret = 0;
991
992         /*
993          * Note that as soon as want_buffer() is called and
994          * possibly before it returns, sc_piobufavail()
995          * could be called. Therefore, put QP on the I/O wait list before
996          * enabling the PIO avail interrupt.
997          */
998         spin_lock_irqsave(&qp->s_lock, flags);
999         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
1000                 write_seqlock(&dev->iowait_lock);
1001                 list_add_tail(&ps->s_txreq->txreq.list,
1002                               &priv->s_iowait.tx_head);
1003                 if (list_empty(&priv->s_iowait.list)) {
1004                         struct hfi1_ibdev *dev = &dd->verbs_dev;
1005                         int was_empty;
1006
1007                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
1008                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
1009                         qp->s_flags |= flag;
1010                         was_empty = list_empty(&sc->piowait);
1011                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
1012                                      &sc->piowait);
1013                         priv->s_iowait.lock = &dev->iowait_lock;
1014                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
1015                         rvt_get_qp(qp);
1016                         /* counting: only call wantpiobuf_intr if first user */
1017                         if (was_empty)
1018                                 hfi1_sc_wantpiobuf_intr(sc, 1);
1019                 }
1020                 write_sequnlock(&dev->iowait_lock);
1021                 qp->s_flags &= ~RVT_S_BUSY;
1022                 ret = -EBUSY;
1023         }
1024         spin_unlock_irqrestore(&qp->s_lock, flags);
1025         return ret;
1026 }
1027
1028 static void verbs_pio_complete(void *arg, int code)
1029 {
1030         struct rvt_qp *qp = (struct rvt_qp *)arg;
1031         struct hfi1_qp_priv *priv = qp->priv;
1032
1033         if (iowait_pio_dec(&priv->s_iowait))
1034                 iowait_drain_wakeup(&priv->s_iowait);
1035 }
1036
1037 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1038                         u64 pbc)
1039 {
1040         struct hfi1_qp_priv *priv = qp->priv;
1041         u32 hdrwords = ps->s_txreq->hdr_dwords;
1042         struct rvt_sge_state *ss = ps->s_txreq->ss;
1043         u32 len = ps->s_txreq->s_cur_size;
1044         u32 dwords;
1045         u32 plen;
1046         struct hfi1_pportdata *ppd = ps->ppd;
1047         u32 *hdr;
1048         u8 sc5;
1049         unsigned long flags = 0;
1050         struct send_context *sc;
1051         struct pio_buf *pbuf;
1052         int wc_status = IB_WC_SUCCESS;
1053         int ret = 0;
1054         pio_release_cb cb = NULL;
1055         u8 extra_bytes = 0;
1056
1057         if (ps->s_txreq->phdr.hdr.hdr_type) {
1058                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1059
1060                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1061                 dwords = (len + extra_bytes) >> 2;
1062                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1063         } else {
1064                 dwords = (len + 3) >> 2;
1065                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1066         }
1067         plen = hdrwords + dwords + sizeof(pbc) / 4;
1068
1069         /* only RC/UC use complete */
1070         switch (qp->ibqp.qp_type) {
1071         case IB_QPT_RC:
1072         case IB_QPT_UC:
1073                 cb = verbs_pio_complete;
1074                 break;
1075         default:
1076                 break;
1077         }
1078
1079         /* vl15 special case taken care of in ud.c */
1080         sc5 = priv->s_sc;
1081         sc = ps->s_txreq->psc;
1082
1083         if (likely(pbc == 0)) {
1084                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1085
1086                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1087                 if (ps->s_txreq->phdr.hdr.hdr_type)
1088                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1089                 else
1090                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1091
1092                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1093                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1094                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1095         }
1096         if (cb)
1097                 iowait_pio_inc(&priv->s_iowait);
1098         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1099         if (unlikely(!pbuf)) {
1100                 if (cb)
1101                         verbs_pio_complete(qp, 0);
1102                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1103                         /*
1104                          * If we have filled the PIO buffers to capacity and are
1105                          * not in an active state this request is not going to
1106                          * go out to so just complete it with an error or else a
1107                          * ULP or the core may be stuck waiting.
