2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <rdma/rdma_vt.h>
69 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
72 * min buffers we want to have per context, after driver
74 #define HFI1_MIN_USER_CTXT_BUFCNT 7
76 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
78 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
79 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
82 * Number of user receive contexts we are configured to use (to allow for more
83 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
85 int num_user_contexts = -1;
86 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
88 num_user_contexts, "Set max number of user contexts to use");
90 uint krcvqs[RXE_NUM_DATA_VL];
92 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
93 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
95 /* computed based on above array */
98 static unsigned hfi1_rcvarr_split = 25;
99 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
100 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
102 static uint eager_buffer_size = (2 << 20); /* 2MB */
103 module_param(eager_buffer_size, uint, S_IRUGO);
104 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
106 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
107 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
108 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
110 static uint hfi1_hdrq_entsize = 32;
111 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
112 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
114 unsigned int user_credit_return_threshold = 33; /* default is 33% */
115 module_param(user_credit_return_threshold, uint, S_IRUGO);
116 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
118 static inline u64 encode_rcv_header_entry_size(u16);
120 static struct idr hfi1_unit_table;
121 u32 hfi1_cpulist_count;
122 unsigned long *hfi1_cpulist;
125 * Common code for creating the receive context array.
127 int hfi1_create_ctxts(struct hfi1_devdata *dd)
132 /* Control context has to be always 0 */
133 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
136 GFP_KERNEL, dd->node);
140 /* create one or more kernel contexts */
141 for (i = 0; i < dd->first_user_ctxt; ++i) {
142 struct hfi1_pportdata *ppd;
143 struct hfi1_ctxtdata *rcd;
145 ppd = dd->pport + (i % dd->num_pports);
146 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
149 "Unable to allocate kernel receive context, failing\n");
153 * Set up the kernel context flags here and now because they
154 * use default values for all receive side memories. User
155 * contexts will be handled as they are created.
157 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159 HFI1_CAP_KGET(NODROP_EGR_FULL) |
160 HFI1_CAP_KGET(DMA_RTAIL);
162 /* Control context must use DMA_RTAIL */
163 if (rcd->ctxt == HFI1_CTRL_CTXT)
164 rcd->flags |= HFI1_CAP_DMA_RTAIL;
167 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
170 "Unable to allocate kernel send context, failing\n");
171 dd->rcd[rcd->ctxt] = NULL;
172 hfi1_free_ctxtdata(dd, rcd);
176 ret = hfi1_init_ctxt(rcd->sc);
179 "Failed to setup kernel receive context, failing\n");
181 dd->rcd[rcd->ctxt] = NULL;
182 hfi1_free_ctxtdata(dd, rcd);
189 * Initialize aspm, to be done after gen3 transition and setting up
190 * contexts and before enabling interrupts
204 * Common code for user and kernel context setup.
206 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
209 struct hfi1_devdata *dd = ppd->dd;
210 struct hfi1_ctxtdata *rcd;
211 unsigned kctxt_ngroups = 0;
214 if (dd->rcv_entries.nctxt_extra >
215 dd->num_rcv_contexts - dd->first_user_ctxt)
216 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
217 (dd->num_rcv_contexts - dd->first_user_ctxt));
218 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
220 u32 rcvtids, max_entries;
222 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
224 INIT_LIST_HEAD(&rcd->qp_wait_list);
231 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
233 mutex_init(&rcd->exp_lock);
236 * Calculate the context's RcvArray entry starting point.
237 * We do this here because we have to take into account all
238 * the RcvArray entries that previous context would have
239 * taken and we have to account for any extra groups
240 * assigned to the kernel or user contexts.
242 if (ctxt < dd->first_user_ctxt) {
243 if (ctxt < kctxt_ngroups) {
244 base = ctxt * (dd->rcv_entries.ngroups + 1);
245 rcd->rcv_array_groups++;
247 base = kctxt_ngroups +
248 (ctxt * dd->rcv_entries.ngroups);
250 u16 ct = ctxt - dd->first_user_ctxt;
252 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
254 if (ct < dd->rcv_entries.nctxt_extra) {
255 base += ct * (dd->rcv_entries.ngroups + 1);
256 rcd->rcv_array_groups++;
258 base += dd->rcv_entries.nctxt_extra +
259 (ct * dd->rcv_entries.ngroups);
261 rcd->eager_base = base * dd->rcv_entries.group_size;
263 /* Validate and initialize Rcv Hdr Q variables */
264 if (rcvhdrcnt % HDRQ_INCREMENT) {
266 "ctxt%u: header queue count %d must be divisible by %lu\n",
267 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
270 rcd->rcvhdrq_cnt = rcvhdrcnt;
271 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
273 * Simple Eager buffer allocation: we have already pre-allocated
274 * the number of RcvArray entry groups. Each ctxtdata structure
275 * holds the number of groups for that context.
277 * To follow CSR requirements and maintain cacheline alignment,
278 * make sure all sizes and bases are multiples of group_size.
