IB/hfi1: Fix user context tail allocation for DMA_RTAIL
[platform/kernel/linux-rpi.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109         u64 flag;       /* the flag */
110         char *str;      /* description string */
111         u16 extra;      /* extra information */
112         u16 unused0;
113         u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED       0x1
122 #define SEC_PACKET_DROPPED      0x2
123 #define SEC_SC_HALTED           0x4     /* per-context only */
124 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
125
126 #define DEFAULT_KRCVQS            2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203         num, \
204         sc0, sc0val, \
205         sc1, sc1val, \
206         sc2, sc2val, \
207         sc3, sc3val, \
208         sc4, sc4val, \
209         sc5, sc5val, \
210         sc6, sc6val, \
211         sc7, sc7val) \
212 ( \
213         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222
223 #define DC_SC_VL_VAL( \
224         range, \
225         e0, e0val, \
226         e1, e1val, \
227         e2, e2val, \
228         e3, e3val, \
229         e4, e4val, \
230         e5, e5val, \
231         e6, e6val, \
232         e7, e7val, \
233         e8, e8val, \
234         e9, e9val, \
235         e10, e10val, \
236         e11, e11val, \
237         e12, e12val, \
238         e13, e13val, \
239         e14, e14val, \
240         e15, e15val) \
241 ( \
242         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262                         | CCE_STATUS_RXE_FROZE_SMASK \
263                         | CCE_STATUS_TXE_FROZE_SMASK \
264                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267                         | CCE_STATUS_TXE_PAUSED_SMASK \
268                         | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
280                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
282                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
288                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
290                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
294                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
306                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
308                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
310                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
312                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
314                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
316                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
318                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
320                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
322                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
324                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
326                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
328                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
330                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
332                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
334                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
336                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
338                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/  FLAG_ENTRY0("LATriggered",
342                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
344                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
346                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
352                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
354                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
356                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
358                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
360                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
389         SEC_WRITE_DROPPED,
390         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/  FLAG_ENTRY("PioCsrParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
404         SEC_SPC_FREEZE,
405         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
407         SEC_SPC_FREEZE,
408         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
416         SEC_SPC_FREEZE,
417         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
425         SEC_SPC_FREEZE,
426         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
428         0,
429         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
431         0,
432         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
434         SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
437         SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/  FLAG_ENTRY("PioInitSmIn",
440         0,
441         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
449         0,
450         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/  FLAG_ENTRY("PioWriteDataParity",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/  FLAG_ENTRY("PioStateMachine",
455         SEC_SPC_FREEZE,
456         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
458         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
461         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
464         SEC_SPC_FREEZE,
465         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/  FLAG_ENTRY("PioVlfSopParity",
467         SEC_SPC_FREEZE,
468         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/  FLAG_ENTRY("PioVlFifoParity",
470         SEC_SPC_FREEZE,
471         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
473         SEC_SPC_FREEZE,
474         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
476         SEC_SPC_FREEZE,
477         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
480         SEC_SPC_FREEZE,
481         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
483         SEC_SPC_FREEZE,
484         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
486         SEC_SPC_FREEZE,
487         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
489         SEC_SPC_FREEZE,
490         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
531                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
533                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689         | SEES(TX_LAUNCH_CSR_PARITY) \
690         | SEES(TX_SBRD_CTL_CSR_PARITY) \
691         | SEES(TX_CONFIG_PARITY) \
692         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701         | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/  FLAG_ENTRY("InconsistentSop",
718                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/  FLAG_ENTRY("DisallowedPacket",
721                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
724                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/  FLAG_ENTRY("WriteOverflow",
727                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
730                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763                 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784                 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791                 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793                 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993         FLAG_ENTRY0("Serdes internal loopback failure",
994                     FAILED_SERDES_INTERNAL_LOOPBACK),
995         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004         FLAG_ENTRY0("External Device Request Timeout",
1005                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014         FLAG_ENTRY0("Host request done", 0x0001),
1015         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016         FLAG_ENTRY0("BC SMA message", 0x0004),
1017         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019         FLAG_ENTRY0("External device config request", 0x0020),
1020         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022         FLAG_ENTRY0("Link going down", 0x0100),
1023         FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030                                u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034                                       u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036                                      u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038                                   u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042                             u8 *tx_polarity_inversion,
1043                             u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045                                 unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048                            unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050                            unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062                                           u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064                            u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070                                             int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072                                   int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076                                    int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083                            unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087
1088 /*
1089  * Error interrupt table entry.  This is used as input to the interrupt
1090  * "clear down" routine used for all second tier error interrupt register.
1091  * Second tier interrupt registers have a single bit representing them
1092  * in the top-level CceIntStatus.
1093  */
1094 struct err_reg_info {
1095         u32 status;             /* status CSR offset */
1096         u32 clear;              /* clear CSR offset */
1097         u32 mask;               /* mask CSR offset */
1098         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1099         const char *desc;
1100 };
1101
1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1105
1106 /*
1107  * Helpers for building HFI and DC error interrupt table entries.  Different
1108  * helpers are needed because of inconsistent register names.
1109  */
1110 #define EE(reg, handler, desc) \
1111         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1112                 handler, desc }
1113 #define DC_EE1(reg, handler, desc) \
1114         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115 #define DC_EE2(reg, handler, desc) \
1116         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1117
1118 /*
1119  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1120  * another register containing more information.
1121  */
1122 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1123 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1124 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1125 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1126 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1127 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1128 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1129 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1130 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1131         /* the rest are reserved */
1132 };
1133
1134 /*
1135  * Index into the Various section of the interrupt sources
1136  * corresponding to the Critical Temperature interrupt.
1137  */
1138 #define TCRIT_INT_SOURCE 4
1139
1140 /*
1141  * SDMA error interrupt entry - refers to another register containing more
1142  * information.
1143  */
1144 static const struct err_reg_info sdma_eng_err =
1145         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1146
1147 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1148 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1149 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1150 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1151 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1152 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1153         /* rest are reserved */
1154 };
1155
1156 /*
1157  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158  * register can not be derived from the MTU value because 10K is not
1159  * a power of 2. Therefore, we need a constant. Everything else can
1160  * be calculated.
1161  */
1162 #define DCC_CFG_PORT_MTU_CAP_10240 7
1163
1164 /*
1165  * Table of the DC grouping of error interrupts.  Each entry refers to
1166  * another register containing more information.
1167  */
1168 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1169 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1170 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1171 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1172 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1173         /* the rest are reserved */
1174 };
1175
1176 struct cntr_entry {
1177         /*
1178          * counter name
1179          */
1180         char *name;
1181
1182         /*
1183          * csr to read for name (if applicable)
1184          */
1185         u64 csr;
1186
1187         /*
1188          * offset into dd or ppd to store the counter's value
1189          */
1190         int offset;
1191
1192         /*
1193          * flags
1194          */
1195         u8 flags;
1196
1197         /*
1198          * accessor for stat element, context either dd or ppd
1199          */
1200         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1201                        int mode, u64 data);
1202 };
1203
1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1206
1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1208 { \
1209         name, \
1210         csr, \
1211         offset, \
1212         flags, \
1213         accessor \
1214 }
1215
1216 /* 32bit RXE */
1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219           (counter * 8 + RCV_COUNTER_ARRAY32), \
1220           0, flags | CNTR_32BIT, \
1221           port_access_u32_csr)
1222
1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name, \
1225           (counter * 8 + RCV_COUNTER_ARRAY32), \
1226           0, flags | CNTR_32BIT, \
1227           dev_access_u32_csr)
1228
1229 /* 64bit RXE */
1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1231 CNTR_ELEM(#name, \
1232           (counter * 8 + RCV_COUNTER_ARRAY64), \
1233           0, flags, \
1234           port_access_u64_csr)
1235
1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238           (counter * 8 + RCV_COUNTER_ARRAY64), \
1239           0, flags, \
1240           dev_access_u64_csr)
1241
1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243 #define OVR_ELM(ctx) \
1244 CNTR_ELEM("RcvHdrOvr" #ctx, \
1245           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1246           0, CNTR_NORMAL, port_access_u64_csr)
1247
1248 /* 32bit TXE */
1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251           (counter * 8 + SEND_COUNTER_ARRAY32), \
1252           0, flags | CNTR_32BIT, \
1253           port_access_u32_csr)
1254
1255 /* 64bit TXE */
1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1257 CNTR_ELEM(#name, \
1258           (counter * 8 + SEND_COUNTER_ARRAY64), \
1259           0, flags, \
1260           port_access_u64_csr)
1261
1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name,\
1264           counter * 8 + SEND_COUNTER_ARRAY64, \
1265           0, \
1266           flags, \
1267           dev_access_u64_csr)
1268
1269 /* CCE */
1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1271 CNTR_ELEM(#name, \
1272           (counter * 8 + CCE_COUNTER_ARRAY32), \
1273           0, flags | CNTR_32BIT, \
1274           dev_access_u32_csr)
1275
1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1277 CNTR_ELEM(#name, \
1278           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279           0, flags | CNTR_32BIT, \
1280           dev_access_u32_csr)
1281
1282 /* DC */
1283 #define DC_PERF_CNTR(name, counter, flags) \
1284 CNTR_ELEM(#name, \
1285           counter, \
1286           0, \
1287           flags, \
1288           dev_access_u64_csr)
1289
1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1291 CNTR_ELEM(#name, \
1292           counter, \
1293           0, \
1294           flags, \
1295           dc_access_lcb_cntr)
1296
1297 /* ibp counters */
1298 #define SW_IBP_CNTR(name, cntr) \
1299 CNTR_ELEM(#name, \
1300           0, \
1301           0, \
1302           CNTR_SYNTH, \
1303           access_ibp_##cntr)
1304
1305 /**
1306  * hfi_addr_from_offset - return addr for readq/writeq
1307  * @dd - the dd device
1308  * @offset - the offset of the CSR within bar0
1309  *
1310  * This routine selects the appropriate base address
1311  * based on the indicated offset.
1312  */
1313 static inline void __iomem *hfi1_addr_from_offset(
1314         const struct hfi1_devdata *dd,
1315         u32 offset)
1316 {
1317         if (offset >= dd->base2_start)
1318                 return dd->kregbase2 + (offset - dd->base2_start);
1319         return dd->kregbase1 + offset;
1320 }
1321
1322 /**
1323  * read_csr - read CSR at the indicated offset
1324  * @dd - the dd device
1325  * @offset - the offset of the CSR within bar0
1326  *
1327  * Return: the value read or all FF's if there
1328  * is no mapping
1329  */
1330 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1331 {
1332         if (dd->flags & HFI1_PRESENT)
1333                 return readq(hfi1_addr_from_offset(dd, offset));
1334         return -1;
1335 }
1336
1337 /**
1338  * write_csr - write CSR at the indicated offset
1339  * @dd - the dd device
1340  * @offset - the offset of the CSR within bar0
1341  * @value - value to write
1342  */
1343 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1344 {
1345         if (dd->flags & HFI1_PRESENT) {
1346                 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1347
1348                 /* avoid write to RcvArray */
1349                 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1350                         return;
1351                 writeq(value, base);
1352         }
1353 }
1354
1355 /**
1356  * get_csr_addr - return te iomem address for offset
1357  * @dd - the dd device
1358  * @offset - the offset of the CSR within bar0
1359  *
1360  * Return: The iomem address to use in subsequent
1361  * writeq/readq operations.
1362  */
1363 void __iomem *get_csr_addr(
1364         const struct hfi1_devdata *dd,
1365         u32 offset)
1366 {
1367         if (dd->flags & HFI1_PRESENT)
1368                 return hfi1_addr_from_offset(dd, offset);
1369         return NULL;
1370 }
1371
1372 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1373                                  int mode, u64 value)
1374 {
1375         u64 ret;
1376
1377         if (mode == CNTR_MODE_R) {
1378                 ret = read_csr(dd, csr);
1379         } else if (mode == CNTR_MODE_W) {
1380                 write_csr(dd, csr, value);
1381                 ret = value;
1382         } else {
1383                 dd_dev_err(dd, "Invalid cntr register access mode");
1384                 return 0;
1385         }
1386
1387         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1388         return ret;
1389 }
1390
1391 /* Dev Access */
1392 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1393                               void *context, int vl, int mode, u64 data)
1394 {
1395         struct hfi1_devdata *dd = context;
1396         u64 csr = entry->csr;
1397
1398         if (entry->flags & CNTR_SDMA) {
1399                 if (vl == CNTR_INVALID_VL)
1400                         return 0;
1401                 csr += 0x100 * vl;
1402         } else {
1403                 if (vl != CNTR_INVALID_VL)
1404                         return 0;
1405         }
1406         return read_write_csr(dd, csr, mode, data);
1407 }
1408
1409 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1410                               void *context, int idx, int mode, u64 data)
1411 {
1412         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1413
1414         if (dd->per_sdma && idx < dd->num_sdma)
1415                 return dd->per_sdma[idx].err_cnt;
1416         return 0;
1417 }
1418
1419 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1420                               void *context, int idx, int mode, u64 data)
1421 {
1422         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1423
1424         if (dd->per_sdma && idx < dd->num_sdma)
1425                 return dd->per_sdma[idx].sdma_int_cnt;
1426         return 0;
1427 }
1428
1429 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1430                                    void *context, int idx, int mode, u64 data)
1431 {
1432         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1433
1434         if (dd->per_sdma && idx < dd->num_sdma)
1435                 return dd->per_sdma[idx].idle_int_cnt;
1436         return 0;
1437 }
1438
1439 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1440                                        void *context, int idx, int mode,
1441                                        u64 data)
1442 {
1443         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1444
1445         if (dd->per_sdma && idx < dd->num_sdma)
1446                 return dd->per_sdma[idx].progress_int_cnt;
1447         return 0;
1448 }
1449
1450 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1451                               int vl, int mode, u64 data)
1452 {
1453         struct hfi1_devdata *dd = context;
1454
1455         u64 val = 0;
1456         u64 csr = entry->csr;
1457
1458         if (entry->flags & CNTR_VL) {
1459                 if (vl == CNTR_INVALID_VL)
1460                         return 0;
1461                 csr += 8 * vl;
1462         } else {
1463                 if (vl != CNTR_INVALID_VL)
1464                         return 0;
1465         }
1466
1467         val = read_write_csr(dd, csr, mode, data);
1468         return val;
1469 }
1470
1471 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1472                               int vl, int mode, u64 data)
1473 {
1474         struct hfi1_devdata *dd = context;
1475         u32 csr = entry->csr;
1476         int ret = 0;
1477
1478         if (vl != CNTR_INVALID_VL)
1479                 return 0;
1480         if (mode == CNTR_MODE_R)
1481                 ret = read_lcb_csr(dd, csr, &data);
1482         else if (mode == CNTR_MODE_W)
1483                 ret = write_lcb_csr(dd, csr, data);
1484
1485         if (ret) {
1486                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1487                 return 0;
1488         }
1489
1490         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1491         return data;
1492 }
1493
1494 /* Port Access */
1495 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1496                                int vl, int mode, u64 data)
1497 {
1498         struct hfi1_pportdata *ppd = context;
1499
1500         if (vl != CNTR_INVALID_VL)
1501                 return 0;
1502         return read_write_csr(ppd->dd, entry->csr, mode, data);
1503 }
1504
1505 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1506                                void *context, int vl, int mode, u64 data)
1507 {
1508         struct hfi1_pportdata *ppd = context;
1509         u64 val;
1510         u64 csr = entry->csr;
1511
1512         if (entry->flags & CNTR_VL) {
1513                 if (vl == CNTR_INVALID_VL)
1514                         return 0;
1515                 csr += 8 * vl;
1516         } else {
1517                 if (vl != CNTR_INVALID_VL)
1518                         return 0;
1519         }
1520         val = read_write_csr(ppd->dd, csr, mode, data);
1521         return val;
1522 }
1523
1524 /* Software defined */
1525 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1526                                 u64 data)
1527 {
1528         u64 ret;
1529
1530         if (mode == CNTR_MODE_R) {
1531                 ret = *cntr;
1532         } else if (mode == CNTR_MODE_W) {
1533                 *cntr = data;
1534                 ret = data;
1535         } else {
1536                 dd_dev_err(dd, "Invalid cntr sw access mode");
1537                 return 0;
1538         }
1539
1540         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1541
1542         return ret;
1543 }
1544
1545 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1546                                  int vl, int mode, u64 data)
1547 {
1548         struct hfi1_pportdata *ppd = context;
1549
1550         if (vl != CNTR_INVALID_VL)
1551                 return 0;
1552         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1553 }
1554
1555 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1556                                  int vl, int mode, u64 data)
1557 {
1558         struct hfi1_pportdata *ppd = context;
1559
1560         if (vl != CNTR_INVALID_VL)
1561                 return 0;
1562         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1563 }
1564
1565 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1566                                        void *context, int vl, int mode,
1567                                        u64 data)
1568 {
1569         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1570
1571         if (vl != CNTR_INVALID_VL)
1572                 return 0;
1573         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1574 }
1575
1576 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1577                                    void *context, int vl, int mode, u64 data)
1578 {
1579         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1580         u64 zero = 0;
1581         u64 *counter;
1582
1583         if (vl == CNTR_INVALID_VL)
1584                 counter = &ppd->port_xmit_discards;
1585         else if (vl >= 0 && vl < C_VL_COUNT)
1586                 counter = &ppd->port_xmit_discards_vl[vl];
1587         else
1588                 counter = &zero;
1589
1590         return read_write_sw(ppd->dd, counter, mode, data);
1591 }
1592
1593 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1594                                        void *context, int vl, int mode,
1595                                        u64 data)
1596 {
1597         struct hfi1_pportdata *ppd = context;
1598
1599         if (vl != CNTR_INVALID_VL)
1600                 return 0;
1601
1602         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1603                              mode, data);
1604 }
1605
1606 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1607                                       void *context, int vl, int mode, u64 data)
1608 {
1609         struct hfi1_pportdata *ppd = context;
1610
1611         if (vl != CNTR_INVALID_VL)
1612                 return 0;
1613
1614         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1615                              mode, data);
1616 }
1617
1618 u64 get_all_cpu_total(u64 __percpu *cntr)
1619 {
1620         int cpu;
1621         u64 counter = 0;
1622
1623         for_each_possible_cpu(cpu)
1624                 counter += *per_cpu_ptr(cntr, cpu);
1625         return counter;
1626 }
1627
1628 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1629                           u64 __percpu *cntr,
1630                           int vl, int mode, u64 data)
1631 {
1632         u64 ret = 0;
1633
1634         if (vl != CNTR_INVALID_VL)
1635                 return 0;
1636
1637         if (mode == CNTR_MODE_R) {
1638                 ret = get_all_cpu_total(cntr) - *z_val;
1639         } else if (mode == CNTR_MODE_W) {
1640                 /* A write can only zero the counter */
1641                 if (data == 0)
1642                         *z_val = get_all_cpu_total(cntr);
1643                 else
1644                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1645         } else {
1646                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1647                 return 0;
1648         }
1649
1650         return ret;
1651 }
1652
1653 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1654                               void *context, int vl, int mode, u64 data)
1655 {
1656         struct hfi1_devdata *dd = context;
1657
1658         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1659                               mode, data);
1660 }
1661
1662 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1663                                    void *context, int vl, int mode, u64 data)
1664 {
1665         struct hfi1_devdata *dd = context;
1666
1667         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1668                               mode, data);
1669 }
1670
1671 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1672                               void *context, int vl, int mode, u64 data)
1673 {
1674         struct hfi1_devdata *dd = context;
1675
1676         return dd->verbs_dev.n_piowait;
1677 }
1678
1679 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1680                                void *context, int vl, int mode, u64 data)
1681 {
1682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683
1684         return dd->verbs_dev.n_piodrain;
1685 }
1686
1687 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1688                               void *context, int vl, int mode, u64 data)
1689 {
1690         struct hfi1_devdata *dd = context;
1691
1692         return dd->verbs_dev.n_txwait;
1693 }
1694
1695 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1696                                void *context, int vl, int mode, u64 data)
1697 {
1698         struct hfi1_devdata *dd = context;
1699
1700         return dd->verbs_dev.n_kmem_wait;
1701 }
1702
1703 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1704                                    void *context, int vl, int mode, u64 data)
1705 {
1706         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1707
1708         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1709                               mode, data);
1710 }
1711
1712 /* Software counters for the error status bits within MISC_ERR_STATUS */
1713 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1714                                              void *context, int vl, int mode,
1715                                              u64 data)
1716 {
1717         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718
1719         return dd->misc_err_status_cnt[12];
1720 }
1721
1722 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1723                                           void *context, int vl, int mode,
1724                                           u64 data)
1725 {
1726         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727
1728         return dd->misc_err_status_cnt[11];
1729 }
1730
1731 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1732                                                void *context, int vl, int mode,
1733                                                u64 data)
1734 {
1735         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736
1737         return dd->misc_err_status_cnt[10];
1738 }
1739
1740 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1741                                                  void *context, int vl,
1742                                                  int mode, u64 data)
1743 {
1744         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745
1746         return dd->misc_err_status_cnt[9];
1747 }
1748
1749 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1750                                            void *context, int vl, int mode,
1751                                            u64 data)
1752 {
1753         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754
1755         return dd->misc_err_status_cnt[8];
1756 }
1757
1758 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1759                                 const struct cntr_entry *entry,
1760                                 void *context, int vl, int mode, u64 data)
1761 {
1762         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763
1764         return dd->misc_err_status_cnt[7];
1765 }
1766
1767 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1768                                                 void *context, int vl,
1769                                                 int mode, u64 data)
1770 {
1771         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772
1773         return dd->misc_err_status_cnt[6];
1774 }
1775
1776 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1777                                               void *context, int vl, int mode,
1778                                               u64 data)
1779 {
1780         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781
1782         return dd->misc_err_status_cnt[5];
1783 }
1784
1785 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1786                                             void *context, int vl, int mode,
1787                                             u64 data)
1788 {
1789         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790
1791         return dd->misc_err_status_cnt[4];
1792 }
1793
1794 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1795                                                  void *context, int vl,
1796                                                  int mode, u64 data)
1797 {
1798         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799
1800         return dd->misc_err_status_cnt[3];
1801 }
1802
1803 static u64 access_misc_csr_write_bad_addr_err_cnt(
1804                                 const struct cntr_entry *entry,
1805                                 void *context, int vl, int mode, u64 data)
1806 {
1807         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808
1809         return dd->misc_err_status_cnt[2];
1810 }
1811
1812 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1813                                                  void *context, int vl,
1814                                                  int mode, u64 data)
1815 {
1816         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817
1818         return dd->misc_err_status_cnt[1];
1819 }
1820
1821 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1822                                           void *context, int vl, int mode,
1823                                           u64 data)
1824 {
1825         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827         return dd->misc_err_status_cnt[0];
1828 }
1829
1830 /*
1831  * Software counter for the aggregate of
1832  * individual CceErrStatus counters
1833  */
1834 static u64 access_sw_cce_err_status_aggregated_cnt(
1835                                 const struct cntr_entry *entry,
1836                                 void *context, int vl, int mode, u64 data)
1837 {
1838         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839
1840         return dd->sw_cce_err_status_aggregate;
1841 }
1842
1843 /*
1844  * Software counters corresponding to each of the
1845  * error status bits within CceErrStatus
1846  */
1847 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1848                                               void *context, int vl, int mode,
1849                                               u64 data)
1850 {
1851         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852
1853         return dd->cce_err_status_cnt[40];
1854 }
1855
1856 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1857                                           void *context, int vl, int mode,
1858                                           u64 data)
1859 {
1860         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861
1862         return dd->cce_err_status_cnt[39];
1863 }
1864
1865 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1866                                           void *context, int vl, int mode,
1867                                           u64 data)
1868 {
1869         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870
1871         return dd->cce_err_status_cnt[38];
1872 }
1873
1874 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1875                                              void *context, int vl, int mode,
1876                                              u64 data)
1877 {
1878         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879
1880         return dd->cce_err_status_cnt[37];
1881 }
1882
1883 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1884                                              void *context, int vl, int mode,
1885                                              u64 data)
1886 {
1887         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888
1889         return dd->cce_err_status_cnt[36];
1890 }
1891
1892 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1893                                 const struct cntr_entry *entry,
1894                                 void *context, int vl, int mode, u64 data)
1895 {
1896         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897
1898         return dd->cce_err_status_cnt[35];
1899 }
1900
1901 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1902                                 const struct cntr_entry *entry,
1903                                 void *context, int vl, int mode, u64 data)
1904 {
1905         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906
1907         return dd->cce_err_status_cnt[34];
1908 }
1909
1910 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1911                                                  void *context, int vl,
1912                                                  int mode, u64 data)
1913 {
1914         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915
1916         return dd->cce_err_status_cnt[33];
1917 }
1918
1919 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1920                                                 void *context, int vl, int mode,
1921                                                 u64 data)
1922 {
1923         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924
1925         return dd->cce_err_status_cnt[32];
1926 }
1927
1928 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1929                                    void *context, int vl, int mode, u64 data)
1930 {
1931         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932
1933         return dd->cce_err_status_cnt[31];
1934 }
1935
1936 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1937                                                void *context, int vl, int mode,
1938                                                u64 data)
1939 {
1940         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941
1942         return dd->cce_err_status_cnt[30];
1943 }
1944
1945 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1946                                               void *context, int vl, int mode,
1947                                               u64 data)
1948 {
1949         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950
1951         return dd->cce_err_status_cnt[29];
1952 }
1953
1954 static u64 access_pcic_transmit_back_parity_err_cnt(
1955                                 const struct cntr_entry *entry,
1956                                 void *context, int vl, int mode, u64 data)
1957 {
1958         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959
1960         return dd->cce_err_status_cnt[28];
1961 }
1962
1963 static u64 access_pcic_transmit_front_parity_err_cnt(
1964                                 const struct cntr_entry *entry,
1965                                 void *context, int vl, int mode, u64 data)
1966 {
1967         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968
1969         return dd->cce_err_status_cnt[27];
1970 }
1971
1972 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1973                                              void *context, int vl, int mode,
1974                                              u64 data)
1975 {
1976         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977
1978         return dd->cce_err_status_cnt[26];
1979 }
1980
1981 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1982                                             void *context, int vl, int mode,
1983                                             u64 data)
1984 {
1985         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986
1987         return dd->cce_err_status_cnt[25];
1988 }
1989
1990 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1991                                               void *context, int vl, int mode,
1992                                               u64 data)
1993 {
1994         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995
1996         return dd->cce_err_status_cnt[24];
1997 }
1998
1999 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2000                                              void *context, int vl, int mode,
2001                                              u64 data)
2002 {
2003         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004
2005         return dd->cce_err_status_cnt[23];
2006 }
2007
2008 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2009                                                  void *context, int vl,
2010                                                  int mode, u64 data)
2011 {
2012         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013
2014         return dd->cce_err_status_cnt[22];
2015 }
2016
2017 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2018                                          void *context, int vl, int mode,
2019                                          u64 data)
2020 {
2021         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022
2023         return dd->cce_err_status_cnt[21];
2024 }
2025
2026 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2027                                 const struct cntr_entry *entry,
2028                                 void *context, int vl, int mode, u64 data)
2029 {
2030         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031
2032         return dd->cce_err_status_cnt[20];
2033 }
2034
2035 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2036                                                  void *context, int vl,
2037                                                  int mode, u64 data)
2038 {
2039         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040
2041         return dd->cce_err_status_cnt[19];
2042 }
2043
2044 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2045                                              void *context, int vl, int mode,
2046                                              u64 data)
2047 {
2048         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049
2050         return dd->cce_err_status_cnt[18];
2051 }
2052
2053 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2054                                             void *context, int vl, int mode,
2055                                             u64 data)
2056 {
2057         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058
2059         return dd->cce_err_status_cnt[17];
2060 }
2061
2062 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2063                                               void *context, int vl, int mode,
2064                                               u64 data)
2065 {
2066         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067
2068         return dd->cce_err_status_cnt[16];
2069 }
2070
2071 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2072                                              void *context, int vl, int mode,
2073                                              u64 data)
2074 {
2075         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076
2077         return dd->cce_err_status_cnt[15];
2078 }
2079
2080 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2081                                                  void *context, int vl,
2082                                                  int mode, u64 data)
2083 {
2084         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085
2086         return dd->cce_err_status_cnt[14];
2087 }
2088
2089 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2090                                              void *context, int vl, int mode,
2091                                              u64 data)
2092 {
2093         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094
2095         return dd->cce_err_status_cnt[13];
2096 }
2097
2098 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099                                 const struct cntr_entry *entry,
2100                                 void *context, int vl, int mode, u64 data)
2101 {
2102         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103
2104         return dd->cce_err_status_cnt[12];
2105 }
2106
2107 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108                                 const struct cntr_entry *entry,
2109                                 void *context, int vl, int mode, u64 data)
2110 {
2111         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112
2113         return dd->cce_err_status_cnt[11];
2114 }
2115
2116 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117                                 const struct cntr_entry *entry,
2118                                 void *context, int vl, int mode, u64 data)
2119 {
2120         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121
2122         return dd->cce_err_status_cnt[10];
2123 }
2124
2125 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126                                 const struct cntr_entry *entry,
2127                                 void *context, int vl, int mode, u64 data)
2128 {
2129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130
2131         return dd->cce_err_status_cnt[9];
2132 }
2133
2134 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2135                                 const struct cntr_entry *entry,
2136                                 void *context, int vl, int mode, u64 data)
2137 {
2138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139
2140         return dd->cce_err_status_cnt[8];
2141 }
2142
2143 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2144                                                  void *context, int vl,
2145                                                  int mode, u64 data)
2146 {
2147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148
2149         return dd->cce_err_status_cnt[7];
2150 }
2151
2152 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2153                                 const struct cntr_entry *entry,
2154                                 void *context, int vl, int mode, u64 data)
2155 {
2156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157
2158         return dd->cce_err_status_cnt[6];
2159 }
2160
2161 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2162                                                void *context, int vl, int mode,
2163                                                u64 data)
2164 {
2165         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166
2167         return dd->cce_err_status_cnt[5];
2168 }
2169
2170 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2171                                           void *context, int vl, int mode,
2172                                           u64 data)
2173 {
2174         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175
2176         return dd->cce_err_status_cnt[4];
2177 }
2178
2179 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2180                                 const struct cntr_entry *entry,
2181                                 void *context, int vl, int mode, u64 data)
2182 {
2183         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184
2185         return dd->cce_err_status_cnt[3];
2186 }
2187
2188 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2189                                                  void *context, int vl,
2190                                                  int mode, u64 data)
2191 {
2192         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193
2194         return dd->cce_err_status_cnt[2];
2195 }
2196
2197 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2198                                                 void *context, int vl,
2199                                                 int mode, u64 data)
2200 {
2201         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202
2203         return dd->cce_err_status_cnt[1];
2204 }
2205
2206 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2207                                          void *context, int vl, int mode,
2208                                          u64 data)
2209 {
2210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212         return dd->cce_err_status_cnt[0];
2213 }
2214
2215 /*
2216  * Software counters corresponding to each of the
2217  * error status bits within RcvErrStatus
2218  */
2219 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2220                                         void *context, int vl, int mode,
