2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/delay.h>
53 #define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */
55 #define SC(name) SEND_CTXT_##name
57 * Send Context functions
59 static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
62 * Set the CM reset bit and wait for it to clear. Use the provided
63 * sendctrl register. This routine has no locking.
65 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
67 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
70 sendctrl = read_csr(dd, SEND_CTRL);
71 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
76 /* defined in header release 48 and higher */
77 #ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT
78 #define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3
79 #define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull
80 #define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \
81 << SEND_CTRL_UNSUPPORTED_VL_SHIFT)
84 /* global control of PIO send */
85 void pio_send_control(struct hfi1_devdata *dd, int op)
89 int write = 1; /* write sendctrl back */
90 int flush = 0; /* re-read sendctrl to make sure it is flushed */
92 spin_lock_irqsave(&dd->sendctrl_lock, flags);
94 reg = read_csr(dd, SEND_CTRL);
96 case PSC_GLOBAL_ENABLE:
97 reg |= SEND_CTRL_SEND_ENABLE_SMASK;
99 case PSC_DATA_VL_ENABLE:
100 /* Disallow sending on VLs not enabled */
101 mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
102 SEND_CTRL_UNSUPPORTED_VL_SHIFT;
103 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
105 case PSC_GLOBAL_DISABLE:
106 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
108 case PSC_GLOBAL_VLARB_ENABLE:
109 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
111 case PSC_GLOBAL_VLARB_DISABLE:
112 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
116 write = 0; /* CSR already written (and flushed) */
118 case PSC_DATA_VL_DISABLE:
119 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
123 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
128 write_csr(dd, SEND_CTRL, reg);
130 (void)read_csr(dd, SEND_CTRL); /* flush write */
133 spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
136 /* number of send context memory pools */
137 #define NUM_SC_POOLS 2
139 /* Send Context Size (SCS) wildcards */
140 #define SCS_POOL_0 -1
141 #define SCS_POOL_1 -2
143 /* Send Context Count (SCC) wildcards */
144 #define SCC_PER_VL -1
145 #define SCC_PER_CPU -2
146 #define SCC_PER_KRCVQ -3
148 /* Send Context Size (SCS) constants */
149 #define SCS_ACK_CREDITS 32
150 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
152 #define PIO_THRESHOLD_CEILING 4096
154 #define PIO_WAIT_BATCH_SIZE 5
156 /* default send context sizes */
157 static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
158 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */
159 .count = SCC_PER_VL }, /* one per NUMA */
160 [SC_ACK] = { .size = SCS_ACK_CREDITS,
161 .count = SCC_PER_KRCVQ },
162 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */
163 .count = SCC_PER_CPU }, /* one per CPU */
164 [SC_VL15] = { .size = SCS_VL15_CREDITS,
169 /* send context memory pool configuration */
170 struct mem_pool_config {
171 int centipercent; /* % of memory, in 100ths of 1% */
172 int absolute_blocks; /* absolute block count */
175 /* default memory pool configuration: 100% in pool 0 */
176 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
177 /* centi%, abs blocks */
178 { 10000, -1 }, /* pool 0 */
179 { 0, -1 }, /* pool 1 */
182 /* memory pool information, used when calculating final sizes */
183 struct mem_pool_info {
185 * 100th of 1% of memory to use, -1 if blocks
188 int count; /* count of contexts in the pool */
189 int blocks; /* block size of the pool */
190 int size; /* context size, in blocks */
194 * Convert a pool wildcard to a valid pool index. The wildcards
195 * start at -1 and increase negatively. Map them as:
200 * Return -1 on non-wildcard input, otherwise convert to a pool number.
202 static int wildcard_to_pool(int wc)
205 return -1; /* non-wildcard */
209 static const char *sc_type_names[SC_MAX] = {
216 static const char *sc_type_name(int index)
218 if (index < 0 || index >= SC_MAX)
220 return sc_type_names[index];
224 * Read the send context memory pool configuration and send context
225 * size configuration. Replace any wildcards and come up with final
226 * counts and sizes for the send context types.
228 int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
230 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
231 int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1;
232 int total_contexts = 0;
236 int cp_total; /* centipercent total */
237 int ab_total; /* absolute block total */
242 * When SDMA is enabled, kernel context pio packet size is capped by
243 * "piothreshold". Reduce pio buffer allocation for kernel context by
244 * setting it to a fixed size. The allocation allows 3-deep buffering
245 * of the largest pio packets plus up to 128 bytes header, sufficient
246 * to maintain verbs performance.
248 * When SDMA is disabled, keep the default pooling allocation.
250 if (HFI1_CAP_IS_KSET(SDMA)) {
251 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
252 piothreshold : PIO_THRESHOLD_CEILING;
253 sc_config_sizes[SC_KERNEL].size =
254 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
259 * - copy the centipercents/absolute sizes from the pool config
260 * - sanity check these values
261 * - add up centipercents, then later check for full value
262 * - add up absolute blocks, then later check for over-commit
266 for (i = 0; i < NUM_SC_POOLS; i++) {
267 int cp = sc_mem_pool_config[i].centipercent;
268 int ab = sc_mem_pool_config[i].absolute_blocks;
271 * A negative value is "unused" or "invalid". Both *can*
272 * be valid, but centipercent wins, so check that first
274 if (cp >= 0) { /* centipercent valid */
276 } else if (ab >= 0) { /* absolute blocks valid */
278 } else { /* neither valid */
281 "Send context memory pool %d: both the block count and centipercent are invalid\n",
286 mem_pool_info[i].centipercent = cp;
287 mem_pool_info[i].blocks = ab;
290 /* do not use both % and absolute blocks for different pools */
291 if (cp_total != 0 && ab_total != 0) {
294 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
298 /* if any percentages are present, they must add up to 100% x 100 */
299 if (cp_total != 0 && cp_total != 10000) {
302 "Send context memory pool centipercent is %d, expecting 10000\n",
307 /* the absolute pool total cannot be more than the mem total */
308 if (ab_total > total_blocks) {
311 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
312 ab_total, total_blocks);
318 * - copy from the context size config
319 * - replace context type wildcard counts with real values
320 * - add up non-memory pool block sizes
321 * - add up memory pool user counts
324 for (i = 0; i < SC_MAX; i++) {
325 int count = sc_config_sizes[i].count;
326 int size = sc_config_sizes[i].size;
330 * Sanity check count: Either a positive value or
331 * one of the expected wildcards is valid. The positive
332 * value is checked later when we compare against total
336 count = dd->n_krcv_queues;
337 } else if (i == SC_KERNEL) {
338 count = INIT_SC_PER_VL * num_vls;
339 } else if (count == SCC_PER_CPU) {
340 count = dd->num_rcv_contexts - dd->n_krcv_queues;
341 } else if (count < 0) {
344 "%s send context invalid count wildcard %d\n",
345 sc_type_name(i), count);
348 if (total_contexts + count > dd->chip_send_contexts)
349 count = dd->chip_send_contexts - total_contexts;
351 total_contexts += count;
354 * Sanity check pool: The conversion will return a pool
355 * number or -1 if a fixed (non-negative) value. The fixed
356 * value is checked later when we compare against
357 * total memory available.
