2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/types.h>
49 #include <linux/device.h>
50 #include <linux/dmapool.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/highmem.h>
55 #include <linux/uio.h>
56 #include <linux/rbtree.h>
57 #include <linux/spinlock.h>
58 #include <linux/delay.h>
59 #include <linux/kthread.h>
60 #include <linux/mmu_context.h>
61 #include <linux/module.h>
62 #include <linux/vmalloc.h>
66 #include "user_sdma.h"
67 #include "verbs.h" /* for the headers */
68 #include "common.h" /* for struct hfi1_tid_info */
72 static uint hfi1_sdma_comp_ring_size = 128;
73 module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128");
76 /* The maximum number of Data io vectors per message/request */
77 #define MAX_VECTORS_PER_REQ 8
79 * Maximum number of packet to send from each message/request
80 * before moving to the next one.
82 #define MAX_PKTS_PER_QUEUE 16
84 #define num_pages(x) (1 + ((((x) - 1) & PAGE_MASK) >> PAGE_SHIFT))
86 #define req_opcode(x) \
87 (((x) >> HFI1_SDMA_REQ_OPCODE_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
88 #define req_version(x) \
89 (((x) >> HFI1_SDMA_REQ_VERSION_SHIFT) & HFI1_SDMA_REQ_OPCODE_MASK)
90 #define req_iovcnt(x) \
91 (((x) >> HFI1_SDMA_REQ_IOVCNT_SHIFT) & HFI1_SDMA_REQ_IOVCNT_MASK)
93 /* Number of BTH.PSN bits used for sequence number in expected rcvs */
94 #define BTH_SEQ_MASK 0x7ffull
97 * Define fields in the KDETH header so we can update the header
100 #define KDETH_OFFSET_SHIFT 0
101 #define KDETH_OFFSET_MASK 0x7fff
102 #define KDETH_OM_SHIFT 15
103 #define KDETH_OM_MASK 0x1
104 #define KDETH_TID_SHIFT 16
105 #define KDETH_TID_MASK 0x3ff
106 #define KDETH_TIDCTRL_SHIFT 26
107 #define KDETH_TIDCTRL_MASK 0x3
108 #define KDETH_INTR_SHIFT 28
109 #define KDETH_INTR_MASK 0x1
110 #define KDETH_SH_SHIFT 29
111 #define KDETH_SH_MASK 0x1
112 #define KDETH_HCRC_UPPER_SHIFT 16
113 #define KDETH_HCRC_UPPER_MASK 0xff
114 #define KDETH_HCRC_LOWER_SHIFT 24
115 #define KDETH_HCRC_LOWER_MASK 0xff
117 #define PBC2LRH(x) ((((x) & 0xfff) << 2) - 4)
118 #define LRH2PBC(x) ((((x) >> 2) + 1) & 0xfff)
120 #define KDETH_GET(val, field) \
121 (((le32_to_cpu((val))) >> KDETH_##field##_SHIFT) & KDETH_##field##_MASK)
122 #define KDETH_SET(dw, field, val) do { \
123 u32 dwval = le32_to_cpu(dw); \
124 dwval &= ~(KDETH_##field##_MASK << KDETH_##field##_SHIFT); \
125 dwval |= (((val) & KDETH_##field##_MASK) << \
126 KDETH_##field##_SHIFT); \
127 dw = cpu_to_le32(dwval); \
130 #define AHG_HEADER_SET(arr, idx, dw, bit, width, value) \
132 if ((idx) < ARRAY_SIZE((arr))) \
133 (arr)[(idx++)] = sdma_build_ahg_descriptor( \
134 (__force u16)(value), (dw), (bit), \
140 /* KDETH OM multipliers and switch over point */
141 #define KDETH_OM_SMALL 4
142 #define KDETH_OM_LARGE 64
143 #define KDETH_OM_MAX_SIZE (1 << ((KDETH_OM_LARGE / KDETH_OM_SMALL) + 1))
145 /* Last packet in the request */
146 #define TXREQ_FLAGS_REQ_LAST_PKT BIT(0)
148 /* SDMA request flag bits */
149 #define SDMA_REQ_FOR_THREAD 1
150 #define SDMA_REQ_SEND_DONE 2
151 #define SDMA_REQ_HAVE_AHG 3
152 #define SDMA_REQ_HAS_ERROR 4
153 #define SDMA_REQ_DONE_ERROR 5
155 #define SDMA_PKT_Q_INACTIVE BIT(0)
156 #define SDMA_PKT_Q_ACTIVE BIT(1)
157 #define SDMA_PKT_Q_DEFERRED BIT(2)
160 * Maximum retry attempts to submit a TX request
161 * before putting the process to sleep.
163 #define MAX_DEFER_RETRY_COUNT 1
165 static unsigned initial_pkt_count = 8;
167 #define SDMA_IOWAIT_TIMEOUT 1000 /* in milliseconds */
169 struct sdma_mmu_node;
171 struct user_sdma_iovec {
172 struct list_head list;
174 /* number of pages in this vector */
176 /* array of pinned pages for this vector */
179 * offset into the virtual address space of the vector at
180 * which we last left off.
183 struct sdma_mmu_node *node;
186 struct sdma_mmu_node {
187 struct mmu_rb_node rb;
188 struct hfi1_user_sdma_pkt_q *pq;
194 /* evict operation argument */
196 u32 cleared; /* count evicted so far */
197 u32 target; /* target count to evict */
200 struct user_sdma_request {
201 struct sdma_req_info info;
202 struct hfi1_user_sdma_pkt_q *pq;
203 struct hfi1_user_sdma_comp_q *cq;
204 /* This is the original header from user space */
205 struct hfi1_pkt_header hdr;
207 * Pointer to the SDMA engine for this request.