2221                                         u64 data)
2222 {
2223         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224
2225         return dd->rcv_err_status_cnt[63];
2226 }
2227
2228 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2229                                                 void *context, int vl,
2230                                                 int mode, u64 data)
2231 {
2232         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233
2234         return dd->rcv_err_status_cnt[62];
2235 }
2236
2237 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2238                                                void *context, int vl, int mode,
2239                                                u64 data)
2240 {
2241         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242
2243         return dd->rcv_err_status_cnt[61];
2244 }
2245
2246 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2247                                          void *context, int vl, int mode,
2248                                          u64 data)
2249 {
2250         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251
2252         return dd->rcv_err_status_cnt[60];
2253 }
2254
2255 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2256                                                  void *context, int vl,
2257                                                  int mode, u64 data)
2258 {
2259         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260
2261         return dd->rcv_err_status_cnt[59];
2262 }
2263
2264 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265                                                  void *context, int vl,
2266                                                  int mode, u64 data)
2267 {
2268         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269
2270         return dd->rcv_err_status_cnt[58];
2271 }
2272
2273 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2274                                             void *context, int vl, int mode,
2275                                             u64 data)
2276 {
2277         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278
2279         return dd->rcv_err_status_cnt[57];
2280 }
2281
2282 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2283                                            void *context, int vl, int mode,
2284                                            u64 data)
2285 {
2286         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287
2288         return dd->rcv_err_status_cnt[56];
2289 }
2290
2291 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2292                                            void *context, int vl, int mode,
2293                                            u64 data)
2294 {
2295         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296
2297         return dd->rcv_err_status_cnt[55];
2298 }
2299
2300 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2301                                 const struct cntr_entry *entry,
2302                                 void *context, int vl, int mode, u64 data)
2303 {
2304         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305
2306         return dd->rcv_err_status_cnt[54];
2307 }
2308
2309 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2310                                 const struct cntr_entry *entry,
2311                                 void *context, int vl, int mode, u64 data)
2312 {
2313         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314
2315         return dd->rcv_err_status_cnt[53];
2316 }
2317
2318 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2319                                                  void *context, int vl,
2320                                                  int mode, u64 data)
2321 {
2322         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323
2324         return dd->rcv_err_status_cnt[52];
2325 }
2326
2327 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2328                                                  void *context, int vl,
2329                                                  int mode, u64 data)
2330 {
2331         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332
2333         return dd->rcv_err_status_cnt[51];
2334 }
2335
2336 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2337                                                  void *context, int vl,
2338                                                  int mode, u64 data)
2339 {
2340         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341
2342         return dd->rcv_err_status_cnt[50];
2343 }
2344
2345 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2346                                                  void *context, int vl,
2347                                                  int mode, u64 data)
2348 {
2349         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350
2351         return dd->rcv_err_status_cnt[49];
2352 }
2353
2354 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2355                                                  void *context, int vl,
2356                                                  int mode, u64 data)
2357 {
2358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359
2360         return dd->rcv_err_status_cnt[48];
2361 }
2362
2363 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2364                                                  void *context, int vl,
2365                                                  int mode, u64 data)
2366 {
2367         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368
2369         return dd->rcv_err_status_cnt[47];
2370 }
2371
2372 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2373                                          void *context, int vl, int mode,
2374                                          u64 data)
2375 {
2376         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377
2378         return dd->rcv_err_status_cnt[46];
2379 }
2380
2381 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2382                                 const struct cntr_entry *entry,
2383                                 void *context, int vl, int mode, u64 data)
2384 {
2385         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386
2387         return dd->rcv_err_status_cnt[45];
2388 }
2389
2390 static u64 access_rx_lookup_csr_parity_err_cnt(
2391                                 const struct cntr_entry *entry,
2392                                 void *context, int vl, int mode, u64 data)
2393 {
2394         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395
2396         return dd->rcv_err_status_cnt[44];
2397 }
2398
2399 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2400                                 const struct cntr_entry *entry,
2401                                 void *context, int vl, int mode, u64 data)
2402 {
2403         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404
2405         return dd->rcv_err_status_cnt[43];
2406 }
2407
2408 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2409                                 const struct cntr_entry *entry,
2410                                 void *context, int vl, int mode, u64 data)
2411 {
2412         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413
2414         return dd->rcv_err_status_cnt[42];
2415 }
2416
2417 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2418                                 const struct cntr_entry *entry,
2419                                 void *context, int vl, int mode, u64 data)
2420 {
2421         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422
2423         return dd->rcv_err_status_cnt[41];
2424 }
2425
2426 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2427                                 const struct cntr_entry *entry,
2428                                 void *context, int vl, int mode, u64 data)
2429 {
2430         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431
2432         return dd->rcv_err_status_cnt[40];
2433 }
2434
2435 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2436                                 const struct cntr_entry *entry,
2437                                 void *context, int vl, int mode, u64 data)
2438 {
2439         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440
2441         return dd->rcv_err_status_cnt[39];
2442 }
2443
2444 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2445                                 const struct cntr_entry *entry,
2446                                 void *context, int vl, int mode, u64 data)
2447 {
2448         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449
2450         return dd->rcv_err_status_cnt[38];
2451 }
2452
2453 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2454                                 const struct cntr_entry *entry,
2455                                 void *context, int vl, int mode, u64 data)
2456 {
2457         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458
2459         return dd->rcv_err_status_cnt[37];
2460 }
2461
2462 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463                                 const struct cntr_entry *entry,
2464                                 void *context, int vl, int mode, u64 data)
2465 {
2466         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467
2468         return dd->rcv_err_status_cnt[36];
2469 }
2470
2471 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2472                                 const struct cntr_entry *entry,
2473                                 void *context, int vl, int mode, u64 data)
2474 {
2475         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476
2477         return dd->rcv_err_status_cnt[35];
2478 }
2479
2480 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481                                 const struct cntr_entry *entry,
2482                                 void *context, int vl, int mode, u64 data)
2483 {
2484         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485
2486         return dd->rcv_err_status_cnt[34];
2487 }
2488
2489 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490                                 const struct cntr_entry *entry,
2491                                 void *context, int vl, int mode, u64 data)
2492 {
2493         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494
2495         return dd->rcv_err_status_cnt[33];
2496 }
2497
2498 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2499                                         void *context, int vl, int mode,
2500                                         u64 data)
2501 {
2502         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503
2504         return dd->rcv_err_status_cnt[32];
2505 }
2506
2507 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2508                                        void *context, int vl, int mode,
2509                                        u64 data)
2510 {
2511         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512
2513         return dd->rcv_err_status_cnt[31];
2514 }
2515
2516 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2517                                           void *context, int vl, int mode,
2518                                           u64 data)
2519 {
2520         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521
2522         return dd->rcv_err_status_cnt[30];
2523 }
2524
2525 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2526                                              void *context, int vl, int mode,
2527                                              u64 data)
2528 {
2529         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530
2531         return dd->rcv_err_status_cnt[29];
2532 }
2533
2534 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2535                                                  void *context, int vl,
2536                                                  int mode, u64 data)
2537 {
2538         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539
2540         return dd->rcv_err_status_cnt[28];
2541 }
2542
2543 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544                                 const struct cntr_entry *entry,
2545                                 void *context, int vl, int mode, u64 data)
2546 {
2547         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548
2549         return dd->rcv_err_status_cnt[27];
2550 }
2551
2552 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553                                 const struct cntr_entry *entry,
2554                                 void *context, int vl, int mode, u64 data)
2555 {
2556         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557
2558         return dd->rcv_err_status_cnt[26];
2559 }
2560
2561 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562                                 const struct cntr_entry *entry,
2563                                 void *context, int vl, int mode, u64 data)
2564 {
2565         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566
2567         return dd->rcv_err_status_cnt[25];
2568 }
2569
2570 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571                                 const struct cntr_entry *entry,
2572                                 void *context, int vl, int mode, u64 data)
2573 {
2574         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575
2576         return dd->rcv_err_status_cnt[24];
2577 }
2578
2579 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580                                 const struct cntr_entry *entry,
2581                                 void *context, int vl, int mode, u64 data)
2582 {
2583         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584
2585         return dd->rcv_err_status_cnt[23];
2586 }
2587
2588 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589                                 const struct cntr_entry *entry,
2590                                 void *context, int vl, int mode, u64 data)
2591 {
2592         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593
2594         return dd->rcv_err_status_cnt[22];
2595 }
2596
2597 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598                                 const struct cntr_entry *entry,
2599                                 void *context, int vl, int mode, u64 data)
2600 {
2601         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602
2603         return dd->rcv_err_status_cnt[21];
2604 }
2605
2606 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2607                                 const struct cntr_entry *entry,
2608                                 void *context, int vl, int mode, u64 data)
2609 {
2610         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611
2612         return dd->rcv_err_status_cnt[20];
2613 }
2614
2615 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2616                                 const struct cntr_entry *entry,
2617                                 void *context, int vl, int mode, u64 data)
2618 {
2619         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620
2621         return dd->rcv_err_status_cnt[19];
2622 }
2623
2624 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2625                                                  void *context, int vl,
2626                                                  int mode, u64 data)
2627 {
2628         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629
2630         return dd->rcv_err_status_cnt[18];
2631 }
2632
2633 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2634                                                  void *context, int vl,
2635                                                  int mode, u64 data)
2636 {
2637         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638
2639         return dd->rcv_err_status_cnt[17];
2640 }
2641
2642 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643                                 const struct cntr_entry *entry,
2644                                 void *context, int vl, int mode, u64 data)
2645 {
2646         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647
2648         return dd->rcv_err_status_cnt[16];
2649 }
2650
2651 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652                                 const struct cntr_entry *entry,
2653                                 void *context, int vl, int mode, u64 data)
2654 {
2655         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656
2657         return dd->rcv_err_status_cnt[15];
2658 }
2659
2660 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2661                                                 void *context, int vl,
2662                                                 int mode, u64 data)
2663 {
2664         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665
2666         return dd->rcv_err_status_cnt[14];
2667 }
2668
2669 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2670                                                 void *context, int vl,
2671                                                 int mode, u64 data)
2672 {
2673         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674
2675         return dd->rcv_err_status_cnt[13];
2676 }
2677
2678 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2679                                               void *context, int vl, int mode,
2680                                               u64 data)
2681 {
2682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683
2684         return dd->rcv_err_status_cnt[12];
2685 }
2686
2687 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2688                                           void *context, int vl, int mode,
2689                                           u64 data)
2690 {
2691         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692
2693         return dd->rcv_err_status_cnt[11];
2694 }
2695
2696 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2697                                           void *context, int vl, int mode,
2698                                           u64 data)
2699 {
2700         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701
2702         return dd->rcv_err_status_cnt[10];
2703 }
2704
2705 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2706                                                void *context, int vl, int mode,
2707                                                u64 data)
2708 {
2709         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710
2711         return dd->rcv_err_status_cnt[9];
2712 }
2713
2714 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2715                                             void *context, int vl, int mode,
2716                                             u64 data)
2717 {
2718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719
2720         return dd->rcv_err_status_cnt[8];
2721 }
2722
2723 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2724                                 const struct cntr_entry *entry,
2725                                 void *context, int vl, int mode, u64 data)
2726 {
2727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728
2729         return dd->rcv_err_status_cnt[7];
2730 }
2731
2732 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2733                                 const struct cntr_entry *entry,
2734                                 void *context, int vl, int mode, u64 data)
2735 {
2736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737
2738         return dd->rcv_err_status_cnt[6];
2739 }
2740
2741 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2742                                           void *context, int vl, int mode,
2743                                           u64 data)
2744 {
2745         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746
2747         return dd->rcv_err_status_cnt[5];
2748 }
2749
2750 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2751                                           void *context, int vl, int mode,
2752                                           u64 data)
2753 {
2754         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755
2756         return dd->rcv_err_status_cnt[4];
2757 }
2758
2759 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2760                                          void *context, int vl, int mode,
2761                                          u64 data)
2762 {
2763         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764
2765         return dd->rcv_err_status_cnt[3];
2766 }
2767
2768 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2769                                          void *context, int vl, int mode,
2770                                          u64 data)
2771 {
2772         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773
2774         return dd->rcv_err_status_cnt[2];
2775 }
2776
2777 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2778                                             void *context, int vl, int mode,
2779                                             u64 data)
2780 {
2781         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782
2783         return dd->rcv_err_status_cnt[1];
2784 }
2785
2786 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2787                                          void *context, int vl, int mode,
2788                                          u64 data)
2789 {
2790         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792         return dd->rcv_err_status_cnt[0];
2793 }
2794
2795 /*
2796  * Software counters corresponding to each of the
2797  * error status bits within SendPioErrStatus
2798  */
2799 static u64 access_pio_pec_sop_head_parity_err_cnt(
2800                                 const struct cntr_entry *entry,
2801                                 void *context, int vl, int mode, u64 data)
2802 {
2803         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804
2805         return dd->send_pio_err_status_cnt[35];
2806 }
2807
2808 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2809                                 const struct cntr_entry *entry,
2810                                 void *context, int vl, int mode, u64 data)
2811 {
2812         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813
2814         return dd->send_pio_err_status_cnt[34];
2815 }
2816
2817 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2818                                 const struct cntr_entry *entry,
2819                                 void *context, int vl, int mode, u64 data)
2820 {
2821         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822
2823         return dd->send_pio_err_status_cnt[33];
2824 }
2825
2826 static u64 access_pio_current_free_cnt_parity_err_cnt(
2827                                 const struct cntr_entry *entry,
2828                                 void *context, int vl, int mode, u64 data)
2829 {
2830         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831
2832         return dd->send_pio_err_status_cnt[32];
2833 }
2834
2835 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2836                                           void *context, int vl, int mode,
2837                                           u64 data)
2838 {
2839         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840
2841         return dd->send_pio_err_status_cnt[31];
2842 }
2843
2844 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2845                                           void *context, int vl, int mode,
2846                                           u64 data)
2847 {
2848         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849
2850         return dd->send_pio_err_status_cnt[30];
2851 }
2852
2853 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2854                                            void *context, int vl, int mode,
2855                                            u64 data)
2856 {
2857         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858
2859         return dd->send_pio_err_status_cnt[29];
2860 }
2861
2862 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2863                                 const struct cntr_entry *entry,
2864                                 void *context, int vl, int mode, u64 data)
2865 {
2866         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867
2868         return dd->send_pio_err_status_cnt[28];
2869 }
2870
2871 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2872                                              void *context, int vl, int mode,
2873                                              u64 data)
2874 {
2875         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876
2877         return dd->send_pio_err_status_cnt[27];
2878 }
2879
2880 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2881                                              void *context, int vl, int mode,
2882                                              u64 data)
2883 {
2884         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885
2886         return dd->send_pio_err_status_cnt[26];
2887 }
2888
2889 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2890                                                 void *context, int vl,
2891                                                 int mode, u64 data)
2892 {
2893         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894
2895         return dd->send_pio_err_status_cnt[25];
2896 }
2897
2898 static u64 access_pio_block_qw_count_parity_err_cnt(
2899                                 const struct cntr_entry *entry,
2900                                 void *context, int vl, int mode, u64 data)
2901 {
2902         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903
2904         return dd->send_pio_err_status_cnt[24];
2905 }
2906
2907 static u64 access_pio_write_qw_valid_parity_err_cnt(
2908                                 const struct cntr_entry *entry,
2909                                 void *context, int vl, int mode, u64 data)
2910 {
2911         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912
2913         return dd->send_pio_err_status_cnt[23];
2914 }
2915
2916 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2917                                             void *context, int vl, int mode,
2918                                             u64 data)
2919 {
2920         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921
2922         return dd->send_pio_err_status_cnt[22];
2923 }
2924
2925 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2926                                                 void *context, int vl,
2927                                                 int mode, u64 data)
2928 {
2929         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930
2931         return dd->send_pio_err_status_cnt[21];
2932 }
2933
2934 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2935                                                 void *context, int vl,
2936                                                 int mode, u64 data)
2937 {
2938         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939
2940         return dd->send_pio_err_status_cnt[20];
2941 }
2942
2943 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2944                                                 void *context, int vl,
2945                                                 int mode, u64 data)
2946 {
2947         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948
2949         return dd->send_pio_err_status_cnt[19];
2950 }
2951
2952 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953                                 const struct cntr_entry *entry,
2954                                 void *context, int vl, int mode, u64 data)
2955 {
2956         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957
2958         return dd->send_pio_err_status_cnt[18];
2959 }
2960
2961 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2962                                          void *context, int vl, int mode,
2963                                          u64 data)
2964 {
2965         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966
2967         return dd->send_pio_err_status_cnt[17];
2968 }
2969
2970 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2971                                             void *context, int vl, int mode,
2972                                             u64 data)
2973 {
2974         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975
2976         return dd->send_pio_err_status_cnt[16];
2977 }
2978
2979 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2980                                 const struct cntr_entry *entry,
2981                                 void *context, int vl, int mode, u64 data)
2982 {
2983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984
2985         return dd->send_pio_err_status_cnt[15];
2986 }
2987
2988 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2989                                 const struct cntr_entry *entry,
2990                                 void *context, int vl, int mode, u64 data)
2991 {
2992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993
2994         return dd->send_pio_err_status_cnt[14];
2995 }
2996
2997 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2998                                 const struct cntr_entry *entry,
2999                                 void *context, int vl, int mode, u64 data)
3000 {
3001         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002
3003         return dd->send_pio_err_status_cnt[13];
3004 }
3005
3006 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3007                                 const struct cntr_entry *entry,
3008                                 void *context, int vl, int mode, u64 data)
3009 {
3010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011
3012         return dd->send_pio_err_status_cnt[12];
3013 }
3014
3015 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3016                                 const struct cntr_entry *entry,
3017                                 void *context, int vl, int mode, u64 data)
3018 {
3019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020
3021         return dd->send_pio_err_status_cnt[11];
3022 }
3023
3024 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3025                                 const struct cntr_entry *entry,
3026                                 void *context, int vl, int mode, u64 data)
3027 {
3028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029
3030         return dd->send_pio_err_status_cnt[10];
3031 }
3032
3033 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3034                                 const struct cntr_entry *entry,
3035                                 void *context, int vl, int mode, u64 data)
3036 {
3037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038
3039         return dd->send_pio_err_status_cnt[9];
3040 }
3041
3042 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043                                 const struct cntr_entry *entry,
3044                                 void *context, int vl, int mode, u64 data)
3045 {
3046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047
3048         return dd->send_pio_err_status_cnt[8];
3049 }
3050
3051 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3052                                 const struct cntr_entry *entry,
3053                                 void *context, int vl, int mode, u64 data)
3054 {
3055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056
3057         return dd->send_pio_err_status_cnt[7];
3058 }
3059
3060 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3061                                               void *context, int vl, int mode,
3062                                               u64 data)
3063 {
3064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065
3066         return dd->send_pio_err_status_cnt[6];
3067 }
3068
3069 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070                                               void *context, int vl, int mode,
3071                                               u64 data)
3072 {
3073         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074
3075         return dd->send_pio_err_status_cnt[5];
3076 }
3077
3078 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3079                                            void *context, int vl, int mode,
3080                                            u64 data)
3081 {
3082         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083
3084         return dd->send_pio_err_status_cnt[4];
3085 }
3086
3087 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3088                                            void *context, int vl, int mode,
3089                                            u64 data)
3090 {
3091         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092
3093         return dd->send_pio_err_status_cnt[3];
3094 }
3095
3096 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3097                                          void *context, int vl, int mode,
3098                                          u64 data)
3099 {
3100         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101
3102         return dd->send_pio_err_status_cnt[2];
3103 }
3104
3105 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3106                                                 void *context, int vl,
3107                                                 int mode, u64 data)
3108 {
3109         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110
3111         return dd->send_pio_err_status_cnt[1];
3112 }
3113
3114 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3115                                              void *context, int vl, int mode,
3116                                              u64 data)
3117 {
3118         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120         return dd->send_pio_err_status_cnt[0];
3121 }
3122
3123 /*
3124  * Software counters corresponding to each of the
3125  * error status bits within SendDmaErrStatus
3126  */
3127 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3128                                 const struct cntr_entry *entry,
3129                                 void *context, int vl, int mode, u64 data)
3130 {
3131         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132
3133         return dd->send_dma_err_status_cnt[3];
3134 }
3135
3136 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3137                                 const struct cntr_entry *entry,
3138                                 void *context, int vl, int mode, u64 data)
3139 {
3140         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141
3142         return dd->send_dma_err_status_cnt[2];
3143 }
3144
3145 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3146                                           void *context, int vl, int mode,
3147                                           u64 data)
3148 {
3149         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150
3151         return dd->send_dma_err_status_cnt[1];
3152 }
3153
3154 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3155                                        void *context, int vl, int mode,
3156                                        u64 data)
3157 {
3158         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160         return dd->send_dma_err_status_cnt[0];
3161 }
3162
3163 /*
3164  * Software counters corresponding to each of the
3165  * error status bits within SendEgressErrStatus
3166  */
3167 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3168                                 const struct cntr_entry *entry,
3169                                 void *context, int vl, int mode, u64 data)
3170 {
3171         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172
3173         return dd->send_egress_err_status_cnt[63];
3174 }
3175
3176 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3177                                 const struct cntr_entry *entry,
3178                                 void *context, int vl, int mode, u64 data)
3179 {
3180         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181
3182         return dd->send_egress_err_status_cnt[62];
3183 }
3184
3185 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3186                                              void *context, int vl, int mode,
3187                                              u64 data)
3188 {
3189         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190
3191         return dd->send_egress_err_status_cnt[61];
3192 }
3193
3194 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3195                                                  void *context, int vl,
3196                                                  int mode, u64 data)
3197 {
3198         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199
3200         return dd->send_egress_err_status_cnt[60];
3201 }
3202
3203 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3204                                 const struct cntr_entry *entry,
3205                                 void *context, int vl, int mode, u64 data)
3206 {
3207         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208
3209         return dd->send_egress_err_status_cnt[59];
3210 }
3211
3212 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3213                                         void *context, int vl, int mode,
3214                                         u64 data)
3215 {
3216         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217
3218         return dd->send_egress_err_status_cnt[58];
3219 }
3220
3221 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3222                                             void *context, int vl, int mode,
3223                                             u64 data)
3224 {
3225         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226
3227         return dd->send_egress_err_status_cnt[57];
3228 }
3229
3230 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3231                                               void *context, int vl, int mode,
3232                                               u64 data)
3233 {
3234         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235
3236         return dd->send_egress_err_status_cnt[56];
3237 }
3238
3239 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3240                                               void *context, int vl, int mode,
3241                                               u64 data)
3242 {
3243         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244
3245         return dd->send_egress_err_status_cnt[55];
3246 }
3247
3248 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3249                                               void *context, int vl, int mode,
3250                                               u64 data)
3251 {
3252         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253
3254         return dd->send_egress_err_status_cnt[54];
3255 }
3256
3257 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3258                                               void *context, int vl, int mode,
3259                                               u64 data)
3260 {
3261         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262
3263         return dd->send_egress_err_status_cnt[53];
3264 }
3265
3266 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3267                                               void *context, int vl, int mode,
3268                                               u64 data)
3269 {
3270         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271
3272         return dd->send_egress_err_status_cnt[52];
3273 }
3274
3275 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3276                                               void *context, int vl, int mode,
3277                                               u64 data)
3278 {
3279         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280
3281         return dd->send_egress_err_status_cnt[51];
3282 }
3283
3284 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3285                                               void *context, int vl, int mode,
3286                                               u64 data)
3287 {
3288         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289
3290         return dd->send_egress_err_status_cnt[50];
3291 }
3292
3293 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3294                                               void *context, int vl, int mode,
3295                                               u64 data)
3296 {
3297         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298
3299         return dd->send_egress_err_status_cnt[49];
3300 }
3301
3302 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3303                                               void *context, int vl, int mode,
3304                                               u64 data)
3305 {
3306         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307
3308         return dd->send_egress_err_status_cnt[48];
3309 }
3310
3311 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3312                                               void *context, int vl, int mode,
3313                                               u64 data)
3314 {
3315         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316
3317         return dd->send_egress_err_status_cnt[47];
3318 }
3319
3320 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3321                                             void *context, int vl, int mode,
3322                                             u64 data)
3323 {
3324         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325
3326         return dd->send_egress_err_status_cnt[46];
3327 }
3328
3329 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3330                                              void *context, int vl, int mode,
3331                                              u64 data)
3332 {
3333         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334
3335         return dd->send_egress_err_status_cnt[45];
3336 }
3337
3338 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3339                                                  void *context, int vl,
3340                                                  int mode, u64 data)
3341 {
3342         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343
3344         return dd->send_egress_err_status_cnt[44];
3345 }
3346
3347 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3348                                 const struct cntr_entry *entry,
3349                                 void *context, int vl, int mode, u64 data)
3350 {
3351         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352
3353         return dd->send_egress_err_status_cnt[43];
3354 }
3355
3356 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3357                                         void *context, int vl, int mode,
3358                                         u64 data)
3359 {
3360         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361
3362         return dd->send_egress_err_status_cnt[42];
3363 }
3364
3365 static u64 access_tx_credit_return_partiy_err_cnt(
3366                                 const struct cntr_entry *entry,
3367                                 void *context, int vl, int mode, u64 data)
3368 {
3369         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370
3371         return dd->send_egress_err_status_cnt[41];
3372 }
3373
3374 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375                                 const struct cntr_entry *entry,
3376                                 void *context, int vl, int mode, u64 data)
3377 {
3378         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379
3380         return dd->send_egress_err_status_cnt[40];
3381 }
3382
3383 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384                                 const struct cntr_entry *entry,
3385                                 void *context, int vl, int mode, u64 data)
3386 {
3387         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388
3389         return dd->send_egress_err_status_cnt[39];
3390 }
3391
3392 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393                                 const struct cntr_entry *entry,
3394                                 void *context, int vl, int mode, u64 data)
3395 {
3396         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397
3398         return dd->send_egress_err_status_cnt[38];
3399 }
3400
3401 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402                                 const struct cntr_entry *entry,
3403                                 void *context, int vl, int mode, u64 data)
3404 {
3405         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406
3407         return dd->send_egress_err_status_cnt[37];
3408 }
3409
3410 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411                                 const struct cntr_entry *entry,
3412                                 void *context, int vl, int mode, u64 data)
3413 {
3414         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415
3416         return dd->send_egress_err_status_cnt[36];
3417 }
3418
3419 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420                                 const struct cntr_entry *entry,
3421                                 void *context, int vl, int mode, u64 data)
3422 {
3423         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424
3425         return dd->send_egress_err_status_cnt[35];
3426 }
3427
3428 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429                                 const struct cntr_entry *entry,
3430                                 void *context, int vl, int mode, u64 data)
3431 {
3432         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433
3434         return dd->send_egress_err_status_cnt[34];
3435 }
3436
3437 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438                                 const struct cntr_entry *entry,
3439                                 void *context, int vl, int mode, u64 data)
3440 {
3441         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442
3443         return dd->send_egress_err_status_cnt[33];
3444 }
3445
3446 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447                                 const struct cntr_entry *entry,
3448                                 void *context, int vl, int mode, u64 data)
3449 {
3450         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451
3452         return dd->send_egress_err_status_cnt[32];
3453 }
3454
3455 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3456                                 const struct cntr_entry *entry,
3457                                 void *context, int vl, int mode, u64 data)
3458 {
3459         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460
3461         return dd->send_egress_err_status_cnt[31];
3462 }
3463
3464 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3465                                 const struct cntr_entry *entry,
3466                                 void *context, int vl, int mode, u64 data)
3467 {
3468         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469
3470         return dd->send_egress_err_status_cnt[30];
3471 }
3472
3473 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3474                                 const struct cntr_entry *entry,
3475                                 void *context, int vl, int mode, u64 data)
3476 {
3477         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478
3479         return dd->send_egress_err_status_cnt[29];
3480 }
3481
3482 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3483                                 const struct cntr_entry *entry,
3484                                 void *context, int vl, int mode, u64 data)
3485 {
3486         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487
3488         return dd->send_egress_err_status_cnt[28];
3489 }
3490
3491 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3492                                 const struct cntr_entry *entry,
3493                                 void *context, int vl, int mode, u64 data)
3494 {
3495         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496
3497         return dd->send_egress_err_status_cnt[27];
3498 }
3499
3500 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3501                                 const struct cntr_entry *entry,
3502                                 void *context, int vl, int mode, u64 data)
3503 {
3504         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505
3506         return dd->send_egress_err_status_cnt[26];
3507 }
3508
3509 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3510                                 const struct cntr_entry *entry,
3511                                 void *context, int vl, int mode, u64 data)
3512 {
3513         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514
3515         return dd->send_egress_err_status_cnt[25];
3516 }
3517
3518 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3519                                 const struct cntr_entry *entry,
3520                                 void *context, int vl, int mode, u64 data)
3521 {
3522         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523