359 pool = wildcard_to_pool(size);
360 if (pool == -1) { /* non-wildcard */
361 fixed_blocks += size * count;
362 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */
363 mem_pool_info[pool].count += count;
364 } else { /* invalid wildcard */
367 "%s send context invalid pool wildcard %d\n",
368 sc_type_name(i), size);
372 dd->sc_sizes[i].count = count;
373 dd->sc_sizes[i].size = size;
375 if (fixed_blocks > total_blocks) {
378 "Send context fixed block count, %u, larger than total block count %u\n",
379 fixed_blocks, total_blocks);
383 /* step 3: calculate the blocks in the pools, and pool context sizes */
384 pool_blocks = total_blocks - fixed_blocks;
385 if (ab_total > pool_blocks) {
388 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
389 ab_total, pool_blocks);
392 /* subtract off the fixed pool blocks */
393 pool_blocks -= ab_total;
395 for (i = 0; i < NUM_SC_POOLS; i++) {
396 struct mem_pool_info *pi = &mem_pool_info[i];
398 /* % beats absolute blocks */
399 if (pi->centipercent >= 0)
400 pi->blocks = (pool_blocks * pi->centipercent) / 10000;
402 if (pi->blocks == 0 && pi->count != 0) {
405 "Send context memory pool %d has %u contexts, but no blocks\n",
409 if (pi->count == 0) {
410 /* warn about wasted blocks */
414 "Send context memory pool %d has %u blocks, but zero contexts\n",
418 pi->size = pi->blocks / pi->count;
422 /* step 4: fill in the context type sizes from the pool sizes */
424 for (i = 0; i < SC_MAX; i++) {
425 if (dd->sc_sizes[i].size < 0) {
426 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
428 WARN_ON_ONCE(pool >= NUM_SC_POOLS);
429 dd->sc_sizes[i].size = mem_pool_info[pool].size;
431 /* make sure we are not larger than what is allowed by the HW */
432 #define PIO_MAX_BLOCKS 1024
433 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
434 dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
436 /* calculate our total usage */
437 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
439 extra = total_blocks - used_blocks;
441 dd_dev_info(dd, "unused send context blocks: %d\n", extra);
443 return total_contexts;
446 int init_send_contexts(struct hfi1_devdata *dd)
449 int ret, i, j, context;
451 ret = init_credit_return(dd);
455 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
457 dd->send_contexts = kcalloc(dd->num_send_contexts,
458 sizeof(struct send_context_info),
460 if (!dd->send_contexts || !dd->hw_to_sw) {
462 kfree(dd->send_contexts);
463 free_credit_return(dd);
467 /* hardware context map starts with invalid send context indices */
468 for (i = 0; i < TXE_NUM_CONTEXTS; i++)
469 dd->hw_to_sw[i] = INVALID_SCI;
472 * All send contexts have their credit sizes. Allocate credits
473 * for each context one after another from the global space.
477 for (i = 0; i < SC_MAX; i++) {
478 struct sc_config_sizes *scs = &dd->sc_sizes[i];
480 for (j = 0; j < scs->count; j++) {
481 struct send_context_info *sci =
482 &dd->send_contexts[context];
485 sci->credits = scs->size;
496 * Allocate a software index and hardware context of the given type.
498 * Must be called with dd->sc_lock held.
500 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
503 struct send_context_info *sci;
507 for (index = 0, sci = &dd->send_contexts[0];
508 index < dd->num_send_contexts; index++, sci++) {
509 if (sci->type == type && sci->allocated == 0) {
511 /* use a 1:1 mapping, but make them non-equal */
512 context = dd->chip_send_contexts - index - 1;
513 dd->hw_to_sw[context] = index;
515 *hw_context = context;
516 return 0; /* success */
519 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
524 * Free the send context given by its software index.
526 * Must be called with dd->sc_lock held.
528 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
530 struct send_context_info *sci;
532 sci = &dd->send_contexts[sw_index];
533 if (!sci->allocated) {
534 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
535 __func__, sw_index, hw_context);
538 dd->hw_to_sw[hw_context] = INVALID_SCI;
541 /* return the base context of a context in a group */
542 static inline u32 group_context(u32 context, u32 group)
544 return (context >> group) << group;
547 /* return the size of a group */
548 static inline u32 group_size(u32 group)
554 * Obtain the credit return addresses, kernel virtual and physical, for the
557 * To understand this routine:
558 * o va and pa are arrays of struct credit_return. One for each physical
559 * send context, per NUMA.
560 * o Each send context always looks in its relative location in a struct
561 * credit_return for its credit return.