208 * Since different request could be on different VLs,
209 * each request will need it's own engine pointer.
211 struct sdma_engine *sde;
215 * KDETH.Offset (Eager) field
216 * We need to remember the initial value so the headers
217 * can be updated properly.
221 * KDETH.OFFSET (TID) field
222 * The offset can cover multiple packets, depending on the
223 * size of the TID entry.
228 * Remember this because the header template always sets it
233 * We copy the iovs for this request (based on
234 * info.iovcnt). These are only the data vectors
237 /* total length of the data in the request */
239 /* progress index moving along the iovs array */
241 struct user_sdma_iovec iovs[MAX_VECTORS_PER_REQ];
242 /* number of elements copied to the tids array */
244 /* TID array values copied from the tid_iov vector */
251 struct list_head txps;
253 /* status of the last txreq completed */
258 * A single txreq could span up to 3 physical pages when the MTU
259 * is sufficiently large (> 4K). Each of the IOV pointers also
260 * needs it's own set of flags so the vector has been handled
261 * independently of each other.
263 struct user_sdma_txreq {
264 /* Packet header for the txreq */
265 struct hfi1_pkt_header hdr;
266 struct sdma_txreq txreq;
267 struct list_head list;
268 struct user_sdma_request *req;
274 #define SDMA_DBG(req, fmt, ...) \
275 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] " fmt, (req)->pq->dd->unit, \
276 (req)->pq->ctxt, (req)->pq->subctxt, (req)->info.comp_idx, \
278 #define SDMA_Q_DBG(pq, fmt, ...) \
279 hfi1_cdbg(SDMA, "[%u:%u:%u] " fmt, (pq)->dd->unit, (pq)->ctxt, \
280 (pq)->subctxt, ##__VA_ARGS__)
282 static int user_sdma_send_pkts(struct user_sdma_request *, unsigned);
283 static int num_user_pages(const struct iovec *);
284 static void user_sdma_txreq_cb(struct sdma_txreq *, int);
285 static inline void pq_update(struct hfi1_user_sdma_pkt_q *);
286 static void user_sdma_free_request(struct user_sdma_request *, bool);
287 static int pin_vector_pages(struct user_sdma_request *,
288 struct user_sdma_iovec *);
289 static void unpin_vector_pages(struct mm_struct *, struct page **, unsigned,
291 static int check_header_template(struct user_sdma_request *,
292 struct hfi1_pkt_header *, u32, u32);
293 static int set_txreq_header(struct user_sdma_request *,
294 struct user_sdma_txreq *, u32);
295 static int set_txreq_header_ahg(struct user_sdma_request *,
296 struct user_sdma_txreq *, u32);
297 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *,
298 struct hfi1_user_sdma_comp_q *,
299 u16, enum hfi1_sdma_comp_state, int);
300 static inline u32 set_pkt_bth_psn(__be32, u8, u32);
301 static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len);
303 static int defer_packet_queue(
304 struct sdma_engine *,
308 static void activate_packet_queue(struct iowait *, int);
309 static bool sdma_rb_filter(struct mmu_rb_node *, unsigned long, unsigned long);
310 static int sdma_rb_insert(void *, struct mmu_rb_node *);
311 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
312 void *arg2, bool *stop);
313 static void sdma_rb_remove(void *, struct mmu_rb_node *);
314 static int sdma_rb_invalidate(void *, struct mmu_rb_node *);
316 static struct mmu_rb_ops sdma_rb_ops = {
317 .filter = sdma_rb_filter,
318 .insert = sdma_rb_insert,
319 .evict = sdma_rb_evict,
320 .remove = sdma_rb_remove,
321 .invalidate = sdma_rb_invalidate
324 static int defer_packet_queue(
325 struct sdma_engine *sde,
327 struct sdma_txreq *txreq,
330 struct hfi1_user_sdma_pkt_q *pq =
331 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
332 struct hfi1_ibdev *dev = &pq->dd->verbs_dev;
333 struct user_sdma_txreq *tx =
334 container_of(txreq, struct user_sdma_txreq, txreq);
336 if (sdma_progress(sde, seq, txreq)) {
337 if (tx->busycount++ < MAX_DEFER_RETRY_COUNT)
341 * We are assuming that if the list is enqueued somewhere, it
342 * is to the dmawait list since that is the only place where
343 * it is supposed to be enqueued.