280 * The expected entry count is what is left after assigning
283 max_entries = rcd->rcv_array_groups *
284 dd->rcv_entries.group_size;
285 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
286 rcd->egrbufs.count = round_down(rcvtids,
287 dd->rcv_entries.group_size);
288 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
289 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
291 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
294 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
295 rcd->ctxt, rcd->egrbufs.count);
298 * Allocate array that will hold the eager buffer accounting
300 * This will allocate the maximum possible buffer count based
301 * on the value of the RcvArray split parameter.
302 * The resulting value will be rounded down to the closest
303 * multiple of dd->rcv_entries.group_size.
305 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
306 sizeof(*rcd->egrbufs.buffers),
308 if (!rcd->egrbufs.buffers)
310 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
311 sizeof(*rcd->egrbufs.rcvtids),
313 if (!rcd->egrbufs.rcvtids)
315 rcd->egrbufs.size = eager_buffer_size;
317 * The size of the buffers programmed into the RcvArray
318 * entries needs to be big enough to handle the highest
321 if (rcd->egrbufs.size < hfi1_max_mtu) {
322 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
324 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
325 rcd->ctxt, rcd->egrbufs.size);
327 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
329 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
330 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
338 kfree(rcd->egrbufs.rcvtids);
339 kfree(rcd->egrbufs.buffers);
345 * Convert a receive header entry size that to the encoding used in the CSR.
347 * Return a zero if the given size is invalid.
349 static inline u64 encode_rcv_header_entry_size(u16 size)
351 /* there are only 3 valid receive header entry sizes */
358 return 0; /* invalid */
362 * Select the largest ccti value over all SLs to determine the intra-
363 * packet gap for the link.
365 * called with cca_timer_lock held (to protect access to cca_timer
366 * array), and rcu_read_lock() (to protect access to cc_state).
368 void set_link_ipg(struct hfi1_pportdata *ppd)
370 struct hfi1_devdata *dd = ppd->dd;
371 struct cc_state *cc_state;
373 u16 cce, ccti_limit, max_ccti = 0;
376 u32 current_egress_rate; /* Mbits /sec */
379 * max_pkt_time is the maximum packet egress time in units
380 * of the fabric clock period 1/(805 MHz).
383 cc_state = get_cc_state(ppd);
387 * This should _never_ happen - rcu_read_lock() is held,
388 * and set_link_ipg() should not be called if cc_state
393 for (i = 0; i < OPA_MAX_SLS; i++) {
394 u16 ccti = ppd->cca_timer[i].ccti;
400 ccti_limit = cc_state->cct.ccti_limit;
401 if (max_ccti > ccti_limit)
402 max_ccti = ccti_limit;
404 cce = cc_state->cct.entries[max_ccti].entry;
405 shift = (cce & 0xc000) >> 14;
406 mult = (cce & 0x3fff);
408 current_egress_rate = active_egress_rate(ppd);
410 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
412 src = (max_pkt_time >> shift) * mult;
414 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
415 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
417 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
420 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
422 struct cca_timer *cca_timer;
423 struct hfi1_pportdata *ppd;
425 u16 ccti_timer, ccti_min;
426 struct cc_state *cc_state;
428 enum hrtimer_restart ret = HRTIMER_NORESTART;
430 cca_timer = container_of(t, struct cca_timer, hrtimer);
431 ppd = cca_timer->ppd;
436 cc_state = get_cc_state(ppd);
440 return HRTIMER_NORESTART;
444 * 1) decrement ccti for SL
445 * 2) calculate IPG for link (set_link_ipg())
446 * 3) restart timer, unless ccti is at min value
449 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
450 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
452 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
454 if (cca_timer->ccti > ccti_min) {
459 if (cca_timer->ccti > ccti_min) {
460 unsigned long nsec = 1024 * ccti_timer;
461 /* ccti_timer is in units of 1.024 usec */
462 hrtimer_forward_now(t, ns_to_ktime(nsec));
463 ret = HRTIMER_RESTART;
466 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
472 * Common code for initializing the physical port structure.
474 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
475 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
478 uint default_pkey_idx;
481 ppd->hw_pidx = hw_pidx;
482 ppd->port = port; /* IB port number, not index */
484 default_pkey_idx = 1;
486 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
488 hfi1_early_err(&pdev->dev,
489 "Faking data partition 0x8001 in idx %u\n",
491 ppd->pkeys[!default_pkey_idx] = 0x8001;
494 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
495 INIT_WORK(&ppd->link_up_work, handle_link_up);
496 INIT_WORK(&ppd->link_down_work, handle_link_down);
497 INIT_WORK(&ppd->freeze_work, handle_freeze);
498 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
499 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
500 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
501 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
502 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
504 mutex_init(&ppd->hls_lock);
505 spin_lock_init(&ppd->sdma_alllock);
506 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
508 ppd->qsfp_info.ppd = ppd;
509 ppd->sm_trap_qp = 0x0;
514 spin_lock_init(&ppd->cca_timer_lock);
516 for (i = 0; i < OPA_MAX_SLS; i++) {
517 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
519 ppd->cca_timer[i].ppd = ppd;
520 ppd->cca_timer[i].sl = i;
521 ppd->cca_timer[i].ccti = 0;
522 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
525 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
527 spin_lock_init(&ppd->cc_state_lock);
528 spin_lock_init(&ppd->cc_log_lock);
529 size = sizeof(struct cc_state);
530 RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
531 if (!rcu_dereference(ppd->cc_state))
537 hfi1_early_err(&pdev->dev,
538 "Congestion Control Agent disabled for port %d\n", port);
542 * Do initialization for device that is only needed on
543 * first detect, not on resets.