562 * o Each send context in a group must have its return address CSR programmed
563 * with the same value. Use the address of the first send context in the
566 static void cr_group_addresses(struct send_context *sc, dma_addr_t *pa)
568 u32 gc = group_context(sc->hw_context, sc->group);
569 u32 index = sc->hw_context & 0x7;
571 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
572 *pa = (unsigned long)
573 &((struct credit_return *)sc->dd->cr_base[sc->node].pa)[gc];
577 * Work queue function triggered in error interrupt routine for
580 static void sc_halted(struct work_struct *work)
582 struct send_context *sc;
584 sc = container_of(work, struct send_context, halt_work);
589 * Calculate PIO block threshold for this send context using the given MTU.
590 * Trigger a return when one MTU plus optional header of credits remain.
592 * Parameter mtu is in bytes.
593 * Parameter hdrqentsize is in DWORDs.
595 * Return value is what to write into the CSR: trigger return when
596 * unreturned credits pass this count.
598 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
603 /* add in the header size, then divide by the PIO block size */
604 mtu += hdrqentsize << 2;
605 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
607 /* check against this context's credits */
608 if (sc->credits <= release_credits)
611 threshold = sc->credits - release_credits;
617 * Calculate credit threshold in terms of percent of the allocated credits.
618 * Trigger when unreturned credits equal or exceed the percentage of the whole.
620 * Return value is what to write into the CSR: trigger return when
621 * unreturned credits pass this count.
623 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
625 return (sc->credits * percent) / 100;
629 * Set the credit return threshold.
631 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
635 int force_return = 0;
637 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
639 old_threshold = (sc->credit_ctrl >>
640 SC(CREDIT_CTRL_THRESHOLD_SHIFT))
641 & SC(CREDIT_CTRL_THRESHOLD_MASK);
643 if (new_threshold != old_threshold) {
646 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
648 & SC(CREDIT_CTRL_THRESHOLD_MASK))
649 << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
650 write_kctxt_csr(sc->dd, sc->hw_context,
651 SC(CREDIT_CTRL), sc->credit_ctrl);
653 /* force a credit return on change to avoid a possible stall */
657 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
660 sc_return_credits(sc);
666 * Set the CHECK_ENABLE register for the send context 'sc'.
668 void set_pio_integrity(struct send_context *sc)
670 struct hfi1_devdata *dd = sc->dd;
672 u32 hw_context = sc->hw_context;
676 * No integrity checks if HFI1_CAP_NO_INTEGRITY is set, or if
679 if (likely(!HFI1_CAP_IS_KSET(NO_INTEGRITY)) &&
680 dd->hfi1_snoop.mode_flag != HFI1_PORT_SNOOP_MODE)
681 reg = hfi1_pkt_default_send_ctxt_mask(dd, type);
683 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), reg);
686 static u32 get_buffers_allocated(struct send_context *sc)
691 for_each_possible_cpu(cpu)
692 ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
696 static void reset_buffers_allocated(struct send_context *sc)
700 for_each_possible_cpu(cpu)
701 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
705 * Allocate a NUMA relative send context structure of the given type along
708 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
709 uint hdrqentsize, int numa)
711 struct send_context_info *sci;
712 struct send_context *sc = NULL;
722 /* do not allocate while frozen */
723 if (dd->flags & HFI1_FROZEN)
726 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
730 sc->buffers_allocated = alloc_percpu(u32);
731 if (!sc->buffers_allocated) {
734 "Cannot allocate buffers_allocated per cpu counters\n"
739 spin_lock_irqsave(&dd->sc_lock, flags);
740 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
742 spin_unlock_irqrestore(&dd->sc_lock, flags);
743 free_percpu(sc->buffers_allocated);
748 sci = &dd->send_contexts[sw_index];
754 spin_lock_init(&sc->alloc_lock);
755 spin_lock_init(&sc->release_lock);
756 spin_lock_init(&sc->credit_ctrl_lock);
757 INIT_LIST_HEAD(&sc->piowait);
758 INIT_WORK(&sc->halt_work, sc_halted);
759 init_waitqueue_head(&sc->halt_wait);
761 /* grouping is always single context for now */
764 sc->sw_index = sw_index;
765 sc->hw_context = hw_context;
766 cr_group_addresses(sc, &pa);
767 sc->credits = sci->credits;
769 /* PIO Send Memory Address details */
770 #define PIO_ADDR_CONTEXT_MASK 0xfful
771 #define PIO_ADDR_CONTEXT_SHIFT 16
772 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
773 << PIO_ADDR_CONTEXT_SHIFT);
775 /* set base and credits */
776 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
777 << SC(CTRL_CTXT_DEPTH_SHIFT))
778 | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
779 << SC(CTRL_CTXT_BASE_SHIFT));
780 write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
782 set_pio_integrity(sc);
784 /* unmask all errors */
785 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
787 /* set the default partition key */
788 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
789 (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
791 SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
793 /* per context type checks */
794 if (type == SC_USER) {
795 opval = USER_OPCODE_CHECK_VAL;
796 opmask = USER_OPCODE_CHECK_MASK;
798 opval = OPCODE_CHECK_VAL_DISABLED;
799 opmask = OPCODE_CHECK_MASK_DISABLED;
802 /* set the send context check opcode mask and value */
803 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
804 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
805 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
807 /* set up credit return */
808 reg = pa & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
809 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
812 * Calculate the initial credit return threshold.
814 * For Ack contexts, set a threshold for half the credits.
815 * For User contexts use the given percentage. This has been
816 * sanitized on driver start-up.
817 * For Kernel contexts, use the default MTU plus a header
818 * or half the credits, whichever is smaller. This should
819 * work for both the 3-deep buffering allocation and the
820 * pooling allocation.