345 xchg(&pq->state, SDMA_PKT_Q_DEFERRED);
346 write_seqlock(&dev->iowait_lock);
347 if (list_empty(&pq->busy.list))
348 list_add_tail(&pq->busy.list, &sde->dmawait);
349 write_sequnlock(&dev->iowait_lock);
355 static void activate_packet_queue(struct iowait *wait, int reason)
357 struct hfi1_user_sdma_pkt_q *pq =
358 container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
359 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
360 wake_up(&wait->wait_dma);
363 static void sdma_kmem_cache_ctor(void *obj)
365 struct user_sdma_txreq *tx = obj;
367 memset(tx, 0, sizeof(*tx));
370 int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt, struct file *fp)
372 struct hfi1_filedata *fd;
376 struct hfi1_devdata *dd;
377 struct hfi1_user_sdma_comp_q *cq;
378 struct hfi1_user_sdma_pkt_q *pq;
386 fd = fp->private_data;
388 if (!hfi1_sdma_comp_ring_size) {
395 pq = kzalloc(sizeof(*pq), GFP_KERNEL);
399 memsize = sizeof(*pq->reqs) * hfi1_sdma_comp_ring_size;
400 pq->reqs = kzalloc(memsize, GFP_KERNEL);
404 memsize = BITS_TO_LONGS(hfi1_sdma_comp_ring_size) * sizeof(long);
405 pq->req_in_use = kzalloc(memsize, GFP_KERNEL);
407 goto pq_reqs_no_in_use;
409 INIT_LIST_HEAD(&pq->list);
411 pq->ctxt = uctxt->ctxt;
412 pq->subctxt = fd->subctxt;
413 pq->n_max_reqs = hfi1_sdma_comp_ring_size;
414 pq->state = SDMA_PKT_Q_INACTIVE;
415 atomic_set(&pq->n_reqs, 0);
416 init_waitqueue_head(&pq->wait);
417 atomic_set(&pq->n_locked, 0);
420 iowait_init(&pq->busy, 0, NULL, defer_packet_queue,
421 activate_packet_queue, NULL);
423 snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt,
425 pq->txreq_cache = kmem_cache_create(buf,
426 sizeof(struct user_sdma_txreq),
429 sdma_kmem_cache_ctor);
430 if (!pq->txreq_cache) {
431 dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n",
436 cq = kzalloc(sizeof(*cq), GFP_KERNEL);
440 memsize = PAGE_ALIGN(sizeof(*cq->comps) * hfi1_sdma_comp_ring_size);
441 cq->comps = vmalloc_user(memsize);
445 cq->nentries = hfi1_sdma_comp_ring_size;
448 ret = hfi1_mmu_rb_register(pq, pq->mm, &sdma_rb_ops, dd->pport->hfi1_wq,
451 dd_dev_err(dd, "Failed to register with MMU %d", ret);
455 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
456 list_add(&pq->list, &uctxt->sdma_queues);
457 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
463 kmem_cache_destroy(pq->txreq_cache);
465 kfree(pq->req_in_use);
477 int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd)
479 struct hfi1_ctxtdata *uctxt = fd->uctxt;
480 struct hfi1_user_sdma_pkt_q *pq;
483 hfi1_cdbg(SDMA, "[%u:%u:%u] Freeing user SDMA queues", uctxt->dd->unit,
484 uctxt->ctxt, fd->subctxt);
488 hfi1_mmu_rb_unregister(pq->handler);
489 spin_lock_irqsave(&uctxt->sdma_qlock, flags);
490 if (!list_empty(&pq->list))
491 list_del_init(&pq->list);
492 spin_unlock_irqrestore(&uctxt->sdma_qlock, flags);
493 iowait_sdma_drain(&pq->busy);
494 /* Wait until all requests have been freed. */
495 wait_event_interruptible(
497 (ACCESS_ONCE(pq->state) == SDMA_PKT_Q_INACTIVE));
499 kfree(pq->req_in_use);
500 kmem_cache_destroy(pq->txreq_cache);
505 vfree(fd->cq->comps);
512 static u8 dlid_to_selector(u16 dlid)
514 static u8 mapping[256];
515 static int initialized;
520 memset(mapping, 0xFF, 256);
524 hash = ((dlid >> 8) ^ dlid) & 0xFF;
525 if (mapping[hash] == 0xFF) {
526 mapping[hash] = next;
527 next = (next + 1) & 0x7F;
530 return mapping[hash];
533 int hfi1_user_sdma_process_request(struct file *fp, struct iovec *iovec,
534 unsigned long dim, unsigned long *count)
537 struct hfi1_filedata *fd = fp->private_data;
538 struct hfi1_ctxtdata *uctxt = fd->uctxt;
539 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
540 struct hfi1_user_sdma_comp_q *cq = fd->cq;
541 struct hfi1_devdata *dd = pq->dd;
542 unsigned long idx = 0;
543 u8 pcount = initial_pkt_count;
544 struct sdma_req_info info;
545 struct user_sdma_request *req;
551 if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
554 "[%u:%u:%u] First vector not big enough for header %lu/%lu",
555 dd->unit, uctxt->ctxt, fd->subctxt,
556 iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr));
559 ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info));
561 hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
562 dd->unit, uctxt->ctxt, fd->subctxt, ret);
566 trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
569 if (info.comp_idx >= hfi1_sdma_comp_ring_size) {
571 "[%u:%u:%u:%u] Invalid comp index",
572 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
577 * Sanity check the header io vector count. Need at least 1 vector
578 * (header) and cannot be larger than the actual io vector count.
580 if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) {
582 "[%u:%u:%u:%u] Invalid iov count %d, dim %ld",
583 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx,
584 req_iovcnt(info.ctrl), dim);
588 if (!info.fragsize) {
590 "[%u:%u:%u:%u] Request does not specify fragsize",
591 dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
595 /* Try to claim the request. */
596 if (test_and_set_bit(info.comp_idx, pq->req_in_use)) {
597 hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use",
598 dd->unit, uctxt->ctxt, fd->subctxt,
603 * All safety checks have been done and this request has been claimed.
605 hfi1_cdbg(SDMA, "[%u:%u:%u] Using req/comp entry %u\n", dd->unit,
606 uctxt->ctxt, fd->subctxt, info.comp_idx);
607 req = pq->reqs + info.comp_idx;
608 memset(req, 0, sizeof(*req));
609 req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */
613 INIT_LIST_HEAD(&req->txps);
615 memcpy(&req->info, &info, sizeof(info));
617 if (req_opcode(info.ctrl) == EXPECTED) {
618 /* expected must have a TID info and at least one data vector */
619 if (req->data_iovs < 2) {
621 "Not enough vectors for expected request");
628 if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
629 SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
630 MAX_VECTORS_PER_REQ);
634 /* Copy the header from the user buffer */
635 ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info),
638 SDMA_DBG(req, "Failed to copy header template (%d)", ret);
643 /* If Static rate control is not enabled, sanitize the header. */
644 if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
647 /* Validate the opcode. Do not trust packets from user space blindly. */
648 opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
649 if ((opcode & USER_OPCODE_CHECK_MASK) !=
650 USER_OPCODE_CHECK_VAL) {
651 SDMA_DBG(req, "Invalid opcode (%d)", opcode);
656 * Validate the vl. Do not trust packets from user space blindly.