1108                          */
1109                         hfi1_cdbg(
1110                                 PIO,
1111                                 "alloc failed. state not active, completing");
1112                         wc_status = IB_WC_GENERAL_ERR;
1113                         goto pio_bail;
1114                 } else {
1115                         /*
1116                          * This is a normal occurrence. The PIO buffs are full
1117                          * up but we are still happily sending, well we could be
1118                          * so lets continue to queue the request.
1119                          */
1120                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1121                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1122                         if (!ret)
1123                                 /* txreq not queued - free */
1124                                 goto bail;
1125                         /* tx consumed in wait */
1126                         return ret;
1127                 }
1128         }
1129
1130         if (dwords == 0) {
1131                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1132         } else {
1133                 seg_pio_copy_start(pbuf, pbc,
1134                                    hdr, hdrwords * 4);
1135                 if (ss) {
1136                         while (len) {
1137                                 void *addr = ss->sge.vaddr;
1138                                 u32 slen = ss->sge.length;
1139
1140                                 if (slen > len)
1141                                         slen = len;
1142                                 if (slen > ss->sge.sge_length)
1143                                         slen = ss->sge.sge_length;
1144                                 rvt_update_sge(ss, slen, false);
1145                                 seg_pio_copy_mid(pbuf, addr, slen);
1146                                 len -= slen;
1147                         }
1148                 }
1149                 /* add icrc, lt byte, and padding to flit */
1150                 if (extra_bytes)
1151                         seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1152                                          extra_bytes);
1153
1154                 seg_pio_copy_end(pbuf);
1155         }
1156
1157         update_tx_opstats(qp, ps, plen);
1158         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1159                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1160
1161 pio_bail:
1162         if (qp->s_wqe) {
1163                 spin_lock_irqsave(&qp->s_lock, flags);
1164                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1165                 spin_unlock_irqrestore(&qp->s_lock, flags);
1166         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1167                 spin_lock_irqsave(&qp->s_lock, flags);
1168                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1169                 spin_unlock_irqrestore(&qp->s_lock, flags);
1170         }
1171
1172         ret = 0;
1173
1174 bail:
1175         hfi1_put_txreq(ps->s_txreq);
1176         return ret;
1177 }
1178
1179 /*
1180  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1181  * being an entry from the partition key table), return 0
1182  * otherwise. Use the matching criteria for egress partition keys
1183  * specified in the OPAv1 spec., section 9.1l.7.
1184  */
1185 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1186 {
1187         u16 mkey = pkey & PKEY_LOW_15_MASK;
1188         u16 mentry = ent & PKEY_LOW_15_MASK;
1189
1190         if (mkey == mentry) {
1191                 /*
1192                  * If pkey[15] is set (full partition member),
1193                  * is bit 15 in the corresponding table element
1194                  * clear (limited member)?
1195                  */
1196                 if (pkey & PKEY_MEMBER_MASK)
1197                         return !!(ent & PKEY_MEMBER_MASK);
1198                 return 1;
1199         }
1200         return 0;
1201 }
1202
1203 /**
1204  * egress_pkey_check - check P_KEY of a packet
1205  * @ppd:  Physical IB port data
1206  * @slid: SLID for packet
1207  * @bkey: PKEY for header
1208  * @sc5:  SC for packet
1209  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1210  * only. If it is negative value, then it means user contexts is calling this
1211  * function.
1212  *
1213  * It checks if hdr's pkey is valid.
1214  *
1215  * Return: 0 on success, otherwise, 1
1216  */
1217 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1218                       u8 sc5, int8_t s_pkey_index)
1219 {
1220         struct hfi1_devdata *dd;
1221         int i;
1222         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1223
1224         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1225                 return 0;
1226
1227         /* If SC15, pkey[0:14] must be 0x7fff */
1228         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1229                 goto bad;
1230
1231         /* Is the pkey = 0x0, or 0x8000? */
1232         if ((pkey & PKEY_LOW_15_MASK) == 0)
1233                 goto bad;
1234
1235         /*
1236          * For the kernel contexts only, if a qp is passed into the function,
1237          * the most likely matching pkey has index qp->s_pkey_index
1238          */
1239         if (!is_user_ctxt_mechanism &&
1240             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1241                 return 0;
1242         }
1243
1244         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1245                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1246                         return 0;
1247         }
1248 bad:
1249         /*
1250          * For the user-context mechanism, the P_KEY check would only happen
1251          * once per SDMA request, not once per packet.  Therefore, there's no
1252          * need to increment the counter for the user-context mechanism.