822 if (type == SC_ACK) {
823 thresh = sc_percent_to_threshold(sc, 50);
824 } else if (type == SC_USER) {
825 thresh = sc_percent_to_threshold(sc,
826 user_credit_return_threshold);
827 } else { /* kernel */
828 thresh = min(sc_percent_to_threshold(sc, 50),
829 sc_mtu_to_threshold(sc, hfi1_max_mtu,
832 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
833 /* add in early return */
834 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
835 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
836 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
837 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
839 /* set up write-through credit_ctrl */
840 sc->credit_ctrl = reg;
841 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
843 /* User send contexts should not allow sending on VL15 */
844 if (type == SC_USER) {
846 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
849 spin_unlock_irqrestore(&dd->sc_lock, flags);
852 * Allocate shadow ring to track outstanding PIO buffers _after_
853 * unlocking. We don't know the size until the lock is held and
854 * we can't allocate while the lock is held. No one is using
855 * the context yet, so allocate it now.
857 * User contexts do not get a shadow ring.
859 if (type != SC_USER) {
861 * Size the shadow ring 1 larger than the number of credits
862 * so head == tail can mean empty.
864 sc->sr_size = sci->credits + 1;
865 sc->sr = kzalloc_node(sizeof(union pio_shadow_ring) *
866 sc->sr_size, GFP_KERNEL, numa);
874 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
886 /* free a per-NUMA send context structure */
887 void sc_free(struct send_context *sc)
889 struct hfi1_devdata *dd;
897 sc->flags |= SCF_IN_FREE; /* ensure no restarts */
899 if (!list_empty(&sc->piowait))
900 dd_dev_err(dd, "piowait list not empty!\n");
901 sw_index = sc->sw_index;
902 hw_context = sc->hw_context;
903 sc_disable(sc); /* make sure the HW is disabled */
904 flush_work(&sc->halt_work);
906 spin_lock_irqsave(&dd->sc_lock, flags);
907 dd->send_contexts[sw_index].sc = NULL;
909 /* clear/disable all registers set in sc_alloc */
910 write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
911 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
912 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
913 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
914 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
915 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
916 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
918 /* release the index and context for re-use */
919 sc_hw_free(dd, sw_index, hw_context);
920 spin_unlock_irqrestore(&dd->sc_lock, flags);
923 free_percpu(sc->buffers_allocated);
927 /* disable the context */
928 void sc_disable(struct send_context *sc)
932 struct pio_buf *pbuf;
937 /* do all steps, even if already disabled */
938 spin_lock_irqsave(&sc->alloc_lock, flags);
939 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
940 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
941 sc->flags &= ~SCF_ENABLED;
942 sc_wait_for_packet_egress(sc, 1);
943 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
944 spin_unlock_irqrestore(&sc->alloc_lock, flags);
947 * Flush any waiters. Once the context is disabled,
948 * credit return interrupts are stopped (although there
949 * could be one in-process when the context is disabled).
950 * Wait one microsecond for any lingering interrupts, then
951 * proceed with the flush.
954 spin_lock_irqsave(&sc->release_lock, flags);
955 if (sc->sr) { /* this context has a shadow ring */
956 while (sc->sr_tail != sc->sr_head) {
957 pbuf = &sc->sr[sc->sr_tail].pbuf;
959 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
961 if (sc->sr_tail >= sc->sr_size)
965 spin_unlock_irqrestore(&sc->release_lock, flags);
968 /* return SendEgressCtxtStatus.PacketOccupancy */
969 #define packet_occupancy(r) \
970 (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\
971 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT)
973 /* is egress halted on the context? */
974 #define egress_halted(r) \
975 ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK)
977 /* wait for packet egress, optionally pause for credit return */
978 static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
980 struct hfi1_devdata *dd = sc->dd;
987 reg = read_csr(dd, sc->hw_context * 8 +
988 SEND_EGRESS_CTXT_STATUS);
989 /* done if egress is stopped */
990 if (egress_halted(reg))
992 reg = packet_occupancy(reg);
995 /* counter is reset if occupancy count changes */
999 /* timed out - bounce the link */
1001 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
1002 __func__, sc->sw_index,
1003 sc->hw_context, (u32)reg);
1004 queue_work(dd->pport->hfi1_wq,
1005 &dd->pport->link_bounce_work);
1013 /* Add additional delay to ensure chip returns all credits */
1014 pause_for_credit_return(dd);
1017 void sc_wait(struct hfi1_devdata *dd)
1021 for (i = 0; i < dd->num_send_contexts; i++) {
1022 struct send_context *sc = dd->send_contexts[i].sc;
1026 sc_wait_for_packet_egress(sc, 0);
1031 * Restart a context after it has been halted due to error.
1033 * If the first step fails - wait for the halt to be asserted, return early.
1034 * Otherwise complain about timeouts but keep going.
1036 * It is expected that allocations (enabled flag bit) have been shut off
1037 * already (only applies to kernel contexts).
1039 int sc_restart(struct send_context *sc)
1041 struct hfi1_devdata *dd = sc->dd;
1046 /* bounce off if not halted, or being free'd */
1047 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1050 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1054 * Step 1: Wait for the context to actually halt.
1056 * The error interrupt is asynchronous to actually setting halt
1061 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1062 if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1065 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1066 __func__, sc->sw_index, sc->hw_context);
1074 * Step 2: Ensure no users are still trying to write to PIO.
1076 * For kernel contexts, we have already turned off buffer allocation.
1077 * Now wait for the buffer count to go to zero.
1079 * For user contexts, the user handling code has cut off write access
1080 * to the context's PIO pages before calling this routine and will
1081 * restore write access after this routine returns.
1083 if (sc->type != SC_USER) {
1084 /* kernel context */
1087 count = get_buffers_allocated(sc);
1092 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1093 __func__, sc->sw_index,
1094 sc->hw_context, count);
1102 * Step 3: Wait for all packets to egress.
1103 * This is done while disabling the send context
1105 * Step 4: Disable the context
1107 * This is a superset of the halt. After the disable, the
1108 * errors can be cleared.