657 * VL comes from PBC, SC comes from LRH, and the VL needs to
658 * match the SC look up.
660 vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
661 sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
662 (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
663 if (vl >= dd->pport->vls_operational ||
664 vl != sc_to_vlt(dd, sc)) {
665 SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
670 /* Checking P_KEY for requests from user-space */
671 if (egress_pkey_check(dd->pport, req->hdr.lrh, req->hdr.bth, sc,
672 PKEY_CHECK_INVALID)) {
678 * Also should check the BTH.lnh. If it says the next header is GRH then
679 * the RXE parsing will be off and will land in the middle of the KDETH
680 * or miss it entirely.
682 if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
683 SDMA_DBG(req, "User tried to pass in a GRH");
688 req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
690 * Calculate the initial TID offset based on the values of
691 * KDETH.OFFSET and KDETH.OM that are passed in.
693 req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
694 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
695 KDETH_OM_LARGE : KDETH_OM_SMALL);
696 SDMA_DBG(req, "Initial TID offset %u", req->tidoffset);
699 /* Save all the IO vector structures */
700 for (i = 0; i < req->data_iovs; i++) {
701 INIT_LIST_HEAD(&req->iovs[i].list);
702 memcpy(&req->iovs[i].iov, iovec + idx++, sizeof(struct iovec));
703 ret = pin_vector_pages(req, &req->iovs[i]);
708 req->data_len += req->iovs[i].iov.iov_len;
710 SDMA_DBG(req, "total data length %u", req->data_len);
712 if (pcount > req->info.npkts)
713 pcount = req->info.npkts;
716 * User space will provide the TID info only when the
717 * request type is EXPECTED. This is true even if there is
718 * only one packet in the request and the header is already
719 * setup. The reason for the singular TID case is that the
720 * driver needs to perform safety checks.
722 if (req_opcode(req->info.ctrl) == EXPECTED) {
723 u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
725 if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
729 req->tids = kcalloc(ntids, sizeof(*req->tids), GFP_KERNEL);
735 * We have to copy all of the tids because they may vary
736 * in size and, therefore, the TID count might not be
737 * equal to the pkt count. However, there is no way to
738 * tell at this point.
740 ret = copy_from_user(req->tids, iovec[idx].iov_base,
741 ntids * sizeof(*req->tids));
743 SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
752 dlid = be16_to_cpu(req->hdr.lrh[1]);
753 selector = dlid_to_selector(dlid);
755 /* Have to select the engine */
756 req->sde = sdma_select_engine_vl(dd,
757 (u32)(uctxt->ctxt + fd->subctxt +
760 if (!req->sde || !sdma_running(req->sde)) {
765 /* We don't need an AHG entry if the request contains only one packet */
766 if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG)) {
767 int ahg = sdma_ahg_alloc(req->sde);
769 if (likely(ahg >= 0)) {
770 req->ahg_idx = (u8)ahg;
771 set_bit(SDMA_REQ_HAVE_AHG, &req->flags);
775 set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
776 atomic_inc(&pq->n_reqs);
778 /* Send the first N packets in the request to buy us some time */
779 ret = user_sdma_send_pkts(req, pcount);
780 if (unlikely(ret < 0 && ret != -EBUSY)) {
786 * It is possible that the SDMA engine would have processed all the
787 * submitted packets by the time we get here. Therefore, only set
788 * packet queue state to ACTIVE if there are still uncompleted
791 if (atomic_read(&pq->n_reqs))
792 xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
795 * This is a somewhat blocking send implementation.
796 * The driver will block the caller until all packets of the
797 * request have been submitted to the SDMA engine. However, it
798 * will not wait for send completions.
800 while (!test_bit(SDMA_REQ_SEND_DONE, &req->flags)) {
801 ret = user_sdma_send_pkts(req, pcount);
805 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
806 if (ACCESS_ONCE(req->seqcomp) ==
807 req->seqsubmitted - 1)
811 wait_event_interruptible_timeout(
813 (pq->state == SDMA_PKT_Q_ACTIVE),
815 SDMA_IOWAIT_TIMEOUT));
821 user_sdma_free_request(req, true);
824 set_comp_state(pq, cq, info.comp_idx, ERROR, req->status);
828 static inline u32 compute_data_length(struct user_sdma_request *req,
829 struct user_sdma_txreq *tx)
832 * Determine the proper size of the packet data.
833 * The size of the data of the first packet is in the header
834 * template. However, it includes the header and ICRC, which need
836 * The minimum representable packet data length in a header is 4 bytes,
837 * therefore, when the data length request is less than 4 bytes, there's
838 * only one packet, and the packet data length is equal to that of the
839 * request data length.
840 * The size of the remaining packets is the minimum of the frag
841 * size (MTU) or remaining data in the request.