3524         return dd->send_egress_err_status_cnt[24];
3525 }
3526
3527 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3528                                 const struct cntr_entry *entry,
3529                                 void *context, int vl, int mode, u64 data)
3530 {
3531         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532
3533         return dd->send_egress_err_status_cnt[23];
3534 }
3535
3536 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3537                                 const struct cntr_entry *entry,
3538                                 void *context, int vl, int mode, u64 data)
3539 {
3540         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541
3542         return dd->send_egress_err_status_cnt[22];
3543 }
3544
3545 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3546                                 const struct cntr_entry *entry,
3547                                 void *context, int vl, int mode, u64 data)
3548 {
3549         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550
3551         return dd->send_egress_err_status_cnt[21];
3552 }
3553
3554 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3555                                 const struct cntr_entry *entry,
3556                                 void *context, int vl, int mode, u64 data)
3557 {
3558         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559
3560         return dd->send_egress_err_status_cnt[20];
3561 }
3562
3563 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3564                                 const struct cntr_entry *entry,
3565                                 void *context, int vl, int mode, u64 data)
3566 {
3567         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568
3569         return dd->send_egress_err_status_cnt[19];
3570 }
3571
3572 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3573                                 const struct cntr_entry *entry,
3574                                 void *context, int vl, int mode, u64 data)
3575 {
3576         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577
3578         return dd->send_egress_err_status_cnt[18];
3579 }
3580
3581 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3582                                 const struct cntr_entry *entry,
3583                                 void *context, int vl, int mode, u64 data)
3584 {
3585         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586
3587         return dd->send_egress_err_status_cnt[17];
3588 }
3589
3590 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3591                                 const struct cntr_entry *entry,
3592                                 void *context, int vl, int mode, u64 data)
3593 {
3594         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595
3596         return dd->send_egress_err_status_cnt[16];
3597 }
3598
3599 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3600                                            void *context, int vl, int mode,
3601                                            u64 data)
3602 {
3603         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604
3605         return dd->send_egress_err_status_cnt[15];
3606 }
3607
3608 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3609                                                  void *context, int vl,
3610                                                  int mode, u64 data)
3611 {
3612         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613
3614         return dd->send_egress_err_status_cnt[14];
3615 }
3616
3617 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3618                                                void *context, int vl, int mode,
3619                                                u64 data)
3620 {
3621         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622
3623         return dd->send_egress_err_status_cnt[13];
3624 }
3625
3626 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3627                                         void *context, int vl, int mode,
3628                                         u64 data)
3629 {
3630         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631
3632         return dd->send_egress_err_status_cnt[12];
3633 }
3634
3635 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636                                 const struct cntr_entry *entry,
3637                                 void *context, int vl, int mode, u64 data)
3638 {
3639         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640
3641         return dd->send_egress_err_status_cnt[11];
3642 }
3643
3644 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3645                                              void *context, int vl, int mode,
3646                                              u64 data)
3647 {
3648         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649
3650         return dd->send_egress_err_status_cnt[10];
3651 }
3652
3653 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3654                                             void *context, int vl, int mode,
3655                                             u64 data)
3656 {
3657         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658
3659         return dd->send_egress_err_status_cnt[9];
3660 }
3661
3662 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3663                                 const struct cntr_entry *entry,
3664                                 void *context, int vl, int mode, u64 data)
3665 {
3666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667
3668         return dd->send_egress_err_status_cnt[8];
3669 }
3670
3671 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3672                                 const struct cntr_entry *entry,
3673                                 void *context, int vl, int mode, u64 data)
3674 {
3675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676
3677         return dd->send_egress_err_status_cnt[7];
3678 }
3679
3680 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3681                                             void *context, int vl, int mode,
3682                                             u64 data)
3683 {
3684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685
3686         return dd->send_egress_err_status_cnt[6];
3687 }
3688
3689 static u64 access_tx_incorrect_link_state_err_cnt(
3690                                 const struct cntr_entry *entry,
3691                                 void *context, int vl, int mode, u64 data)
3692 {
3693         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694
3695         return dd->send_egress_err_status_cnt[5];
3696 }
3697
3698 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3699                                       void *context, int vl, int mode,
3700                                       u64 data)
3701 {
3702         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703
3704         return dd->send_egress_err_status_cnt[4];
3705 }
3706
3707 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708                                 const struct cntr_entry *entry,
3709                                 void *context, int vl, int mode, u64 data)
3710 {
3711         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712
3713         return dd->send_egress_err_status_cnt[3];
3714 }
3715
3716 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3717                                             void *context, int vl, int mode,
3718                                             u64 data)
3719 {
3720         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721
3722         return dd->send_egress_err_status_cnt[2];
3723 }
3724
3725 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3726                                 const struct cntr_entry *entry,
3727                                 void *context, int vl, int mode, u64 data)
3728 {
3729         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730
3731         return dd->send_egress_err_status_cnt[1];
3732 }
3733
3734 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3735                                 const struct cntr_entry *entry,
3736                                 void *context, int vl, int mode, u64 data)
3737 {
3738         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740         return dd->send_egress_err_status_cnt[0];
3741 }
3742
3743 /*
3744  * Software counters corresponding to each of the
3745  * error status bits within SendErrStatus
3746  */
3747 static u64 access_send_csr_write_bad_addr_err_cnt(
3748                                 const struct cntr_entry *entry,
3749                                 void *context, int vl, int mode, u64 data)
3750 {
3751         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752
3753         return dd->send_err_status_cnt[2];
3754 }
3755
3756 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3757                                                  void *context, int vl,
3758                                                  int mode, u64 data)
3759 {
3760         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761
3762         return dd->send_err_status_cnt[1];
3763 }
3764
3765 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3766                                       void *context, int vl, int mode,
3767                                       u64 data)
3768 {
3769         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771         return dd->send_err_status_cnt[0];
3772 }
3773
3774 /*
3775  * Software counters corresponding to each of the
3776  * error status bits within SendCtxtErrStatus
3777  */
3778 static u64 access_pio_write_out_of_bounds_err_cnt(
3779                                 const struct cntr_entry *entry,
3780                                 void *context, int vl, int mode, u64 data)
3781 {
3782         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783
3784         return dd->sw_ctxt_err_status_cnt[4];
3785 }
3786
3787 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3788                                              void *context, int vl, int mode,
3789                                              u64 data)
3790 {
3791         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792
3793         return dd->sw_ctxt_err_status_cnt[3];
3794 }
3795
3796 static u64 access_pio_write_crosses_boundary_err_cnt(
3797                                 const struct cntr_entry *entry,
3798                                 void *context, int vl, int mode, u64 data)
3799 {
3800         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801
3802         return dd->sw_ctxt_err_status_cnt[2];
3803 }
3804
3805 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3806                                                 void *context, int vl,
3807                                                 int mode, u64 data)
3808 {
3809         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810
3811         return dd->sw_ctxt_err_status_cnt[1];
3812 }
3813
3814 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3815                                                void *context, int vl, int mode,
3816                                                u64 data)
3817 {
3818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820         return dd->sw_ctxt_err_status_cnt[0];
3821 }
3822
3823 /*
3824  * Software counters corresponding to each of the
3825  * error status bits within SendDmaEngErrStatus
3826  */
3827 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3828                                 const struct cntr_entry *entry,
3829                                 void *context, int vl, int mode, u64 data)
3830 {
3831         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832
3833         return dd->sw_send_dma_eng_err_status_cnt[23];
3834 }
3835
3836 static u64 access_sdma_header_storage_cor_err_cnt(
3837                                 const struct cntr_entry *entry,
3838                                 void *context, int vl, int mode, u64 data)
3839 {
3840         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841
3842         return dd->sw_send_dma_eng_err_status_cnt[22];
3843 }
3844
3845 static u64 access_sdma_packet_tracking_cor_err_cnt(
3846                                 const struct cntr_entry *entry,
3847                                 void *context, int vl, int mode, u64 data)
3848 {
3849         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850
3851         return dd->sw_send_dma_eng_err_status_cnt[21];
3852 }
3853
3854 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3855                                             void *context, int vl, int mode,
3856                                             u64 data)
3857 {
3858         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859
3860         return dd->sw_send_dma_eng_err_status_cnt[20];
3861 }
3862
3863 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3864                                               void *context, int vl, int mode,
3865                                               u64 data)
3866 {
3867         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868
3869         return dd->sw_send_dma_eng_err_status_cnt[19];
3870 }
3871
3872 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3873                                 const struct cntr_entry *entry,
3874                                 void *context, int vl, int mode, u64 data)
3875 {
3876         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877
3878         return dd->sw_send_dma_eng_err_status_cnt[18];
3879 }
3880
3881 static u64 access_sdma_header_storage_unc_err_cnt(
3882                                 const struct cntr_entry *entry,
3883                                 void *context, int vl, int mode, u64 data)
3884 {
3885         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886
3887         return dd->sw_send_dma_eng_err_status_cnt[17];
3888 }
3889
3890 static u64 access_sdma_packet_tracking_unc_err_cnt(
3891                                 const struct cntr_entry *entry,
3892                                 void *context, int vl, int mode, u64 data)
3893 {
3894         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895
3896         return dd->sw_send_dma_eng_err_status_cnt[16];
3897 }
3898
3899 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3900                                             void *context, int vl, int mode,
3901                                             u64 data)
3902 {
3903         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904
3905         return dd->sw_send_dma_eng_err_status_cnt[15];
3906 }
3907
3908 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3909                                               void *context, int vl, int mode,
3910                                               u64 data)
3911 {
3912         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913
3914         return dd->sw_send_dma_eng_err_status_cnt[14];
3915 }
3916
3917 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3918                                        void *context, int vl, int mode,
3919                                        u64 data)
3920 {
3921         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922
3923         return dd->sw_send_dma_eng_err_status_cnt[13];
3924 }
3925
3926 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3927                                              void *context, int vl, int mode,
3928                                              u64 data)
3929 {
3930         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931
3932         return dd->sw_send_dma_eng_err_status_cnt[12];
3933 }
3934
3935 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3936                                               void *context, int vl, int mode,
3937                                               u64 data)
3938 {
3939         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940
3941         return dd->sw_send_dma_eng_err_status_cnt[11];
3942 }
3943
3944 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3945                                              void *context, int vl, int mode,
3946                                              u64 data)
3947 {
3948         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949
3950         return dd->sw_send_dma_eng_err_status_cnt[10];
3951 }
3952
3953 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3954                                           void *context, int vl, int mode,
3955                                           u64 data)
3956 {
3957         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958
3959         return dd->sw_send_dma_eng_err_status_cnt[9];
3960 }
3961
3962 static u64 access_sdma_packet_desc_overflow_err_cnt(
3963                                 const struct cntr_entry *entry,
3964                                 void *context, int vl, int mode, u64 data)
3965 {
3966         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967
3968         return dd->sw_send_dma_eng_err_status_cnt[8];
3969 }
3970
3971 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3972                                                void *context, int vl,
3973                                                int mode, u64 data)
3974 {
3975         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976
3977         return dd->sw_send_dma_eng_err_status_cnt[7];
3978 }
3979
3980 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3981                                     void *context, int vl, int mode, u64 data)
3982 {
3983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984
3985         return dd->sw_send_dma_eng_err_status_cnt[6];
3986 }
3987
3988 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3989                                         void *context, int vl, int mode,
3990                                         u64 data)
3991 {
3992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993
3994         return dd->sw_send_dma_eng_err_status_cnt[5];
3995 }
3996
3997 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3998                                           void *context, int vl, int mode,
3999                                           u64 data)
4000 {
4001         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002
4003         return dd->sw_send_dma_eng_err_status_cnt[4];
4004 }
4005
4006 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4007                                 const struct cntr_entry *entry,
4008                                 void *context, int vl, int mode, u64 data)
4009 {
4010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011
4012         return dd->sw_send_dma_eng_err_status_cnt[3];
4013 }
4014
4015 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4016                                         void *context, int vl, int mode,
4017                                         u64 data)
4018 {
4019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020
4021         return dd->sw_send_dma_eng_err_status_cnt[2];
4022 }
4023
4024 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4025                                             void *context, int vl, int mode,
4026                                             u64 data)
4027 {
4028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029
4030         return dd->sw_send_dma_eng_err_status_cnt[1];
4031 }
4032
4033 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4034                                         void *context, int vl, int mode,
4035                                         u64 data)
4036 {
4037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038
4039         return dd->sw_send_dma_eng_err_status_cnt[0];
4040 }
4041
4042 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4043                                  void *context, int vl, int mode,
4044                                  u64 data)
4045 {
4046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047
4048         u64 val = 0;
4049         u64 csr = entry->csr;
4050
4051         val = read_write_csr(dd, csr, mode, data);
4052         if (mode == CNTR_MODE_R) {
4053                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4054                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4055         } else if (mode == CNTR_MODE_W) {
4056                 dd->sw_rcv_bypass_packet_errors = 0;
4057         } else {
4058                 dd_dev_err(dd, "Invalid cntr register access mode");
4059                 return 0;
4060         }
4061         return val;
4062 }
4063
4064 #define def_access_sw_cpu(cntr) \
4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4066                               void *context, int vl, int mode, u64 data)      \
4067 {                                                                             \
4068         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4069         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4070                               ppd->ibport_data.rvp.cntr, vl,                  \
4071                               mode, data);                                    \
4072 }
4073
4074 def_access_sw_cpu(rc_acks);
4075 def_access_sw_cpu(rc_qacks);
4076 def_access_sw_cpu(rc_delayed_comp);
4077
4078 #define def_access_ibp_counter(cntr) \
4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4080                                 void *context, int vl, int mode, u64 data)    \
4081 {                                                                             \
4082         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4083                                                                               \
4084         if (vl != CNTR_INVALID_VL)                                            \
4085                 return 0;                                                     \
4086                                                                               \
4087         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4088                              mode, data);                                     \
4089 }
4090
4091 def_access_ibp_counter(loop_pkts);
4092 def_access_ibp_counter(rc_resends);
4093 def_access_ibp_counter(rnr_naks);
4094 def_access_ibp_counter(other_naks);
4095 def_access_ibp_counter(rc_timeouts);
4096 def_access_ibp_counter(pkt_drops);
4097 def_access_ibp_counter(dmawait);
4098 def_access_ibp_counter(rc_seqnak);
4099 def_access_ibp_counter(rc_dupreq);
4100 def_access_ibp_counter(rdma_seq);
4101 def_access_ibp_counter(unaligned);
4102 def_access_ibp_counter(seq_naks);
4103
4104 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4105 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4106 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4107                         CNTR_NORMAL),
4108 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4109                         CNTR_NORMAL),
4110 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4111                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4112                         CNTR_NORMAL),
4113 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4114                         CNTR_NORMAL),
4115 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4116                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4118                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4119 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4120                         CNTR_NORMAL),
4121 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4122                         CNTR_NORMAL),
4123 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4124                         CNTR_NORMAL),
4125 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4126                         CNTR_NORMAL),
4127 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4128                         CNTR_NORMAL),
4129 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4130                         CNTR_NORMAL),
4131 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4132                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4133 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4134                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4135 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4136                               CNTR_SYNTH),
4137 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4138                             access_dc_rcv_err_cnt),
4139 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4140                                  CNTR_SYNTH),
4141 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4142                                   CNTR_SYNTH),
4143 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4144                                   CNTR_SYNTH),
4145 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4146                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4147 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4148                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4149                                   CNTR_SYNTH),
4150 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4151                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4152 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4153                                CNTR_SYNTH),
4154 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4155                               CNTR_SYNTH),
4156 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4157                                CNTR_SYNTH),
4158 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4159                                  CNTR_SYNTH),
4160 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4161                                 CNTR_SYNTH),
4162 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4163                                 CNTR_SYNTH),
4164 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4165                                CNTR_SYNTH),
4166 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4167                                  CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4169                                 CNTR_SYNTH | CNTR_VL),
4170 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4171 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4172                                  CNTR_SYNTH | CNTR_VL),
4173 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4174 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4175                                  CNTR_SYNTH | CNTR_VL),
4176 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4177                               CNTR_SYNTH),
4178 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4179                                  CNTR_SYNTH | CNTR_VL),
4180 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4181                                 CNTR_SYNTH),
4182 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4183                                    CNTR_SYNTH | CNTR_VL),
4184 [C_DC_TOTAL_CRC] =
4185         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4186                          CNTR_SYNTH),
4187 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4188                                   CNTR_SYNTH),
4189 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4190                                   CNTR_SYNTH),
4191 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4192                                   CNTR_SYNTH),
4193 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4194                                   CNTR_SYNTH),
4195 [C_DC_CRC_MULT_LN] =
4196         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4197                          CNTR_SYNTH),
4198 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4199                                     CNTR_SYNTH),
4200 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4201                                     CNTR_SYNTH),
4202 [C_DC_SEQ_CRC_CNT] =
4203         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4204                          CNTR_SYNTH),
4205 [C_DC_ESC0_ONLY_CNT] =
4206         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4207                          CNTR_SYNTH),
4208 [C_DC_ESC0_PLUS1_CNT] =
4209         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4210                          CNTR_SYNTH),
4211 [C_DC_ESC0_PLUS2_CNT] =
4212         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4213                          CNTR_SYNTH),
4214 [C_DC_REINIT_FROM_PEER_CNT] =
4215         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4216                          CNTR_SYNTH),
4217 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4218                                   CNTR_SYNTH),
4219 [C_DC_MISC_FLG_CNT] =
4220         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4221                          CNTR_SYNTH),
4222 [C_DC_PRF_GOOD_LTP_CNT] =
4223         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4224 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4225         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4226                          CNTR_SYNTH),
4227 [C_DC_PRF_RX_FLIT_CNT] =
4228         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_TX_FLIT_CNT] =
4230         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4231 [C_DC_PRF_CLK_CNTR] =
4232         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4234         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4236         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4237                          CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_SBE_CNT] =
4239         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4240 [C_DC_PG_STS_TX_MBE_CNT] =
4241         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4242                          CNTR_SYNTH),
4243 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4244                             access_sw_cpu_intr),
4245 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4246                             access_sw_cpu_rcv_limit),
4247 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4248                             access_sw_vtx_wait),
4249 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4250                             access_sw_pio_wait),
4251 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4252                             access_sw_pio_drain),
4253 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4254                             access_sw_kmem_wait),
4255 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4256                             access_sw_send_schedule),
4257 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4258                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4259                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260                                       dev_access_u32_csr),
4261 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4262                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263                              access_sde_int_cnt),
4264 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266                              access_sde_err_cnt),
4267 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269                                   access_sde_idle_int_cnt),
4270 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272                                       access_sde_progress_int_cnt),
4273 /* MISC_ERR_STATUS */
4274 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4275                                 CNTR_NORMAL,
4276                                 access_misc_pll_lock_fail_err_cnt),
4277 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4278                                 CNTR_NORMAL,
4279                                 access_misc_mbist_fail_err_cnt),
4280 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4281                                 CNTR_NORMAL,
4282                                 access_misc_invalid_eep_cmd_err_cnt),
4283 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4284                                 CNTR_NORMAL,
4285                                 access_misc_efuse_done_parity_err_cnt),
4286 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4287                                 CNTR_NORMAL,
4288                                 access_misc_efuse_write_err_cnt),
4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4290                                 0, CNTR_NORMAL,
4291                                 access_misc_efuse_read_bad_addr_err_cnt),
4292 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4293                                 CNTR_NORMAL,
4294                                 access_misc_efuse_csr_parity_err_cnt),
4295 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4296                                 CNTR_NORMAL,
4297                                 access_misc_fw_auth_failed_err_cnt),
4298 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4299                                 CNTR_NORMAL,
4300                                 access_misc_key_mismatch_err_cnt),
4301 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4302                                 CNTR_NORMAL,
4303                                 access_misc_sbus_write_failed_err_cnt),
4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4305                                 CNTR_NORMAL,
4306                                 access_misc_csr_write_bad_addr_err_cnt),
4307 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4308                                 CNTR_NORMAL,
4309                                 access_misc_csr_read_bad_addr_err_cnt),
4310 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4311                                 CNTR_NORMAL,
4312                                 access_misc_csr_parity_err_cnt),
4313 /* CceErrStatus */
4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4315                                 CNTR_NORMAL,
4316                                 access_sw_cce_err_status_aggregated_cnt),
4317 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4318                                 CNTR_NORMAL,
4319                                 access_cce_msix_csr_parity_err_cnt),
4320 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4321                                 CNTR_NORMAL,
4322                                 access_cce_int_map_unc_err_cnt),
4323 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4324                                 CNTR_NORMAL,
4325                                 access_cce_int_map_cor_err_cnt),
4326 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4327                                 CNTR_NORMAL,
4328                                 access_cce_msix_table_unc_err_cnt),
4329 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4330                                 CNTR_NORMAL,
4331                                 access_cce_msix_table_cor_err_cnt),
4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4333                                 0, CNTR_NORMAL,
4334                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4336                                 0, CNTR_NORMAL,
4337                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4339                                 CNTR_NORMAL,
4340                                 access_cce_seg_write_bad_addr_err_cnt),
4341 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4342                                 CNTR_NORMAL,
4343                                 access_cce_seg_read_bad_addr_err_cnt),
4344 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4345                                 CNTR_NORMAL,
4346                                 access_la_triggered_cnt),
4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4348                                 CNTR_NORMAL,
4349                                 access_cce_trgt_cpl_timeout_err_cnt),
4350 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4351                                 CNTR_NORMAL,
4352                                 access_pcic_receive_parity_err_cnt),
4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4354                                 CNTR_NORMAL,
4355                                 access_pcic_transmit_back_parity_err_cnt),
4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4357                                 0, CNTR_NORMAL,
4358                                 access_pcic_transmit_front_parity_err_cnt),
4359 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4360                                 CNTR_NORMAL,
4361                                 access_pcic_cpl_dat_q_unc_err_cnt),
4362 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4363                                 CNTR_NORMAL,
4364                                 access_pcic_cpl_hd_q_unc_err_cnt),
4365 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4366                                 CNTR_NORMAL,
4367                                 access_pcic_post_dat_q_unc_err_cnt),
4368 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4369                                 CNTR_NORMAL,
4370                                 access_pcic_post_hd_q_unc_err_cnt),
4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4372                                 CNTR_NORMAL,
4373                                 access_pcic_retry_sot_mem_unc_err_cnt),
4374 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4375                                 CNTR_NORMAL,
4376                                 access_pcic_retry_mem_unc_err),
4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4378                                 CNTR_NORMAL,
4379                                 access_pcic_n_post_dat_q_parity_err_cnt),
4380 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4381                                 CNTR_NORMAL,
4382                                 access_pcic_n_post_h_q_parity_err_cnt),
4383 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4384                                 CNTR_NORMAL,
4385                                 access_pcic_cpl_dat_q_cor_err_cnt),
4386 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4387                                 CNTR_NORMAL,
4388                                 access_pcic_cpl_hd_q_cor_err_cnt),
4389 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4390                                 CNTR_NORMAL,
4391                                 access_pcic_post_dat_q_cor_err_cnt),
4392 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4393                                 CNTR_NORMAL,
4394                                 access_pcic_post_hd_q_cor_err_cnt),
4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4396                                 CNTR_NORMAL,
4397                                 access_pcic_retry_sot_mem_cor_err_cnt),
4398 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4399                                 CNTR_NORMAL,
4400                                 access_pcic_retry_mem_cor_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4402                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4403                                 CNTR_NORMAL,
4404                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4406                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4407                                 CNTR_NORMAL,
4408                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4409                                 ),
4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4411                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4412                         CNTR_NORMAL,
4413                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4415                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4416                         CNTR_NORMAL,
4417                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4419                         0, CNTR_NORMAL,
4420                         access_cce_cli2_async_fifo_parity_err_cnt),
4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4422                         CNTR_NORMAL,
4423                         access_cce_csr_cfg_bus_parity_err_cnt),
4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4425                         0, CNTR_NORMAL,
4426                         access_cce_cli0_async_fifo_parity_err_cnt),
4427 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4428                         CNTR_NORMAL,
4429                         access_cce_rspd_data_parity_err_cnt),
4430 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4431                         CNTR_NORMAL,
4432                         access_cce_trgt_access_err_cnt),
4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4434                         0, CNTR_NORMAL,
4435                         access_cce_trgt_async_fifo_parity_err_cnt),
4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4437                         CNTR_NORMAL,
4438                         access_cce_csr_write_bad_addr_err_cnt),
4439 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4440                         CNTR_NORMAL,
4441                         access_cce_csr_read_bad_addr_err_cnt),
4442 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4443                         CNTR_NORMAL,
4444                         access_ccs_csr_parity_err_cnt),
4445
4446 /* RcvErrStatus */
4447 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4448                         CNTR_NORMAL,
4449                         access_rx_csr_parity_err_cnt),
4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4451                         CNTR_NORMAL,
4452                         access_rx_csr_write_bad_addr_err_cnt),
4453 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4454                         CNTR_NORMAL,
4455                         access_rx_csr_read_bad_addr_err_cnt),
4456 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4457                         CNTR_NORMAL,
4458                         access_rx_dma_csr_unc_err_cnt),
4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4460                         CNTR_NORMAL,
4461                         access_rx_dma_dq_fsm_encoding_err_cnt),
4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4463                         CNTR_NORMAL,
4464                         access_rx_dma_eq_fsm_encoding_err_cnt),
4465 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4466                         CNTR_NORMAL,
4467                         access_rx_dma_csr_parity_err_cnt),
4468 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4469                         CNTR_NORMAL,
4470                         access_rx_rbuf_data_cor_err_cnt),
4471 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4472                         CNTR_NORMAL,
4473                         access_rx_rbuf_data_unc_err_cnt),
4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4475                         CNTR_NORMAL,
4476                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4478                         CNTR_NORMAL,
4479                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4481                         CNTR_NORMAL,
4482                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4484                         CNTR_NORMAL,
4485                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4487                         CNTR_NORMAL,
4488                         access_rx_rbuf_desc_part2_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4490                         CNTR_NORMAL,
4491                         access_rx_rbuf_desc_part2_unc_err_cnt),
4492 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4493                         CNTR_NORMAL,
4494                         access_rx_rbuf_desc_part1_cor_err_cnt),
4495 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4496                         CNTR_NORMAL,
4497                         access_rx_rbuf_desc_part1_unc_err_cnt),
4498 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4499                         CNTR_NORMAL,
4500                         access_rx_hq_intr_fsm_err_cnt),
4501 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4502                         CNTR_NORMAL,
4503                         access_rx_hq_intr_csr_parity_err_cnt),
4504 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4505                         CNTR_NORMAL,
4506                         access_rx_lookup_csr_parity_err_cnt),
4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4508                         CNTR_NORMAL,
4509                         access_rx_lookup_rcv_array_cor_err_cnt),
4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4511                         CNTR_NORMAL,
4512                         access_rx_lookup_rcv_array_unc_err_cnt),
4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4514                         0, CNTR_NORMAL,
4515                         access_rx_lookup_des_part2_parity_err_cnt),
4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4517                         0, CNTR_NORMAL,
4518                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4520                         CNTR_NORMAL,
4521                         access_rx_lookup_des_part1_unc_err_cnt),
4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4523                         CNTR_NORMAL,
4524                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4526                         CNTR_NORMAL,
4527                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4529                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4530                         CNTR_NORMAL,
4531                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4533                         0, CNTR_NORMAL,
4534                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4536                         0, CNTR_NORMAL,
4537                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4539                         CNTR_NORMAL,
4540                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4541 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4542                         CNTR_NORMAL,
4543                         access_rx_rbuf_empty_err_cnt),
4544 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4545                         CNTR_NORMAL,
4546                         access_rx_rbuf_full_err_cnt),
4547 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4548                         CNTR_NORMAL,
4549                         access_rbuf_bad_lookup_err_cnt),
4550 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4551                         CNTR_NORMAL,
4552                         access_rbuf_ctx_id_parity_err_cnt),
4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4554                         CNTR_NORMAL,
4555                         access_rbuf_csr_qeopdw_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4557                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4558                         CNTR_NORMAL,
4559                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4561                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4562                         CNTR_NORMAL,
4563                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4565                         0, CNTR_NORMAL,
4566                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4568                         0, CNTR_NORMAL,
4569                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4571                         0, 0, CNTR_NORMAL,
4572                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4574                         0, CNTR_NORMAL,
4575                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4577                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4578                         CNTR_NORMAL,
4579                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4581                         0, CNTR_NORMAL,
4582                         access_rx_rbuf_block_list_read_cor_err_cnt),
4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4584                         0, CNTR_NORMAL,
4585                         access_rx_rbuf_block_list_read_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4587                         CNTR_NORMAL,
4588                         access_rx_rbuf_lookup_des_cor_err_cnt),
4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4590                         CNTR_NORMAL,
4591                         access_rx_rbuf_lookup_des_unc_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4593                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4594                         CNTR_NORMAL,
4595                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4597                         CNTR_NORMAL,
4598                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4599 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4600                         CNTR_NORMAL,
4601                         access_rx_rbuf_free_list_cor_err_cnt),
4602 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4603                         CNTR_NORMAL,
4604                         access_rx_rbuf_free_list_unc_err_cnt),
4605 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4606                         CNTR_NORMAL,
4607                         access_rx_rcv_fsm_encoding_err_cnt),
4608 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4609                         CNTR_NORMAL,