545 static int loadtime_init(struct hfi1_devdata *dd)
551 * init_after_reset - re-initialize after a reset
552 * @dd: the hfi1_ib device
554 * sanity check at least some of the values after reset, and
555 * ensure no receive or transmit (explicitly, in case reset
558 static int init_after_reset(struct hfi1_devdata *dd)
563 * Ensure chip does no sends or receives, tail updates, or
564 * pioavail updates while we re-initialize. This is mostly
565 * for the driver data structures, not chip registers.
567 for (i = 0; i < dd->num_rcv_contexts; i++)
568 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
569 HFI1_RCVCTRL_INTRAVAIL_DIS |
570 HFI1_RCVCTRL_TAILUPD_DIS, i);
571 pio_send_control(dd, PSC_GLOBAL_DISABLE);
572 for (i = 0; i < dd->num_send_contexts; i++)
573 sc_disable(dd->send_contexts[i].sc);
578 static void enable_chip(struct hfi1_devdata *dd)
583 /* enable PIO send */
584 pio_send_control(dd, PSC_GLOBAL_ENABLE);
587 * Enable kernel ctxts' receive and receive interrupt.
588 * Other ctxts done as user opens and initializes them.
590 for (i = 0; i < dd->first_user_ctxt; ++i) {
591 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
592 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
593 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
594 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
595 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
596 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
597 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
598 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
599 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
600 hfi1_rcvctrl(dd, rcvmask, i);
601 sc_enable(dd->rcd[i]->sc);
606 * create_workqueues - create per port workqueues
607 * @dd: the hfi1_ib device
609 static int create_workqueues(struct hfi1_devdata *dd)
612 struct hfi1_pportdata *ppd;
614 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
615 ppd = dd->pport + pidx;
620 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
629 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
630 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
631 ppd = dd->pport + pidx;
633 destroy_workqueue(ppd->hfi1_wq);
641 * hfi1_init - do the actual initialization sequence on the chip
642 * @dd: the hfi1_ib device
643 * @reinit: re-initializing, so don't allocate new memory
645 * Do the actual initialization sequence on the chip. This is done
646 * both from the init routine called from the PCI infrastructure, and
647 * when we reset the chip, or detect that it was reset internally,
648 * or it's administratively re-enabled.
650 * Memory allocation here and in called routines is only done in
651 * the first case (reinit == 0). We have to be careful, because even
652 * without memory allocation, we need to re-write all the chip registers
653 * TIDs, etc. after the reset or enable has completed.
655 int hfi1_init(struct hfi1_devdata *dd, int reinit)
657 int ret = 0, pidx, lastfail = 0;
659 struct hfi1_ctxtdata *rcd;
660 struct hfi1_pportdata *ppd;
662 /* Set up recv low level handlers */
663 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
664 kdeth_process_expected;
665 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
667 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
669 process_receive_error;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
671 process_receive_bypass;
672 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
673 process_receive_invalid;
674 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
675 process_receive_invalid;
676 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
677 process_receive_invalid;
678 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
680 /* Set up send low level handlers */
681 dd->process_pio_send = hfi1_verbs_send_pio;
682 dd->process_dma_send = hfi1_verbs_send_dma;
683 dd->pio_inline_send = pio_copy;
686 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
689 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
693 /* make sure the link is not "up" */
694 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
695 ppd = dd->pport + pidx;
700 ret = init_after_reset(dd);
702 ret = loadtime_init(dd);
706 /* allocate dummy tail memory for all receive contexts */
707 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
708 &dd->pcidev->dev, sizeof(u64),
709 &dd->rcvhdrtail_dummy_physaddr,
712 if (!dd->rcvhdrtail_dummy_kvaddr) {
713 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
718 /* dd->rcd can be NULL if early initialization failed */
719 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
721 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
722 * re-init, the simplest way to handle this is to free
723 * existing, and re-allocate.
724 * Need to re-create rest of ctxt 0 ctxtdata as well.
730 rcd->do_interrupt = &handle_receive_interrupt;
732 lastfail = hfi1_create_rcvhdrq(dd, rcd);
734 lastfail = hfi1_setup_eagerbufs(rcd);
737 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
742 /* Allocate enough memory for user event notification. */
743 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
744 sizeof(*dd->events));
745 dd->events = vmalloc_user(len);
747 dd_dev_err(dd, "Failed to allocate user events page\n");
749 * Allocate a page for device and port status.