1253          */
1254         if (!is_user_ctxt_mechanism) {
1255                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1256                 dd = ppd->dd;
1257                 if (!(dd->err_info_xmit_constraint.status &
1258                       OPA_EI_STATUS_SMASK)) {
1259                         dd->err_info_xmit_constraint.status |=
1260                                 OPA_EI_STATUS_SMASK;
1261                         dd->err_info_xmit_constraint.slid = slid;
1262                         dd->err_info_xmit_constraint.pkey = pkey;
1263                 }
1264         }
1265         return 1;
1266 }
1267
1268 /**
1269  * get_send_routine - choose an egress routine
1270  *
1271  * Choose an egress routine based on QP type
1272  * and size
1273  */
1274 static inline send_routine get_send_routine(struct rvt_qp *qp,
1275                                             struct hfi1_pkt_state *ps)
1276 {
1277         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1278         struct hfi1_qp_priv *priv = qp->priv;
1279         struct verbs_txreq *tx = ps->s_txreq;
1280
1281         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1282                 return dd->process_pio_send;
1283         switch (qp->ibqp.qp_type) {
1284         case IB_QPT_SMI:
1285                 return dd->process_pio_send;
1286         case IB_QPT_GSI:
1287         case IB_QPT_UD:
1288                 break;
1289         case IB_QPT_UC:
1290         case IB_QPT_RC: {
1291                 if (piothreshold &&
1292                     tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1293                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1294                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1295                     !sdma_txreq_built(&tx->txreq))
1296                         return dd->process_pio_send;
1297                 break;
1298         }
1299         default:
1300                 break;
1301         }
1302         return dd->process_dma_send;
1303 }
1304
1305 /**
1306  * hfi1_verbs_send - send a packet
1307  * @qp: the QP to send on
1308  * @ps: the state of the packet to send
1309  *
1310  * Return zero if packet is sent or queued OK.
1311  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1312  */
1313 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1314 {
1315         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1316         struct hfi1_qp_priv *priv = qp->priv;
1317         struct ib_other_headers *ohdr = NULL;
1318         send_routine sr;
1319         int ret;
1320         u16 pkey;
1321         u32 slid;
1322         u8 l4 = 0;
1323
1324         /* locate the pkey within the headers */
1325         if (ps->s_txreq->phdr.hdr.hdr_type) {
1326                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1327
1328                 l4 = hfi1_16B_get_l4(hdr);
1329                 if (l4 == OPA_16B_L4_IB_LOCAL)
1330                         ohdr = &hdr->u.oth;
1331                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1332                         ohdr = &hdr->u.l.oth;
1333
1334                 slid = hfi1_16B_get_slid(hdr);
1335                 pkey = hfi1_16B_get_pkey(hdr);
1336         } else {
1337                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1338                 u8 lnh = ib_get_lnh(hdr);
1339
1340                 if (lnh == HFI1_LRH_GRH)
1341                         ohdr = &hdr->u.l.oth;
1342                 else
1343                         ohdr = &hdr->u.oth;
1344                 slid = ib_get_slid(hdr);
1345                 pkey = ib_bth_get_pkey(ohdr);
1346         }
1347
1348         if (likely(l4 != OPA_16B_L4_FM))
1349                 ps->opcode = ib_bth_get_opcode(ohdr);
1350         else
1351                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1352
1353         sr = get_send_routine(qp, ps);
1354         ret = egress_pkey_check(dd->pport, slid, pkey,
1355                                 priv->s_sc, qp->s_pkey_index);
1356         if (unlikely(ret)) {
1357                 /*
1358                  * The value we are returning here does not get propagated to
1359                  * the verbs caller. Thus we need to complete the request with
1360                  * error otherwise the caller could be sitting waiting on the
1361                  * completion event. Only do this for PIO. SDMA has its own
1362                  * mechanism for handling the errors. So for SDMA we can just
1363                  * return.