4610                         access_rx_dma_flag_cor_err_cnt),
4611 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4612                         CNTR_NORMAL,
4613                         access_rx_dma_flag_unc_err_cnt),
4614 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4615                         CNTR_NORMAL,
4616                         access_rx_dc_sop_eop_parity_err_cnt),
4617 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4618                         CNTR_NORMAL,
4619                         access_rx_rcv_csr_parity_err_cnt),
4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4621                         CNTR_NORMAL,
4622                         access_rx_rcv_qp_map_table_cor_err_cnt),
4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4624                         CNTR_NORMAL,
4625                         access_rx_rcv_qp_map_table_unc_err_cnt),
4626 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4627                         CNTR_NORMAL,
4628                         access_rx_rcv_data_cor_err_cnt),
4629 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4630                         CNTR_NORMAL,
4631                         access_rx_rcv_data_unc_err_cnt),
4632 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4633                         CNTR_NORMAL,
4634                         access_rx_rcv_hdr_cor_err_cnt),
4635 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4636                         CNTR_NORMAL,
4637                         access_rx_rcv_hdr_unc_err_cnt),
4638 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4639                         CNTR_NORMAL,
4640                         access_rx_dc_intf_parity_err_cnt),
4641 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4642                         CNTR_NORMAL,
4643                         access_rx_dma_csr_cor_err_cnt),
4644 /* SendPioErrStatus */
4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4646                         CNTR_NORMAL,
4647                         access_pio_pec_sop_head_parity_err_cnt),
4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4649                         CNTR_NORMAL,
4650                         access_pio_pcc_sop_head_parity_err_cnt),
4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4652                         0, 0, CNTR_NORMAL,
4653                         access_pio_last_returned_cnt_parity_err_cnt),
4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4655                         0, CNTR_NORMAL,
4656                         access_pio_current_free_cnt_parity_err_cnt),
4657 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4658                         CNTR_NORMAL,
4659                         access_pio_reserved_31_err_cnt),
4660 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4661                         CNTR_NORMAL,
4662                         access_pio_reserved_30_err_cnt),
4663 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4664                         CNTR_NORMAL,
4665                         access_pio_ppmc_sop_len_err_cnt),
4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4667                         CNTR_NORMAL,
4668                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4669 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4670                         CNTR_NORMAL,
4671                         access_pio_vl_fifo_parity_err_cnt),
4672 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4673                         CNTR_NORMAL,
4674                         access_pio_vlf_sop_parity_err_cnt),
4675 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4676                         CNTR_NORMAL,
4677                         access_pio_vlf_v1_len_parity_err_cnt),
4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4679                         CNTR_NORMAL,
4680                         access_pio_block_qw_count_parity_err_cnt),
4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4682                         CNTR_NORMAL,
4683                         access_pio_write_qw_valid_parity_err_cnt),
4684 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4685                         CNTR_NORMAL,
4686                         access_pio_state_machine_err_cnt),
4687 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4688                         CNTR_NORMAL,
4689                         access_pio_write_data_parity_err_cnt),
4690 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4691                         CNTR_NORMAL,
4692                         access_pio_host_addr_mem_cor_err_cnt),
4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4694                         CNTR_NORMAL,
4695                         access_pio_host_addr_mem_unc_err_cnt),
4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4697                         CNTR_NORMAL,
4698                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4699 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4700                         CNTR_NORMAL,
4701                         access_pio_init_sm_in_err_cnt),
4702 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4703                         CNTR_NORMAL,
4704                         access_pio_ppmc_pbl_fifo_err_cnt),
4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4706                         0, CNTR_NORMAL,
4707                         access_pio_credit_ret_fifo_parity_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4709                         CNTR_NORMAL,
4710                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4712                         CNTR_NORMAL,
4713                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4715                         CNTR_NORMAL,
4716                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4718                         CNTR_NORMAL,
4719                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4720 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4721                         CNTR_NORMAL,
4722                         access_pio_sm_pkt_reset_parity_err_cnt),
4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_pio_pkt_evict_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4727                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4728                         CNTR_NORMAL,
4729                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4731                         CNTR_NORMAL,
4732                         access_pio_sbrdctl_crrel_parity_err_cnt),
4733 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4734                         CNTR_NORMAL,
4735                         access_pio_pec_fifo_parity_err_cnt),
4736 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4737                         CNTR_NORMAL,
4738                         access_pio_pcc_fifo_parity_err_cnt),
4739 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4740                         CNTR_NORMAL,
4741                         access_pio_sb_mem_fifo1_err_cnt),
4742 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4743                         CNTR_NORMAL,
4744                         access_pio_sb_mem_fifo0_err_cnt),
4745 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4746                         CNTR_NORMAL,
4747                         access_pio_csr_parity_err_cnt),
4748 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4749                         CNTR_NORMAL,
4750                         access_pio_write_addr_parity_err_cnt),
4751 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4752                         CNTR_NORMAL,
4753                         access_pio_write_bad_ctxt_err_cnt),
4754 /* SendDmaErrStatus */
4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4756                         0, CNTR_NORMAL,
4757                         access_sdma_pcie_req_tracking_cor_err_cnt),
4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4759                         0, CNTR_NORMAL,
4760                         access_sdma_pcie_req_tracking_unc_err_cnt),
4761 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4762                         CNTR_NORMAL,
4763                         access_sdma_csr_parity_err_cnt),
4764 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4765                         CNTR_NORMAL,
4766                         access_sdma_rpy_tag_err_cnt),
4767 /* SendEgressErrStatus */
4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4769                         CNTR_NORMAL,
4770                         access_tx_read_pio_memory_csr_unc_err_cnt),
4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4772                         0, CNTR_NORMAL,
4773                         access_tx_read_sdma_memory_csr_err_cnt),
4774 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4775                         CNTR_NORMAL,
4776                         access_tx_egress_fifo_cor_err_cnt),
4777 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4778                         CNTR_NORMAL,
4779                         access_tx_read_pio_memory_cor_err_cnt),
4780 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4781                         CNTR_NORMAL,
4782                         access_tx_read_sdma_memory_cor_err_cnt),
4783 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4784                         CNTR_NORMAL,
4785                         access_tx_sb_hdr_cor_err_cnt),
4786 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4787                         CNTR_NORMAL,
4788                         access_tx_credit_overrun_err_cnt),
4789 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4790                         CNTR_NORMAL,
4791                         access_tx_launch_fifo8_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4793                         CNTR_NORMAL,
4794                         access_tx_launch_fifo7_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4796                         CNTR_NORMAL,
4797                         access_tx_launch_fifo6_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4799                         CNTR_NORMAL,
4800                         access_tx_launch_fifo5_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4802                         CNTR_NORMAL,
4803                         access_tx_launch_fifo4_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4805                         CNTR_NORMAL,
4806                         access_tx_launch_fifo3_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4808                         CNTR_NORMAL,
4809                         access_tx_launch_fifo2_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4811                         CNTR_NORMAL,
4812                         access_tx_launch_fifo1_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4814                         CNTR_NORMAL,
4815                         access_tx_launch_fifo0_cor_err_cnt),
4816 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4817                         CNTR_NORMAL,
4818                         access_tx_credit_return_vl_err_cnt),
4819 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4820                         CNTR_NORMAL,
4821                         access_tx_hcrc_insertion_err_cnt),
4822 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4823                         CNTR_NORMAL,
4824                         access_tx_egress_fifo_unc_err_cnt),
4825 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4826                         CNTR_NORMAL,
4827                         access_tx_read_pio_memory_unc_err_cnt),
4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4829                         CNTR_NORMAL,
4830                         access_tx_read_sdma_memory_unc_err_cnt),
4831 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4832                         CNTR_NORMAL,
4833                         access_tx_sb_hdr_unc_err_cnt),
4834 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4835                         CNTR_NORMAL,
4836                         access_tx_credit_return_partiy_err_cnt),
4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4838                         0, 0, CNTR_NORMAL,
4839                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4841                         0, 0, CNTR_NORMAL,
4842                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4844                         0, 0, CNTR_NORMAL,
4845                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4847                         0, 0, CNTR_NORMAL,
4848                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4850                         0, 0, CNTR_NORMAL,
4851                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4853                         0, 0, CNTR_NORMAL,
4854                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4856                         0, 0, CNTR_NORMAL,
4857                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4859                         0, 0, CNTR_NORMAL,
4860                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4862                         0, 0, CNTR_NORMAL,
4863                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4865                         0, 0, CNTR_NORMAL,
4866                         access_tx_sdma15_disallowed_packet_err_cnt),
4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4868                         0, 0, CNTR_NORMAL,
4869                         access_tx_sdma14_disallowed_packet_err_cnt),
4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4871                         0, 0, CNTR_NORMAL,
4872                         access_tx_sdma13_disallowed_packet_err_cnt),
4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4874                         0, 0, CNTR_NORMAL,
4875                         access_tx_sdma12_disallowed_packet_err_cnt),
4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4877                         0, 0, CNTR_NORMAL,
4878                         access_tx_sdma11_disallowed_packet_err_cnt),
4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4880                         0, 0, CNTR_NORMAL,
4881                         access_tx_sdma10_disallowed_packet_err_cnt),
4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4883                         0, 0, CNTR_NORMAL,
4884                         access_tx_sdma9_disallowed_packet_err_cnt),
4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4886                         0, 0, CNTR_NORMAL,
4887                         access_tx_sdma8_disallowed_packet_err_cnt),
4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4889                         0, 0, CNTR_NORMAL,
4890                         access_tx_sdma7_disallowed_packet_err_cnt),
4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4892                         0, 0, CNTR_NORMAL,
4893                         access_tx_sdma6_disallowed_packet_err_cnt),
4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4895                         0, 0, CNTR_NORMAL,
4896                         access_tx_sdma5_disallowed_packet_err_cnt),
4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4898                         0, 0, CNTR_NORMAL,
4899                         access_tx_sdma4_disallowed_packet_err_cnt),
4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4901                         0, 0, CNTR_NORMAL,
4902                         access_tx_sdma3_disallowed_packet_err_cnt),
4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4904                         0, 0, CNTR_NORMAL,
4905                         access_tx_sdma2_disallowed_packet_err_cnt),
4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4907                         0, 0, CNTR_NORMAL,
4908                         access_tx_sdma1_disallowed_packet_err_cnt),
4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4910                         0, 0, CNTR_NORMAL,
4911                         access_tx_sdma0_disallowed_packet_err_cnt),
4912 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4913                         CNTR_NORMAL,
4914                         access_tx_config_parity_err_cnt),
4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4916                         CNTR_NORMAL,
4917                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4918 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4919                         CNTR_NORMAL,
4920                         access_tx_launch_csr_parity_err_cnt),
4921 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4922                         CNTR_NORMAL,
4923                         access_tx_illegal_vl_err_cnt),
4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4925                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4926                         CNTR_NORMAL,
4927                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4928 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4929                         CNTR_NORMAL,
4930                         access_egress_reserved_10_err_cnt),
4931 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4932                         CNTR_NORMAL,
4933                         access_egress_reserved_9_err_cnt),
4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4935                         0, 0, CNTR_NORMAL,
4936                         access_tx_sdma_launch_intf_parity_err_cnt),
4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4938                         CNTR_NORMAL,
4939                         access_tx_pio_launch_intf_parity_err_cnt),
4940 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4941                         CNTR_NORMAL,
4942                         access_egress_reserved_6_err_cnt),
4943 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4944                         CNTR_NORMAL,
4945                         access_tx_incorrect_link_state_err_cnt),
4946 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4947                         CNTR_NORMAL,
4948                         access_tx_linkdown_err_cnt),
4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4950                         "EgressFifoUnderrunOrParityErr", 0, 0,
4951                         CNTR_NORMAL,
4952                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4953 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4954                         CNTR_NORMAL,
4955                         access_egress_reserved_2_err_cnt),
4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4957                         CNTR_NORMAL,
4958                         access_tx_pkt_integrity_mem_unc_err_cnt),
4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4960                         CNTR_NORMAL,
4961                         access_tx_pkt_integrity_mem_cor_err_cnt),
4962 /* SendErrStatus */
4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4964                         CNTR_NORMAL,
4965                         access_send_csr_write_bad_addr_err_cnt),
4966 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4967                         CNTR_NORMAL,
4968                         access_send_csr_read_bad_addr_err_cnt),
4969 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4970                         CNTR_NORMAL,
4971                         access_send_csr_parity_cnt),
4972 /* SendCtxtErrStatus */
4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4974                         CNTR_NORMAL,
4975                         access_pio_write_out_of_bounds_err_cnt),
4976 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4977                         CNTR_NORMAL,
4978                         access_pio_write_overflow_err_cnt),
4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4980                         0, 0, CNTR_NORMAL,
4981                         access_pio_write_crosses_boundary_err_cnt),
4982 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4983                         CNTR_NORMAL,
4984                         access_pio_disallowed_packet_err_cnt),
4985 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4986                         CNTR_NORMAL,
4987                         access_pio_inconsistent_sop_err_cnt),
4988 /* SendDmaEngErrStatus */
4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4990                         0, 0, CNTR_NORMAL,
4991                         access_sdma_header_request_fifo_cor_err_cnt),
4992 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4993                         CNTR_NORMAL,
4994                         access_sdma_header_storage_cor_err_cnt),
4995 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4996                         CNTR_NORMAL,
4997                         access_sdma_packet_tracking_cor_err_cnt),
4998 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4999                         CNTR_NORMAL,
5000                         access_sdma_assembly_cor_err_cnt),
5001 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5002                         CNTR_NORMAL,
5003                         access_sdma_desc_table_cor_err_cnt),
5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5005                         0, 0, CNTR_NORMAL,
5006                         access_sdma_header_request_fifo_unc_err_cnt),
5007 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5008                         CNTR_NORMAL,
5009                         access_sdma_header_storage_unc_err_cnt),
5010 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5011                         CNTR_NORMAL,
5012                         access_sdma_packet_tracking_unc_err_cnt),
5013 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5014                         CNTR_NORMAL,
5015                         access_sdma_assembly_unc_err_cnt),
5016 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5017                         CNTR_NORMAL,
5018                         access_sdma_desc_table_unc_err_cnt),
5019 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5020                         CNTR_NORMAL,
5021                         access_sdma_timeout_err_cnt),
5022 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5023                         CNTR_NORMAL,
5024                         access_sdma_header_length_err_cnt),
5025 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5026                         CNTR_NORMAL,
5027                         access_sdma_header_address_err_cnt),
5028 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5029                         CNTR_NORMAL,
5030                         access_sdma_header_select_err_cnt),
5031 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5032                         CNTR_NORMAL,
5033                         access_sdma_reserved_9_err_cnt),
5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5035                         CNTR_NORMAL,
5036                         access_sdma_packet_desc_overflow_err_cnt),
5037 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5038                         CNTR_NORMAL,
5039                         access_sdma_length_mismatch_err_cnt),
5040 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5041                         CNTR_NORMAL,
5042                         access_sdma_halt_err_cnt),
5043 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5044                         CNTR_NORMAL,
5045                         access_sdma_mem_read_err_cnt),
5046 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5047                         CNTR_NORMAL,
5048                         access_sdma_first_desc_err_cnt),
5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5050                         CNTR_NORMAL,
5051                         access_sdma_tail_out_of_bounds_err_cnt),
5052 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5053                         CNTR_NORMAL,
5054                         access_sdma_too_long_err_cnt),
5055 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5056                         CNTR_NORMAL,
5057                         access_sdma_gen_mismatch_err_cnt),
5058 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5059                         CNTR_NORMAL,
5060                         access_sdma_wrong_dw_err_cnt),
5061 };
5062
5063 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5064 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5065                         CNTR_NORMAL),
5066 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5067                         CNTR_NORMAL),
5068 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5069                         CNTR_NORMAL),
5070 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5071                         CNTR_NORMAL),
5072 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5073                         CNTR_NORMAL),
5074 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5075                         CNTR_NORMAL),
5076 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5077                         CNTR_NORMAL),
5078 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5079 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5080 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5081 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5082                                       CNTR_SYNTH | CNTR_VL),
5083 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5084                                      CNTR_SYNTH | CNTR_VL),
5085 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5086                                       CNTR_SYNTH | CNTR_VL),
5087 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5088 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5089 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090                              access_sw_link_dn_cnt),
5091 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092                            access_sw_link_up_cnt),
5093 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5094                                  access_sw_unknown_frame_cnt),
5095 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5096                              access_sw_xmit_discards),
5097 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5098                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5099                                 access_sw_xmit_discards),
5100 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5101                                  access_xmit_constraint_errs),
5102 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5103                                 access_rcv_constraint_errs),
5104 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5105 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5106 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5107 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5108 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5109 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5110 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5111 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5112 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5113 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5114 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5115 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5116 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5117                                access_sw_cpu_rc_acks),
5118 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5119                                 access_sw_cpu_rc_qacks),
5120 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5121                                        access_sw_cpu_rc_delayed_comp),
5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5202 };
5203
5204 /* ======================================================================== */
5205
5206 /* return true if this is chip revision revision a */
5207 int is_ax(struct hfi1_devdata *dd)
5208 {
5209         u8 chip_rev_minor =
5210                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5212         return (chip_rev_minor & 0xf0) == 0;
5213 }
5214
5215 /* return true if this is chip revision revision b */
5216 int is_bx(struct hfi1_devdata *dd)
5217 {
5218         u8 chip_rev_minor =
5219                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5221         return (chip_rev_minor & 0xF0) == 0x10;
5222 }
5223
5224 /*
5225  * Append string s to buffer buf.  Arguments curp and len are the current
5226  * position and remaining length, respectively.
5227  *
5228  * return 0 on success, 1 on out of room
5229  */
5230 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5231 {
5232         char *p = *curp;
5233         int len = *lenp;
5234         int result = 0; /* success */
5235         char c;
5236
5237         /* add a comma, if first in the buffer */
5238         if (p != buf) {
5239                 if (len == 0) {
5240                         result = 1; /* out of room */
5241                         goto done;
5242                 }
5243                 *p++ = ',';
5244                 len--;
5245         }
5246
5247         /* copy the string */
5248         while ((c = *s++) != 0) {
5249                 if (len == 0) {
5250                         result = 1; /* out of room */
5251                         goto done;
5252                 }
5253                 *p++ = c;
5254                 len--;
5255         }
5256
5257 done:
5258         /* write return values */
5259         *curp = p;
5260         *lenp = len;
5261
5262         return result;
5263 }
5264
5265 /*
5266  * Using the given flag table, print a comma separated string into
5267  * the buffer.  End in '*' if the buffer is too short.
5268  */
5269 static char *flag_string(char *buf, int buf_len, u64 flags,
5270                          struct flag_table *table, int table_size)
5271 {
5272         char extra[32];
5273         char *p = buf;
5274         int len = buf_len;
5275         int no_room = 0;
5276         int i;
5277
5278         /* make sure there is at least 2 so we can form "*" */
5279         if (len < 2)
5280                 return "";
5281
5282         len--;  /* leave room for a nul */
5283         for (i = 0; i < table_size; i++) {
5284                 if (flags & table[i].flag) {
5285                         no_room = append_str(buf, &p, &len, table[i].str);
5286                         if (no_room)
5287                                 break;
5288                         flags &= ~table[i].flag;
5289                 }
5290         }
5291
5292         /* any undocumented bits left? */
5293         if (!no_room && flags) {
5294                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5295                 no_room = append_str(buf, &p, &len, extra);
5296         }
5297
5298         /* add * if ran out of room */
5299         if (no_room) {
5300                 /* may need to back up to add space for a '*' */
5301                 if (len == 0)
5302                         --p;
5303                 *p++ = '*';
5304         }
5305
5306         /* add final nul - space already allocated above */
5307         *p = 0;
5308         return buf;
5309 }
5310
5311 /* first 8 CCE error interrupt source names */
5312 static const char * const cce_misc_names[] = {
5313         "CceErrInt",            /* 0 */
5314         "RxeErrInt",            /* 1 */
5315         "MiscErrInt",           /* 2 */
5316         "Reserved3",            /* 3 */
5317         "PioErrInt",            /* 4 */
5318         "SDmaErrInt",           /* 5 */
5319         "EgressErrInt",         /* 6 */
5320         "TxeErrInt"             /* 7 */
5321 };
5322
5323 /*
5324  * Return the miscellaneous error interrupt name.
5325  */
5326 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5327 {
5328         if (source < ARRAY_SIZE(cce_misc_names))
5329                 strncpy(buf, cce_misc_names[source], bsize);
5330         else
5331                 snprintf(buf, bsize, "Reserved%u",
5332                          source + IS_GENERAL_ERR_START);
5333
5334         return buf;
5335 }
5336
5337 /*
5338  * Return the SDMA engine error interrupt name.
5339  */
5340 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5341 {
5342         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5343         return buf;
5344 }
5345
5346 /*
5347  * Return the send context error interrupt name.
5348  */
5349 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5352         return buf;
5353 }
5354
5355 static const char * const various_names[] = {
5356         "PbcInt",
5357         "GpioAssertInt",
5358         "Qsfp1Int",
5359         "Qsfp2Int",
5360         "TCritInt"
5361 };
5362
5363 /*
5364  * Return the various interrupt name.
5365  */
5366 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368         if (source < ARRAY_SIZE(various_names))
5369                 strncpy(buf, various_names[source], bsize);
5370         else
5371                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5372         return buf;
5373 }
5374
5375 /*
5376  * Return the DC interrupt name.
5377  */
5378 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380         static const char * const dc_int_names[] = {
5381                 "common",
5382                 "lcb",
5383                 "8051",
5384                 "lbm"   /* local block merge */
5385         };
5386
5387         if (source < ARRAY_SIZE(dc_int_names))
5388                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5389         else
5390                 snprintf(buf, bsize, "DCInt%u", source);
5391         return buf;
5392 }
5393
5394 static const char * const sdma_int_names[] = {
5395         "SDmaInt",
5396         "SdmaIdleInt",
5397         "SdmaProgressInt",
5398 };
5399
5400 /*
5401  * Return the SDMA engine interrupt name.
5402  */
5403 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5404 {
5405         /* what interrupt */
5406         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5407         /* which engine */
5408         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5409
5410         if (likely(what < 3))
5411                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5412         else
5413                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5414         return buf;
5415 }
5416
5417 /*
5418  * Return the receive available interrupt name.
5419  */
5420 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5421 {
5422         snprintf(buf, bsize, "RcvAvailInt%u", source);
5423         return buf;
5424 }
5425
5426 /*
5427  * Return the receive urgent interrupt name.
5428  */
5429 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5430 {
5431         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5432         return buf;
5433 }
5434
5435 /*
5436  * Return the send credit interrupt name.
5437  */
5438 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5439 {
5440         snprintf(buf, bsize, "SendCreditInt%u", source);
5441         return buf;
5442 }
5443
5444 /*
5445  * Return the reserved interrupt name.
5446  */
5447 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5448 {
5449         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5450         return buf;
5451 }
5452
5453 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5454 {
5455         return flag_string(buf, buf_len, flags,
5456                            cce_err_status_flags,
5457                            ARRAY_SIZE(cce_err_status_flags));
5458 }
5459
5460 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5461 {
5462         return flag_string(buf, buf_len, flags,
5463                            rxe_err_status_flags,
5464                            ARRAY_SIZE(rxe_err_status_flags));
5465 }
5466
5467 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5470                            ARRAY_SIZE(misc_err_status_flags));
5471 }
5472
5473 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475         return flag_string(buf, buf_len, flags,
5476                            pio_err_status_flags,
5477                            ARRAY_SIZE(pio_err_status_flags));
5478 }
5479
5480 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5481 {
5482         return flag_string(buf, buf_len, flags,
5483                            sdma_err_status_flags,
5484                            ARRAY_SIZE(sdma_err_status_flags));
5485 }
5486
5487 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489         return flag_string(buf, buf_len, flags,
5490                            egress_err_status_flags,
5491                            ARRAY_SIZE(egress_err_status_flags));
5492 }
5493
5494 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5495 {
5496         return flag_string(buf, buf_len, flags,
5497                            egress_err_info_flags,
5498                            ARRAY_SIZE(egress_err_info_flags));
5499 }
5500
5501 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503         return flag_string(buf, buf_len, flags,
5504                            send_err_status_flags,
5505                            ARRAY_SIZE(send_err_status_flags));
5506 }
5507
5508 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509 {
5510         char buf[96];
5511         int i = 0;
5512
5513         /*
5514          * For most these errors, there is nothing that can be done except
5515          * report or record it.
5516          */
5517         dd_dev_info(dd, "CCE Error: %s\n",
5518                     cce_err_status_string(buf, sizeof(buf), reg));
5519
5520         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5521             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5522                 /* this error requires a manual drop into SPC freeze mode */
5523                 /* then a fix up */
5524                 start_freeze_handling(dd->pport, FREEZE_SELF);
5525         }
5526
5527         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5528                 if (reg & (1ull << i)) {
5529                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5530                         /* maintain a counter over all cce_err_status errors */
5531                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5532                 }
5533         }
5534 }
5535
5536 /*
5537  * Check counters for receive errors that do not have an interrupt
5538  * associated with them.
5539  */
5540 #define RCVERR_CHECK_TIME 10
5541 static void update_rcverr_timer(unsigned long opaque)
5542 {
5543         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5544         struct hfi1_pportdata *ppd = dd->pport;
5545         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5546
5547         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5548             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5549                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5550                 set_link_down_reason(
5551                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5552                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5553                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5554         }
5555         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5556
5557         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5558 }
5559
5560 static int init_rcverr(struct hfi1_devdata *dd)
5561 {
5562         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5563         /* Assume the hardware counter has been reset */
5564         dd->rcv_ovfl_cnt = 0;
5565         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567
5568 static void free_rcverr(struct hfi1_devdata *dd)
5569 {
5570         if (dd->rcverr_timer.data)
5571                 del_timer_sync(&dd->rcverr_timer);
5572         dd->rcverr_timer.data = 0;
5573 }
5574
5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577         char buf[96];
5578         int i = 0;
5579
5580         dd_dev_info(dd, "Receive Error: %s\n",
5581                     rxe_err_status_string(buf, sizeof(buf), reg));
5582
5583         if (reg & ALL_RXE_FREEZE_ERR) {
5584                 int flags = 0;
5585
5586                 /*
5587                  * Freeze mode recovery is disabled for the errors
5588                  * in RXE_FREEZE_ABORT_MASK
5589                  */
5590                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591                         flags = FREEZE_ABORT;
5592
5593                 start_freeze_handling(dd->pport, flags);
5594         }
5595
5596         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597                 if (reg & (1ull << i))
5598                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599         }
5600 }
5601
5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604         char buf[96];
5605         int i = 0;
5606
5607         dd_dev_info(dd, "Misc Error: %s",
5608                     misc_err_status_string(buf, sizeof(buf), reg));
5609         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610                 if (reg & (1ull << i))
5611                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5612         }
5613 }
5614
5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617         char buf[96];
5618         int i = 0;
5619
5620         dd_dev_info(dd, "PIO Error: %s\n",
5621                     pio_err_status_string(buf, sizeof(buf), reg));
5622
5623         if (reg & ALL_PIO_FREEZE_ERR)
5624                 start_freeze_handling(dd->pport, 0);
5625
5626         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627                 if (reg & (1ull << i))
5628                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629         }
5630 }
5631
5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634         char buf[96];
5635         int i = 0;
5636
5637         dd_dev_info(dd, "SDMA Error: %s\n",
5638                     sdma_err_status_string(buf, sizeof(buf), reg));
5639
5640         if (reg & ALL_SDMA_FREEZE_ERR)
5641                 start_freeze_handling(dd->pport, 0);
5642
5643         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644                 if (reg & (1ull << i))
5645                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646         }
5647 }
5648
5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651         incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653
5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656         __count_port_discards(dd->pport);
5657 }
5658
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669                                         int vl)
5670 {
5671         struct hfi1_pportdata *ppd = dd->pport;
5672         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674         char buf[96];
5675
5676         /* clear down all observed info as quickly as possible after read */
5677         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678
5679         dd_dev_info(dd,
5680                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5682
5683         /* Eventually add other counters for each bit */
5684         if (info & PORT_DISCARD_EGRESS_ERRS) {
5685                 int weight, i;
5686
5687                 /*
5688                  * Count all applicable bits as individual errors and
5689                  * attribute them to the packet that triggered this handler.
5690                  * This may not be completely accurate due to limitations
5691                  * on the available hardware error information.  There is
5692                  * a single information register and any number of error
5693                  * packets may have occurred and contributed to it before
5694                  * this routine is called.  This means that:
5695                  * a) If multiple packets with the same error occur before
5696                  *    this routine is called, earlier packets are missed.
5697                  *    There is only a single bit for each error type.
5698                  * b) Errors may not be attributed to the correct VL.
5699                  *    The driver is attributing all bits in the info register
5700                  *    to the packet that triggered this call, but bits
5701                  *    could be an accumulation of different packets with
5702                  *    different VLs.
5703                  * c) A single error packet may have multiple counts attached
5704                  *    to it.  There is no way for the driver to know if
5705                  *    multiple bits set in the info register are due to a
5706                  *    single packet or multiple packets.  The driver assumes
5707                  *    multiple packets.
5708                  */
5709                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710                 for (i = 0; i < weight; i++) {
5711                         __count_port_discards(ppd);
5712                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714                         else if (vl == 15)
5715                                 incr_cntr64(&ppd->port_xmit_discards_vl
5716                                             [C_VL_15]);
5717                 }
5718         }
5719 }
5720
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
5725 static inline int port_inactive_err(u64 posn)
5726 {
5727         return (posn >= SEES(TX_LINKDOWN) &&
5728                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757         struct sdma_vl_map *m;
5758         int vl;
5759
5760         /* range check */
5761         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762                 return -1;
5763
5764         rcu_read_lock();
5765         m = rcu_dereference(dd->sdma_map);
5766         vl = m->engine_to_vl[engine];
5767         rcu_read_unlock();
5768
5769         return vl;
5770 }
5771
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778         struct send_context_info *sci;
5779         struct send_context *sc;
5780         int i;
5781
5782         sci = &dd->send_contexts[sw_index];
5783
5784         /* there is no information for user (PSM) and ack contexts */
5785         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786                 return -1;
5787
5788         sc = sci->sc;
5789         if (!sc)
5790                 return -1;
5791         if (dd->vld[15].sc == sc)
5792                 return 15;
5793         for (i = 0; i < num_vls; i++)
5794                 if (dd->vld[i].sc == sc)
5795                         return i;
5796
5797         return -1;
5798 }
5799
5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802         u64 reg_copy = reg, handled = 0;
5803         char buf[96];
5804         int i = 0;
5805
5806         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807                 start_freeze_handling(dd->pport, 0);
5808         else if (is_ax(dd) &&
5809                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811                 start_freeze_handling(dd->pport, 0);
5812
5813         while (reg_copy) {
5814                 int posn = fls64(reg_copy);
5815                 /* fls64() returns a 1-based offset, we want it zero based */
5816                 int shift = posn - 1;
5817                 u64 mask = 1ULL << shift;
5818
5819                 if (port_inactive_err(shift)) {
5820                         count_port_inactive(dd);
5821                         handled |= mask;
5822                 } else if (disallowed_pkt_err(shift)) {
5823                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824
5825                         handle_send_egress_err_info(dd, vl);
5826                         handled |= mask;
5827                 }
5828                 reg_copy &= ~mask;
5829         }
5830
5831         reg &= ~handled;
5832
5833         if (reg)
5834                 dd_dev_info(dd, "Egress Error: %s\n",
5835                             egress_err_status_string(buf, sizeof(buf), reg));
5836
5837         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838                 if (reg & (1ull << i))
5839                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840         }
5841 }
5842
5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845         char buf[96];
5846         int i = 0;
5847
5848         dd_dev_info(dd, "Send Error: %s\n",
5849                     send_err_status_string(buf, sizeof(buf), reg));
5850
5851         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852                 if (reg & (1ull << i))
5853                         incr_cntr64(&dd->send_err_status_cnt[i]);
5854         }
5855 }
5856
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875                                  u32 context,
5876                                  const struct err_reg_info *eri)
5877 {
5878         u64 reg;
5879         u32 count;
5880
5881         /* read in a loop until no more errors are seen */
5882         count = 0;
5883         while (1) {
5884                 reg = read_kctxt_csr(dd, context, eri->status);
5885                 if (reg == 0)
5886                         break;
5887                 write_kctxt_csr(dd, context, eri->clear, reg);
5888                 if (likely(eri->handler))
5889                         eri->handler(dd, context, reg);
5890                 count++;
5891                 if (count > MAX_CLEAR_COUNT) {
5892                         u64 mask;
5893
5894                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895                                    eri->desc, reg);
5896                         /*
5897                          * Read-modify-write so any other masked bits
5898                          * remain masked.