1113 * Step 5: Enable the context
1115 * This enable will clear the halted flag and per-send context
1118 return sc_enable(sc);
1122 * PIO freeze processing. To be called after the TXE block is fully frozen.
1123 * Go through all frozen send contexts and disable them. The contexts are
1124 * already stopped by the freeze.
1126 void pio_freeze(struct hfi1_devdata *dd)
1128 struct send_context *sc;
1131 for (i = 0; i < dd->num_send_contexts; i++) {
1132 sc = dd->send_contexts[i].sc;
1134 * Don't disable unallocated, unfrozen, or user send contexts.
1135 * User send contexts will be disabled when the process
1136 * calls into the driver to reset its context.
1138 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1141 /* only need to disable, the context is already stopped */
1147 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1148 * is that all PIO send contexts have been disabled and the SPC freeze has
1149 * been cleared. Now perform the last step and re-enable each kernel context.
1150 * User (PSM) processing will occur when PSM calls into the kernel to
1151 * acknowledge the freeze.
1153 void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1155 struct send_context *sc;
1158 for (i = 0; i < dd->num_send_contexts; i++) {
1159 sc = dd->send_contexts[i].sc;
1160 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1163 sc_enable(sc); /* will clear the sc frozen flag */
1168 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1170 * -ETIMEDOUT - if we wait too long
1171 * -EIO - if there was an error
1173 static int pio_init_wait_progress(struct hfi1_devdata *dd)
1178 /* max is the longest possible HW init time / delay */
1179 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1181 reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1182 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1190 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1194 * Reset all of the send contexts to their power-on state. Used
1195 * only during manual init - no lock against sc_enable needed.
1197 void pio_reset_all(struct hfi1_devdata *dd)
1201 /* make sure the init engine is not busy */
1202 ret = pio_init_wait_progress(dd);
1203 /* ignore any timeout */
1205 /* clear the error */
1206 write_csr(dd, SEND_PIO_ERR_CLEAR,
1207 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1210 /* reset init all */
1211 write_csr(dd, SEND_PIO_INIT_CTXT,
1212 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1214 ret = pio_init_wait_progress(dd);
1217 "PIO send context init %s while initializing all PIO blocks\n",
1218 ret == -ETIMEDOUT ? "is stuck" : "had an error");
1222 /* enable the context */
1223 int sc_enable(struct send_context *sc)
1225 u64 sc_ctrl, reg, pio;
1226 struct hfi1_devdata *dd;
1227 unsigned long flags;
1235 * Obtain the allocator lock to guard against any allocation
1236 * attempts (which should not happen prior to context being
1237 * enabled). On the release/disable side we don't need to
1238 * worry about locking since the releaser will not do anything
1239 * if the context accounting values have not changed.
1241 spin_lock_irqsave(&sc->alloc_lock, flags);
1242 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1243 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1244 goto unlock; /* already enabled */
1246 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1255 /* the alloc lock insures no fast path allocation */
1256 reset_buffers_allocated(sc);
1259 * Clear all per-context errors. Some of these will be set when
1260 * we are re-enabling after a context halt. Now that the context
1261 * is disabled, the halt will not clear until after the PIO init
1262 * engine runs below.
1264 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1266 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1269 * The HW PIO initialization engine can handle only one init
1270 * request at a time. Serialize access to each device's engine.
1272 spin_lock(&dd->sc_init_lock);
1274 * Since access to this code block is serialized and
1275 * each access waits for the initialization to complete
1276 * before releasing the lock, the PIO initialization engine
1277 * should not be in use, so we don't have to wait for the
1278 * InProgress bit to go down.
1280 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1281 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1282 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1283 write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1285 * Wait until the engine is done. Give the chip the required time
1286 * so, hopefully, we read the register just once.
1289 ret = pio_init_wait_progress(dd);
1290 spin_unlock(&dd->sc_init_lock);
1293 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1294 sc->sw_index, sc->hw_context, ret);
1299 * All is well. Enable the context.
1301 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1302 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1304 * Read SendCtxtCtrl to force the write out and prevent a timing
1305 * hazard where a PIO write may reach the context before the enable.
1307 read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1308 sc->flags |= SCF_ENABLED;
1311 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1316 /* force a credit return on the context */
1317 void sc_return_credits(struct send_context *sc)
1322 /* a 0->1 transition schedules a credit return */
1323 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1324 SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1326 * Ensure that the write is flushed and the credit return is
1327 * scheduled. We care more about the 0 -> 1 transition.
1329 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1330 /* set back to 0 for next time */
1331 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1334 /* allow all in-flight packets to drain on the context */
1335 void sc_flush(struct send_context *sc)
1340 sc_wait_for_packet_egress(sc, 1);
1343 /* drop all packets on the context, no waiting until they are sent */
1344 void sc_drop(struct send_context *sc)
1349 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1350 __func__, sc->sw_index, sc->hw_context);
1354 * Start the software reaction to a context halt or SPC freeze:
1355 * - mark the context as halted or frozen
1356 * - stop buffer allocations
1358 * Called from the error interrupt. Other work is deferred until
1359 * out of the interrupt.
1361 void sc_stop(struct send_context *sc, int flag)
1363 unsigned long flags;
1365 /* mark the context */
1368 /* stop buffer allocations */
1369 spin_lock_irqsave(&sc->alloc_lock, flags);
1370 sc->flags &= ~SCF_ENABLED;
1371 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1372 wake_up(&sc->halt_wait);
1375 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1376 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1379 * The send context buffer "allocator".
1381 * @sc: the PIO send context we are allocating from
1382 * @len: length of whole packet - including PBC - in dwords
1383 * @cb: optional callback to call when the buffer is finished sending
1384 * @arg: argument for cb
1386 * Return a pointer to a PIO buffer if successful, NULL if not enough room.