750 * Page will be shared amongst all user processes.
752 dd->status = vmalloc_user(PAGE_SIZE);
754 dd_dev_err(dd, "Failed to allocate dev status page\n");
756 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
757 sizeof(dd->status->freezemsg));
758 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
759 ppd = dd->pport + pidx;
761 /* Currently, we only have one port */
762 ppd->statusp = &dd->status->port;
767 /* enable chip even if we have an error, so we can debug cause */
772 * Set status even if port serdes is not initialized
773 * so that diags will work.
776 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
779 /* enable all interrupts from the chip */
780 set_intr_state(dd, 1);
782 /* chip is OK for user apps; mark it as initialized */
783 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
784 ppd = dd->pport + pidx;
787 * start the serdes - must be after interrupts are
788 * enabled so we are notified when the link goes up
790 lastfail = bringup_serdes(ppd);
793 "Failed to bring up port %u\n",
797 * Set status even if port serdes is not initialized
798 * so that diags will work.
801 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
803 if (!ppd->link_speed_enabled)
808 /* if ret is non-zero, we probably should do some cleanup here... */
812 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
814 return idr_find(&hfi1_unit_table, unit);
817 struct hfi1_devdata *hfi1_lookup(int unit)
819 struct hfi1_devdata *dd;
822 spin_lock_irqsave(&hfi1_devs_lock, flags);
823 dd = __hfi1_lookup(unit);
824 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
830 * Stop the timers during unit shutdown, or after an error late
833 static void stop_timers(struct hfi1_devdata *dd)
835 struct hfi1_pportdata *ppd;
838 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
839 ppd = dd->pport + pidx;
840 if (ppd->led_override_timer.data) {
841 del_timer_sync(&ppd->led_override_timer);
842 atomic_set(&ppd->led_override_timer_active, 0);
848 * shutdown_device - shut down a device
849 * @dd: the hfi1_ib device
851 * This is called to make the device quiet when we are about to
852 * unload the driver, and also when the device is administratively
853 * disabled. It does not free any data structures.
854 * Everything it does has to be setup again by hfi1_init(dd, 1)
856 static void shutdown_device(struct hfi1_devdata *dd)
858 struct hfi1_pportdata *ppd;
862 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
863 ppd = dd->pport + pidx;
867 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
868 HFI1_STATUS_IB_READY);
870 dd->flags &= ~HFI1_INITTED;
872 /* mask interrupts, but not errors */
873 set_intr_state(dd, 0);
875 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
876 ppd = dd->pport + pidx;
877 for (i = 0; i < dd->num_rcv_contexts; i++)
878 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
879 HFI1_RCVCTRL_CTXT_DIS |
880 HFI1_RCVCTRL_INTRAVAIL_DIS |
881 HFI1_RCVCTRL_PKEY_DIS |
882 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
884 * Gracefully stop all sends allowing any in progress to
887 for (i = 0; i < dd->num_send_contexts; i++)
888 sc_flush(dd->send_contexts[i].sc);
892 * Enough for anything that's going to trickle out to have actually
897 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
898 ppd = dd->pport + pidx;
900 /* disable all contexts */
901 for (i = 0; i < dd->num_send_contexts; i++)
902 sc_disable(dd->send_contexts[i].sc);
903 /* disable the send device */
904 pio_send_control(dd, PSC_GLOBAL_DISABLE);
906 shutdown_led_override(ppd);
909 * Clear SerdesEnable.
910 * We can't count on interrupts since we are stopping.
912 hfi1_quiet_serdes(ppd);
915 destroy_workqueue(ppd->hfi1_wq);
923 * hfi1_free_ctxtdata - free a context's allocated data
924 * @dd: the hfi1_ib device
925 * @rcd: the ctxtdata structure
927 * free up any allocated data for a context
928 * This should not touch anything that would affect a simultaneous
929 * re-allocation of context data, because it is called after hfi1_mutex
930 * is released (and can be called from reinit as well).
931 * It should never change any chip state, or global driver state.
933 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
941 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
942 rcd->rcvhdrq, rcd->rcvhdrq_phys);
944 if (rcd->rcvhdrtail_kvaddr) {
945 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
946 (void *)rcd->rcvhdrtail_kvaddr,
947 rcd->rcvhdrqtailaddr_phys);
948 rcd->rcvhdrtail_kvaddr = NULL;
952 /* all the RcvArray entries should have been cleared by now */
953 kfree(rcd->egrbufs.rcvtids);
955 for (e = 0; e < rcd->egrbufs.alloced; e++) {
956 if (rcd->egrbufs.buffers[e].phys)
957 dma_free_coherent(&dd->pcidev->dev,
958 rcd->egrbufs.buffers[e].len,
959 rcd->egrbufs.buffers[e].addr,
960 rcd->egrbufs.buffers[e].phys);
962 kfree(rcd->egrbufs.buffers);
965 vfree(rcd->user_event_mask);
966 vfree(rcd->subctxt_uregbase);
967 vfree(rcd->subctxt_rcvegrbuf);
968 vfree(rcd->subctxt_rcvhdr_base);
974 * Release our hold on the shared asic data. If we are the last one,
975 * free the structure. Must be holding hfi1_devs_lock.