1364                  */
1365                 if (sr == dd->process_pio_send) {
1366                         unsigned long flags;
1367
1368                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1369                                   __func__);
1370                         spin_lock_irqsave(&qp->s_lock, flags);
1371                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1372                         spin_unlock_irqrestore(&qp->s_lock, flags);
1373                 }
1374                 return -EINVAL;
1375         }
1376         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1377                 return pio_wait(qp,
1378                                 ps->s_txreq->psc,
1379                                 ps,
1380                                 HFI1_S_WAIT_PIO_DRAIN);
1381         return sr(qp, ps, 0);
1382 }
1383
1384 /**
1385  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1386  * @dd: the device data structure
1387  */
1388 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1389 {
1390         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1391         u32 ver = dd->dc8051_ver;
1392
1393         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1394
1395         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1396                 ((u64)(dc8051_ver_min(ver)) << 16) |
1397                 (u64)dc8051_ver_patch(ver);
1398
1399         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1400                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1401                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1402                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1403                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1404                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1405         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1406         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1407         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1408         rdi->dparms.props.hw_ver = dd->minrev;
1409         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1410         rdi->dparms.props.max_mr_size = U64_MAX;
1411         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1412         rdi->dparms.props.max_qp = hfi1_max_qps;
1413         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1414         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1415         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1416         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1417         rdi->dparms.props.max_cq = hfi1_max_cqs;
1418         rdi->dparms.props.max_ah = hfi1_max_ahs;
1419         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1420         rdi->dparms.props.max_map_per_fmr = 32767;
1421         rdi->dparms.props.max_pd = hfi1_max_pds;
1422         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1423         rdi->dparms.props.max_qp_init_rd_atom = 255;
1424         rdi->dparms.props.max_srq = hfi1_max_srqs;
1425         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1426         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1427         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1428         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1429         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1430         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1431         rdi->dparms.props.max_total_mcast_qp_attach =
1432                                         rdi->dparms.props.max_mcast_qp_attach *
1433                                         rdi->dparms.props.max_mcast_grp;
1434 }
1435
1436 static inline u16 opa_speed_to_ib(u16 in)
1437 {
1438         u16 out = 0;
1439
1440         if (in & OPA_LINK_SPEED_25G)
1441                 out |= IB_SPEED_EDR;
1442         if (in & OPA_LINK_SPEED_12_5G)
1443                 out |= IB_SPEED_FDR;
1444
1445         return out;
1446 }
1447
1448 /*
1449  * Convert a single OPA link width (no multiple flags) to an IB value.
1450  * A zero OPA link width means link down, which means the IB width value
1451  * is a don't care.
1452  */
1453 static inline u16 opa_width_to_ib(u16 in)
1454 {
1455         switch (in) {
1456         case OPA_LINK_WIDTH_1X:
1457         /* map 2x and 3x to 1x as they don't exist in IB */
1458         case OPA_LINK_WIDTH_2X:
1459         case OPA_LINK_WIDTH_3X:
1460                 return IB_WIDTH_1X;
1461         default: /* link down or unknown, return our largest width */
1462         case OPA_LINK_WIDTH_4X:
1463                 return IB_WIDTH_4X;
1464         }
1465 }
1466
1467 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1468                       struct ib_port_attr *props)
1469 {
1470         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1471         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1472         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1473         u32 lid = ppd->lid;
1474
1475         /* props being zeroed by the caller, avoid zeroing it here */
1476         props->lid = lid ? lid : 0;
1477         props->lmc = ppd->lmc;
1478         /* OPA logical states match IB logical states */
1479         props->state = driver_lstate(ppd);
1480         props->phys_state = driver_pstate(ppd);
1481         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1482         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1483         /* see rate_show() in ib core/sysfs.c */
1484         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1485         props->max_vl_num = ppd->vls_supported;
1486
1487         /* Once we are a "first class" citizen and have added the OPA MTUs to
1488          * the core we can advertise the larger MTU enum to the ULPs, for now
1489          * advertise only 4K.