1388 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1389 pio_release_cb cb, void *arg)
1391 struct pio_buf *pbuf = NULL;
1392 unsigned long flags;
1393 unsigned long avail;
1394 unsigned long blocks = dwords_to_blocks(dw_len);
1395 unsigned long start_fill;
1399 spin_lock_irqsave(&sc->alloc_lock, flags);
1400 if (!(sc->flags & SCF_ENABLED)) {
1401 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1406 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1407 if (blocks > avail) {
1408 /* not enough room */
1409 if (unlikely(trycount)) { /* already tried to get more room */
1410 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1413 /* copy from receiver cache line and recalculate */
1414 sc->alloc_free = ACCESS_ONCE(sc->free);
1416 (unsigned long)sc->credits -
1417 (sc->fill - sc->alloc_free);
1418 if (blocks > avail) {
1419 /* still no room, actively update */
1420 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1421 sc_release_update(sc);
1422 spin_lock_irqsave(&sc->alloc_lock, flags);
1423 sc->alloc_free = ACCESS_ONCE(sc->free);
1429 /* there is enough room */
1432 this_cpu_inc(*sc->buffers_allocated);
1434 /* read this once */
1437 /* "allocate" the buffer */
1438 start_fill = sc->fill;
1442 * Fill the parts that the releaser looks at before moving the head.
1443 * The only necessary piece is the sent_at field. The credits
1444 * we have just allocated cannot have been returned yet, so the
1445 * cb and arg will not be looked at for a "while". Put them
1446 * on this side of the memory barrier anyway.
1448 pbuf = &sc->sr[head].pbuf;
1449 pbuf->sent_at = sc->fill;
1452 pbuf->sc = sc; /* could be filled in at sc->sr init time */
1453 /* make sure this is in memory before updating the head */
1455 /* calculate next head index, do not store */
1457 if (next >= sc->sr_size)
1460 * update the head - must be last! - the releaser can look at fields
1461 * in pbuf once we move the head
1465 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1467 /* finish filling in the buffer outside the lock */
1468 pbuf->start = sc->base_addr + ((start_fill % sc->credits)
1470 pbuf->size = sc->credits * PIO_BLOCK_SIZE;
1471 pbuf->end = sc->base_addr + pbuf->size;
1472 pbuf->block_count = blocks;
1473 pbuf->qw_written = 0;
1474 pbuf->carry_bytes = 0;
1475 pbuf->carry.val64 = 0;
1481 * There are at least two entities that can turn on credit return
1482 * interrupts and they can overlap. Avoid problems by implementing
1483 * a count scheme that is enforced by a lock. The lock is needed because
1484 * the count and CSR write must be paired.
1488 * Start credit return interrupts. This is managed by a count. If already
1489 * on, just increment the count.
1491 void sc_add_credit_return_intr(struct send_context *sc)
1493 unsigned long flags;
1495 /* lock must surround both the count change and the CSR update */
1496 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1497 if (sc->credit_intr_count == 0) {
1498 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1499 write_kctxt_csr(sc->dd, sc->hw_context,
1500 SC(CREDIT_CTRL), sc->credit_ctrl);
1502 sc->credit_intr_count++;
1503 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1507 * Stop credit return interrupts. This is managed by a count. Decrement the
1508 * count, if the last user, then turn the credit interrupts off.
1510 void sc_del_credit_return_intr(struct send_context *sc)
1512 unsigned long flags;
1514 WARN_ON(sc->credit_intr_count == 0);
1516 /* lock must surround both the count change and the CSR update */
1517 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1518 sc->credit_intr_count--;
1519 if (sc->credit_intr_count == 0) {
1520 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1521 write_kctxt_csr(sc->dd, sc->hw_context,
1522 SC(CREDIT_CTRL), sc->credit_ctrl);
1524 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1528 * The caller must be careful when calling this. All needint calls
1529 * must be paired with !needint.
1531 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1534 sc_add_credit_return_intr(sc);
1536 sc_del_credit_return_intr(sc);
1537 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1540 sc_return_credits(sc);
1545 * sc_piobufavail - callback when a PIO buffer is available
1546 * @sc: the send context
1548 * This is called from the interrupt handler when a PIO buffer is
1549 * available after hfi1_verbs_send() returned an error that no buffers were
1550 * available. Disable the interrupt if there are no more QPs waiting.
1552 static void sc_piobufavail(struct send_context *sc)
1554 struct hfi1_devdata *dd = sc->dd;
1555 struct hfi1_ibdev *dev = &dd->verbs_dev;
1556 struct list_head *list;
1557 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1559 struct hfi1_qp_priv *priv;
1560 unsigned long flags;
1563 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1564 dd->send_contexts[sc->sw_index].type != SC_VL15)
1566 list = &sc->piowait;
1568 * Note: checking that the piowait list is empty and clearing
1569 * the buffer available interrupt needs to be atomic or we
1570 * could end up with QPs on the wait list with the interrupt
1573 write_seqlock_irqsave(&dev->iowait_lock, flags);
1574 while (!list_empty(list)) {
1575 struct iowait *wait;
1577 if (n == ARRAY_SIZE(qps))
1579 wait = list_first_entry(list, struct iowait, list);
1580 qp = iowait_to_qp(wait);
1582 list_del_init(&priv->s_iowait.list);
1583 /* refcount held until actual wake up */
1587 * If there had been waiters and there are more
1588 * insure that we redo the force to avoid a potential hang.
1591 hfi1_sc_wantpiobuf_intr(sc, 0);
1592 if (!list_empty(list))
1593 hfi1_sc_wantpiobuf_intr(sc, 1);
1595 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
1597 for (i = 0; i < n; i++)
1598 hfi1_qp_wakeup(qps[i],
1599 RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN);
1602 /* translate a send credit update to a bit code of reasons */
1603 static inline int fill_code(u64 hw_free)
1607 if (hw_free & CR_STATUS_SMASK)
1608 code |= PRC_STATUS_ERR;
1609 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1611 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1612 code |= PRC_THRESHOLD;
1613 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1614 code |= PRC_FILL_ERR;
1615 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1616 code |= PRC_SC_DISABLE;
1620 /* use the jiffies compare to get the wrap right */
1621 #define sent_before(a, b) time_before(a, b) /* a < b */
1624 * The send context buffer "releaser".