846 if (req->data_len < sizeof(u32))
849 len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
850 (sizeof(tx->hdr) - 4));
851 } else if (req_opcode(req->info.ctrl) == EXPECTED) {
852 u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
855 * Get the data length based on the remaining space in the
858 len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
859 /* If we've filled up the TID pair, move to the next one. */
860 if (unlikely(!len) && ++req->tididx < req->n_tids &&
861 req->tids[req->tididx]) {
862 tidlen = EXP_TID_GET(req->tids[req->tididx],
865 len = min_t(u32, tidlen, req->info.fragsize);
868 * Since the TID pairs map entire pages, make sure that we
869 * are not going to try to send more data that we have
872 len = min(len, req->data_len - req->sent);
874 len = min(req->data_len - req->sent, (u32)req->info.fragsize);
876 SDMA_DBG(req, "Data Length = %u", len);
880 static inline u32 pad_len(u32 len)
882 if (len & (sizeof(u32) - 1))
883 len += sizeof(u32) - (len & (sizeof(u32) - 1));
887 static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
889 /* (Size of complete header - size of PBC) + 4B ICRC + data length */
890 return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
893 static int user_sdma_send_pkts(struct user_sdma_request *req, unsigned maxpkts)
897 struct user_sdma_txreq *tx = NULL;
898 struct hfi1_user_sdma_pkt_q *pq = NULL;
899 struct user_sdma_iovec *iovec = NULL;
906 /* If tx completion has reported an error, we are done. */
907 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
908 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
913 * Check if we might have sent the entire request already
915 if (unlikely(req->seqnum == req->info.npkts)) {
916 if (!list_empty(&req->txps))
921 if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
922 maxpkts = req->info.npkts - req->seqnum;
924 while (npkts < maxpkts) {
925 u32 datalen = 0, queued = 0, data_sent = 0;
929 * Check whether any of the completions have come back
930 * with errors. If so, we are not going to process any
931 * more packets from this request.
933 if (test_bit(SDMA_REQ_HAS_ERROR, &req->flags)) {
934 set_bit(SDMA_REQ_DONE_ERROR, &req->flags);
938 tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL);
945 INIT_LIST_HEAD(&tx->list);
947 if (req->seqnum == req->info.npkts - 1)
948 tx->flags |= TXREQ_FLAGS_REQ_LAST_PKT;
951 * Calculate the payload size - this is min of the fragment
952 * (MTU) size or the remaining bytes in the request but only
953 * if we have payload data.
956 iovec = &req->iovs[req->iov_idx];
957 if (ACCESS_ONCE(iovec->offset) == iovec->iov.iov_len) {
958 if (++req->iov_idx == req->data_iovs) {
962 iovec = &req->iovs[req->iov_idx];
963 WARN_ON(iovec->offset);
966 datalen = compute_data_length(req, tx);
969 "Request has data but pkt len is 0");
975 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags)) {
977 u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
978 u32 lrhlen = get_lrh_len(req->hdr,
981 * Copy the request header into the tx header
982 * because the HW needs a cacheline-aligned
984 * This copy can be optimized out if the hdr
985 * member of user_sdma_request were also
988 memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
989 if (PBC2LRH(pbclen) != lrhlen) {
990 pbclen = (pbclen & 0xf000) |
992 tx->hdr.pbc[0] = cpu_to_le16(pbclen);
994 ret = sdma_txinit_ahg(&tx->txreq,
995 SDMA_TXREQ_F_AHG_COPY,
996 sizeof(tx->hdr) + datalen,
997 req->ahg_idx, 0, NULL, 0,
1001 ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq,
1009 changes = set_txreq_header_ahg(req, tx,
1013 sdma_txinit_ahg(&tx->txreq,
1014 SDMA_TXREQ_F_USE_AHG,
1015 datalen, req->ahg_idx, changes,
1016 req->ahg, sizeof(req->hdr),
1017 user_sdma_txreq_cb);
1020 ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
1021 datalen, user_sdma_txreq_cb);
1025 * Modify the header for this packet. This only needs
1026 * to be done if we are not going to use AHG. Otherwise,
1027 * the HW will do it based on the changes we gave it
1028 * during sdma_txinit_ahg().
1030 ret = set_txreq_header(req, tx, datalen);
1036 * If the request contains any data vectors, add up to
1037 * fragsize bytes to the descriptor.
1039 while (queued < datalen &&
1040 (req->sent + data_sent) < req->data_len) {
1041 unsigned long base, offset;
1042 unsigned pageidx, len;
1044 base = (unsigned long)iovec->iov.iov_base;
1045 offset = offset_in_page(base + iovec->offset +
1047 pageidx = (((iovec->offset + iov_offset +
1048 base) - (base & PAGE_MASK)) >> PAGE_SHIFT);
1049 len = offset + req->info.fragsize > PAGE_SIZE ?
1050 PAGE_SIZE - offset : req->info.fragsize;
1051 len = min((datalen - queued), len);
1052 ret = sdma_txadd_page(pq->dd, &tx->txreq,
1053 iovec->pages[pageidx],
1056 SDMA_DBG(req, "SDMA txreq add page failed %d\n",
1063 if (unlikely(queued < datalen &&
1064 pageidx == iovec->npages &&
1065 req->iov_idx < req->data_iovs - 1)) {
1066 iovec->offset += iov_offset;
1067 iovec = &req->iovs[++req->iov_idx];
1072 * The txreq was submitted successfully so we can update
1075 req->koffset += datalen;
1076 if (req_opcode(req->info.ctrl) == EXPECTED)
1077 req->tidoffset += datalen;
1078 req->sent += data_sent;
1080 iovec->offset += iov_offset;
1081 list_add_tail(&tx->txreq.list, &req->txps);
1083 * It is important to increment this here as it is used to
1084 * generate the BTH.PSN and, therefore, can't be bulk-updated
1085 * outside of the loop.