1490          *
1491          * Those applications which are either OPA aware or pass the MTU enum
1492          * from the Path Records to us will get the new 8k MTU.  Those that
1493          * attempt to process the MTU enum may fail in various ways.
1494          */
1495         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1496                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1497         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1498                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1499
1500         return 0;
1501 }
1502
1503 static int modify_device(struct ib_device *device,
1504                          int device_modify_mask,
1505                          struct ib_device_modify *device_modify)
1506 {
1507         struct hfi1_devdata *dd = dd_from_ibdev(device);
1508         unsigned i;
1509         int ret;
1510
1511         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1512                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1513                 ret = -EOPNOTSUPP;
1514                 goto bail;
1515         }
1516
1517         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1518                 memcpy(device->node_desc, device_modify->node_desc,
1519                        IB_DEVICE_NODE_DESC_MAX);
1520                 for (i = 0; i < dd->num_pports; i++) {
1521                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1522
1523                         hfi1_node_desc_chg(ibp);
1524                 }
1525         }
1526
1527         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1528                 ib_hfi1_sys_image_guid =
1529                         cpu_to_be64(device_modify->sys_image_guid);
1530                 for (i = 0; i < dd->num_pports; i++) {
1531                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1532
1533                         hfi1_sys_guid_chg(ibp);
1534                 }
1535         }
1536
1537         ret = 0;
1538
1539 bail:
1540         return ret;
1541 }
1542
1543 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1544 {
1545         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1546         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1547         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1548         int ret;
1549
1550         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1551                              OPA_LINKDOWN_REASON_UNKNOWN);
1552         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1553         return ret;
1554 }
1555
1556 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1557                             int guid_index, __be64 *guid)
1558 {
1559         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1560
1561         if (guid_index >= HFI1_GUIDS_PER_PORT)
1562                 return -EINVAL;
1563
1564         *guid = get_sguid(ibp, guid_index);
1565         return 0;
1566 }
1567
1568 /*
1569  * convert ah port,sl to sc
1570  */
1571 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1572 {
1573         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1574
1575         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1576 }
1577
1578 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1579 {
1580         struct hfi1_ibport *ibp;
1581         struct hfi1_pportdata *ppd;
1582         struct hfi1_devdata *dd;
1583         u8 sc5;
1584         u8 sl;
1585
1586         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1587             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1588                 return -EINVAL;
1589
1590         /* test the mapping for validity */
1591         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1592         ppd = ppd_from_ibp(ibp);
1593         dd = dd_from_ppd(ppd);
1594
1595         sl = rdma_ah_get_sl(ah_attr);
1596         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1597                 return -EINVAL;
1598         sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1599
1600         sc5 = ibp->sl_to_sc[sl];
1601         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1602                 return -EINVAL;
1603         return 0;
1604 }
1605
1606 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1607                                struct rdma_ah_attr *ah_attr,
1608                                struct rvt_ah *ah)
1609 {
1610         struct hfi1_ibport *ibp;
1611         struct hfi1_pportdata *ppd;
1612         struct hfi1_devdata *dd;
1613         u8 sc5;
1614         struct rdma_ah_attr *attr = &ah->attr;
1615
1616         /*
1617          * Do not trust reading anything from rvt_ah at this point as it is not
1618          * done being setup. We can however modify things which we need to set.