1626 void sc_release_update(struct send_context *sc)
1628 struct pio_buf *pbuf;
1631 unsigned long old_free;
1633 unsigned long extra;
1634 unsigned long flags;
1640 spin_lock_irqsave(&sc->release_lock, flags);
1642 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */
1643 old_free = sc->free;
1644 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1645 - (old_free & CR_COUNTER_MASK))
1647 free = old_free + extra;
1648 trace_hfi1_piofree(sc, extra);
1650 /* call sent buffer callbacks */
1651 code = -1; /* code not yet set */
1652 head = ACCESS_ONCE(sc->sr_head); /* snapshot the head */
1654 while (head != tail) {
1655 pbuf = &sc->sr[tail].pbuf;
1657 if (sent_before(free, pbuf->sent_at)) {
1662 if (code < 0) /* fill in code on first user */
1663 code = fill_code(hw_free);
1664 (*pbuf->cb)(pbuf->arg, code);
1668 if (tail >= sc->sr_size)
1672 /* make sure tail is updated before free */
1675 spin_unlock_irqrestore(&sc->release_lock, flags);
1680 * Send context group releaser. Argument is the send context that caused
1681 * the interrupt. Called from the send context interrupt handler.
1683 * Call release on all contexts in the group.
1685 * This routine takes the sc_lock without an irqsave because it is only
1686 * called from an interrupt handler. Adjust if that changes.
1688 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1690 struct send_context *sc;
1694 spin_lock(&dd->sc_lock);
1695 sw_index = dd->hw_to_sw[hw_context];
1696 if (unlikely(sw_index >= dd->num_send_contexts)) {
1697 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1698 __func__, hw_context, sw_index);
1701 sc = dd->send_contexts[sw_index].sc;
1705 gc = group_context(hw_context, sc->group);
1706 gc_end = gc + group_size(sc->group);
1707 for (; gc < gc_end; gc++) {
1708 sw_index = dd->hw_to_sw[gc];
1709 if (unlikely(sw_index >= dd->num_send_contexts)) {
1711 "%s: invalid hw (%u) to sw (%u) mapping\n",
1712 __func__, hw_context, sw_index);
1715 sc_release_update(dd->send_contexts[sw_index].sc);
1718 spin_unlock(&dd->sc_lock);
1722 * pio_select_send_context_vl() - select send context
1724 * @selector: a spreading factor
1727 * This function returns a send context based on the selector and a vl.
1728 * The mapping fields are protected by RCU
1730 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1731 u32 selector, u8 vl)
1733 struct pio_vl_map *m;
1734 struct pio_map_elem *e;
1735 struct send_context *rval;
1738 * NOTE This should only happen if SC->VL changed after the initial
1739 * checks on the QP/AH
1740 * Default will return VL0's send context below
1742 if (unlikely(vl >= num_vls)) {
1748 m = rcu_dereference(dd->pio_map);
1751 return dd->vld[0].sc;
1753 e = m->map[vl & m->mask];
1754 rval = e->ksc[selector & e->mask];
1758 rval = !rval ? dd->vld[0].sc : rval;
1763 * pio_select_send_context_sc() - select send context
1765 * @selector: a spreading factor
1766 * @sc5: the 5 bit sc
1768 * This function returns an send context based on the selector and an sc
1770 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1771 u32 selector, u8 sc5)
1773 u8 vl = sc_to_vlt(dd, sc5);
1775 return pio_select_send_context_vl(dd, selector, vl);
1779 * Free the indicated map struct
1781 static void pio_map_free(struct pio_vl_map *m)
1785 for (i = 0; m && i < m->actual_vls; i++)
1791 * Handle RCU callback
1793 static void pio_map_rcu_callback(struct rcu_head *list)
1795 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1801 * Set credit return threshold for the kernel send context
1803 static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1807 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1809 sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1811 dd->rcd[0]->rcvhdrqentsize));
1812 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1816 * pio_map_init - called when #vls change
1818 * @port: port number
1819 * @num_vls: number of vls
1820 * @vl_scontexts: per vl send context mapping (optional)
1822 * This routine changes the mapping based on the number of vls.
1824 * vl_scontexts is used to specify a non-uniform vl/send context
1825 * loading. NULL implies auto computing the loading and giving each
1826 * VL an uniform distribution of send contexts per VL.
1828 * The auto algorithm computers the sc_per_vl and the number of extra
1829 * send contexts. Any extra send contexts are added from the last VL
1832 * rcu locking is used here to control access to the mapping fields.
1834 * If either the num_vls or num_send_contexts are non-power of 2, the
1835 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1836 * rounded up to the next highest power of 2 and the first entry is
1837 * reused in a round robin fashion.