5899                          */
5900                         mask = read_kctxt_csr(dd, context, eri->mask);
5901                         mask &= ~reg;
5902                         write_kctxt_csr(dd, context, eri->mask, mask);
5903                         break;
5904                 }
5905         }
5906 }
5907
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913         const struct err_reg_info *eri = &misc_errs[source];
5914
5915         if (eri->handler) {
5916                 interrupt_clear_down(dd, 0, eri);
5917         } else {
5918                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919                            source);
5920         }
5921 }
5922
5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925         return flag_string(buf, buf_len, flags,
5926                            sc_err_status_flags,
5927                            ARRAY_SIZE(sc_err_status_flags));
5928 }
5929
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940                                 unsigned int hw_context)
5941 {
5942         struct send_context_info *sci;
5943         struct send_context *sc;
5944         char flags[96];
5945         u64 status;
5946         u32 sw_index;
5947         int i = 0;
5948         unsigned long irq_flags;
5949
5950         sw_index = dd->hw_to_sw[hw_context];
5951         if (sw_index >= dd->num_send_contexts) {
5952                 dd_dev_err(dd,
5953                            "out of range sw index %u for send context %u\n",
5954                            sw_index, hw_context);
5955                 return;
5956         }
5957         sci = &dd->send_contexts[sw_index];
5958         spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959         sc = sci->sc;
5960         if (!sc) {
5961                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962                            sw_index, hw_context);
5963                 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964                 return;
5965         }
5966
5967         /* tell the software that a halt has begun */
5968         sc_stop(sc, SCF_HALTED);
5969
5970         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971
5972         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973                     send_context_err_status_string(flags, sizeof(flags),
5974                                                    status));
5975
5976         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978
5979         /*
5980          * Automatically restart halted kernel contexts out of interrupt
5981          * context.  User contexts must ask the driver to restart the context.
5982          */
5983         if (sc->type != SC_USER)
5984                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985         spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986
5987         /*
5988          * Update the counters for the corresponding status bits.
5989          * Note that these particular counters are aggregated over all
5990          * 160 contexts.
5991          */
5992         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993                 if (status & (1ull << i))
5994                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995         }
5996 }
5997
5998 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999                                 unsigned int source, u64 status)
6000 {
6001         struct sdma_engine *sde;
6002         int i = 0;
6003
6004         sde = &dd->per_sdma[source];
6005 #ifdef CONFIG_SDMA_VERBOSITY
6006         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007                    slashstrip(__FILE__), __LINE__, __func__);
6008         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009                    sde->this_idx, source, (unsigned long long)status);
6010 #endif
6011         sde->err_cnt++;
6012         sdma_engine_error(sde, status);
6013
6014         /*
6015         * Update the counters for the corresponding status bits.
6016         * Note that these particular counters are aggregated over
6017         * all 16 DMA engines.
6018         */
6019         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020                 if (status & (1ull << i))
6021                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022         }
6023 }
6024
6025 /*
6026  * CCE block SDMA error interrupt.  Source is < 16.
6027  */
6028 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029 {
6030 #ifdef CONFIG_SDMA_VERBOSITY
6031         struct sdma_engine *sde = &dd->per_sdma[source];
6032
6033         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034                    slashstrip(__FILE__), __LINE__, __func__);
6035         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036                    source);
6037         sdma_dumpstate(sde);
6038 #endif
6039         interrupt_clear_down(dd, source, &sdma_eng_err);
6040 }
6041
6042 /*
6043  * CCE block "various" interrupt.  Source is < 8.
6044  */
6045 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046 {
6047         const struct err_reg_info *eri = &various_err[source];
6048
6049         /*
6050          * TCritInt cannot go through interrupt_clear_down()
6051          * because it is not a second tier interrupt. The handler
6052          * should be called directly.
6053          */
6054         if (source == TCRIT_INT_SOURCE)
6055                 handle_temp_err(dd);
6056         else if (eri->handler)
6057                 interrupt_clear_down(dd, 0, eri);
6058         else
6059                 dd_dev_info(dd,
6060                             "%s: Unimplemented/reserved interrupt %d\n",
6061                             __func__, source);
6062 }
6063
6064 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065 {
6066         /* src_ctx is always zero */
6067         struct hfi1_pportdata *ppd = dd->pport;
6068         unsigned long flags;
6069         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070
6071         if (reg & QSFP_HFI0_MODPRST_N) {
6072                 if (!qsfp_mod_present(ppd)) {
6073                         dd_dev_info(dd, "%s: QSFP module removed\n",
6074                                     __func__);
6075
6076                         ppd->driver_link_ready = 0;
6077                         /*
6078                          * Cable removed, reset all our information about the
6079                          * cache and cable capabilities
6080                          */
6081
6082                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083                         /*
6084                          * We don't set cache_refresh_required here as we expect
6085                          * an interrupt when a cable is inserted
6086                          */
6087                         ppd->qsfp_info.cache_valid = 0;
6088                         ppd->qsfp_info.reset_needed = 0;
6089                         ppd->qsfp_info.limiting_active = 0;
6090                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091                                                flags);
6092                         /* Invert the ModPresent pin now to detect plug-in */
6093                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095
6096                         if ((ppd->offline_disabled_reason >
6097                           HFI1_ODR_MASK(
6098                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099                           (ppd->offline_disabled_reason ==
6100                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101                                 ppd->offline_disabled_reason =
6102                                 HFI1_ODR_MASK(
6103                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104
6105                         if (ppd->host_link_state == HLS_DN_POLL) {
6106                                 /*
6107                                  * The link is still in POLL. This means
6108                                  * that the normal link down processing
6109                                  * will not happen. We have to do it here
6110                                  * before turning the DC off.
6111                                  */
6112                                 queue_work(ppd->link_wq, &ppd->link_down_work);
6113                         }
6114                 } else {
6115                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6116                                     __func__);
6117
6118                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119                         ppd->qsfp_info.cache_valid = 0;
6120                         ppd->qsfp_info.cache_refresh_required = 1;
6121                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122                                                flags);
6123
6124                         /*
6125                          * Stop inversion of ModPresent pin to detect
6126                          * removal of the cable
6127                          */
6128                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131
6132                         ppd->offline_disabled_reason =
6133                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134                 }
6135         }
6136
6137         if (reg & QSFP_HFI0_INT_N) {
6138                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139                             __func__);
6140                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141                 ppd->qsfp_info.check_interrupt_flags = 1;
6142                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143         }
6144
6145         /* Schedule the QSFP work only if there is a cable attached. */
6146         if (qsfp_mod_present(ppd))
6147                 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148 }
6149
6150 static int request_host_lcb_access(struct hfi1_devdata *dd)
6151 {
6152         int ret;
6153
6154         ret = do_8051_command(dd, HCMD_MISC,
6155                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157         if (ret != HCMD_SUCCESS) {
6158                 dd_dev_err(dd, "%s: command failed with error %d\n",
6159                            __func__, ret);
6160         }
6161         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162 }
6163
6164 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165 {
6166         int ret;
6167
6168         ret = do_8051_command(dd, HCMD_MISC,
6169                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171         if (ret != HCMD_SUCCESS) {
6172                 dd_dev_err(dd, "%s: command failed with error %d\n",
6173                            __func__, ret);
6174         }
6175         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176 }
6177
6178 /*
6179  * Set the LCB selector - allow host access.  The DCC selector always
6180  * points to the host.
6181  */
6182 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183 {
6184         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187 }
6188
6189 /*
6190  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6191  * points to the host.
6192  */
6193 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197 }
6198
6199 /*
6200  * Acquire LCB access from the 8051.  If the host already has access,
6201  * just increment a counter.  Otherwise, inform the 8051 that the
6202  * host is taking access.
6203  *
6204  * Returns:
6205  *      0 on success
6206  *      -EBUSY if the 8051 has control and cannot be disturbed
6207  *      -errno if unable to acquire access from the 8051
6208  */
6209 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210 {
6211         struct hfi1_pportdata *ppd = dd->pport;
6212         int ret = 0;
6213
6214         /*
6215          * Use the host link state lock so the operation of this routine
6216          * { link state check, selector change, count increment } can occur
6217          * as a unit against a link state change.  Otherwise there is a
6218          * race between the state change and the count increment.
6219          */
6220         if (sleep_ok) {
6221                 mutex_lock(&ppd->hls_lock);
6222         } else {
6223                 while (!mutex_trylock(&ppd->hls_lock))
6224                         udelay(1);
6225         }
6226
6227         /* this access is valid only when the link is up */
6228         if (ppd->host_link_state & HLS_DOWN) {
6229                 dd_dev_info(dd, "%s: link state %s not up\n",
6230                             __func__, link_state_name(ppd->host_link_state));
6231                 ret = -EBUSY;
6232                 goto done;
6233         }
6234
6235         if (dd->lcb_access_count == 0) {
6236                 ret = request_host_lcb_access(dd);
6237                 if (ret) {
6238                         dd_dev_err(dd,
6239                                    "%s: unable to acquire LCB access, err %d\n",
6240                                    __func__, ret);
6241                         goto done;
6242                 }
6243                 set_host_lcb_access(dd);
6244         }
6245         dd->lcb_access_count++;
6246 done:
6247         mutex_unlock(&ppd->hls_lock);
6248         return ret;
6249 }
6250
6251 /*
6252  * Release LCB access by decrementing the use count.  If the count is moving
6253  * from 1 to 0, inform 8051 that it has control back.
6254  *
6255  * Returns:
6256  *      0 on success
6257  *      -errno if unable to release access to the 8051
6258  */
6259 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260 {
6261         int ret = 0;
6262
6263         /*
6264          * Use the host link state lock because the acquire needed it.
6265          * Here, we only need to keep { selector change, count decrement }
6266          * as a unit.
6267          */
6268         if (sleep_ok) {
6269                 mutex_lock(&dd->pport->hls_lock);
6270         } else {
6271                 while (!mutex_trylock(&dd->pport->hls_lock))
6272                         udelay(1);
6273         }
6274
6275         if (dd->lcb_access_count == 0) {
6276                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6277                            __func__);
6278                 goto done;
6279         }
6280
6281         if (dd->lcb_access_count == 1) {
6282                 set_8051_lcb_access(dd);
6283                 ret = request_8051_lcb_access(dd);
6284                 if (ret) {
6285                         dd_dev_err(dd,
6286                                    "%s: unable to release LCB access, err %d\n",
6287                                    __func__, ret);
6288                         /* restore host access if the grant didn't work */
6289                         set_host_lcb_access(dd);
6290                         goto done;
6291                 }
6292         }
6293         dd->lcb_access_count--;
6294 done:
6295         mutex_unlock(&dd->pport->hls_lock);
6296         return ret;
6297 }
6298
6299 /*
6300  * Initialize LCB access variables and state.  Called during driver load,
6301  * after most of the initialization is finished.
6302  *
6303  * The DC default is LCB access on for the host.  The driver defaults to
6304  * leaving access to the 8051.  Assign access now - this constrains the call
6305  * to this routine to be after all LCB set-up is done.  In particular, after
6306  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307  */
6308 static void init_lcb_access(struct hfi1_devdata *dd)
6309 {
6310         dd->lcb_access_count = 0;
6311 }
6312
6313 /*
6314  * Write a response back to a 8051 request.
6315  */
6316 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317 {
6318         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320                   (u64)return_code <<
6321                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323 }
6324
6325 /*
6326  * Handle host requests from the 8051.
6327  */
6328 static void handle_8051_request(struct hfi1_pportdata *ppd)
6329 {
6330         struct hfi1_devdata *dd = ppd->dd;
6331         u64 reg;
6332         u16 data = 0;
6333         u8 type;
6334
6335         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337                 return; /* no request */
6338
6339         /* zero out COMPLETED so the response is seen */
6340         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341
6342         /* extract request details */
6343         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347
6348         switch (type) {
6349         case HREQ_LOAD_CONFIG:
6350         case HREQ_SAVE_CONFIG:
6351         case HREQ_READ_CONFIG:
6352         case HREQ_SET_TX_EQ_ABS:
6353         case HREQ_SET_TX_EQ_REL:
6354         case HREQ_ENABLE:
6355                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356                             type);
6357                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358                 break;
6359         case HREQ_CONFIG_DONE:
6360                 hreq_response(dd, HREQ_SUCCESS, 0);
6361                 break;
6362
6363         case HREQ_INTERFACE_TEST:
6364                 hreq_response(dd, HREQ_SUCCESS, data);
6365                 break;
6366         default:
6367                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6368                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6369                 break;
6370         }
6371 }
6372
6373 /*
6374  * Set up allocation unit vaulue.
6375  */
6376 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6377 {
6378         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6379
6380         /* do not modify other values in the register */
6381         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6382         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6383         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6384 }
6385
6386 /*
6387  * Set up initial VL15 credits of the remote.  Assumes the rest of
6388  * the CM credit registers are zero from a previous global or credit reset.
6389  * Shared limit for VL15 will always be 0.
6390  */
6391 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6392 {
6393         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6394
6395         /* set initial values for total and shared credit limit */
6396         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6397                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6398
6399         /*
6400          * Set total limit to be equal to VL15 credits.
6401          * Leave shared limit at 0.
6402          */
6403         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6404         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6405
6406         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6407                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6408 }
6409
6410 /*
6411  * Zero all credit details from the previous connection and
6412  * reset the CM manager's internal counters.
6413  */
6414 void reset_link_credits(struct hfi1_devdata *dd)
6415 {
6416         int i;
6417
6418         /* remove all previous VL credit limits */
6419         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6420                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6421         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6422         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6423         /* reset the CM block */
6424         pio_send_control(dd, PSC_CM_RESET);
6425         /* reset cached value */
6426         dd->vl15buf_cached = 0;
6427 }
6428
6429 /* convert a vCU to a CU */
6430 static u32 vcu_to_cu(u8 vcu)
6431 {
6432         return 1 << vcu;
6433 }
6434
6435 /* convert a CU to a vCU */
6436 static u8 cu_to_vcu(u32 cu)
6437 {
6438         return ilog2(cu);
6439 }
6440
6441 /* convert a vAU to an AU */
6442 static u32 vau_to_au(u8 vau)
6443 {
6444         return 8 * (1 << vau);
6445 }
6446
6447 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6448 {
6449         ppd->sm_trap_qp = 0x0;
6450         ppd->sa_qp = 0x1;
6451 }
6452
6453 /*
6454  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6455  */
6456 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6457 {
6458         u64 reg;
6459
6460         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6461         write_csr(dd, DC_LCB_CFG_RUN, 0);
6462         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6463         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6464                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6465         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6466         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6467         reg = read_csr(dd, DCC_CFG_RESET);
6468         write_csr(dd, DCC_CFG_RESET, reg |
6469                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6470                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6471         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6472         if (!abort) {
6473                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6474                 write_csr(dd, DCC_CFG_RESET, reg);
6475                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6476         }
6477 }
6478
6479 /*
6480  * This routine should be called after the link has been transitioned to
6481  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6482  * reset).
6483  *
6484  * The expectation is that the caller of this routine would have taken
6485  * care of properly transitioning the link into the correct state.
6486  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6487  *       before calling this function.
6488  */
6489 static void _dc_shutdown(struct hfi1_devdata *dd)
6490 {
6491         lockdep_assert_held(&dd->dc8051_lock);
6492
6493         if (dd->dc_shutdown)
6494                 return;
6495
6496         dd->dc_shutdown = 1;
6497         /* Shutdown the LCB */
6498         lcb_shutdown(dd, 1);
6499         /*
6500          * Going to OFFLINE would have causes the 8051 to put the
6501          * SerDes into reset already. Just need to shut down the 8051,
6502          * itself.
6503          */
6504         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6505 }
6506
6507 static void dc_shutdown(struct hfi1_devdata *dd)
6508 {
6509         mutex_lock(&dd->dc8051_lock);
6510         _dc_shutdown(dd);
6511         mutex_unlock(&dd->dc8051_lock);
6512 }
6513
6514 /*
6515  * Calling this after the DC has been brought out of reset should not
6516  * do any damage.
6517  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6518  *       before calling this function.
6519  */
6520 static void _dc_start(struct hfi1_devdata *dd)
6521 {
6522         lockdep_assert_held(&dd->dc8051_lock);
6523
6524         if (!dd->dc_shutdown)
6525                 return;
6526
6527         /* Take the 8051 out of reset */
6528         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6529         /* Wait until 8051 is ready */
6530         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6531                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6532                            __func__);
6533
6534         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6535         write_csr(dd, DCC_CFG_RESET, 0x10);
6536         /* lcb_shutdown() with abort=1 does not restore these */
6537         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6538         dd->dc_shutdown = 0;
6539 }
6540
6541 static void dc_start(struct hfi1_devdata *dd)
6542 {
6543         mutex_lock(&dd->dc8051_lock);
6544         _dc_start(dd);
6545         mutex_unlock(&dd->dc8051_lock);
6546 }
6547
6548 /*
6549  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6550  */
6551 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6552 {
6553         u64 rx_radr, tx_radr;
6554         u32 version;
6555
6556         if (dd->icode != ICODE_FPGA_EMULATION)
6557                 return;
6558
6559         /*
6560          * These LCB defaults on emulator _s are good, nothing to do here:
6561          *      LCB_CFG_TX_FIFOS_RADR
6562          *      LCB_CFG_RX_FIFOS_RADR
6563          *      LCB_CFG_LN_DCLK
6564          *      LCB_CFG_IGNORE_LOST_RCLK
6565          */
6566         if (is_emulator_s(dd))
6567                 return;
6568         /* else this is _p */
6569
6570         version = emulator_rev(dd);
6571         if (!is_ax(dd))
6572                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6573
6574         if (version <= 0x12) {
6575                 /* release 0x12 and below */
6576
6577                 /*
6578                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6579                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6580                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6581                  */
6582                 rx_radr =
6583                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6584                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6585                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6586                 /*
6587                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6588                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6589                  */
6590                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6591         } else if (version <= 0x18) {
6592                 /* release 0x13 up to 0x18 */
6593                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6594                 rx_radr =
6595                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6596                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6597                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6598                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6599         } else if (version == 0x19) {
6600                 /* release 0x19 */
6601                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6602                 rx_radr =
6603                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6604                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6605                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6606                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6607         } else if (version == 0x1a) {
6608                 /* release 0x1a */
6609                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6610                 rx_radr =
6611                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6612                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6613                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6614                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6615                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6616         } else {
6617                 /* release 0x1b and higher */
6618                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6619                 rx_radr =
6620                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6621                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6622                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6623                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6624         }
6625
6626         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6627         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6628         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6629                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6630         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6631 }
6632
6633 /*
6634  * Handle a SMA idle message
6635  *
6636  * This is a work-queue function outside of the interrupt.
6637  */
6638 void handle_sma_message(struct work_struct *work)
6639 {
6640         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6641                                                         sma_message_work);
6642         struct hfi1_devdata *dd = ppd->dd;
6643         u64 msg;
6644         int ret;
6645
6646         /*
6647          * msg is bytes 1-4 of the 40-bit idle message - the command code
6648          * is stripped off
6649          */
6650         ret = read_idle_sma(dd, &msg);
6651         if (ret)
6652                 return;
6653         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6654         /*
6655          * React to the SMA message.  Byte[1] (0 for us) is the command.
6656          */
6657         switch (msg & 0xff) {
6658         case SMA_IDLE_ARM:
6659                 /*
6660                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6661                  * State Transitions
6662                  *
6663                  * Only expected in INIT or ARMED, discard otherwise.
6664                  */
6665                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6666                         ppd->neighbor_normal = 1;
6667                 break;
6668         case SMA_IDLE_ACTIVE:
6669                 /*
6670                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6671                  * State Transitions
6672                  *
6673                  * Can activate the node.  Discard otherwise.
6674                  */
6675                 if (ppd->host_link_state == HLS_UP_ARMED &&
6676                     ppd->is_active_optimize_enabled) {
6677                         ppd->neighbor_normal = 1;
6678                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6679                         if (ret)
6680                                 dd_dev_err(
6681                                         dd,
6682                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6683                                         __func__);
6684                 }
6685                 break;
6686         default:
6687                 dd_dev_err(dd,
6688                            "%s: received unexpected SMA idle message 0x%llx\n",
6689                            __func__, msg);
6690                 break;
6691         }
6692 }
6693
6694 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6695 {
6696         u64 rcvctrl;
6697         unsigned long flags;
6698
6699         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6700         rcvctrl = read_csr(dd, RCV_CTRL);
6701         rcvctrl |= add;
6702         rcvctrl &= ~clear;
6703         write_csr(dd, RCV_CTRL, rcvctrl);
6704         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6705 }
6706
6707 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6708 {
6709         adjust_rcvctrl(dd, add, 0);
6710 }
6711
6712 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6713 {
6714         adjust_rcvctrl(dd, 0, clear);
6715 }
6716
6717 /*
6718  * Called from all interrupt handlers to start handling an SPC freeze.
6719  */
6720 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6721 {
6722         struct hfi1_devdata *dd = ppd->dd;
6723         struct send_context *sc;
6724         int i;
6725
6726         if (flags & FREEZE_SELF)
6727                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6728
6729         /* enter frozen mode */
6730         dd->flags |= HFI1_FROZEN;
6731
6732         /* notify all SDMA engines that they are going into a freeze */
6733         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6734
6735         /* do halt pre-handling on all enabled send contexts */
6736         for (i = 0; i < dd->num_send_contexts; i++) {
6737                 sc = dd->send_contexts[i].sc;
6738                 if (sc && (sc->flags & SCF_ENABLED))
6739                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6740         }
6741
6742         /* Send context are frozen. Notify user space */
6743         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6744
6745         if (flags & FREEZE_ABORT) {
6746                 dd_dev_err(dd,
6747                            "Aborted freeze recovery. Please REBOOT system\n");
6748                 return;
6749         }
6750         /* queue non-interrupt handler */
6751         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6752 }
6753
6754 /*
6755  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6756  * depending on the "freeze" parameter.
6757  *
6758  * No need to return an error if it times out, our only option
6759  * is to proceed anyway.
6760  */
6761 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6762 {
6763         unsigned long timeout;
6764         u64 reg;
6765
6766         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6767         while (1) {
6768                 reg = read_csr(dd, CCE_STATUS);
6769                 if (freeze) {
6770                         /* waiting until all indicators are set */
6771                         if ((reg & ALL_FROZE) == ALL_FROZE)
6772                                 return; /* all done */
6773                 } else {
6774                         /* waiting until all indicators are clear */
6775                         if ((reg & ALL_FROZE) == 0)
6776                                 return; /* all done */
6777                 }
6778
6779                 if (time_after(jiffies, timeout)) {
6780                         dd_dev_err(dd,
6781                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6782                                    freeze ? "" : "un", reg & ALL_FROZE,
6783                                    freeze ? ALL_FROZE : 0ull);
6784                         return;
6785                 }
6786                 usleep_range(80, 120);
6787         }
6788 }
6789
6790 /*
6791  * Do all freeze handling for the RXE block.
6792  */
6793 static void rxe_freeze(struct hfi1_devdata *dd)
6794 {
6795         int i;
6796         struct hfi1_ctxtdata *rcd;
6797
6798         /* disable port */
6799         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6800
6801         /* disable all receive contexts */
6802         for (i = 0; i < dd->num_rcv_contexts; i++) {
6803                 rcd = hfi1_rcd_get_by_index(dd, i);
6804                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6805                 hfi1_rcd_put(rcd);
6806         }
6807 }
6808
6809 /*
6810  * Unfreeze handling for the RXE block - kernel contexts only.
6811  * This will also enable the port.  User contexts will do unfreeze
6812  * handling on a per-context basis as they call into the driver.
6813  *
6814  */
6815 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6816 {
6817         u32 rcvmask;
6818         u16 i;
6819         struct hfi1_ctxtdata *rcd;
6820
6821         /* enable all kernel contexts */
6822         for (i = 0; i < dd->num_rcv_contexts; i++) {
6823                 rcd = hfi1_rcd_get_by_index(dd, i);
6824
6825                 /* Ensure all non-user contexts(including vnic) are enabled */
6826                 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6827                         hfi1_rcd_put(rcd);
6828                         continue;
6829                 }
6830                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6831                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6832                 rcvmask |= rcd->rcvhdrtail_kvaddr ?
6833                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6834                 hfi1_rcvctrl(dd, rcvmask, rcd);
6835                 hfi1_rcd_put(rcd);
6836         }
6837
6838         /* enable port */
6839         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6840 }
6841
6842 /*
6843  * Non-interrupt SPC freeze handling.
6844  *
6845  * This is a work-queue function outside of the triggering interrupt.
6846  */
6847 void handle_freeze(struct work_struct *work)
6848 {
6849         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6850                                                                 freeze_work);
6851         struct hfi1_devdata *dd = ppd->dd;
6852
6853         /* wait for freeze indicators on all affected blocks */
6854         wait_for_freeze_status(dd, 1);
6855
6856         /* SPC is now frozen */
6857
6858         /* do send PIO freeze steps */
6859         pio_freeze(dd);
6860
6861         /* do send DMA freeze steps */
6862         sdma_freeze(dd);
6863
6864         /* do send egress freeze steps - nothing to do */
6865
6866         /* do receive freeze steps */
6867         rxe_freeze(dd);
6868
6869         /*
6870          * Unfreeze the hardware - clear the freeze, wait for each
6871          * block's frozen bit to clear, then clear the frozen flag.
6872          */
6873         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6874         wait_for_freeze_status(dd, 0);
6875
6876         if (is_ax(dd)) {
6877                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6878                 wait_for_freeze_status(dd, 1);
6879                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6880                 wait_for_freeze_status(dd, 0);
6881         }
6882
6883         /* do send PIO unfreeze steps for kernel contexts */
6884         pio_kernel_unfreeze(dd);
6885
6886         /* do send DMA unfreeze steps */
6887         sdma_unfreeze(dd);
6888
6889         /* do send egress unfreeze steps - nothing to do */
6890
6891         /* do receive unfreeze steps for kernel contexts */
6892         rxe_kernel_unfreeze(dd);
6893
6894         /*
6895          * The unfreeze procedure touches global device registers when
6896          * it disables and re-enables RXE. Mark the device unfrozen
6897          * after all that is done so other parts of the driver waiting
6898          * for the device to unfreeze don't do things out of order.
6899          *
6900          * The above implies that the meaning of HFI1_FROZEN flag is
6901          * "Device has gone into freeze mode and freeze mode handling
6902          * is still in progress."
6903          *
6904          * The flag will be removed when freeze mode processing has
6905          * completed.
6906          */
6907         dd->flags &= ~HFI1_FROZEN;
6908         wake_up(&dd->event_queue);
6909
6910         /* no longer frozen */
6911 }
6912
6913 /*
6914  * Handle a link up interrupt from the 8051.
6915  *
6916  * This is a work-queue function outside of the interrupt.
6917  */
6918 void handle_link_up(struct work_struct *work)
6919 {
6920         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6921                                                   link_up_work);
6922         struct hfi1_devdata *dd = ppd->dd;
6923
6924         set_link_state(ppd, HLS_UP_INIT);
6925
6926         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6927         read_ltp_rtt(dd);
6928         /*
6929          * OPA specifies that certain counters are cleared on a transition
6930          * to link up, so do that.
6931          */
6932         clear_linkup_counters(dd);
6933         /*
6934          * And (re)set link up default values.
6935          */
6936         set_linkup_defaults(ppd);
6937
6938         /*
6939          * Set VL15 credits. Use cached value from verify cap interrupt.
6940          * In case of quick linkup or simulator, vl15 value will be set by
6941          * handle_linkup_change. VerifyCap interrupt handler will not be
6942          * called in those scenarios.
6943          */
6944         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6945                 set_up_vl15(dd, dd->vl15buf_cached);
6946
6947         /* enforce link speed enabled */
6948         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6949                 /* oops - current speed is not enabled, bounce */
6950                 dd_dev_err(dd,
6951                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6952                            ppd->link_speed_active, ppd->link_speed_enabled);
6953                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6954                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6955                 set_link_state(ppd, HLS_DN_OFFLINE);
6956                 start_link(ppd);
6957         }
6958 }
6959
6960 /*
6961  * Several pieces of LNI information were cached for SMA in ppd.
6962  * Reset these on link down
6963  */
6964 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6965 {
6966         ppd->neighbor_guid = 0;
6967         ppd->neighbor_port_number = 0;
6968         ppd->neighbor_type = 0;
6969         ppd->neighbor_fm_security = 0;
6970 }
6971
6972 static const char * const link_down_reason_strs[] = {
6973         [OPA_LINKDOWN_REASON_NONE] = "None",
6974         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6975         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6976         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6977         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6978         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6979         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6980         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6981         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6982         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6983         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6984         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6985         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6986         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6987         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6988         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6989         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6990         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6991         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6992         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6993         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6994         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6995         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6996         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6997         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6998         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6999         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7000         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7001         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7002         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7003         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7004         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7005         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7006                                         "Excessive buffer overrun",
7007         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7008         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7009         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7010         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7011         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7012         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7013         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7014         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7015                                         "Local media not installed",
7016         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7017         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7018         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7019                                         "End to end not installed",
7020         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7021         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7022         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7023         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7024         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7025         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7026 };
7027
7028 /* return the neighbor link down reason string */
7029 static const char *link_down_reason_str(u8 reason)
7030 {
7031         const char *str = NULL;
7032
7033         if (reason < ARRAY_SIZE(link_down_reason_strs))
7034                 str = link_down_reason_strs[reason];
7035         if (!str)
7036                 str = "(invalid)";
7037
7038         return str;
7039 }
7040
7041 /*
7042  * Handle a link down interrupt from the 8051.
7043  *
7044  * This is a work-queue function outside of the interrupt.