1619          */
1620
1621         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1622         ppd = ppd_from_ibp(ibp);
1623         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1624         hfi1_update_ah_attr(ibdev, attr);
1625         hfi1_make_opa_lid(attr);
1626         dd = dd_from_ppd(ppd);
1627         ah->vl = sc_to_vlt(dd, sc5);
1628         if (ah->vl < num_vls || ah->vl == 15)
1629                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1630 }
1631
1632 /**
1633  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1634  * @dd: the hfi1_ib device
1635  */
1636 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1637 {
1638         return ARRAY_SIZE(dd->pport[0].pkeys);
1639 }
1640
1641 static void init_ibport(struct hfi1_pportdata *ppd)
1642 {
1643         struct hfi1_ibport *ibp = &ppd->ibport_data;
1644         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1645         int i;
1646
1647         for (i = 0; i < sz; i++) {
1648                 ibp->sl_to_sc[i] = i;
1649                 ibp->sc_to_sl[i] = i;
1650         }
1651
1652         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1653                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1654         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1655
1656         spin_lock_init(&ibp->rvp.lock);
1657         /* Set the prefix to the default value (see ch. 4.1.1) */
1658         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1659         ibp->rvp.sm_lid = 0;
1660         /*
1661          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1662          * and PortInfo.CapabilityMask3
1663          */
1664         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1665                 IB_PORT_CAP_MASK_NOTICE_SUP;
1666         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1667         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1668         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1669         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1670         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1671         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1672
1673         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1674         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1675 }
1676
1677 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1678 {
1679         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1680         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1681         u32 ver = dd_from_dev(dev)->dc8051_ver;
1682
1683         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1684                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1685 }
1686
1687 static const char * const driver_cntr_names[] = {
1688         /* must be element 0*/
1689         "DRIVER_KernIntr",
1690         "DRIVER_ErrorIntr",
1691         "DRIVER_Tx_Errs",
1692         "DRIVER_Rcv_Errs",
1693         "DRIVER_HW_Errs",
1694         "DRIVER_NoPIOBufs",
1695         "DRIVER_CtxtsOpen",
1696         "DRIVER_RcvLen_Errs",
1697         "DRIVER_EgrBufFull",
1698         "DRIVER_EgrHdrFull"
1699 };
1700
1701 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1702 static const char **dev_cntr_names;
1703 static const char **port_cntr_names;
1704 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1705 static int num_dev_cntrs;
1706 static int num_port_cntrs;
1707 static int cntr_names_initialized;
1708
1709 /*
1710  * Convert a list of names separated by '\n' into an array of NULL terminated
1711  * strings. Optionally some entries can be reserved in the array to hold extra
1712  * external strings.
1713  */
1714 static int init_cntr_names(const char *names_in,
1715                            const size_t names_len,
1716                            int num_extra_names,
1717                            int *num_cntrs,
1718                            const char ***cntr_names)
1719 {
1720         char *names_out, *p, **q;
1721         int i, n;
1722
1723         n = 0;
1724         for (i = 0; i < names_len; i++)
1725                 if (names_in[i] == '\n')
1726                         n++;
1727
1728         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1729                             GFP_KERNEL);
1730         if (!names_out) {
1731                 *num_cntrs = 0;
1732                 *cntr_names = NULL;
1733                 return -ENOMEM;
1734         }
1735
1736         p = names_out + (n + num_extra_names) * sizeof(char *);
1737         memcpy(p, names_in, names_len);
1738
1739         q = (char **)names_out;
1740         for (i = 0; i < n; i++) {
1741                 q[i] = p;
1742                 p = strchr(p, '\n');
1743                 *p++ = '\0';
1744         }
1745
1746         *num_cntrs = n;
1747         *cntr_names = (const char **)names_out;
1748         return 0;
1749 }
1750
1751 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1752                                             u8 port_num)
1753 {
1754         int i, err;
1755
1756         mutex_lock(&cntr_names_lock);
1757         if (!cntr_names_initialized) {
1758                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1759
1760                 err = init_cntr_names(dd->cntrnames,
1761                                       dd->cntrnameslen,
1762                                       num_driver_cntrs,