1839 * If an error occurs the map change is not done and the mapping is not
1843 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1846 int extra, sc_per_vl;
1848 int num_kernel_send_contexts = 0;
1849 u8 lvl_scontexts[OPA_MAX_VLS];
1850 struct pio_vl_map *oldmap, *newmap;
1852 if (!vl_scontexts) {
1853 for (i = 0; i < dd->num_send_contexts; i++)
1854 if (dd->send_contexts[i].type == SC_KERNEL)
1855 num_kernel_send_contexts++;
1856 /* truncate divide */
1857 sc_per_vl = num_kernel_send_contexts / num_vls;
1859 extra = num_kernel_send_contexts % num_vls;
1860 vl_scontexts = lvl_scontexts;
1861 /* add extras from last vl down */
1862 for (i = num_vls - 1; i >= 0; i--, extra--)
1863 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1866 newmap = kzalloc(sizeof(*newmap) +
1867 roundup_pow_of_two(num_vls) *
1868 sizeof(struct pio_map_elem *),
1872 newmap->actual_vls = num_vls;
1873 newmap->vls = roundup_pow_of_two(num_vls);
1874 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1875 for (i = 0; i < newmap->vls; i++) {
1876 /* save for wrap around */
1877 int first_scontext = scontext;
1879 if (i < newmap->actual_vls) {
1880 int sz = roundup_pow_of_two(vl_scontexts[i]);
1882 /* only allocate once */
1883 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1887 if (!newmap->map[i])
1889 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1891 * assign send contexts and
1892 * adjust credit return threshold
1894 for (j = 0; j < sz; j++) {
1895 if (dd->kernel_send_context[scontext]) {
1896 newmap->map[i]->ksc[j] =
1897 dd->kernel_send_context[scontext];
1898 set_threshold(dd, scontext, i);
1900 if (++scontext >= first_scontext +
1902 /* wrap back to first send context */
1903 scontext = first_scontext;
1906 /* just re-use entry without allocating */
1907 newmap->map[i] = newmap->map[i % num_vls];
1909 scontext = first_scontext + vl_scontexts[i];
1911 /* newmap in hand, save old map */
1912 spin_lock_irq(&dd->pio_map_lock);
1913 oldmap = rcu_dereference_protected(dd->pio_map,
1914 lockdep_is_held(&dd->pio_map_lock));
1916 /* publish newmap */
1917 rcu_assign_pointer(dd->pio_map, newmap);
1919 spin_unlock_irq(&dd->pio_map_lock);
1920 /* success, free any old map after grace period */
1922 call_rcu(&oldmap->list, pio_map_rcu_callback);
1925 /* free any partial allocation */
1926 pio_map_free(newmap);
1930 void free_pio_map(struct hfi1_devdata *dd)
1932 /* Free PIO map if allocated */
1933 if (rcu_access_pointer(dd->pio_map)) {
1934 spin_lock_irq(&dd->pio_map_lock);
1935 pio_map_free(rcu_access_pointer(dd->pio_map));
1936 RCU_INIT_POINTER(dd->pio_map, NULL);
1937 spin_unlock_irq(&dd->pio_map_lock);
1940 kfree(dd->kernel_send_context);
1941 dd->kernel_send_context = NULL;
1944 int init_pervl_scs(struct hfi1_devdata *dd)
1947 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1948 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1950 struct hfi1_pportdata *ppd = dd->pport;
1952 dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1953 dd->rcd[0]->rcvhdrqentsize, dd->node);
1954 if (!dd->vld[15].sc)
1956 hfi1_init_ctxt(dd->vld[15].sc);
1957 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1959 dd->kernel_send_context = kmalloc_node(dd->num_send_contexts *
1960 sizeof(struct send_context *),
1961 GFP_KERNEL, dd->node);
1962 dd->kernel_send_context[0] = dd->vld[15].sc;
1964 for (i = 0; i < num_vls; i++) {
1966 * Since this function does not deal with a specific
1967 * receive context but we need the RcvHdrQ entry size,
1968 * use the size from rcd[0]. It is guaranteed to be
1969 * valid at this point and will remain the same for all
1972 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
1973 dd->rcd[0]->rcvhdrqentsize, dd->node);
1976 dd->kernel_send_context[i + 1] = dd->vld[i].sc;
1977 hfi1_init_ctxt(dd->vld[i].sc);
1978 /* non VL15 start with the max MTU */
1979 dd->vld[i].mtu = hfi1_max_mtu;
1981 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
1982 dd->kernel_send_context[i + 1] =
1983 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
1984 if (!dd->kernel_send_context[i + 1])
1986 hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
1989 sc_enable(dd->vld[15].sc);
1990 ctxt = dd->vld[15].sc->hw_context;
1991 mask = all_vl_mask & ~(1LL << 15);
1992 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1994 "Using send context %u(%u) for VL15\n",
1995 dd->vld[15].sc->sw_index, ctxt);
1997 for (i = 0; i < num_vls; i++) {
1998 sc_enable(dd->vld[i].sc);
1999 ctxt = dd->vld[i].sc->hw_context;
2000 mask = all_vl_mask & ~(data_vls_mask);
2001 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2003 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2004 sc_enable(dd->kernel_send_context[i + 1]);
2005 ctxt = dd->kernel_send_context[i + 1]->hw_context;
2006 mask = all_vl_mask & ~(data_vls_mask);
2007 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2010 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2014 sc_free(dd->vld[15].sc);
2015 for (i = 0; i < num_vls; i++)
2016 sc_free(dd->vld[i].sc);
2017 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2018 sc_free(dd->kernel_send_context[i + 1]);
2022 int init_credit_return(struct hfi1_devdata *dd)
2028 num_numa = num_online_nodes();
2029 /* enforce the expectation that the numas are compact */
2030 for (i = 0; i < num_numa; i++) {
2031 if (!node_online(i)) {
2032 dd_dev_err(dd, "NUMA nodes are not compact\n");
2038 dd->cr_base = kcalloc(
2040 sizeof(struct credit_return_base),
2043 dd_dev_err(dd, "Unable to allocate credit return base\n");
2047 for (i = 0; i < num_numa; i++) {
2048 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2050 set_dev_node(&dd->pcidev->dev, i);
2051 dd->cr_base[i].va = dma_zalloc_coherent(
2056 if (!dd->cr_base[i].va) {
2057 set_dev_node(&dd->pcidev->dev, dd->node);
2059 "Unable to allocate credit return DMA range for NUMA %d\n",
2065 set_dev_node(&dd->pcidev->dev, dd->node);
2072 void free_credit_return(struct hfi1_devdata *dd)
2080 num_numa = num_online_nodes();
2081 for (i = 0; i < num_numa; i++) {
2082 if (dd->cr_base[i].va) {
2083 dma_free_coherent(&dd->pcidev->dev,
2085 sizeof(struct credit_return),