7045  */
7046 void handle_link_down(struct work_struct *work)
7047 {
7048         u8 lcl_reason, neigh_reason = 0;
7049         u8 link_down_reason;
7050         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7051                                                   link_down_work);
7052         int was_up;
7053         static const char ldr_str[] = "Link down reason: ";
7054
7055         if ((ppd->host_link_state &
7056              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7057              ppd->port_type == PORT_TYPE_FIXED)
7058                 ppd->offline_disabled_reason =
7059                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7060
7061         /* Go offline first, then deal with reading/writing through 8051 */
7062         was_up = !!(ppd->host_link_state & HLS_UP);
7063         set_link_state(ppd, HLS_DN_OFFLINE);
7064         xchg(&ppd->is_link_down_queued, 0);
7065
7066         if (was_up) {
7067                 lcl_reason = 0;
7068                 /* link down reason is only valid if the link was up */
7069                 read_link_down_reason(ppd->dd, &link_down_reason);
7070                 switch (link_down_reason) {
7071                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7072                         /* the link went down, no idle message reason */
7073                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7074                                     ldr_str);
7075                         break;
7076                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7077                         /*
7078                          * The neighbor reason is only valid if an idle message
7079                          * was received for it.
7080                          */
7081                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7082                         dd_dev_info(ppd->dd,
7083                                     "%sNeighbor link down message %d, %s\n",
7084                                     ldr_str, neigh_reason,
7085                                     link_down_reason_str(neigh_reason));
7086                         break;
7087                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7088                         dd_dev_info(ppd->dd,
7089                                     "%sHost requested link to go offline\n",
7090                                     ldr_str);
7091                         break;
7092                 default:
7093                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7094                                     ldr_str, link_down_reason);
7095                         break;
7096                 }
7097
7098                 /*
7099                  * If no reason, assume peer-initiated but missed
7100                  * LinkGoingDown idle flits.
7101                  */
7102                 if (neigh_reason == 0)
7103                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7104         } else {
7105                 /* went down while polling or going up */
7106                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7107         }
7108
7109         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7110
7111         /* inform the SMA when the link transitions from up to down */
7112         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7113             ppd->neigh_link_down_reason.sma == 0) {
7114                 ppd->local_link_down_reason.sma =
7115                                         ppd->local_link_down_reason.latest;
7116                 ppd->neigh_link_down_reason.sma =
7117                                         ppd->neigh_link_down_reason.latest;
7118         }
7119
7120         reset_neighbor_info(ppd);
7121
7122         /* disable the port */
7123         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7124
7125         /*
7126          * If there is no cable attached, turn the DC off. Otherwise,
7127          * start the link bring up.
7128          */
7129         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7130                 dc_shutdown(ppd->dd);
7131         else
7132                 start_link(ppd);
7133 }
7134
7135 void handle_link_bounce(struct work_struct *work)
7136 {
7137         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7138                                                         link_bounce_work);
7139
7140         /*
7141          * Only do something if the link is currently up.
7142          */
7143         if (ppd->host_link_state & HLS_UP) {
7144                 set_link_state(ppd, HLS_DN_OFFLINE);
7145                 start_link(ppd);
7146         } else {
7147                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7148                             __func__, link_state_name(ppd->host_link_state));
7149         }
7150 }
7151
7152 /*
7153  * Mask conversion: Capability exchange to Port LTP.  The capability
7154  * exchange has an implicit 16b CRC that is mandatory.
7155  */
7156 static int cap_to_port_ltp(int cap)
7157 {
7158         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7159
7160         if (cap & CAP_CRC_14B)
7161                 port_ltp |= PORT_LTP_CRC_MODE_14;
7162         if (cap & CAP_CRC_48B)
7163                 port_ltp |= PORT_LTP_CRC_MODE_48;
7164         if (cap & CAP_CRC_12B_16B_PER_LANE)
7165                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7166
7167         return port_ltp;
7168 }
7169
7170 /*
7171  * Convert an OPA Port LTP mask to capability mask
7172  */
7173 int port_ltp_to_cap(int port_ltp)
7174 {
7175         int cap_mask = 0;
7176
7177         if (port_ltp & PORT_LTP_CRC_MODE_14)
7178                 cap_mask |= CAP_CRC_14B;
7179         if (port_ltp & PORT_LTP_CRC_MODE_48)
7180                 cap_mask |= CAP_CRC_48B;
7181         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7182                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7183
7184         return cap_mask;
7185 }
7186
7187 /*
7188  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7189  */
7190 static int lcb_to_port_ltp(int lcb_crc)
7191 {
7192         int port_ltp = 0;
7193
7194         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7195                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7196         else if (lcb_crc == LCB_CRC_48B)
7197                 port_ltp = PORT_LTP_CRC_MODE_48;
7198         else if (lcb_crc == LCB_CRC_14B)
7199                 port_ltp = PORT_LTP_CRC_MODE_14;
7200         else
7201                 port_ltp = PORT_LTP_CRC_MODE_16;
7202
7203         return port_ltp;
7204 }
7205
7206 /*
7207  * Our neighbor has indicated that we are allowed to act as a fabric
7208  * manager, so place the full management partition key in the second
7209  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7210  * that we should already have the limited management partition key in
7211  * array element 1, and also that the port is not yet up when
7212  * add_full_mgmt_pkey() is invoked.
7213  */
7214 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7215 {
7216         struct hfi1_devdata *dd = ppd->dd;
7217
7218         /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7219         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7220                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7221                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7222         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7223         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7224         hfi1_event_pkey_change(ppd->dd, ppd->port);
7225 }
7226
7227 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7228 {
7229         if (ppd->pkeys[2] != 0) {
7230                 ppd->pkeys[2] = 0;
7231                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7232                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7233         }
7234 }
7235
7236 /*
7237  * Convert the given link width to the OPA link width bitmask.
7238  */
7239 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7240 {
7241         switch (width) {
7242         case 0:
7243                 /*
7244                  * Simulator and quick linkup do not set the width.
7245                  * Just set it to 4x without complaint.
7246                  */
7247                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7248                         return OPA_LINK_WIDTH_4X;
7249                 return 0; /* no lanes up */
7250         case 1: return OPA_LINK_WIDTH_1X;
7251         case 2: return OPA_LINK_WIDTH_2X;
7252         case 3: return OPA_LINK_WIDTH_3X;
7253         default:
7254                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7255                             __func__, width);
7256                 /* fall through */
7257         case 4: return OPA_LINK_WIDTH_4X;
7258         }
7259 }
7260
7261 /*
7262  * Do a population count on the bottom nibble.
7263  */
7264 static const u8 bit_counts[16] = {
7265         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7266 };
7267
7268 static inline u8 nibble_to_count(u8 nibble)
7269 {
7270         return bit_counts[nibble & 0xf];
7271 }
7272
7273 /*
7274  * Read the active lane information from the 8051 registers and return
7275  * their widths.
7276  *
7277  * Active lane information is found in these 8051 registers:
7278  *      enable_lane_tx
7279  *      enable_lane_rx
7280  */
7281 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7282                             u16 *rx_width)
7283 {
7284         u16 tx, rx;
7285         u8 enable_lane_rx;
7286         u8 enable_lane_tx;
7287         u8 tx_polarity_inversion;
7288         u8 rx_polarity_inversion;
7289         u8 max_rate;
7290
7291         /* read the active lanes */
7292         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7293                          &rx_polarity_inversion, &max_rate);
7294         read_local_lni(dd, &enable_lane_rx);
7295
7296         /* convert to counts */
7297         tx = nibble_to_count(enable_lane_tx);
7298         rx = nibble_to_count(enable_lane_rx);
7299
7300         /*
7301          * Set link_speed_active here, overriding what was set in
7302          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7303          * set the max_rate field in handle_verify_cap until v0.19.
7304          */
7305         if ((dd->icode == ICODE_RTL_SILICON) &&
7306             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7307                 /* max_rate: 0 = 12.5G, 1 = 25G */
7308                 switch (max_rate) {
7309                 case 0:
7310                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7311                         break;
7312                 default:
7313                         dd_dev_err(dd,
7314                                    "%s: unexpected max rate %d, using 25Gb\n",
7315                                    __func__, (int)max_rate);
7316                         /* fall through */
7317                 case 1:
7318                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7319                         break;
7320                 }
7321         }
7322
7323         dd_dev_info(dd,
7324                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7325                     enable_lane_tx, tx, enable_lane_rx, rx);
7326         *tx_width = link_width_to_bits(dd, tx);
7327         *rx_width = link_width_to_bits(dd, rx);
7328 }
7329
7330 /*
7331  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7332  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7333  * after link up.  I.e. look elsewhere for downgrade information.
7334  *
7335  * Bits are:
7336  *      + bits [7:4] contain the number of active transmitters
7337  *      + bits [3:0] contain the number of active receivers
7338  * These are numbers 1 through 4 and can be different values if the
7339  * link is asymmetric.
7340  *
7341  * verify_cap_local_fm_link_width[0] retains its original value.
7342  */
7343 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7344                               u16 *rx_width)
7345 {
7346         u16 widths, tx, rx;
7347         u8 misc_bits, local_flags;
7348         u16 active_tx, active_rx;
7349
7350         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7351         tx = widths >> 12;
7352         rx = (widths >> 8) & 0xf;
7353
7354         *tx_width = link_width_to_bits(dd, tx);
7355         *rx_width = link_width_to_bits(dd, rx);
7356
7357         /* print the active widths */
7358         get_link_widths(dd, &active_tx, &active_rx);
7359 }
7360
7361 /*
7362  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7363  * hardware information when the link first comes up.
7364  *
7365  * The link width is not available until after VerifyCap.AllFramesReceived
7366  * (the trigger for handle_verify_cap), so this is outside that routine
7367  * and should be called when the 8051 signals linkup.
7368  */
7369 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7370 {
7371         u16 tx_width, rx_width;
7372
7373         /* get end-of-LNI link widths */
7374         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7375
7376         /* use tx_width as the link is supposed to be symmetric on link up */
7377         ppd->link_width_active = tx_width;
7378         /* link width downgrade active (LWD.A) starts out matching LW.A */
7379         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7380         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7381         /* per OPA spec, on link up LWD.E resets to LWD.S */
7382         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7383         /* cache the active egress rate (units {10^6 bits/sec]) */
7384         ppd->current_egress_rate = active_egress_rate(ppd);
7385 }
7386
7387 /*
7388  * Handle a verify capabilities interrupt from the 8051.
7389  *
7390  * This is a work-queue function outside of the interrupt.
7391  */
7392 void handle_verify_cap(struct work_struct *work)
7393 {
7394         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7395                                                                 link_vc_work);
7396         struct hfi1_devdata *dd = ppd->dd;
7397         u64 reg;
7398         u8 power_management;
7399         u8 continuous;
7400         u8 vcu;
7401         u8 vau;
7402         u8 z;
7403         u16 vl15buf;
7404         u16 link_widths;
7405         u16 crc_mask;
7406         u16 crc_val;
7407         u16 device_id;
7408         u16 active_tx, active_rx;
7409         u8 partner_supported_crc;
7410         u8 remote_tx_rate;
7411         u8 device_rev;
7412
7413         set_link_state(ppd, HLS_VERIFY_CAP);
7414
7415         lcb_shutdown(dd, 0);
7416         adjust_lcb_for_fpga_serdes(dd);
7417
7418         read_vc_remote_phy(dd, &power_management, &continuous);
7419         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7420                               &partner_supported_crc);
7421         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7422         read_remote_device_id(dd, &device_id, &device_rev);
7423         /*
7424          * And the 'MgmtAllowed' information, which is exchanged during
7425          * LNI, is also be available at this point.
7426          */
7427         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7428         /* print the active widths */
7429         get_link_widths(dd, &active_tx, &active_rx);
7430         dd_dev_info(dd,
7431                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7432                     (int)power_management, (int)continuous);
7433         dd_dev_info(dd,
7434                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7435                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7436                     (int)partner_supported_crc);
7437         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7438                     (u32)remote_tx_rate, (u32)link_widths);
7439         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7440                     (u32)device_id, (u32)device_rev);
7441         /*
7442          * The peer vAU value just read is the peer receiver value.  HFI does
7443          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7444          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7445          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7446          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7447          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7448          * subject to the Z value exception.
7449          */
7450         if (vau == 0)
7451                 vau = 1;
7452         set_up_vau(dd, vau);
7453
7454         /*
7455          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7456          * credits value and wait for link-up interrupt ot set it.
7457          */
7458         set_up_vl15(dd, 0);
7459         dd->vl15buf_cached = vl15buf;
7460
7461         /* set up the LCB CRC mode */
7462         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7463
7464         /* order is important: use the lowest bit in common */
7465         if (crc_mask & CAP_CRC_14B)
7466                 crc_val = LCB_CRC_14B;
7467         else if (crc_mask & CAP_CRC_48B)
7468                 crc_val = LCB_CRC_48B;
7469         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7470                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7471         else
7472                 crc_val = LCB_CRC_16B;
7473
7474         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7475         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7476                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7477
7478         /* set (14b only) or clear sideband credit */
7479         reg = read_csr(dd, SEND_CM_CTRL);
7480         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7481                 write_csr(dd, SEND_CM_CTRL,
7482                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7483         } else {
7484                 write_csr(dd, SEND_CM_CTRL,
7485                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7486         }
7487
7488         ppd->link_speed_active = 0;     /* invalid value */
7489         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7490                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7491                 switch (remote_tx_rate) {
7492                 case 0:
7493                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7494                         break;
7495                 case 1:
7496                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7497                         break;
7498                 }
7499         } else {
7500                 /* actual rate is highest bit of the ANDed rates */
7501                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7502
7503                 if (rate & 2)
7504                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7505                 else if (rate & 1)
7506                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7507         }
7508         if (ppd->link_speed_active == 0) {
7509                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7510                            __func__, (int)remote_tx_rate);
7511                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7512         }
7513
7514         /*
7515          * Cache the values of the supported, enabled, and active
7516          * LTP CRC modes to return in 'portinfo' queries. But the bit
7517          * flags that are returned in the portinfo query differ from
7518          * what's in the link_crc_mask, crc_sizes, and crc_val
7519          * variables. Convert these here.
7520          */
7521         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7522                 /* supported crc modes */
7523         ppd->port_ltp_crc_mode |=
7524                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7525                 /* enabled crc modes */
7526         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7527                 /* active crc mode */
7528
7529         /* set up the remote credit return table */
7530         assign_remote_cm_au_table(dd, vcu);
7531
7532         /*
7533          * The LCB is reset on entry to handle_verify_cap(), so this must
7534          * be applied on every link up.
7535          *
7536          * Adjust LCB error kill enable to kill the link if
7537          * these RBUF errors are seen:
7538          *      REPLAY_BUF_MBE_SMASK
7539          *      FLIT_INPUT_BUF_MBE_SMASK
7540          */
7541         if (is_ax(dd)) {                        /* fixed in B0 */
7542                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7543                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7544                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7545                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7546         }
7547
7548         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7549         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7550
7551         /* give 8051 access to the LCB CSRs */
7552         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7553         set_8051_lcb_access(dd);
7554
7555         if (ppd->mgmt_allowed)
7556                 add_full_mgmt_pkey(ppd);
7557
7558         /* tell the 8051 to go to LinkUp */
7559         set_link_state(ppd, HLS_GOING_UP);
7560 }
7561
7562 /*
7563  * Apply the link width downgrade enabled policy against the current active
7564  * link widths.
7565  *
7566  * Called when the enabled policy changes or the active link widths change.
7567  */
7568 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7569 {
7570         int do_bounce = 0;
7571         int tries;
7572         u16 lwde;
7573         u16 tx, rx;
7574
7575         /* use the hls lock to avoid a race with actual link up */
7576         tries = 0;
7577 retry:
7578         mutex_lock(&ppd->hls_lock);
7579         /* only apply if the link is up */
7580         if (ppd->host_link_state & HLS_DOWN) {
7581                 /* still going up..wait and retry */
7582                 if (ppd->host_link_state & HLS_GOING_UP) {
7583                         if (++tries < 1000) {
7584                                 mutex_unlock(&ppd->hls_lock);
7585                                 usleep_range(100, 120); /* arbitrary */
7586                                 goto retry;
7587                         }
7588                         dd_dev_err(ppd->dd,
7589                                    "%s: giving up waiting for link state change\n",
7590                                    __func__);
7591                 }
7592                 goto done;
7593         }
7594
7595         lwde = ppd->link_width_downgrade_enabled;
7596
7597         if (refresh_widths) {
7598                 get_link_widths(ppd->dd, &tx, &rx);
7599                 ppd->link_width_downgrade_tx_active = tx;
7600                 ppd->link_width_downgrade_rx_active = rx;
7601         }
7602
7603         if (ppd->link_width_downgrade_tx_active == 0 ||
7604             ppd->link_width_downgrade_rx_active == 0) {
7605                 /* the 8051 reported a dead link as a downgrade */
7606                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7607         } else if (lwde == 0) {
7608                 /* downgrade is disabled */
7609
7610                 /* bounce if not at starting active width */
7611                 if ((ppd->link_width_active !=
7612                      ppd->link_width_downgrade_tx_active) ||
7613                     (ppd->link_width_active !=
7614                      ppd->link_width_downgrade_rx_active)) {
7615                         dd_dev_err(ppd->dd,
7616                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7617                         dd_dev_err(ppd->dd,
7618                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7619                                    ppd->link_width_active,
7620                                    ppd->link_width_downgrade_tx_active,
7621                                    ppd->link_width_downgrade_rx_active);
7622                         do_bounce = 1;
7623                 }
7624         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7625                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7626                 /* Tx or Rx is outside the enabled policy */
7627                 dd_dev_err(ppd->dd,
7628                            "Link is outside of downgrade allowed, downing link\n");
7629                 dd_dev_err(ppd->dd,
7630                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7631                            lwde, ppd->link_width_downgrade_tx_active,
7632                            ppd->link_width_downgrade_rx_active);
7633                 do_bounce = 1;
7634         }
7635
7636 done:
7637         mutex_unlock(&ppd->hls_lock);
7638
7639         if (do_bounce) {
7640                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7641                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7642                 set_link_state(ppd, HLS_DN_OFFLINE);
7643                 start_link(ppd);
7644         }
7645 }
7646
7647 /*
7648  * Handle a link downgrade interrupt from the 8051.
7649  *
7650  * This is a work-queue function outside of the interrupt.
7651  */
7652 void handle_link_downgrade(struct work_struct *work)
7653 {
7654         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7655                                                         link_downgrade_work);
7656
7657         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7658         apply_link_downgrade_policy(ppd, 1);
7659 }
7660
7661 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7662 {
7663         return flag_string(buf, buf_len, flags, dcc_err_flags,
7664                 ARRAY_SIZE(dcc_err_flags));
7665 }
7666
7667 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7668 {
7669         return flag_string(buf, buf_len, flags, lcb_err_flags,
7670                 ARRAY_SIZE(lcb_err_flags));
7671 }
7672
7673 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7674 {
7675         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7676                 ARRAY_SIZE(dc8051_err_flags));
7677 }
7678
7679 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7680 {
7681         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7682                 ARRAY_SIZE(dc8051_info_err_flags));
7683 }
7684
7685 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7686 {
7687         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7688                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7689 }
7690
7691 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7692 {
7693         struct hfi1_pportdata *ppd = dd->pport;
7694         u64 info, err, host_msg;
7695         int queue_link_down = 0;
7696         char buf[96];
7697
7698         /* look at the flags */
7699         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7700                 /* 8051 information set by firmware */
7701                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7702                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7703                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7704                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7705                 host_msg = (info >>
7706                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7707                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7708
7709                 /*
7710                  * Handle error flags.
7711                  */
7712                 if (err & FAILED_LNI) {
7713                         /*
7714                          * LNI error indications are cleared by the 8051
7715                          * only when starting polling.  Only pay attention
7716                          * to them when in the states that occur during
7717                          * LNI.
7718                          */
7719                         if (ppd->host_link_state
7720                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7721                                 queue_link_down = 1;
7722                                 dd_dev_info(dd, "Link error: %s\n",
7723                                             dc8051_info_err_string(buf,
7724                                                                    sizeof(buf),
7725                                                                    err &
7726                                                                    FAILED_LNI));
7727                         }
7728                         err &= ~(u64)FAILED_LNI;
7729                 }
7730                 /* unknown frames can happen durning LNI, just count */
7731                 if (err & UNKNOWN_FRAME) {
7732                         ppd->unknown_frame_count++;
7733                         err &= ~(u64)UNKNOWN_FRAME;
7734                 }
7735                 if (err) {
7736                         /* report remaining errors, but do not do anything */
7737                         dd_dev_err(dd, "8051 info error: %s\n",
7738                                    dc8051_info_err_string(buf, sizeof(buf),
7739                                                           err));
7740                 }
7741
7742                 /*
7743                  * Handle host message flags.
7744                  */
7745                 if (host_msg & HOST_REQ_DONE) {
7746                         /*
7747                          * Presently, the driver does a busy wait for
7748                          * host requests to complete.  This is only an
7749                          * informational message.
7750                          * NOTE: The 8051 clears the host message
7751                          * information *on the next 8051 command*.
7752                          * Therefore, when linkup is achieved,
7753                          * this flag will still be set.
7754                          */
7755                         host_msg &= ~(u64)HOST_REQ_DONE;
7756                 }
7757                 if (host_msg & BC_SMA_MSG) {
7758                         queue_work(ppd->link_wq, &ppd->sma_message_work);
7759                         host_msg &= ~(u64)BC_SMA_MSG;
7760                 }
7761                 if (host_msg & LINKUP_ACHIEVED) {
7762                         dd_dev_info(dd, "8051: Link up\n");
7763                         queue_work(ppd->link_wq, &ppd->link_up_work);
7764                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7765                 }
7766                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7767                         handle_8051_request(ppd);
7768                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7769                 }
7770                 if (host_msg & VERIFY_CAP_FRAME) {
7771                         queue_work(ppd->link_wq, &ppd->link_vc_work);
7772                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7773                 }
7774                 if (host_msg & LINK_GOING_DOWN) {
7775                         const char *extra = "";
7776                         /* no downgrade action needed if going down */
7777                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7778                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7779                                 extra = " (ignoring downgrade)";
7780                         }
7781                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7782                         queue_link_down = 1;
7783                         host_msg &= ~(u64)LINK_GOING_DOWN;
7784                 }
7785                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7786                         queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7787                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7788                 }
7789                 if (host_msg) {
7790                         /* report remaining messages, but do not do anything */
7791                         dd_dev_info(dd, "8051 info host message: %s\n",
7792                                     dc8051_info_host_msg_string(buf,
7793                                                                 sizeof(buf),
7794                                                                 host_msg));
7795                 }
7796
7797                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7798         }
7799         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7800                 /*
7801                  * Lost the 8051 heartbeat.  If this happens, we
7802                  * receive constant interrupts about it.  Disable
7803                  * the interrupt after the first.
7804                  */
7805                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7806                 write_csr(dd, DC_DC8051_ERR_EN,
7807                           read_csr(dd, DC_DC8051_ERR_EN) &
7808                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7809
7810                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7811         }
7812         if (reg) {
7813                 /* report the error, but do not do anything */
7814                 dd_dev_err(dd, "8051 error: %s\n",
7815                            dc8051_err_string(buf, sizeof(buf), reg));
7816         }
7817
7818         if (queue_link_down) {
7819                 /*
7820                  * if the link is already going down or disabled, do not
7821                  * queue another. If there's a link down entry already
7822                  * queued, don't queue another one.
7823                  */
7824                 if ((ppd->host_link_state &
7825                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7826                     ppd->link_enabled == 0) {
7827                         dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7828                                     __func__, ppd->host_link_state,
7829                                     ppd->link_enabled);
7830                 } else {
7831                         if (xchg(&ppd->is_link_down_queued, 1) == 1)
7832                                 dd_dev_info(dd,
7833                                             "%s: link down request already queued\n",
7834                                             __func__);
7835                         else
7836                                 queue_work(ppd->link_wq, &ppd->link_down_work);
7837                 }
7838         }
7839 }
7840
7841 static const char * const fm_config_txt[] = {
7842 [0] =
7843         "BadHeadDist: Distance violation between two head flits",
7844 [1] =
7845         "BadTailDist: Distance violation between two tail flits",
7846 [2] =
7847         "BadCtrlDist: Distance violation between two credit control flits",
7848 [3] =
7849         "BadCrdAck: Credits return for unsupported VL",
7850 [4] =
7851         "UnsupportedVLMarker: Received VL Marker",
7852 [5] =
7853         "BadPreempt: Exceeded the preemption nesting level",
7854 [6] =
7855         "BadControlFlit: Received unsupported control flit",
7856 /* no 7 */
7857 [8] =
7858         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7859 };
7860
7861 static const char * const port_rcv_txt[] = {
7862 [1] =
7863         "BadPktLen: Illegal PktLen",
7864 [2] =
7865         "PktLenTooLong: Packet longer than PktLen",
7866 [3] =
7867         "PktLenTooShort: Packet shorter than PktLen",
7868 [4] =
7869         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7870 [5] =
7871         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7872 [6] =
7873         "BadL2: Illegal L2 opcode",
7874 [7] =
7875         "BadSC: Unsupported SC",
7876 [9] =
7877         "BadRC: Illegal RC",
7878 [11] =
7879         "PreemptError: Preempting with same VL",
7880 [12] =
7881         "PreemptVL15: Preempting a VL15 packet",
7882 };
7883
7884 #define OPA_LDR_FMCONFIG_OFFSET 16
7885 #define OPA_LDR_PORTRCV_OFFSET 0
7886 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7887 {
7888         u64 info, hdr0, hdr1;
7889         const char *extra;
7890         char buf[96];
7891         struct hfi1_pportdata *ppd = dd->pport;
7892         u8 lcl_reason = 0;
7893         int do_bounce = 0;
7894
7895         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7896                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7897                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7898                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7899                         /* set status bit */
7900                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7901                 }
7902                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7903         }
7904
7905         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7906                 struct hfi1_pportdata *ppd = dd->pport;
7907                 /* this counter saturates at (2^32) - 1 */
7908                 if (ppd->link_downed < (u32)UINT_MAX)
7909                         ppd->link_downed++;
7910                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7911         }
7912
7913         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7914                 u8 reason_valid = 1;
7915
7916                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7917                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7918                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7919                         /* set status bit */
7920                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7921                 }
7922                 switch (info) {
7923                 case 0:
7924                 case 1:
7925                 case 2:
7926                 case 3:
7927                 case 4:
7928                 case 5:
7929                 case 6:
7930                         extra = fm_config_txt[info];
7931                         break;
7932                 case 8:
7933                         extra = fm_config_txt[info];
7934                         if (ppd->port_error_action &
7935                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7936                                 do_bounce = 1;
7937                                 /*
7938                                  * lcl_reason cannot be derived from info
7939                                  * for this error
7940                                  */
7941                                 lcl_reason =
7942                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7943                         }
7944                         break;
7945                 default:
7946                         reason_valid = 0;
7947                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7948                         extra = buf;
7949                         break;
7950                 }
7951
7952                 if (reason_valid && !do_bounce) {
7953                         do_bounce = ppd->port_error_action &
7954                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7955                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7956                 }
7957
7958                 /* just report this */
7959                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7960                                         extra);
7961                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7962         }
7963
7964         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7965                 u8 reason_valid = 1;
7966
7967                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7968                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7969                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7970                 if (!(dd->err_info_rcvport.status_and_code &
7971                       OPA_EI_STATUS_SMASK)) {
7972                         dd->err_info_rcvport.status_and_code =
7973                                 info & OPA_EI_CODE_SMASK;
7974                         /* set status bit */
7975                         dd->err_info_rcvport.status_and_code |=
7976                                 OPA_EI_STATUS_SMASK;
7977                         /*
7978                          * save first 2 flits in the packet that caused
7979                          * the error
7980                          */
7981                         dd->err_info_rcvport.packet_flit1 = hdr0;
7982                         dd->err_info_rcvport.packet_flit2 = hdr1;
7983                 }
7984                 switch (info) {
7985                 case 1:
7986                 case 2:
7987                 case 3:
7988                 case 4:
7989                 case 5:
7990                 case 6:
7991                 case 7:
7992                 case 9:
7993                 case 11:
7994                 case 12:
7995                         extra = port_rcv_txt[info];
7996                         break;
7997                 default:
7998                         reason_valid = 0;
7999                         snprintf(buf, sizeof(buf), "reserved%lld", info);
8000                         extra = buf;
8001                         break;
8002                 }
8003
8004                 if (reason_valid && !do_bounce) {
8005                         do_bounce = ppd->port_error_action &
8006                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8007                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8008                 }
8009
8010                 /* just report this */
8011                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8012                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
8013                                         extra, hdr0, hdr1);
8014
8015                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8016         }
8017
8018         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8019                 /* informative only */
8020                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8021                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8022         }
8023         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8024                 /* informative only */
8025                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8026                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8027         }
8028
8029         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8030                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8031
8032         /* report any remaining errors */
8033         if (reg)
8034                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8035                                         dcc_err_string(buf, sizeof(buf), reg));
8036
8037         if (lcl_reason == 0)
8038                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8039
8040         if (do_bounce) {
8041                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8042                                         __func__);
8043                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8044                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8045         }
8046 }
8047
8048 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8049 {
8050         char buf[96];
8051
8052         dd_dev_info(dd, "LCB Error: %s\n",
8053                     lcb_err_string(buf, sizeof(buf), reg));
8054 }
8055
8056 /*
8057  * CCE block DC interrupt.  Source is < 8.
8058  */
8059 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8060 {
8061         const struct err_reg_info *eri = &dc_errs[source];
8062
8063         if (eri->handler) {
8064                 interrupt_clear_down(dd, 0, eri);
8065         } else if (source == 3 /* dc_lbm_int */) {
8066                 /*
8067                  * This indicates that a parity error has occurred on the
8068                  * address/control lines presented to the LBM.  The error
8069                  * is a single pulse, there is no associated error flag,
8070                  * and it is non-maskable.  This is because if a parity
8071                  * error occurs on the request the request is dropped.
8072                  * This should never occur, but it is nice to know if it
8073                  * ever does.
8074                  */
8075                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8076         } else {
8077                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8078         }
8079 }
8080
8081 /*
8082  * TX block send credit interrupt.  Source is < 160.
8083  */
8084 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8085 {
8086         sc_group_release_update(dd, source);
8087 }
8088
8089 /*
8090  * TX block SDMA interrupt.  Source is < 48.