1763                                       &num_dev_cntrs,
1764                                       &dev_cntr_names);
1765                 if (err) {
1766                         mutex_unlock(&cntr_names_lock);
1767                         return NULL;
1768                 }
1769
1770                 for (i = 0; i < num_driver_cntrs; i++)
1771                         dev_cntr_names[num_dev_cntrs + i] =
1772                                 driver_cntr_names[i];
1773
1774                 err = init_cntr_names(dd->portcntrnames,
1775                                       dd->portcntrnameslen,
1776                                       0,
1777                                       &num_port_cntrs,
1778                                       &port_cntr_names);
1779                 if (err) {
1780                         kfree(dev_cntr_names);
1781                         dev_cntr_names = NULL;
1782                         mutex_unlock(&cntr_names_lock);
1783                         return NULL;
1784                 }
1785                 cntr_names_initialized = 1;
1786         }
1787         mutex_unlock(&cntr_names_lock);
1788
1789         if (!port_num)
1790                 return rdma_alloc_hw_stats_struct(
1791                                 dev_cntr_names,
1792                                 num_dev_cntrs + num_driver_cntrs,
1793                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1794         else
1795                 return rdma_alloc_hw_stats_struct(
1796                                 port_cntr_names,
1797                                 num_port_cntrs,
1798                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1799 }
1800
1801 static u64 hfi1_sps_ints(void)
1802 {
1803         unsigned long flags;
1804         struct hfi1_devdata *dd;
1805         u64 sps_ints = 0;
1806
1807         spin_lock_irqsave(&hfi1_devs_lock, flags);
1808         list_for_each_entry(dd, &hfi1_dev_list, list) {
1809                 sps_ints += get_all_cpu_total(dd->int_counter);
1810         }
1811         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1812         return sps_ints;
1813 }
1814
1815 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1816                         u8 port, int index)
1817 {
1818         u64 *values;
1819         int count;
1820
1821         if (!port) {
1822                 u64 *stats = (u64 *)&hfi1_stats;
1823                 int i;
1824
1825                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1826                 values[num_dev_cntrs] = hfi1_sps_ints();
1827                 for (i = 1; i < num_driver_cntrs; i++)
1828                         values[num_dev_cntrs + i] = stats[i];
1829                 count = num_dev_cntrs + num_driver_cntrs;
1830         } else {
1831                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1832
1833                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1834                 count = num_port_cntrs;
1835         }
1836
1837         memcpy(stats->value, values, count * sizeof(u64));
1838         return count;
1839 }
1840
1841 /**
1842  * hfi1_register_ib_device - register our device with the infiniband core
1843  * @dd: the device data structure
1844  * Return 0 if successful, errno if unsuccessful.
1845  */
1846 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1847 {
1848         struct hfi1_ibdev *dev = &dd->verbs_dev;
1849         struct ib_device *ibdev = &dev->rdi.ibdev;
1850         struct hfi1_pportdata *ppd = dd->pport;
1851         struct hfi1_ibport *ibp = &ppd->ibport_data;
1852         unsigned i;
1853         int ret;
1854
1855         for (i = 0; i < dd->num_pports; i++)
1856                 init_ibport(ppd + i);
1857
1858         /* Only need to initialize non-zero fields. */
1859
1860         timer_setup(&dev->mem_timer, mem_timer, 0);
1861
1862         seqlock_init(&dev->iowait_lock);
1863         seqlock_init(&dev->txwait_lock);
1864         INIT_LIST_HEAD(&dev->txwait);
1865         INIT_LIST_HEAD(&dev->memwait);
1866
1867         ret = verbs_txreq_init(dev);
1868         if (ret)
1869                 goto err_verbs_txreq;
1870
1871         /* Use first-port GUID as node guid */
1872         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1873
1874         /*
1875          * The system image GUID is supposed to be the same for all
1876          * HFIs in a single system but since there can be other
1877          * device types in the system, we can't be sure this is unique.
1878          */
1879         if (!ib_hfi1_sys_image_guid)
1880                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1881         ibdev->owner = THIS_MODULE;
1882         ibdev->phys_port_cnt = dd->num_pports;
1883         ibdev->dev.parent = &dd->pcidev->dev;
1884         ibdev->modify_device = modify_device;
1885         ibdev->alloc_hw_stats = alloc_hw_stats;
1886         ibdev->get_hw_stats = get_hw_stats;
1887         ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1888
1889         /* keep process mad in the driver */
1890         ibdev->process_mad = hfi1_process_mad;
1891         ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1892
1893         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1894                 sizeof(ibdev->node_desc));
1895
1896         /*
1897          * Fill in rvt info object.