1087 tx->seqnum = req->seqnum++;
1091 ret = sdma_send_txlist(req->sde, &pq->busy, &req->txps);
1092 if (list_empty(&req->txps)) {
1093 req->seqsubmitted = req->seqnum;
1094 if (req->seqnum == req->info.npkts) {
1095 set_bit(SDMA_REQ_SEND_DONE, &req->flags);
1097 * The txreq has already been submitted to the HW queue
1098 * so we can free the AHG entry now. Corruption will not
1099 * happen due to the sequential manner in which
1100 * descriptors are processed.
1102 if (test_bit(SDMA_REQ_HAVE_AHG, &req->flags))
1103 sdma_ahg_free(req->sde, req->ahg_idx);
1105 } else if (ret > 0) {
1106 req->seqsubmitted += ret;
1112 sdma_txclean(pq->dd, &tx->txreq);
1114 kmem_cache_free(pq->txreq_cache, tx);
1119 * How many pages in this iovec element?
1121 static inline int num_user_pages(const struct iovec *iov)
1123 const unsigned long addr = (unsigned long)iov->iov_base;
1124 const unsigned long len = iov->iov_len;
1125 const unsigned long spage = addr & PAGE_MASK;
1126 const unsigned long epage = (addr + len - 1) & PAGE_MASK;
1128 return 1 + ((epage - spage) >> PAGE_SHIFT);
1131 static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
1133 struct evict_data evict_data;
1135 evict_data.cleared = 0;
1136 evict_data.target = npages;
1137 hfi1_mmu_rb_evict(pq->handler, &evict_data);
1138 return evict_data.cleared;
1141 static int pin_vector_pages(struct user_sdma_request *req,
1142 struct user_sdma_iovec *iovec)
1144 int ret = 0, pinned, npages, cleared;
1145 struct page **pages;
1146 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1147 struct sdma_mmu_node *node = NULL;
1148 struct mmu_rb_node *rb_node;
1150 rb_node = hfi1_mmu_rb_extract(pq->handler,
1151 (unsigned long)iovec->iov.iov_base,
1152 iovec->iov.iov_len);
1153 if (rb_node && !IS_ERR(rb_node))
1154 node = container_of(rb_node, struct sdma_mmu_node, rb);
1159 node = kzalloc(sizeof(*node), GFP_KERNEL);
1163 node->rb.addr = (unsigned long)iovec->iov.iov_base;
1165 atomic_set(&node->refcount, 0);
1168 npages = num_user_pages(&iovec->iov);
1169 if (node->npages < npages) {
1170 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
1172 SDMA_DBG(req, "Failed page array alloc");
1176 memcpy(pages, node->pages, node->npages * sizeof(*pages));
1178 npages -= node->npages;
1181 if (!hfi1_can_pin_pages(pq->dd, pq->mm,
1182 atomic_read(&pq->n_locked), npages)) {
1183 cleared = sdma_cache_evict(pq, npages);
1184 if (cleared >= npages)
1187 pinned = hfi1_acquire_user_pages(pq->mm,
1188 ((unsigned long)iovec->iov.iov_base +
1189 (node->npages * PAGE_SIZE)), npages, 0,
1190 pages + node->npages);
1196 if (pinned != npages) {
1197 unpin_vector_pages(pq->mm, pages, node->npages,
1203 node->rb.len = iovec->iov.iov_len;
1204 node->pages = pages;
1205 node->npages += pinned;
1206 npages = node->npages;
1207 atomic_add(pinned, &pq->n_locked);
1209 iovec->pages = node->pages;
1210 iovec->npages = npages;
1213 ret = hfi1_mmu_rb_insert(req->pq->handler, &node->rb);
1215 atomic_sub(node->npages, &pq->n_locked);
1222 unpin_vector_pages(pq->mm, node->pages, 0, node->npages);
1227 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
1228 unsigned start, unsigned npages)
1230 hfi1_release_user_pages(mm, pages + start, npages, false);
1234 static int check_header_template(struct user_sdma_request *req,
1235 struct hfi1_pkt_header *hdr, u32 lrhlen,
1239 * Perform safety checks for any type of packet:
1240 * - transfer size is multiple of 64bytes
1241 * - packet length is multiple of 4 bytes
1242 * - packet length is not larger than MTU size
1244 * These checks are only done for the first packet of the
1245 * transfer since the header is "given" to us by user space.
1246 * For the remainder of the packets we compute the values.
1248 if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 ||
1249 lrhlen > get_lrh_len(*hdr, req->info.fragsize))
1252 if (req_opcode(req->info.ctrl) == EXPECTED) {
1254 * The header is checked only on the first packet. Furthermore,
1255 * we ensure that at least one TID entry is copied when the
1256 * request is submitted. Therefore, we don't have to verify that
1257 * tididx points to something sane.
1259 u32 tidval = req->tids[req->tididx],
1260 tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
1261 tididx = EXP_TID_GET(tidval, IDX),
1262 tidctrl = EXP_TID_GET(tidval, CTRL),
1264 __le32 kval = hdr->kdeth.ver_tid_offset;
1266 tidoff = KDETH_GET(kval, OFFSET) *
1267 (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
1268 KDETH_OM_LARGE : KDETH_OM_SMALL);
1270 * Expected receive packets have the following
1271 * additional checks:
1272 * - offset is not larger than the TID size
1273 * - TIDCtrl values match between header and TID array
1274 * - TID indexes match between header and TID array
1276 if ((tidoff + datalen > tidlen) ||
1277 KDETH_GET(kval, TIDCTRL) != tidctrl ||
1278 KDETH_GET(kval, TID) != tididx)
1285 * Correctly set the BTH.PSN field based on type of
1286 * transfer - eager packets can just increment the PSN but
1287 * expected packets encode generation and sequence in the
1288 * BTH.PSN field so just incrementing will result in errors.