977 static void release_asic_data(struct hfi1_devdata *dd)
983 dd->asic_data->dds[dd->hfi1_id] = NULL;
984 other = dd->hfi1_id ? 0 : 1;
985 if (!dd->asic_data->dds[other]) {
986 /* we are the last holder, free it */
987 kfree(dd->asic_data);
989 dd->asic_data = NULL;
992 static void __hfi1_free_devdata(struct kobject *kobj)
994 struct hfi1_devdata *dd =
995 container_of(kobj, struct hfi1_devdata, kobj);
998 spin_lock_irqsave(&hfi1_devs_lock, flags);
999 idr_remove(&hfi1_unit_table, dd->unit);
1000 list_del(&dd->list);
1001 release_asic_data(dd);
1002 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1003 free_platform_config(dd);
1004 rcu_barrier(); /* wait for rcu callbacks to complete */
1005 free_percpu(dd->int_counter);
1006 free_percpu(dd->rcv_limit);
1007 hfi1_dev_affinity_free(dd);
1008 free_percpu(dd->send_schedule);
1009 rvt_dealloc_device(&dd->verbs_dev.rdi);
1012 static struct kobj_type hfi1_devdata_type = {
1013 .release = __hfi1_free_devdata,
1016 void hfi1_free_devdata(struct hfi1_devdata *dd)
1018 kobject_put(&dd->kobj);
1022 * Allocate our primary per-unit data structure. Must be done via verbs
1023 * allocator, because the verbs cleanup process both does cleanup and
1024 * free of the data structure.
1025 * "extra" is for chip-specific data.
1027 * Use the idr mechanism to get a unit number for this unit.
1029 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1031 unsigned long flags;
1032 struct hfi1_devdata *dd;
1035 /* extra is * number of ports */
1036 nports = extra / sizeof(struct hfi1_pportdata);
1038 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1041 return ERR_PTR(-ENOMEM);
1042 dd->num_pports = nports;
1043 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1045 INIT_LIST_HEAD(&dd->list);
1046 idr_preload(GFP_KERNEL);
1047 spin_lock_irqsave(&hfi1_devs_lock, flags);
1049 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1052 list_add(&dd->list, &hfi1_dev_list);
1055 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1059 hfi1_early_err(&pdev->dev,
1060 "Could not allocate unit ID: error %d\n", -ret);
1064 * Initialize all locks for the device. This needs to be as early as
1065 * possible so locks are usable.
1067 spin_lock_init(&dd->sc_lock);
1068 spin_lock_init(&dd->sendctrl_lock);
1069 spin_lock_init(&dd->rcvctrl_lock);
1070 spin_lock_init(&dd->uctxt_lock);
1071 spin_lock_init(&dd->hfi1_diag_trans_lock);
1072 spin_lock_init(&dd->sc_init_lock);
1073 spin_lock_init(&dd->dc8051_lock);
1074 spin_lock_init(&dd->dc8051_memlock);
1075 seqlock_init(&dd->sc2vl_lock);
1076 spin_lock_init(&dd->sde_map_lock);
1077 spin_lock_init(&dd->pio_map_lock);
1078 init_waitqueue_head(&dd->event_queue);
1080 dd->int_counter = alloc_percpu(u64);
1081 if (!dd->int_counter) {
1083 hfi1_early_err(&pdev->dev,
1084 "Could not allocate per-cpu int_counter\n");
1088 dd->rcv_limit = alloc_percpu(u64);
1089 if (!dd->rcv_limit) {
1091 hfi1_early_err(&pdev->dev,
1092 "Could not allocate per-cpu rcv_limit\n");
1096 dd->send_schedule = alloc_percpu(u64);
1097 if (!dd->send_schedule) {
1099 hfi1_early_err(&pdev->dev,
1100 "Could not allocate per-cpu int_counter\n");
1104 if (!hfi1_cpulist_count) {
1105 u32 count = num_online_cpus();
1107 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1110 hfi1_cpulist_count = count;
1114 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1116 kobject_init(&dd->kobj, &hfi1_devdata_type);
1120 if (!list_empty(&dd->list))
1121 list_del_init(&dd->list);
1122 rvt_dealloc_device(&dd->verbs_dev.rdi);
1123 return ERR_PTR(ret);
1127 * Called from freeze mode handlers, and from PCI error
1128 * reporting code. Should be paranoid about state of
1129 * system and data structures.
1131 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1133 if (dd->flags & HFI1_INITTED) {
1136 dd->flags &= ~HFI1_INITTED;
1138 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1139 struct hfi1_pportdata *ppd;
1141 ppd = dd->pport + pidx;
1142 if (dd->flags & HFI1_PRESENT)
1143 set_link_state(ppd, HLS_DN_DISABLE);
1146 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1151 * Mark as having had an error for driver, and also
1152 * for /sys and status word mapped to user programs.