1898          */
1899         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1900         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1901         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1902         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1903         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1904         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1905         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1906         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1907         /*
1908          * Fill in rvt info device attributes.
1909          */
1910         hfi1_fill_device_attr(dd);
1911
1912         /* queue pair */
1913         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1914         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1915         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1916         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1917         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1918         dd->verbs_dev.rdi.dparms.qpn_res_end =
1919         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1920         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1921         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1922         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1923         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1924         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1925                                                 RDMA_CORE_CAP_OPA_AH;
1926         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1927
1928         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1929         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1930         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1931         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1932         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1933         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1934         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1935         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1936         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1937         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1938         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1939         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1940         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1941         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1942         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1943         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1944         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1945         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1946         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1947         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1948                                                 hfi1_comp_vect_mappings_lookup;
1949
1950         /* completeion queue */
1951         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1952         dd->verbs_dev.rdi.dparms.node = dd->node;
1953
1954         /* misc settings */
1955         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1956         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1957         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1958         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1959
1960         /* post send table */
1961         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1962
1963         ppd = dd->pport;
1964         for (i = 0; i < dd->num_pports; i++, ppd++)
1965                 rvt_init_port(&dd->verbs_dev.rdi,
1966                               &ppd->ibport_data.rvp,
1967                               i,
1968                               ppd->pkeys);
1969
1970         ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1);
1971         if (ret)
1972                 goto err_verbs_txreq;
1973
1974         ret = hfi1_verbs_register_sysfs(dd);
1975         if (ret)
1976                 goto err_class;
1977
1978         return ret;
1979
1980 err_class:
1981         rvt_unregister_device(&dd->verbs_dev.rdi);
1982 err_verbs_txreq:
1983         verbs_txreq_exit(dev);
1984         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1985         return ret;
1986 }
1987
1988 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1989 {
1990         struct hfi1_ibdev *dev = &dd->verbs_dev;
1991
1992         hfi1_verbs_unregister_sysfs(dd);
1993
1994         rvt_unregister_device(&dd->verbs_dev.rdi);
1995
1996         if (!list_empty(&dev->txwait))
1997                 dd_dev_err(dd, "txwait list not empty!\n");
1998         if (!list_empty(&dev->memwait))
1999                 dd_dev_err(dd, "memwait list not empty!\n");
2000
2001         del_timer_sync(&dev->mem_timer);
2002         verbs_txreq_exit(dev);
2003
2004         mutex_lock(&cntr_names_lock);
2005         kfree(dev_cntr_names);
2006         kfree(port_cntr_names);
2007         dev_cntr_names = NULL;
2008         port_cntr_names = NULL;
2009         cntr_names_initialized = 0;
2010         mutex_unlock(&cntr_names_lock);
2011 }
2012
2013 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2014 {
2015         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
2016         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2017         struct ib_header *hdr = packet->hdr;
2018         struct rvt_qp *qp = packet->qp;
2019         u32 lqpn, rqpn = 0;
2020         u16 rlid = 0;
2021         u8 sl, sc5, svc_type;
2022
2023         switch (packet->qp->ibqp.qp_type) {
2024         case IB_QPT_UC:
2025                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2026                 rqpn = qp->remote_qpn;
2027                 svc_type = IB_CC_SVCTYPE_UC;
2028                 break;
2029         case IB_QPT_RC:
2030                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2031                 rqpn = qp->remote_qpn;
2032                 svc_type = IB_CC_SVCTYPE_RC;
2033                 break;
2034         case IB_QPT_SMI:
2035         case IB_QPT_GSI:
2036         case IB_QPT_UD:
2037                 svc_type = IB_CC_SVCTYPE_UD;
2038                 break;
2039         default:
2040                 ibp->rvp.n_pkt_drops++;
2041                 return;
2042         }
2043
2044         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2045         sl = ibp->sc_to_sl[sc5];
2046         lqpn = qp->ibqp.qp_num;
2047
2048         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2049 }