8091  *
8092  * SDMA interrupts are grouped by type:
8093  *
8094  *       0 -  N-1 = SDma
8095  *       N - 2N-1 = SDmaProgress
8096  *      2N - 3N-1 = SDmaIdle
8097  */
8098 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8099 {
8100         /* what interrupt */
8101         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8102         /* which engine */
8103         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8104
8105 #ifdef CONFIG_SDMA_VERBOSITY
8106         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8107                    slashstrip(__FILE__), __LINE__, __func__);
8108         sdma_dumpstate(&dd->per_sdma[which]);
8109 #endif
8110
8111         if (likely(what < 3 && which < dd->num_sdma)) {
8112                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8113         } else {
8114                 /* should not happen */
8115                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8116         }
8117 }
8118
8119 /*
8120  * RX block receive available interrupt.  Source is < 160.
8121  */
8122 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8123 {
8124         struct hfi1_ctxtdata *rcd;
8125         char *err_detail;
8126
8127         if (likely(source < dd->num_rcv_contexts)) {
8128                 rcd = hfi1_rcd_get_by_index(dd, source);
8129                 if (rcd) {
8130                         /* Check for non-user contexts, including vnic */
8131                         if ((source < dd->first_dyn_alloc_ctxt) ||
8132                             (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8133                                 rcd->do_interrupt(rcd, 0);
8134                         else
8135                                 handle_user_interrupt(rcd);
8136
8137                         hfi1_rcd_put(rcd);
8138                         return; /* OK */
8139                 }
8140                 /* received an interrupt, but no rcd */
8141                 err_detail = "dataless";
8142         } else {
8143                 /* received an interrupt, but are not using that context */
8144                 err_detail = "out of range";
8145         }
8146         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8147                    err_detail, source);
8148 }
8149
8150 /*
8151  * RX block receive urgent interrupt.  Source is < 160.
8152  */
8153 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8154 {
8155         struct hfi1_ctxtdata *rcd;
8156         char *err_detail;
8157
8158         if (likely(source < dd->num_rcv_contexts)) {
8159                 rcd = hfi1_rcd_get_by_index(dd, source);
8160                 if (rcd) {
8161                         /* only pay attention to user urgent interrupts */
8162                         if ((source >= dd->first_dyn_alloc_ctxt) &&
8163                             (!rcd->sc || (rcd->sc->type == SC_USER)))
8164                                 handle_user_interrupt(rcd);
8165
8166                         hfi1_rcd_put(rcd);
8167                         return; /* OK */
8168                 }
8169                 /* received an interrupt, but no rcd */
8170                 err_detail = "dataless";
8171         } else {
8172                 /* received an interrupt, but are not using that context */
8173                 err_detail = "out of range";
8174         }
8175         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8176                    err_detail, source);
8177 }
8178
8179 /*
8180  * Reserved range interrupt.  Should not be called in normal operation.
8181  */
8182 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8183 {
8184         char name[64];
8185
8186         dd_dev_err(dd, "unexpected %s interrupt\n",
8187                    is_reserved_name(name, sizeof(name), source));
8188 }
8189
8190 static const struct is_table is_table[] = {
8191 /*
8192  * start                 end
8193  *                              name func               interrupt func
8194  */
8195 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8196                                 is_misc_err_name,       is_misc_err_int },
8197 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8198                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8199 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8200                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8201 { IS_SDMA_START,             IS_SDMA_END,
8202                                 is_sdma_eng_name,       is_sdma_eng_int },
8203 { IS_VARIOUS_START,          IS_VARIOUS_END,
8204                                 is_various_name,        is_various_int },
8205 { IS_DC_START,       IS_DC_END,
8206                                 is_dc_name,             is_dc_int },
8207 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8208                                 is_rcv_avail_name,      is_rcv_avail_int },
8209 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8210                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8211 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8212                                 is_send_credit_name,    is_send_credit_int},
8213 { IS_RESERVED_START,     IS_RESERVED_END,
8214                                 is_reserved_name,       is_reserved_int},
8215 };
8216
8217 /*
8218  * Interrupt source interrupt - called when the given source has an interrupt.
8219  * Source is a bit index into an array of 64-bit integers.
8220  */
8221 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8222 {
8223         const struct is_table *entry;
8224
8225         /* avoids a double compare by walking the table in-order */
8226         for (entry = &is_table[0]; entry->is_name; entry++) {
8227                 if (source < entry->end) {
8228                         trace_hfi1_interrupt(dd, entry, source);
8229                         entry->is_int(dd, source - entry->start);
8230                         return;
8231                 }
8232         }
8233         /* fell off the end */
8234         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8235 }
8236
8237 /*
8238  * General interrupt handler.  This is able to correctly handle
8239  * all interrupts in case INTx is used.
8240  */
8241 static irqreturn_t general_interrupt(int irq, void *data)
8242 {
8243         struct hfi1_devdata *dd = data;
8244         u64 regs[CCE_NUM_INT_CSRS];
8245         u32 bit;
8246         int i;
8247         irqreturn_t handled = IRQ_NONE;
8248
8249         this_cpu_inc(*dd->int_counter);
8250
8251         /* phase 1: scan and clear all handled interrupts */
8252         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8253                 if (dd->gi_mask[i] == 0) {
8254                         regs[i] = 0;    /* used later */
8255                         continue;
8256                 }
8257                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8258                                 dd->gi_mask[i];
8259                 /* only clear if anything is set */
8260                 if (regs[i])
8261                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8262         }
8263
8264         /* phase 2: call the appropriate handler */
8265         for_each_set_bit(bit, (unsigned long *)&regs[0],
8266                          CCE_NUM_INT_CSRS * 64) {
8267                 is_interrupt(dd, bit);
8268                 handled = IRQ_HANDLED;
8269         }
8270
8271         return handled;
8272 }
8273
8274 static irqreturn_t sdma_interrupt(int irq, void *data)
8275 {
8276         struct sdma_engine *sde = data;
8277         struct hfi1_devdata *dd = sde->dd;
8278         u64 status;
8279
8280 #ifdef CONFIG_SDMA_VERBOSITY
8281         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8282                    slashstrip(__FILE__), __LINE__, __func__);
8283         sdma_dumpstate(sde);
8284 #endif
8285
8286         this_cpu_inc(*dd->int_counter);
8287
8288         /* This read_csr is really bad in the hot path */
8289         status = read_csr(dd,
8290                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8291                           & sde->imask;
8292         if (likely(status)) {
8293                 /* clear the interrupt(s) */
8294                 write_csr(dd,
8295                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8296                           status);
8297
8298                 /* handle the interrupt(s) */
8299                 sdma_engine_interrupt(sde, status);
8300         } else {
8301                 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8302                                         sde->this_idx);
8303         }
8304         return IRQ_HANDLED;
8305 }
8306
8307 /*
8308  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8309  * to insure that the write completed.  This does NOT guarantee that
8310  * queued DMA writes to memory from the chip are pushed.
8311  */
8312 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8313 {
8314         struct hfi1_devdata *dd = rcd->dd;
8315         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8316
8317         mmiowb();       /* make sure everything before is written */
8318         write_csr(dd, addr, rcd->imask);
8319         /* force the above write on the chip and get a value back */
8320         (void)read_csr(dd, addr);
8321 }
8322
8323 /* force the receive interrupt */
8324 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8325 {
8326         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8327 }
8328
8329 /*
8330  * Return non-zero if a packet is present.
8331  *
8332  * This routine is called when rechecking for packets after the RcvAvail
8333  * interrupt has been cleared down.  First, do a quick check of memory for
8334  * a packet present.  If not found, use an expensive CSR read of the context
8335  * tail to determine the actual tail.  The CSR read is necessary because there
8336  * is no method to push pending DMAs to memory other than an interrupt and we
8337  * are trying to determine if we need to force an interrupt.
8338  */
8339 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8340 {
8341         u32 tail;
8342         int present;
8343
8344         if (!rcd->rcvhdrtail_kvaddr)
8345                 present = (rcd->seq_cnt ==
8346                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8347         else /* is RDMA rtail */
8348                 present = (rcd->head != get_rcvhdrtail(rcd));
8349
8350         if (present)
8351                 return 1;
8352
8353         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8354         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8355         return rcd->head != tail;
8356 }
8357
8358 /*
8359  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8360  * This routine will try to handle packets immediately (latency), but if
8361  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8362  * chip receive interrupt is *not* cleared down until this or the thread (if
8363  * invoked) is finished.  The intent is to avoid extra interrupts while we
8364  * are processing packets anyway.
8365  */
8366 static irqreturn_t receive_context_interrupt(int irq, void *data)
8367 {
8368         struct hfi1_ctxtdata *rcd = data;
8369         struct hfi1_devdata *dd = rcd->dd;
8370         int disposition;
8371         int present;
8372
8373         trace_hfi1_receive_interrupt(dd, rcd);
8374         this_cpu_inc(*dd->int_counter);
8375         aspm_ctx_disable(rcd);
8376
8377         /* receive interrupt remains blocked while processing packets */
8378         disposition = rcd->do_interrupt(rcd, 0);
8379
8380         /*
8381          * Too many packets were seen while processing packets in this
8382          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8383          * remains blocked.
8384          */
8385         if (disposition == RCV_PKT_LIMIT)
8386                 return IRQ_WAKE_THREAD;
8387
8388         /*
8389          * The packet processor detected no more packets.  Clear the receive
8390          * interrupt and recheck for a packet packet that may have arrived
8391          * after the previous check and interrupt clear.  If a packet arrived,
8392          * force another interrupt.
8393          */
8394         clear_recv_intr(rcd);
8395         present = check_packet_present(rcd);
8396         if (present)
8397                 force_recv_intr(rcd);
8398
8399         return IRQ_HANDLED;
8400 }
8401
8402 /*
8403  * Receive packet thread handler.  This expects to be invoked with the
8404  * receive interrupt still blocked.
8405  */
8406 static irqreturn_t receive_context_thread(int irq, void *data)
8407 {
8408         struct hfi1_ctxtdata *rcd = data;
8409         int present;
8410
8411         /* receive interrupt is still blocked from the IRQ handler */
8412         (void)rcd->do_interrupt(rcd, 1);
8413
8414         /*
8415          * The packet processor will only return if it detected no more
8416          * packets.  Hold IRQs here so we can safely clear the interrupt and
8417          * recheck for a packet that may have arrived after the previous
8418          * check and the interrupt clear.  If a packet arrived, force another
8419          * interrupt.
8420          */
8421         local_irq_disable();
8422         clear_recv_intr(rcd);
8423         present = check_packet_present(rcd);
8424         if (present)
8425                 force_recv_intr(rcd);
8426         local_irq_enable();
8427
8428         return IRQ_HANDLED;
8429 }
8430
8431 /* ========================================================================= */
8432
8433 u32 read_physical_state(struct hfi1_devdata *dd)
8434 {
8435         u64 reg;
8436
8437         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8438         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8439                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8440 }
8441
8442 u32 read_logical_state(struct hfi1_devdata *dd)
8443 {
8444         u64 reg;
8445
8446         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8447         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8448                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8449 }
8450
8451 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8452 {
8453         u64 reg;
8454
8455         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8456         /* clear current state, set new state */
8457         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8458         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8459         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8460 }
8461
8462 /*
8463  * Use the 8051 to read a LCB CSR.
8464  */
8465 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8466 {
8467         u32 regno;
8468         int ret;
8469
8470         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8471                 if (acquire_lcb_access(dd, 0) == 0) {
8472                         *data = read_csr(dd, addr);
8473                         release_lcb_access(dd, 0);
8474                         return 0;
8475                 }
8476                 return -EBUSY;
8477         }
8478
8479         /* register is an index of LCB registers: (offset - base) / 8 */
8480         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8481         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8482         if (ret != HCMD_SUCCESS)
8483                 return -EBUSY;
8484         return 0;
8485 }
8486
8487 /*
8488  * Provide a cache for some of the LCB registers in case the LCB is
8489  * unavailable.
8490  * (The LCB is unavailable in certain link states, for example.)
8491  */
8492 struct lcb_datum {
8493         u32 off;
8494         u64 val;
8495 };
8496
8497 static struct lcb_datum lcb_cache[] = {
8498         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8499         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8500         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8501 };
8502
8503 static void update_lcb_cache(struct hfi1_devdata *dd)
8504 {
8505         int i;
8506         int ret;
8507         u64 val;
8508
8509         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8510                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8511
8512                 /* Update if we get good data */
8513                 if (likely(ret != -EBUSY))
8514                         lcb_cache[i].val = val;
8515         }
8516 }
8517
8518 static int read_lcb_cache(u32 off, u64 *val)
8519 {
8520         int i;
8521
8522         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8523                 if (lcb_cache[i].off == off) {
8524                         *val = lcb_cache[i].val;
8525                         return 0;
8526                 }
8527         }
8528
8529         pr_warn("%s bad offset 0x%x\n", __func__, off);
8530         return -1;
8531 }
8532
8533 /*
8534  * Read an LCB CSR.  Access may not be in host control, so check.
8535  * Return 0 on success, -EBUSY on failure.
8536  */
8537 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8538 {
8539         struct hfi1_pportdata *ppd = dd->pport;
8540
8541         /* if up, go through the 8051 for the value */
8542         if (ppd->host_link_state & HLS_UP)
8543                 return read_lcb_via_8051(dd, addr, data);
8544         /* if going up or down, check the cache, otherwise, no access */
8545         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8546                 if (read_lcb_cache(addr, data))
8547                         return -EBUSY;
8548                 return 0;
8549         }
8550
8551         /* otherwise, host has access */
8552         *data = read_csr(dd, addr);
8553         return 0;
8554 }
8555
8556 /*
8557  * Use the 8051 to write a LCB CSR.
8558  */
8559 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8560 {
8561         u32 regno;
8562         int ret;
8563
8564         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8565             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8566                 if (acquire_lcb_access(dd, 0) == 0) {
8567                         write_csr(dd, addr, data);
8568                         release_lcb_access(dd, 0);
8569                         return 0;
8570                 }
8571                 return -EBUSY;
8572         }
8573
8574         /* register is an index of LCB registers: (offset - base) / 8 */
8575         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8576         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8577         if (ret != HCMD_SUCCESS)
8578                 return -EBUSY;
8579         return 0;
8580 }
8581
8582 /*
8583  * Write an LCB CSR.  Access may not be in host control, so check.
8584  * Return 0 on success, -EBUSY on failure.
8585  */
8586 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8587 {
8588         struct hfi1_pportdata *ppd = dd->pport;
8589
8590         /* if up, go through the 8051 for the value */
8591         if (ppd->host_link_state & HLS_UP)
8592                 return write_lcb_via_8051(dd, addr, data);
8593         /* if going up or down, no access */
8594         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8595                 return -EBUSY;
8596         /* otherwise, host has access */
8597         write_csr(dd, addr, data);
8598         return 0;
8599 }
8600
8601 /*
8602  * Returns:
8603  *      < 0 = Linux error, not able to get access
8604  *      > 0 = 8051 command RETURN_CODE
8605  */
8606 static int do_8051_command(
8607         struct hfi1_devdata *dd,
8608         u32 type,
8609         u64 in_data,
8610         u64 *out_data)
8611 {
8612         u64 reg, completed;
8613         int return_code;
8614         unsigned long timeout;
8615
8616         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8617
8618         mutex_lock(&dd->dc8051_lock);
8619
8620         /* We can't send any commands to the 8051 if it's in reset */
8621         if (dd->dc_shutdown) {
8622                 return_code = -ENODEV;
8623                 goto fail;
8624         }
8625
8626         /*
8627          * If an 8051 host command timed out previously, then the 8051 is
8628          * stuck.
8629          *
8630          * On first timeout, attempt to reset and restart the entire DC
8631          * block (including 8051). (Is this too big of a hammer?)
8632          *
8633          * If the 8051 times out a second time, the reset did not bring it
8634          * back to healthy life. In that case, fail any subsequent commands.
8635          */
8636         if (dd->dc8051_timed_out) {
8637                 if (dd->dc8051_timed_out > 1) {
8638                         dd_dev_err(dd,
8639                                    "Previous 8051 host command timed out, skipping command %u\n",
8640                                    type);
8641                         return_code = -ENXIO;
8642                         goto fail;
8643                 }
8644                 _dc_shutdown(dd);
8645                 _dc_start(dd);
8646         }
8647
8648         /*
8649          * If there is no timeout, then the 8051 command interface is
8650          * waiting for a command.
8651          */
8652
8653         /*
8654          * When writing a LCB CSR, out_data contains the full value to
8655          * to be written, while in_data contains the relative LCB
8656          * address in 7:0.  Do the work here, rather than the caller,
8657          * of distrubting the write data to where it needs to go:
8658          *
8659          * Write data
8660          *   39:00 -> in_data[47:8]
8661          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8662          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8663          */
8664         if (type == HCMD_WRITE_LCB_CSR) {
8665                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8666                 /* must preserve COMPLETED - it is tied to hardware */
8667                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8668                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8669                 reg |= ((((*out_data) >> 40) & 0xff) <<
8670                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8671                       | ((((*out_data) >> 48) & 0xffff) <<
8672                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8673                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8674         }
8675
8676         /*
8677          * Do two writes: the first to stabilize the type and req_data, the
8678          * second to activate.
8679          */
8680         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8681                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8682                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8683                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8684         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8685         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8686         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8687
8688         /* wait for completion, alternate: interrupt */
8689         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8690         while (1) {
8691                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8692                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8693                 if (completed)
8694                         break;
8695                 if (time_after(jiffies, timeout)) {
8696                         dd->dc8051_timed_out++;
8697                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8698                         if (out_data)
8699                                 *out_data = 0;
8700                         return_code = -ETIMEDOUT;
8701                         goto fail;
8702                 }
8703                 udelay(2);
8704         }
8705
8706         if (out_data) {
8707                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8708                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8709                 if (type == HCMD_READ_LCB_CSR) {
8710                         /* top 16 bits are in a different register */
8711                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8712                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8713                                 << (48
8714                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8715                 }
8716         }
8717         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8718                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8719         dd->dc8051_timed_out = 0;
8720         /*
8721          * Clear command for next user.
8722          */
8723         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8724
8725 fail:
8726         mutex_unlock(&dd->dc8051_lock);
8727         return return_code;
8728 }
8729
8730 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8731 {
8732         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8733 }
8734
8735 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8736                      u8 lane_id, u32 config_data)
8737 {
8738         u64 data;
8739         int ret;
8740
8741         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8742                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8743                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8744         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8745         if (ret != HCMD_SUCCESS) {
8746                 dd_dev_err(dd,
8747                            "load 8051 config: field id %d, lane %d, err %d\n",
8748                            (int)field_id, (int)lane_id, ret);
8749         }
8750         return ret;
8751 }
8752
8753 /*
8754  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8755  * set the result, even on error.
8756  * Return 0 on success, -errno on failure
8757  */
8758 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8759                      u32 *result)
8760 {
8761         u64 big_data;
8762         u32 addr;
8763         int ret;
8764
8765         /* address start depends on the lane_id */
8766         if (lane_id < 4)
8767                 addr = (4 * NUM_GENERAL_FIELDS)
8768                         + (lane_id * 4 * NUM_LANE_FIELDS);
8769         else
8770                 addr = 0;
8771         addr += field_id * 4;
8772
8773         /* read is in 8-byte chunks, hardware will truncate the address down */
8774         ret = read_8051_data(dd, addr, 8, &big_data);
8775
8776         if (ret == 0) {
8777                 /* extract the 4 bytes we want */
8778                 if (addr & 0x4)
8779                         *result = (u32)(big_data >> 32);
8780                 else
8781                         *result = (u32)big_data;
8782         } else {
8783                 *result = 0;
8784                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8785                            __func__, lane_id, field_id);
8786         }
8787
8788         return ret;
8789 }
8790
8791 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8792                               u8 continuous)
8793 {
8794         u32 frame;
8795
8796         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8797                 | power_management << POWER_MANAGEMENT_SHIFT;
8798         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8799                                 GENERAL_CONFIG, frame);
8800 }
8801
8802 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8803                                  u16 vl15buf, u8 crc_sizes)
8804 {
8805         u32 frame;
8806
8807         frame = (u32)vau << VAU_SHIFT
8808                 | (u32)z << Z_SHIFT
8809                 | (u32)vcu << VCU_SHIFT
8810                 | (u32)vl15buf << VL15BUF_SHIFT
8811                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8812         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8813                                 GENERAL_CONFIG, frame);
8814 }
8815
8816 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8817                                      u8 *flag_bits, u16 *link_widths)
8818 {
8819         u32 frame;
8820
8821         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8822                          &frame);
8823         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8824         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8825         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8826 }
8827
8828 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8829                                      u8 misc_bits,
8830                                      u8 flag_bits,
8831                                      u16 link_widths)
8832 {
8833         u32 frame;
8834
8835         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8836                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8837                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8838         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8839                      frame);
8840 }
8841
8842 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8843                                  u8 device_rev)
8844 {
8845         u32 frame;
8846
8847         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8848                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8849         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8850 }
8851
8852 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8853                                   u8 *device_rev)
8854 {
8855         u32 frame;
8856
8857         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8858         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8859         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8860                         & REMOTE_DEVICE_REV_MASK;
8861 }
8862
8863 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8864 {
8865         u32 frame;
8866         u32 mask;
8867
8868         mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8869         read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8870         /* Clear, then set field */
8871         frame &= ~mask;
8872         frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8873         return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8874                                 frame);
8875 }
8876
8877 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8878                       u8 *ver_patch)
8879 {
8880         u32 frame;
8881
8882         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8883         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8884                 STS_FM_VERSION_MAJOR_MASK;
8885         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8886                 STS_FM_VERSION_MINOR_MASK;
8887
8888         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8889         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8890                 STS_FM_VERSION_PATCH_MASK;
8891 }
8892
8893 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8894                                u8 *continuous)
8895 {
8896         u32 frame;
8897
8898         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8899         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8900                                         & POWER_MANAGEMENT_MASK;
8901         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8902                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8903 }
8904
8905 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8906                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8907 {
8908         u32 frame;
8909
8910         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8911         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8912         *z = (frame >> Z_SHIFT) & Z_MASK;
8913         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8914         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8915         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8916 }
8917
8918 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8919                                       u8 *remote_tx_rate,
8920                                       u16 *link_widths)
8921 {
8922         u32 frame;
8923
8924         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8925                          &frame);
8926         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8927                                 & REMOTE_TX_RATE_MASK;
8928         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8929 }
8930
8931 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8932 {
8933         u32 frame;
8934
8935         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8936         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8937 }
8938
8939 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8940 {
8941         u32 frame;
8942
8943         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8944         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8945 }
8946
8947 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8948 {
8949         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8950 }
8951
8952 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8953 {
8954         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8955 }
8956
8957 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8958 {
8959         u32 frame;
8960         int ret;
8961
8962         *link_quality = 0;
8963         if (dd->pport->host_link_state & HLS_UP) {
8964                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8965                                        &frame);
8966                 if (ret == 0)
8967                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8968                                                 & LINK_QUALITY_MASK;
8969         }
8970 }
8971
8972 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8973 {
8974         u32 frame;
8975
8976         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8977         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8978 }
8979
8980 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8981 {
8982         u32 frame;
8983
8984         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8985         *ldr = (frame & 0xff);
8986 }
8987
8988 static int read_tx_settings(struct hfi1_devdata *dd,
8989                             u8 *enable_lane_tx,
8990                             u8 *tx_polarity_inversion,
8991                             u8 *rx_polarity_inversion,
8992                             u8 *max_rate)
8993 {
8994         u32 frame;
8995         int ret;
8996
8997         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8998         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8999                                 & ENABLE_LANE_TX_MASK;
9000         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9001                                 & TX_POLARITY_INVERSION_MASK;
9002         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9003                                 & RX_POLARITY_INVERSION_MASK;
9004         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9005         return ret;
9006 }
9007
9008 static int write_tx_settings(struct hfi1_devdata *dd,
9009                              u8 enable_lane_tx,
9010                              u8 tx_polarity_inversion,
9011                              u8 rx_polarity_inversion,
9012                              u8 max_rate)
9013 {
9014         u32 frame;
9015
9016         /* no need to mask, all variable sizes match field widths */
9017         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9018                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9019                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9020                 | max_rate << MAX_RATE_SHIFT;
9021         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9022 }
9023
9024 /*
9025  * Read an idle LCB message.
9026  *
9027  * Returns 0 on success, -EINVAL on error
9028  */
9029 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9030 {
9031         int ret;
9032
9033         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9034         if (ret != HCMD_SUCCESS) {
9035                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9036                            (u32)type, ret);
9037                 return -EINVAL;
9038         }
9039         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9040         /* return only the payload as we already know the type */
9041         *data_out >>= IDLE_PAYLOAD_SHIFT;
9042         return 0;
9043 }
9044
9045 /*
9046  * Read an idle SMA message.  To be done in response to a notification from
9047  * the 8051.
9048  *
9049  * Returns 0 on success, -EINVAL on error
9050  */
9051 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9052 {
9053         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9054                                  data);
9055 }
9056
9057 /*
9058  * Send an idle LCB message.
9059  *
9060  * Returns 0 on success, -EINVAL on error
9061  */
9062 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9063 {
9064         int ret;
9065
9066         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9067         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9068         if (ret != HCMD_SUCCESS) {
9069                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9070                            data, ret);
9071                 return -EINVAL;
9072         }
9073         return 0;
9074 }
9075
9076 /*
9077  * Send an idle SMA message.
9078  *
9079  * Returns 0 on success, -EINVAL on error
9080  */
9081 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9082 {
9083         u64 data;
9084
9085         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9086                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9087         return send_idle_message(dd, data);
9088 }
9089
9090 /*
9091  * Initialize the LCB then do a quick link up.  This may or may not be
9092  * in loopback.
9093  *
9094  * return 0 on success, -errno on error
9095  */
9096 static int do_quick_linkup(struct hfi1_devdata *dd)
9097 {
9098         int ret;
9099
9100         lcb_shutdown(dd, 0);
9101
9102         if (loopback) {
9103                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9104                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9105                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9106                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9107                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9108         }
9109
9110         /* start the LCBs */
9111         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9112         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9113
9114         /* simulator only loopback steps */
9115         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9116                 /* LCB_CFG_RUN.EN = 1 */
9117                 write_csr(dd, DC_LCB_CFG_RUN,
9118                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9119
9120                 ret = wait_link_transfer_active(dd, 10);
9121                 if (ret)
9122                         return ret;
9123
9124                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9125                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9126         }
9127
9128         if (!loopback) {
9129                 /*
9130                  * When doing quick linkup and not in loopback, both
9131                  * sides must be done with LCB set-up before either
9132                  * starts the quick linkup.  Put a delay here so that
9133                  * both sides can be started and have a chance to be
9134                  * done with LCB set up before resuming.
9135                  */
9136                 dd_dev_err(dd,
9137                            "Pausing for peer to be finished with LCB set up\n");
9138                 msleep(5000);
9139                 dd_dev_err(dd, "Continuing with quick linkup\n");
9140         }
9141
9142         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9143         set_8051_lcb_access(dd);
9144
9145         /*
9146          * State "quick" LinkUp request sets the physical link state to
9147          * LinkUp without a verify capability sequence.
9148          * This state is in simulator v37 and later.
9149          */
9150         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9151         if (ret != HCMD_SUCCESS) {
9152                 dd_dev_err(dd,
9153                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9154                            __func__, ret);
9155
9156                 set_host_lcb_access(dd);
9157                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9158
9159                 if (ret >= 0)
9160                         ret = -EINVAL;
9161                 return ret;
9162         }
9163
9164         return 0; /* success */
9165 }
9166
9167 /*
9168  * Set the SerDes to internal loopback mode.
9169  * Returns 0 on success, -errno on error.
9170  */
9171 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9172 {
9173         int ret;
9174
9175         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9176         if (ret == HCMD_SUCCESS)
9177                 return 0;
9178         dd_dev_err(dd,
9179                    "Set physical link state to SerDes Loopback failed with return %d\n",
9180                    ret);
9181         if (ret >= 0)
9182                 ret = -EINVAL;
9183         return ret;
9184 }
9185
9186 /*
9187  * Do all special steps to set up loopback.
9188  */
9189 static int init_loopback(struct hfi1_devdata *dd)
9190 {
9191         dd_dev_info(dd, "Entering loopback mode\n");
9192
9193         /* all loopbacks should disable self GUID check */
9194         write_csr(dd, DC_DC8051_CFG_MODE,
9195                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9196
9197         /*
9198          * The simulator has only one loopback option - LCB.  Switch
9199          * to that option, which includes quick link up.
9200          *
9201          * Accept all valid loopback values.
9202          */
9203         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9204             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9205              loopback == LOOPBACK_CABLE)) {
9206                 loopback = LOOPBACK_LCB;
9207                 quick_linkup = 1;
9208                 return 0;
9209         }
9210
9211         /* handle serdes loopback */
9212         if (loopback == LOOPBACK_SERDES) {
9213                 /* internal serdes loopack needs quick linkup on RTL */
9214                 if (dd->icode == ICODE_RTL_SILICON)
9215                         quick_linkup = 1;
9216                 return set_serdes_loopback_mode(dd);
9217         }
9218
9219         /* LCB loopback - handled at poll time */
9220         if (loopback == LOOPBACK_LCB) {
9221                 quick_linkup = 1; /* LCB is always quick linkup */
9222
9223                 /* not supported in emulation due to emulation RTL changes */
9224                 if (dd->icode == ICODE_FPGA_EMULATION) {
9225                         dd_dev_err(dd,
9226                                    "LCB loopback not supported in emulation\n");
9227                         return -EINVAL;
9228                 }
9229                 return 0;
9230         }
9231
9232         /* external cable loopback requires no extra steps */
9233         if (loopback == LOOPBACK_CABLE)
9234                 return 0;
9235
9236         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9237         return -EINVAL;
9238 }
9239
9240 /*
9241  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9242  * used in the Verify Capability link width attribute.
9243  */
9244 static u16 opa_to_vc_link_widths(u16 opa_widths)
9245 {
9246         int i;
9247         u16 result = 0;
9248
9249         static const struct link_bits {
9250                 u16 from;
9251                 u16 to;
9252         } opa_link_xlate[] = {
9253                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9254                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9255                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9256                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9257         };
9258
9259         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9260                 if (opa_widths & opa_link_xlate[i].from)
9261                         result |= opa_link_xlate[i].to;
9262         }
9263         return result;
9264 }
9265
9266 /*
9267  * Set link attributes before moving to polling.