1153 * This marks unit as not usable, until reset.
1156 dd->status->dev |= HFI1_STATUS_HWERROR;
1159 static void remove_one(struct pci_dev *);
1160 static int init_one(struct pci_dev *, const struct pci_device_id *);
1162 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1163 #define PFX DRIVER_NAME ": "
1165 static const struct pci_device_id hfi1_pci_tbl[] = {
1166 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1167 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1171 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1173 static struct pci_driver hfi1_pci_driver = {
1174 .name = DRIVER_NAME,
1176 .remove = remove_one,
1177 .id_table = hfi1_pci_tbl,
1178 .err_handler = &hfi1_pci_err_handler,
1181 static void __init compute_krcvqs(void)
1185 for (i = 0; i < krcvqsset; i++)
1186 n_krcvqs += krcvqs[i];
1190 * Do all the generic driver unit- and chip-independent memory
1191 * allocation and initialization.
1193 static int __init hfi1_mod_init(void)
1201 /* validate max MTU before any devices start */
1202 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1203 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1204 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1205 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1207 /* valid CUs run from 1-128 in powers of 2 */
1208 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1210 /* valid credit return threshold is 0-100, variable is unsigned */
1211 if (user_credit_return_threshold > 100)
1212 user_credit_return_threshold = 100;
1216 * sanitize receive interrupt count, time must wait until after
1217 * the hardware type is known
1219 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1220 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1221 /* reject invalid combinations */
1222 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1223 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1226 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1228 * Avoid indefinite packet delivery by requiring a timeout
1231 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1232 rcv_intr_timeout = 1;
1234 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1236 * The dynamic algorithm expects a non-zero timeout
1239 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1240 rcv_intr_dynamic = 0;
1243 /* sanitize link CRC options */
1244 link_crc_mask &= SUPPORTED_CRCS;
1247 * These must be called before the driver is registered with
1248 * the PCI subsystem.
1250 idr_init(&hfi1_unit_table);
1253 ret = hfi1_wss_init();
1256 ret = pci_register_driver(&hfi1_pci_driver);
1258 pr_err("Unable to register driver: error %d\n", -ret);
1261 goto bail; /* all OK */
1267 idr_destroy(&hfi1_unit_table);
1273 module_init(hfi1_mod_init);
1276 * Do the non-unit driver cleanup, memory free, etc. at unload.
1278 static void __exit hfi1_mod_cleanup(void)
1280 pci_unregister_driver(&hfi1_pci_driver);
1283 hfi1_cpulist_count = 0;
1284 kfree(hfi1_cpulist);
1286 idr_destroy(&hfi1_unit_table);
1287 dispose_firmware(); /* asymmetric with obtain_firmware() */
1291 module_exit(hfi1_mod_cleanup);
1293 /* this can only be called after a successful initialization */
1294 static void cleanup_device_data(struct hfi1_devdata *dd)
1298 struct hfi1_ctxtdata **tmp;
1299 unsigned long flags;
1301 /* users can't do anything more with chip */
1302 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1303 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1304 struct cc_state *cc_state;
1308 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1310 for (i = 0; i < OPA_MAX_SLS; i++)
1311 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1313 spin_lock(&ppd->cc_state_lock);
1314 cc_state = get_cc_state(ppd);
1315 RCU_INIT_POINTER(ppd->cc_state, NULL);
1316 spin_unlock(&ppd->cc_state_lock);
1319 call_rcu(&cc_state->rcu, cc_state_reclaim);
1322 free_credit_return(dd);
1325 * Free any resources still in use (usually just kernel contexts)
1326 * at unload; we do for ctxtcnt, because that's what we allocate.
1327 * We acquire lock to be really paranoid that rcd isn't being
1328 * accessed from some interrupt-related code (that should not happen,
1329 * but best to be sure).
1331 spin_lock_irqsave(&dd->uctxt_lock, flags);
1334 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1336 if (dd->rcvhdrtail_dummy_kvaddr) {
1337 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1338 (void *)dd->rcvhdrtail_dummy_kvaddr,
1339 dd->rcvhdrtail_dummy_physaddr);
1340 dd->rcvhdrtail_dummy_kvaddr = NULL;
1343 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1344 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1346 tmp[ctxt] = NULL; /* debugging paranoia */
1348 hfi1_clear_tids(rcd);
1349 hfi1_free_ctxtdata(dd, rcd);
1354 /* must follow rcv context free - need to remove rcv's hooks */
1355 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1356 sc_free(dd->send_contexts[ctxt].sc);
1357 dd->num_send_contexts = 0;
1358 kfree(dd->send_contexts);
1359 dd->send_contexts = NULL;
1360 kfree(dd->hw_to_sw);
1361 dd->hw_to_sw = NULL;
1362 kfree(dd->boardname);
1368 * Clean up on unit shutdown, or error during unit load after
1369 * successful initialization.