1290 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
1292 u32 val = be32_to_cpu(bthpsn),
1293 mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
1297 psn = (psn & ~BTH_SEQ_MASK) | ((psn + frags) & BTH_SEQ_MASK);
1303 static int set_txreq_header(struct user_sdma_request *req,
1304 struct user_sdma_txreq *tx, u32 datalen)
1306 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1307 struct hfi1_pkt_header *hdr = &tx->hdr;
1310 u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
1312 /* Copy the header template to the request before modification */
1313 memcpy(hdr, &req->hdr, sizeof(*hdr));
1316 * Check if the PBC and LRH length are mismatched. If so
1317 * adjust both in the header.
1319 pbclen = le16_to_cpu(hdr->pbc[0]);
1320 if (PBC2LRH(pbclen) != lrhlen) {
1321 pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
1322 hdr->pbc[0] = cpu_to_le16(pbclen);
1323 hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
1326 * This is the first packet in the sequence that has
1327 * a "static" size that can be used for the rest of
1328 * the packets (besides the last one).
1330 if (unlikely(req->seqnum == 2)) {
1332 * From this point on the lengths in both the
1333 * PBC and LRH are the same until the last
1335 * Adjust the template so we don't have to update
1338 req->hdr.pbc[0] = hdr->pbc[0];
1339 req->hdr.lrh[2] = hdr->lrh[2];
1343 * We only have to modify the header if this is not the
1344 * first packet in the request. Otherwise, we use the
1345 * header given to us.
1347 if (unlikely(!req->seqnum)) {
1348 ret = check_header_template(req, hdr, lrhlen, datalen);
1354 hdr->bth[2] = cpu_to_be32(
1355 set_pkt_bth_psn(hdr->bth[2],
1356 (req_opcode(req->info.ctrl) == EXPECTED),
1359 /* Set ACK request on last packet */
1360 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1361 hdr->bth[2] |= cpu_to_be32(1UL << 31);
1363 /* Set the new offset */
1364 hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
1365 /* Expected packets have to fill in the new TID information */
1366 if (req_opcode(req->info.ctrl) == EXPECTED) {
1367 tidval = req->tids[req->tididx];
1369 * If the offset puts us at the end of the current TID,
1370 * advance everything.
1372 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1376 * Since we don't copy all the TIDs, all at once,
1377 * we have to check again.
1379 if (++req->tididx > req->n_tids - 1 ||
1380 !req->tids[req->tididx]) {
1383 tidval = req->tids[req->tididx];
1385 req->omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
1386 KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE : KDETH_OM_SMALL;
1387 /* Set KDETH.TIDCtrl based on value for this TID. */
1388 KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
1389 EXP_TID_GET(tidval, CTRL));
1390 /* Set KDETH.TID based on value for this TID */
1391 KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
1392 EXP_TID_GET(tidval, IDX));
1393 /* Clear KDETH.SH only on the last packet */
1394 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1395 KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
1397 * Set the KDETH.OFFSET and KDETH.OM based on size of
1400 SDMA_DBG(req, "TID offset %ubytes %uunits om%u",
1401 req->tidoffset, req->tidoffset / req->omfactor,
1402 req->omfactor != KDETH_OM_SMALL);
1403 KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
1404 req->tidoffset / req->omfactor);
1405 KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
1406 req->omfactor != KDETH_OM_SMALL);
1409 trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
1410 req->info.comp_idx, hdr, tidval);
1411 return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
1414 static int set_txreq_header_ahg(struct user_sdma_request *req,
1415 struct user_sdma_txreq *tx, u32 len)
1418 struct hfi1_user_sdma_pkt_q *pq = req->pq;
1419 struct hfi1_pkt_header *hdr = &req->hdr;
1420 u16 pbclen = le16_to_cpu(hdr->pbc[0]);
1421 u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(len));
1423 if (PBC2LRH(pbclen) != lrhlen) {
1424 /* PBC.PbcLengthDWs */
1425 AHG_HEADER_SET(req->ahg, diff, 0, 0, 12,
1426 cpu_to_le16(LRH2PBC(lrhlen)));
1427 /* LRH.PktLen (we need the full 16 bits due to byte swap) */
1428 AHG_HEADER_SET(req->ahg, diff, 3, 0, 16,
1429 cpu_to_be16(lrhlen >> 2));
1433 * Do the common updates
1435 /* BTH.PSN and BTH.A */
1436 val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
1437 (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
1438 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT))
1440 AHG_HEADER_SET(req->ahg, diff, 6, 0, 16, cpu_to_be16(val32 >> 16));
1441 AHG_HEADER_SET(req->ahg, diff, 6, 16, 16, cpu_to_be16(val32 & 0xffff));
1443 AHG_HEADER_SET(req->ahg, diff, 15, 0, 16,
1444 cpu_to_le16(req->koffset & 0xffff));
1445 AHG_HEADER_SET(req->ahg, diff, 15, 16, 16,
1446 cpu_to_le16(req->koffset >> 16));
1447 if (req_opcode(req->info.ctrl) == EXPECTED) {
1450 tidval = req->tids[req->tididx];
1453 * If the offset puts us at the end of the current TID,
1454 * advance everything.
1456 if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1460 * Since we don't copy all the TIDs, all at once,
1461 * we have to check again.
1463 if (++req->tididx > req->n_tids - 1 ||
1464 !req->tids[req->tididx]) {
1467 tidval = req->tids[req->tididx];
1469 req->omfactor = ((EXP_TID_GET(tidval, LEN) *
1471 KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE :
1473 /* KDETH.OM and KDETH.OFFSET (TID) */
1474 AHG_HEADER_SET(req->ahg, diff, 7, 0, 16,
1475 ((!!(req->omfactor - KDETH_OM_SMALL)) << 15 |
1476 ((req->tidoffset / req->omfactor) & 0x7fff)));
1477 /* KDETH.TIDCtrl, KDETH.TID */
1478 val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
1479 (EXP_TID_GET(tidval, IDX) & 0x3ff));
1480 /* Clear KDETH.SH on last packet */
1481 if (unlikely(tx->flags & TXREQ_FLAGS_REQ_LAST_PKT)) {
1482 val |= cpu_to_le16(KDETH_GET(hdr->kdeth.ver_tid_offset,
1484 val &= cpu_to_le16(~(1U << 13));
1485 AHG_HEADER_SET(req->ahg, diff, 7, 16, 14, val);
1487 AHG_HEADER_SET(req->ahg, diff, 7, 16, 12, val);
1491 trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt,
1492 req->info.comp_idx, req->sde->this_idx,
1493 req->ahg_idx, req->ahg, diff, tidval);
1498 * SDMA tx request completion callback. Called when the SDMA progress
1499 * state machine gets notification that the SDMA descriptors for this
1500 * tx request have been processed by the DMA engine. Called in
1501 * interrupt context.
1503 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
1505 struct user_sdma_txreq *tx =
1506 container_of(txreq, struct user_sdma_txreq, txreq);
1507 struct user_sdma_request *req;
1508 struct hfi1_user_sdma_pkt_q *pq;
1509 struct hfi1_user_sdma_comp_q *cq;
1519 if (status != SDMA_TXREQ_S_OK) {
1520 SDMA_DBG(req, "SDMA completion with error %d",
1522 set_bit(SDMA_REQ_HAS_ERROR, &req->flags);
1525 req->seqcomp = tx->seqnum;
1526 kmem_cache_free(pq->txreq_cache, tx);
1529 idx = req->info.comp_idx;
1530 if (req->status == -1 && status == SDMA_TXREQ_S_OK) {
1531 if (req->seqcomp == req->info.npkts - 1) {
1533 user_sdma_free_request(req, false);
1535 set_comp_state(pq, cq, idx, COMPLETE, 0);
1538 if (status != SDMA_TXREQ_S_OK)
1539 req->status = status;
1540 if (req->seqcomp == (ACCESS_ONCE(req->seqsubmitted) - 1) &&
1541 (test_bit(SDMA_REQ_SEND_DONE, &req->flags) ||
1542 test_bit(SDMA_REQ_DONE_ERROR, &req->flags))) {
1543 user_sdma_free_request(req, false);
1545 set_comp_state(pq, cq, idx, ERROR, req->status);
1550 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
1552 if (atomic_dec_and_test(&pq->n_reqs)) {
1553 xchg(&pq->state, SDMA_PKT_Q_INACTIVE);
1558 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
1560 if (!list_empty(&req->txps)) {
1561 struct sdma_txreq *t, *p;
1563 list_for_each_entry_safe(t, p, &req->txps, list) {
1564 struct user_sdma_txreq *tx =
1565 container_of(t, struct user_sdma_txreq, txreq);
1566 list_del_init(&t->list);
1567 sdma_txclean(req->pq->dd, t);
1568 kmem_cache_free(req->pq->txreq_cache, tx);
1571 if (req->data_iovs) {
1572 struct sdma_mmu_node *node;
1575 for (i = 0; i < req->data_iovs; i++) {
1576 node = req->iovs[i].node;
1581 hfi1_mmu_rb_remove(req->pq->handler,
1584 atomic_dec(&node->refcount);
1588 clear_bit(req->info.comp_idx, req->pq->req_in_use);
1591 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
1592 struct hfi1_user_sdma_comp_q *cq,
1593 u16 idx, enum hfi1_sdma_comp_state state,
1596 hfi1_cdbg(SDMA, "[%u:%u:%u:%u] Setting completion status %u %d",
1597 pq->dd->unit, pq->ctxt, pq->subctxt, idx, state, ret);
1598 cq->comps[idx].status = state;
1600 cq->comps[idx].errcode = -ret;
1601 trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt,
1605 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
1608 return (bool)(node->addr == addr);
1611 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode)
1613 struct sdma_mmu_node *node =
1614 container_of(mnode, struct sdma_mmu_node, rb);
1616 atomic_inc(&node->refcount);
1621 * Return 1 to remove the node from the rb tree and call the remove op.
1623 * Called with the rb tree lock held.
1625 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
1626 void *evict_arg, bool *stop)
1628 struct sdma_mmu_node *node =
1629 container_of(mnode, struct sdma_mmu_node, rb);
1630 struct evict_data *evict_data = evict_arg;
1632 /* is this node still being used? */
1633 if (atomic_read(&node->refcount))
1634 return 0; /* keep this node */
1636 /* this node will be evicted, add its pages to our count */
1637 evict_data->cleared += node->npages;
1639 /* have enough pages been cleared? */
1640 if (evict_data->cleared >= evict_data->target)
1643 return 1; /* remove this node */
1646 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode)
1648 struct sdma_mmu_node *node =
1649 container_of(mnode, struct sdma_mmu_node, rb);
1651 atomic_sub(node->npages, &node->pq->n_locked);
1653 unpin_vector_pages(node->pq->mm, node->pages, 0, node->npages);
1658 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
1660 struct sdma_mmu_node *node =
1661 container_of(mnode, struct sdma_mmu_node, rb);
1663 if (!atomic_read(&node->refcount))