1371 static void postinit_cleanup(struct hfi1_devdata *dd)
1373 hfi1_start_cleanup(dd);
1375 hfi1_pcie_ddcleanup(dd);
1376 hfi1_pcie_cleanup(dd->pcidev);
1378 cleanup_device_data(dd);
1380 hfi1_free_devdata(dd);
1383 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1385 int ret = 0, j, pidx, initfail;
1386 struct hfi1_devdata *dd = NULL;
1387 struct hfi1_pportdata *ppd;
1389 /* First, lock the non-writable module parameters */
1392 /* Validate some global module parameters */
1393 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1394 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1398 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1399 hfi1_early_err(&pdev->dev,
1400 "Receive header queue count cannot be greater than %u\n",
1401 HFI1_MAX_HDRQ_EGRBUF_CNT);
1405 /* use the encoding function as a sanitization check */
1406 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1407 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1413 /* The receive eager buffer size must be set before the receive
1414 * contexts are created.
1416 * Set the eager buffer size. Validate that it falls in a range
1417 * allowed by the hardware - all powers of 2 between the min and
1418 * max. The maximum valid MTU is within the eager buffer range
1419 * so we do not need to cap the max_mtu by an eager buffer size
1422 if (eager_buffer_size) {
1423 if (!is_power_of_2(eager_buffer_size))
1425 roundup_pow_of_two(eager_buffer_size);
1427 clamp_val(eager_buffer_size,
1428 MIN_EAGER_BUFFER * 8,
1429 MAX_EAGER_BUFFER_TOTAL);
1430 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1433 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1438 /* restrict value of hfi1_rcvarr_split */
1439 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1441 ret = hfi1_pcie_init(pdev, ent);
1446 * Do device-specific initialization, function table setup, dd
1449 switch (ent->device) {
1450 case PCI_DEVICE_ID_INTEL0:
1451 case PCI_DEVICE_ID_INTEL1:
1452 dd = hfi1_init_dd(pdev, ent);
1455 hfi1_early_err(&pdev->dev,
1456 "Failing on unknown Intel deviceid 0x%x\n",
1464 goto clean_bail; /* error already printed */
1466 ret = create_workqueues(dd);
1470 /* do the generic initialization */
1471 initfail = hfi1_init(dd, 0);
1473 ret = hfi1_register_ib_device(dd);
1476 * Now ready for use. this should be cleared whenever we
1477 * detect a reset, or initiate one. If earlier failure,
1478 * we still create devices, so diags, etc. can be used
1479 * to determine cause of problem.
1481 if (!initfail && !ret) {
1482 dd->flags |= HFI1_INITTED;
1483 /* create debufs files after init and ib register */
1484 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1487 j = hfi1_device_create(dd);
1489 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1491 if (initfail || ret) {
1493 flush_workqueue(ib_wq);
1494 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1495 hfi1_quiet_serdes(dd->pport + pidx);
1496 ppd = dd->pport + pidx;
1498 destroy_workqueue(ppd->hfi1_wq);
1499 ppd->hfi1_wq = NULL;
1503 hfi1_device_remove(dd);
1505 hfi1_unregister_ib_device(dd);
1506 postinit_cleanup(dd);
1509 goto bail; /* everything already cleaned */
1517 hfi1_pcie_cleanup(pdev);
1522 static void remove_one(struct pci_dev *pdev)
1524 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1526 /* close debugfs files before ib unregister */
1527 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1528 /* unregister from IB core */
1529 hfi1_unregister_ib_device(dd);
1532 * Disable the IB link, disable interrupts on the device,
1533 * clear dma engines, etc.
1535 shutdown_device(dd);
1539 /* wait until all of our (qsfp) queue_work() calls complete */
1540 flush_workqueue(ib_wq);
1542 hfi1_device_remove(dd);
1544 postinit_cleanup(dd);
1548 * hfi1_create_rcvhdrq - create a receive header queue
1549 * @dd: the hfi1_ib device
1550 * @rcd: the context data
1552 * This must be contiguous memory (from an i/o perspective), and must be
1553 * DMA'able (which means for some systems, it will go through an IOMMU,
1554 * or be forced into a low address range).
1556 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1561 if (!rcd->rcvhdrq) {
1562 dma_addr_t phys_hdrqtail;
1566 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1569 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1572 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1573 GFP_USER : GFP_KERNEL;
1574 rcd->rcvhdrq = dma_zalloc_coherent(
1575 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1576 gfp_flags | __GFP_COMP);
1578 if (!rcd->rcvhdrq) {
1580 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1585 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1586 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1587 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1589 if (!rcd->rcvhdrtail_kvaddr)
1591 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1594 rcd->rcvhdrq_size = amt;
1597 * These values are per-context:
1602 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1603 & RCV_HDR_CNT_CNT_MASK)
1604 << RCV_HDR_CNT_CNT_SHIFT;
1605 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1606 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1607 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1608 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1609 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1610 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1611 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1612 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1615 * Program dummy tail address for every receive context
1616 * before enabling any receive context
1618 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1619 dd->rcvhdrtail_dummy_physaddr);
1625 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1627 vfree(rcd->user_event_mask);
1628 rcd->user_event_mask = NULL;
1629 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1631 rcd->rcvhdrq = NULL;
1637 * allocate eager buffers, both kernel and user contexts.
1638 * @rcd: the context we are setting up.
1640 * Allocate the eager TID buffers and program them into hip.
1641 * They are no longer completely contiguous, we do multiple allocation
1642 * calls. Otherwise we get the OOM code involved, by asking for too
1643 * much per call, with disastrous results on some kernels.
1645 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1647 struct hfi1_devdata *dd = rcd->dd;
1648 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1652 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1655 * GFP_USER, but without GFP_FS, so buffer cache can be
1656 * coalesced (we hope); otherwise, even at order 4,
1657 * heavy filesystem activity makes these fail, and we can
1658 * use compound pages.
1660 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1663 * The minimum size of the eager buffers is a groups of MTU-sized
1665 * The global eager_buffer_size parameter is checked against the
1666 * theoretical lower limit of the value. Here, we check against the
1669 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1670 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1672 * If using one-pkt-per-egr-buffer, lower the eager buffer
1673 * size to the max MTU (page-aligned).
1675 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1676 rcd->egrbufs.rcvtid_size = round_mtu;
1679 * Eager buffers sizes of 1MB or less require smaller TID sizes
1680 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1682 if (rcd->egrbufs.size <= (1 << 20))
1683 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1684 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1686 while (alloced_bytes < rcd->egrbufs.size &&
1687 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1688 rcd->egrbufs.buffers[idx].addr =
1689 dma_zalloc_coherent(&dd->pcidev->dev,
1690 rcd->egrbufs.rcvtid_size,
1691 &rcd->egrbufs.buffers[idx].phys,
1693 if (rcd->egrbufs.buffers[idx].addr) {
1694 rcd->egrbufs.buffers[idx].len =
1695 rcd->egrbufs.rcvtid_size;
1696 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1697 rcd->egrbufs.buffers[idx].addr;
1698 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1699 rcd->egrbufs.buffers[idx].phys;
1700 rcd->egrbufs.alloced++;
1701 alloced_bytes += rcd->egrbufs.rcvtid_size;
1708 * Fail the eager buffer allocation if:
1709 * - we are already using the lowest acceptable size
1710 * - we are using one-pkt-per-egr-buffer (this implies
1711 * that we are accepting only one size)
1713 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1714 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1715 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1717 goto bail_rcvegrbuf_phys;
1720 new_size = rcd->egrbufs.rcvtid_size / 2;
1723 * If the first attempt to allocate memory failed, don't
1724 * fail everything but continue with the next lower
1728 rcd->egrbufs.rcvtid_size = new_size;
1733 * Re-partition already allocated buffers to a smaller
1736 rcd->egrbufs.alloced = 0;
1737 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1738 if (i >= rcd->egrbufs.count)
1740 rcd->egrbufs.rcvtids[i].phys =
1741 rcd->egrbufs.buffers[j].phys + offset;
1742 rcd->egrbufs.rcvtids[i].addr =
1743 rcd->egrbufs.buffers[j].addr + offset;
1744 rcd->egrbufs.alloced++;
1745 if ((rcd->egrbufs.buffers[j].phys + offset +
1747 (rcd->egrbufs.buffers[j].phys +
1748 rcd->egrbufs.buffers[j].len)) {
1755 rcd->egrbufs.rcvtid_size = new_size;
1758 rcd->egrbufs.numbufs = idx;
1759 rcd->egrbufs.size = alloced_bytes;
1762 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1763 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1767 * Set the contexts rcv array head update threshold to the closest
1768 * power of 2 (so we can use a mask instead of modulo) below half
1769 * the allocated entries.
1771 rcd->egrbufs.threshold =
1772 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1774 * Compute the expected RcvArray entry base. This is done after
1775 * allocating the eager buffers in order to maximize the
1776 * expected RcvArray entries for the context.
1778 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1779 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1780 rcd->expected_count = max_entries - egrtop;
1781 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1782 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1784 rcd->expected_base = rcd->eager_base + egrtop;
1785 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1786 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1787 rcd->eager_base, rcd->expected_base);
1789 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1791 "ctxt%u: current Eager buffer size is invalid %u\n",
1792 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1797 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1798 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1799 rcd->egrbufs.rcvtids[idx].phys, order);
1804 bail_rcvegrbuf_phys:
1805 for (idx = 0; idx < rcd->egrbufs.alloced &&
1806 rcd->egrbufs.buffers[idx].addr;
1808 dma_free_coherent(&dd->pcidev->dev,
1809 rcd->egrbufs.buffers[idx].len,
1810 rcd->egrbufs.buffers[idx].addr,
1811 rcd->egrbufs.buffers[idx].phys);
1812 rcd->egrbufs.buffers[idx].addr = NULL;
1813 rcd->egrbufs.buffers[idx].phys = 0;
1814 rcd->egrbufs.buffers[idx].len = 0;