9268  */
9269 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9270 {
9271         struct hfi1_devdata *dd = ppd->dd;
9272         u8 enable_lane_tx;
9273         u8 tx_polarity_inversion;
9274         u8 rx_polarity_inversion;
9275         int ret;
9276
9277         /* reset our fabric serdes to clear any lingering problems */
9278         fabric_serdes_reset(dd);
9279
9280         /* set the local tx rate - need to read-modify-write */
9281         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9282                                &rx_polarity_inversion, &ppd->local_tx_rate);
9283         if (ret)
9284                 goto set_local_link_attributes_fail;
9285
9286         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9287                 /* set the tx rate to the fastest enabled */
9288                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9289                         ppd->local_tx_rate = 1;
9290                 else
9291                         ppd->local_tx_rate = 0;
9292         } else {
9293                 /* set the tx rate to all enabled */
9294                 ppd->local_tx_rate = 0;
9295                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9296                         ppd->local_tx_rate |= 2;
9297                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9298                         ppd->local_tx_rate |= 1;
9299         }
9300
9301         enable_lane_tx = 0xF; /* enable all four lanes */
9302         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9303                                 rx_polarity_inversion, ppd->local_tx_rate);
9304         if (ret != HCMD_SUCCESS)
9305                 goto set_local_link_attributes_fail;
9306
9307         /*
9308          * DC supports continuous updates.
9309          */
9310         ret = write_vc_local_phy(dd,
9311                                  0 /* no power management */,
9312                                  1 /* continuous updates */);
9313         if (ret != HCMD_SUCCESS)
9314                 goto set_local_link_attributes_fail;
9315
9316         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9317         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9318                                     ppd->port_crc_mode_enabled);
9319         if (ret != HCMD_SUCCESS)
9320                 goto set_local_link_attributes_fail;
9321
9322         ret = write_vc_local_link_width(dd, 0, 0,
9323                                         opa_to_vc_link_widths(
9324                                                 ppd->link_width_enabled));
9325         if (ret != HCMD_SUCCESS)
9326                 goto set_local_link_attributes_fail;
9327
9328         /* let peer know who we are */
9329         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9330         if (ret == HCMD_SUCCESS)
9331                 return 0;
9332
9333 set_local_link_attributes_fail:
9334         dd_dev_err(dd,
9335                    "Failed to set local link attributes, return 0x%x\n",
9336                    ret);
9337         return ret;
9338 }
9339
9340 /*
9341  * Call this to start the link.
9342  * Do not do anything if the link is disabled.
9343  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9344  */
9345 int start_link(struct hfi1_pportdata *ppd)
9346 {
9347         /*
9348          * Tune the SerDes to a ballpark setting for optimal signal and bit
9349          * error rate.  Needs to be done before starting the link.
9350          */
9351         tune_serdes(ppd);
9352
9353         if (!ppd->driver_link_ready) {
9354                 dd_dev_info(ppd->dd,
9355                             "%s: stopping link start because driver is not ready\n",
9356                             __func__);
9357                 return 0;
9358         }
9359
9360         /*
9361          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9362          * pkey table can be configured properly if the HFI unit is connected
9363          * to switch port with MgmtAllowed=NO
9364          */
9365         clear_full_mgmt_pkey(ppd);
9366
9367         return set_link_state(ppd, HLS_DN_POLL);
9368 }
9369
9370 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9371 {
9372         struct hfi1_devdata *dd = ppd->dd;
9373         u64 mask;
9374         unsigned long timeout;
9375
9376         /*
9377          * Some QSFP cables have a quirk that asserts the IntN line as a side
9378          * effect of power up on plug-in. We ignore this false positive
9379          * interrupt until the module has finished powering up by waiting for
9380          * a minimum timeout of the module inrush initialization time of
9381          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9382          * module have stabilized.
9383          */
9384         msleep(500);
9385
9386         /*
9387          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9388          */
9389         timeout = jiffies + msecs_to_jiffies(2000);
9390         while (1) {
9391                 mask = read_csr(dd, dd->hfi1_id ?
9392                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9393                 if (!(mask & QSFP_HFI0_INT_N))
9394                         break;
9395                 if (time_after(jiffies, timeout)) {
9396                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9397                                     __func__);
9398                         break;
9399                 }
9400                 udelay(2);
9401         }
9402 }
9403
9404 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9405 {
9406         struct hfi1_devdata *dd = ppd->dd;
9407         u64 mask;
9408
9409         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9410         if (enable) {
9411                 /*
9412                  * Clear the status register to avoid an immediate interrupt
9413                  * when we re-enable the IntN pin
9414                  */
9415                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9416                           QSFP_HFI0_INT_N);
9417                 mask |= (u64)QSFP_HFI0_INT_N;
9418         } else {
9419                 mask &= ~(u64)QSFP_HFI0_INT_N;
9420         }
9421         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9422 }
9423
9424 int reset_qsfp(struct hfi1_pportdata *ppd)
9425 {
9426         struct hfi1_devdata *dd = ppd->dd;
9427         u64 mask, qsfp_mask;
9428
9429         /* Disable INT_N from triggering QSFP interrupts */
9430         set_qsfp_int_n(ppd, 0);
9431
9432         /* Reset the QSFP */
9433         mask = (u64)QSFP_HFI0_RESET_N;
9434
9435         qsfp_mask = read_csr(dd,
9436                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9437         qsfp_mask &= ~mask;
9438         write_csr(dd,
9439                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9440
9441         udelay(10);
9442
9443         qsfp_mask |= mask;
9444         write_csr(dd,
9445                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9446
9447         wait_for_qsfp_init(ppd);
9448
9449         /*
9450          * Allow INT_N to trigger the QSFP interrupt to watch
9451          * for alarms and warnings
9452          */
9453         set_qsfp_int_n(ppd, 1);
9454
9455         /*
9456          * After the reset, AOC transmitters are enabled by default. They need
9457          * to be turned off to complete the QSFP setup before they can be
9458          * enabled again.
9459          */
9460         return set_qsfp_tx(ppd, 0);
9461 }
9462
9463 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9464                                         u8 *qsfp_interrupt_status)
9465 {
9466         struct hfi1_devdata *dd = ppd->dd;
9467
9468         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9469             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9470                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9471                            __func__);
9472
9473         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9474             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9475                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9476                            __func__);
9477
9478         /*
9479          * The remaining alarms/warnings don't matter if the link is down.
9480          */
9481         if (ppd->host_link_state & HLS_DOWN)
9482                 return 0;
9483
9484         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9485             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9486                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9487                            __func__);
9488
9489         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9490             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9491                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9492                            __func__);
9493
9494         /* Byte 2 is vendor specific */
9495
9496         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9497             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9498                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9499                            __func__);
9500
9501         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9502             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9503                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9504                            __func__);
9505
9506         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9507             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9508                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9509                            __func__);
9510
9511         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9512             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9513                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9514                            __func__);
9515
9516         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9517             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9518                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9519                            __func__);
9520
9521         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9522             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9523                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9524                            __func__);
9525
9526         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9527             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9528                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9529                            __func__);
9530
9531         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9532             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9533                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9534                            __func__);
9535
9536         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9537             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9538                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9539                            __func__);
9540
9541         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9542             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9543                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9544                            __func__);
9545
9546         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9547             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9548                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9549                            __func__);
9550
9551         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9552             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9553                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9554                            __func__);
9555
9556         /* Bytes 9-10 and 11-12 are reserved */
9557         /* Bytes 13-15 are vendor specific */
9558
9559         return 0;
9560 }
9561
9562 /* This routine will only be scheduled if the QSFP module present is asserted */
9563 void qsfp_event(struct work_struct *work)
9564 {
9565         struct qsfp_data *qd;
9566         struct hfi1_pportdata *ppd;
9567         struct hfi1_devdata *dd;
9568
9569         qd = container_of(work, struct qsfp_data, qsfp_work);
9570         ppd = qd->ppd;
9571         dd = ppd->dd;
9572
9573         /* Sanity check */
9574         if (!qsfp_mod_present(ppd))
9575                 return;
9576
9577         if (ppd->host_link_state == HLS_DN_DISABLE) {
9578                 dd_dev_info(ppd->dd,
9579                             "%s: stopping link start because link is disabled\n",
9580                             __func__);
9581                 return;
9582         }
9583
9584         /*
9585          * Turn DC back on after cable has been re-inserted. Up until
9586          * now, the DC has been in reset to save power.
9587          */
9588         dc_start(dd);
9589
9590         if (qd->cache_refresh_required) {
9591                 set_qsfp_int_n(ppd, 0);
9592
9593                 wait_for_qsfp_init(ppd);
9594
9595                 /*
9596                  * Allow INT_N to trigger the QSFP interrupt to watch
9597                  * for alarms and warnings
9598                  */
9599                 set_qsfp_int_n(ppd, 1);
9600
9601                 start_link(ppd);
9602         }
9603
9604         if (qd->check_interrupt_flags) {
9605                 u8 qsfp_interrupt_status[16] = {0,};
9606
9607                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9608                                   &qsfp_interrupt_status[0], 16) != 16) {
9609                         dd_dev_info(dd,
9610                                     "%s: Failed to read status of QSFP module\n",
9611                                     __func__);
9612                 } else {
9613                         unsigned long flags;
9614
9615                         handle_qsfp_error_conditions(
9616                                         ppd, qsfp_interrupt_status);
9617                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9618                         ppd->qsfp_info.check_interrupt_flags = 0;
9619                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9620                                                flags);
9621                 }
9622         }
9623 }
9624
9625 static void init_qsfp_int(struct hfi1_devdata *dd)
9626 {
9627         struct hfi1_pportdata *ppd = dd->pport;
9628         u64 qsfp_mask, cce_int_mask;
9629         const int qsfp1_int_smask = QSFP1_INT % 64;
9630         const int qsfp2_int_smask = QSFP2_INT % 64;
9631
9632         /*
9633          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9634          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9635          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9636          * the index of the appropriate CSR in the CCEIntMask CSR array
9637          */
9638         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9639                                 (8 * (QSFP1_INT / 64)));
9640         if (dd->hfi1_id) {
9641                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9642                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9643                           cce_int_mask);
9644         } else {
9645                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9646                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9647                           cce_int_mask);
9648         }
9649
9650         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9651         /* Clear current status to avoid spurious interrupts */
9652         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9653                   qsfp_mask);
9654         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9655                   qsfp_mask);
9656
9657         set_qsfp_int_n(ppd, 0);
9658
9659         /* Handle active low nature of INT_N and MODPRST_N pins */
9660         if (qsfp_mod_present(ppd))
9661                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9662         write_csr(dd,
9663                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9664                   qsfp_mask);
9665 }
9666
9667 /*
9668  * Do a one-time initialize of the LCB block.
9669  */
9670 static void init_lcb(struct hfi1_devdata *dd)
9671 {
9672         /* simulator does not correctly handle LCB cclk loopback, skip */
9673         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9674                 return;
9675
9676         /* the DC has been reset earlier in the driver load */
9677
9678         /* set LCB for cclk loopback on the port */
9679         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9680         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9681         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9682         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9683         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9684         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9685         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9686 }
9687
9688 /*
9689  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9690  * on error.
9691  */
9692 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9693 {
9694         int ret;
9695         u8 status;
9696
9697         /*
9698          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9699          * not present
9700          */
9701         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9702                 return 0;
9703
9704         /* read byte 2, the status byte */
9705         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9706         if (ret < 0)
9707                 return ret;
9708         if (ret != 1)
9709                 return -EIO;
9710
9711         return 0; /* success */
9712 }
9713
9714 /*
9715  * Values for QSFP retry.
9716  *
9717  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9718  * arrived at from experience on a large cluster.
9719  */
9720 #define MAX_QSFP_RETRIES 20
9721 #define QSFP_RETRY_WAIT 500 /* msec */
9722
9723 /*
9724  * Try a QSFP read.  If it fails, schedule a retry for later.
9725  * Called on first link activation after driver load.
9726  */
9727 static void try_start_link(struct hfi1_pportdata *ppd)
9728 {
9729         if (test_qsfp_read(ppd)) {
9730                 /* read failed */
9731                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9732                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9733                         return;
9734                 }
9735                 dd_dev_info(ppd->dd,
9736                             "QSFP not responding, waiting and retrying %d\n",
9737                             (int)ppd->qsfp_retry_count);
9738                 ppd->qsfp_retry_count++;
9739                 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9740                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9741                 return;
9742         }
9743         ppd->qsfp_retry_count = 0;
9744
9745         start_link(ppd);
9746 }
9747
9748 /*
9749  * Workqueue function to start the link after a delay.
9750  */
9751 void handle_start_link(struct work_struct *work)
9752 {
9753         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9754                                                   start_link_work.work);
9755         try_start_link(ppd);
9756 }
9757
9758 int bringup_serdes(struct hfi1_pportdata *ppd)
9759 {
9760         struct hfi1_devdata *dd = ppd->dd;
9761         u64 guid;
9762         int ret;
9763
9764         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9765                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9766
9767         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9768         if (!guid) {
9769                 if (dd->base_guid)
9770                         guid = dd->base_guid + ppd->port - 1;
9771                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9772         }
9773
9774         /* Set linkinit_reason on power up per OPA spec */
9775         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9776
9777         /* one-time init of the LCB */
9778         init_lcb(dd);
9779
9780         if (loopback) {
9781                 ret = init_loopback(dd);
9782                 if (ret < 0)
9783                         return ret;
9784         }
9785
9786         get_port_type(ppd);
9787         if (ppd->port_type == PORT_TYPE_QSFP) {
9788                 set_qsfp_int_n(ppd, 0);
9789                 wait_for_qsfp_init(ppd);
9790                 set_qsfp_int_n(ppd, 1);
9791         }
9792
9793         try_start_link(ppd);
9794         return 0;
9795 }
9796
9797 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9798 {
9799         struct hfi1_devdata *dd = ppd->dd;
9800
9801         /*
9802          * Shut down the link and keep it down.   First turn off that the
9803          * driver wants to allow the link to be up (driver_link_ready).
9804          * Then make sure the link is not automatically restarted
9805          * (link_enabled).  Cancel any pending restart.  And finally
9806          * go offline.
9807          */
9808         ppd->driver_link_ready = 0;
9809         ppd->link_enabled = 0;
9810
9811         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9812         flush_delayed_work(&ppd->start_link_work);
9813         cancel_delayed_work_sync(&ppd->start_link_work);
9814
9815         ppd->offline_disabled_reason =
9816                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9817         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9818                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9819         set_link_state(ppd, HLS_DN_OFFLINE);
9820
9821         /* disable the port */
9822         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9823 }
9824
9825 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9826 {
9827         struct hfi1_pportdata *ppd;
9828         int i;
9829
9830         ppd = (struct hfi1_pportdata *)(dd + 1);
9831         for (i = 0; i < dd->num_pports; i++, ppd++) {
9832                 ppd->ibport_data.rvp.rc_acks = NULL;
9833                 ppd->ibport_data.rvp.rc_qacks = NULL;
9834                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9835                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9836                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9837                 if (!ppd->ibport_data.rvp.rc_acks ||
9838                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9839                     !ppd->ibport_data.rvp.rc_qacks)
9840                         return -ENOMEM;
9841         }
9842
9843         return 0;
9844 }
9845
9846 /*
9847  * index is the index into the receive array
9848  */
9849 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9850                   u32 type, unsigned long pa, u16 order)
9851 {
9852         u64 reg;
9853
9854         if (!(dd->flags & HFI1_PRESENT))
9855                 goto done;
9856
9857         if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9858                 pa = 0;
9859                 order = 0;
9860         } else if (type > PT_INVALID) {
9861                 dd_dev_err(dd,
9862                            "unexpected receive array type %u for index %u, not handled\n",
9863                            type, index);
9864                 goto done;
9865         }
9866         trace_hfi1_put_tid(dd, index, type, pa, order);
9867
9868 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9869         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9870                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9871                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9872                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9873         trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9874         writeq(reg, dd->rcvarray_wc + (index * 8));
9875
9876         if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9877                 /*
9878                  * Eager entries are written and flushed
9879                  *
9880                  * Expected entries are flushed every 4 writes
9881                  */
9882                 flush_wc();
9883 done:
9884         return;
9885 }
9886
9887 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9888 {
9889         struct hfi1_devdata *dd = rcd->dd;
9890         u32 i;
9891
9892         /* this could be optimized */
9893         for (i = rcd->eager_base; i < rcd->eager_base +
9894                      rcd->egrbufs.alloced; i++)
9895                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9896
9897         for (i = rcd->expected_base;
9898                         i < rcd->expected_base + rcd->expected_count; i++)
9899                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9900 }
9901
9902 static const char * const ib_cfg_name_strings[] = {
9903         "HFI1_IB_CFG_LIDLMC",
9904         "HFI1_IB_CFG_LWID_DG_ENB",
9905         "HFI1_IB_CFG_LWID_ENB",
9906         "HFI1_IB_CFG_LWID",
9907         "HFI1_IB_CFG_SPD_ENB",
9908         "HFI1_IB_CFG_SPD",
9909         "HFI1_IB_CFG_RXPOL_ENB",
9910         "HFI1_IB_CFG_LREV_ENB",
9911         "HFI1_IB_CFG_LINKLATENCY",
9912         "HFI1_IB_CFG_HRTBT",
9913         "HFI1_IB_CFG_OP_VLS",
9914         "HFI1_IB_CFG_VL_HIGH_CAP",
9915         "HFI1_IB_CFG_VL_LOW_CAP",
9916         "HFI1_IB_CFG_OVERRUN_THRESH",
9917         "HFI1_IB_CFG_PHYERR_THRESH",
9918         "HFI1_IB_CFG_LINKDEFAULT",
9919         "HFI1_IB_CFG_PKEYS",
9920         "HFI1_IB_CFG_MTU",
9921         "HFI1_IB_CFG_LSTATE",
9922         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9923         "HFI1_IB_CFG_PMA_TICKS",
9924         "HFI1_IB_CFG_PORT"
9925 };
9926
9927 static const char *ib_cfg_name(int which)
9928 {
9929         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9930                 return "invalid";
9931         return ib_cfg_name_strings[which];
9932 }
9933
9934 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9935 {
9936         struct hfi1_devdata *dd = ppd->dd;
9937         int val = 0;
9938
9939         switch (which) {
9940         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9941                 val = ppd->link_width_enabled;
9942                 break;
9943         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9944                 val = ppd->link_width_active;
9945                 break;
9946         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9947                 val = ppd->link_speed_enabled;
9948                 break;
9949         case HFI1_IB_CFG_SPD: /* current Link speed */
9950                 val = ppd->link_speed_active;
9951                 break;
9952
9953         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9954         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9955         case HFI1_IB_CFG_LINKLATENCY:
9956                 goto unimplemented;
9957
9958         case HFI1_IB_CFG_OP_VLS:
9959                 val = ppd->actual_vls_operational;
9960                 break;
9961         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9962                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9963                 break;
9964         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9965                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9966                 break;
9967         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9968                 val = ppd->overrun_threshold;
9969                 break;
9970         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9971                 val = ppd->phy_error_threshold;
9972                 break;
9973         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9974                 val = dd->link_default;
9975                 break;
9976
9977         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9978         case HFI1_IB_CFG_PMA_TICKS:
9979         default:
9980 unimplemented:
9981                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9982                         dd_dev_info(
9983                                 dd,
9984                                 "%s: which %s: not implemented\n",
9985                                 __func__,
9986                                 ib_cfg_name(which));
9987                 break;
9988         }
9989
9990         return val;
9991 }
9992
9993 /*
9994  * The largest MAD packet size.
9995  */
9996 #define MAX_MAD_PACKET 2048
9997
9998 /*
9999  * Return the maximum header bytes that can go on the _wire_
10000  * for this device. This count includes the ICRC which is
10001  * not part of the packet held in memory but it is appended
10002  * by the HW.
10003  * This is dependent on the device's receive header entry size.
10004  * HFI allows this to be set per-receive context, but the
10005  * driver presently enforces a global value.
10006  */
10007 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10008 {
10009         /*
10010          * The maximum non-payload (MTU) bytes in LRH.PktLen are
10011          * the Receive Header Entry Size minus the PBC (or RHF) size
10012          * plus one DW for the ICRC appended by HW.
10013          *
10014          * dd->rcd[0].rcvhdrqentsize is in DW.
10015          * We use rcd[0] as all context will have the same value. Also,
10016          * the first kernel context would have been allocated by now so
10017          * we are guaranteed a valid value.
10018          */
10019         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10020 }
10021
10022 /*
10023  * Set Send Length
10024  * @ppd - per port data
10025  *
10026  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10027  * registers compare against LRH.PktLen, so use the max bytes included
10028  * in the LRH.
10029  *
10030  * This routine changes all VL values except VL15, which it maintains at
10031  * the same value.
10032  */
10033 static void set_send_length(struct hfi1_pportdata *ppd)
10034 {
10035         struct hfi1_devdata *dd = ppd->dd;
10036         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10037         u32 maxvlmtu = dd->vld[15].mtu;
10038         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10039                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10040                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10041         int i, j;
10042         u32 thres;
10043
10044         for (i = 0; i < ppd->vls_supported; i++) {
10045                 if (dd->vld[i].mtu > maxvlmtu)
10046                         maxvlmtu = dd->vld[i].mtu;
10047                 if (i <= 3)
10048                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10049                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10050                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10051                 else
10052                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10053                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10054                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10055         }
10056         write_csr(dd, SEND_LEN_CHECK0, len1);
10057         write_csr(dd, SEND_LEN_CHECK1, len2);
10058         /* adjust kernel credit return thresholds based on new MTUs */
10059         /* all kernel receive contexts have the same hdrqentsize */
10060         for (i = 0; i < ppd->vls_supported; i++) {
10061                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10062                             sc_mtu_to_threshold(dd->vld[i].sc,
10063                                                 dd->vld[i].mtu,
10064                                                 dd->rcd[0]->rcvhdrqentsize));
10065                 for (j = 0; j < INIT_SC_PER_VL; j++)
10066                         sc_set_cr_threshold(
10067                                         pio_select_send_context_vl(dd, j, i),
10068                                             thres);
10069         }
10070         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10071                     sc_mtu_to_threshold(dd->vld[15].sc,
10072                                         dd->vld[15].mtu,
10073                                         dd->rcd[0]->rcvhdrqentsize));
10074         sc_set_cr_threshold(dd->vld[15].sc, thres);
10075
10076         /* Adjust maximum MTU for the port in DC */
10077         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10078                 (ilog2(maxvlmtu >> 8) + 1);
10079         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10080         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10081         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10082                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10083         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10084 }
10085
10086 static void set_lidlmc(struct hfi1_pportdata *ppd)
10087 {
10088         int i;
10089         u64 sreg = 0;
10090         struct hfi1_devdata *dd = ppd->dd;
10091         u32 mask = ~((1U << ppd->lmc) - 1);
10092         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10093         u32 lid;
10094
10095         /*
10096          * Program 0 in CSR if port lid is extended. This prevents
10097          * 9B packets being sent out for large lids.
10098          */
10099         lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10100         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10101                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10102         c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10103                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10104               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10105                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10106         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10107
10108         /*
10109          * Iterate over all the send contexts and set their SLID check
10110          */
10111         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10112                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10113                (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10114                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10115
10116         for (i = 0; i < dd->chip_send_contexts; i++) {
10117                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10118                           i, (u32)sreg);
10119                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10120         }
10121
10122         /* Now we have to do the same thing for the sdma engines */
10123         sdma_update_lmc(dd, mask, lid);
10124 }
10125
10126 static const char *state_completed_string(u32 completed)
10127 {
10128         static const char * const state_completed[] = {
10129                 "EstablishComm",
10130                 "OptimizeEQ",
10131                 "VerifyCap"
10132         };
10133
10134         if (completed < ARRAY_SIZE(state_completed))
10135                 return state_completed[completed];
10136
10137         return "unknown";
10138 }
10139
10140 static const char all_lanes_dead_timeout_expired[] =
10141         "All lanes were inactive â€“ was the interconnect media removed?";
10142 static const char tx_out_of_policy[] =
10143         "Passing lanes on local port do not meet the local link width policy";
10144 static const char no_state_complete[] =
10145         "State timeout occurred before link partner completed the state";
10146 static const char * const state_complete_reasons[] = {
10147         [0x00] = "Reason unknown",
10148         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10149         [0x02] = "Link partner reported failure",
10150         [0x10] = "Unable to achieve frame sync on any lane",
10151         [0x11] =
10152           "Unable to find a common bit rate with the link partner",
10153         [0x12] =
10154           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10155         [0x13] =
10156           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10157         [0x14] = no_state_complete,
10158         [0x15] =
10159           "State timeout occurred before link partner identified equalization presets",
10160         [0x16] =
10161           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10162         [0x17] = tx_out_of_policy,
10163         [0x20] = all_lanes_dead_timeout_expired,
10164         [0x21] =
10165           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10166         [0x22] = no_state_complete,
10167         [0x23] =
10168           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10169         [0x24] = tx_out_of_policy,
10170         [0x30] = all_lanes_dead_timeout_expired,
10171         [0x31] =
10172           "State timeout occurred waiting for host to process received frames",
10173         [0x32] = no_state_complete,
10174         [0x33] =
10175           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10176         [0x34] = tx_out_of_policy,
10177 };
10178
10179 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10180                                                      u32 code)
10181 {
10182         const char *str = NULL;
10183
10184         if (code < ARRAY_SIZE(state_complete_reasons))
10185                 str = state_complete_reasons[code];
10186
10187         if (str)
10188                 return str;
10189         return "Reserved";
10190 }
10191
10192 /* describe the given last state complete frame */
10193 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10194                                   const char *prefix)
10195 {
10196         struct hfi1_devdata *dd = ppd->dd;
10197         u32 success;
10198         u32 state;
10199         u32 reason;
10200         u32 lanes;
10201
10202         /*
10203          * Decode frame:
10204          *  [ 0: 0] - success
10205          *  [ 3: 1] - state
10206          *  [ 7: 4] - next state timeout
10207          *  [15: 8] - reason code
10208          *  [31:16] - lanes
10209          */
10210         success = frame & 0x1;
10211         state = (frame >> 1) & 0x7;
10212         reason = (frame >> 8) & 0xff;
10213         lanes = (frame >> 16) & 0xffff;
10214
10215         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10216                    prefix, frame);
10217         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10218                    state_completed_string(state), state);
10219         dd_dev_err(dd, "    state successfully completed: %s\n",
10220                    success ? "yes" : "no");
10221         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10222                    reason, state_complete_reason_code_string(ppd, reason));
10223         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10224 }
10225
10226 /*
10227  * Read the last state complete frames and explain them.  This routine
10228  * expects to be called if the link went down during link negotiation
10229  * and initialization (LNI).  That is, anywhere between polling and link up.
10230  */
10231 static void check_lni_states(struct hfi1_pportdata *ppd)
10232 {
10233         u32 last_local_state;
10234         u32 last_remote_state;
10235
10236         read_last_local_state(ppd->dd, &last_local_state);
10237         read_last_remote_state(ppd->dd, &last_remote_state);
10238
10239         /*
10240          * Don't report anything if there is nothing to report.  A value of
10241          * 0 means the link was taken down while polling and there was no
10242          * training in-process.
10243          */
10244         if (last_local_state == 0 && last_remote_state == 0)
10245                 return;
10246
10247         decode_state_complete(ppd, last_local_state, "transmitted");
10248         decode_state_complete(ppd, last_remote_state, "received");
10249 }
10250
10251 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10252 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10253 {
10254         u64 reg;
10255         unsigned long timeout;
10256
10257         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10258         timeout = jiffies + msecs_to_jiffies(wait_ms);
10259         while (1) {
10260                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10261                 if (reg)
10262                         break;
10263                 if (time_after(jiffies, timeout)) {
10264                         dd_dev_err(dd,
10265                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10266                         return -ETIMEDOUT;
10267                 }
10268                 udelay(2);
10269         }
10270         return 0;
10271 }
10272
10273 /* called when the logical link state is not down as it should be */
10274 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10275 {
10276         struct hfi1_devdata *dd = ppd->dd;
10277
10278         /*
10279          * Bring link up in LCB loopback
10280          */
10281         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10282         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10283                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10284
10285         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10286         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10287         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10288         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10289
10290         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10291         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10292         udelay(3);
10293         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10294         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10295
10296         wait_link_transfer_active(dd, 100);
10297
10298         /*
10299          * Bring the link down again.
10300          */
10301         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10302         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10303         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10304
10305         /* adjust ppd->statusp, if needed */
10306         update_statusp(ppd, IB_PORT_DOWN);
10307
10308         dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10309 }
10310
10311 /*
10312  * Helper for set_link_state().  Do not call except from that routine.
10313  * Expects ppd->hls_mutex to be held.
10314  *
10315  * @rem_reason value to be sent to the neighbor
10316  *
10317  * LinkDownReasons only set if transition succeeds.
10318  */
10319 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10320 {
10321         struct hfi1_devdata *dd = ppd->dd;
10322         u32 previous_state;
10323         int offline_state_ret;
10324         int ret;
10325
10326         update_lcb_cache(dd);
10327
10328         previous_state = ppd->host_link_state;
10329         ppd->host_link_state = HLS_GOING_OFFLINE;
10330
10331         /* start offline transition */
10332         ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10333
10334         if (ret != HCMD_SUCCESS) {
10335                 dd_dev_err(dd,
10336                            "Failed to transition to Offline link state, return %d\n",
10337                            ret);
10338                 return -EINVAL;
10339         }
10340         if (ppd->offline_disabled_reason ==
10341                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10342                 ppd->offline_disabled_reason =
10343                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10344
10345         offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10346         if (offline_state_ret < 0)
10347                 return offline_state_ret;
10348
10349         /* Disabling AOC transmitters */
10350         if (ppd->port_type == PORT_TYPE_QSFP &&
10351             ppd->qsfp_info.limiting_active &&
10352             qsfp_mod_present(ppd)) {
10353                 int ret;
10354
10355                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10356                 if (ret == 0) {
10357                         set_qsfp_tx(ppd, 0);
10358                         release_chip_resource(dd, qsfp_resource(dd));
10359                 } else {
10360                         /* not fatal, but should warn */
10361                         dd_dev_err(dd,
10362                                    "Unable to acquire lock to turn off QSFP TX\n");
10363                 }
10364         }
10365
10366         /*
10367          * Wait for the offline.Quiet transition if it hasn't happened yet. It
10368          * can take a while for the link to go down.
10369          */
10370         if (offline_state_ret != PLS_OFFLINE_QUIET) {
10371                 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10372                 if (ret < 0)
10373                         return ret;
10374         }
10375
10376         /*
10377          * Now in charge of LCB - must be after the physical state is
10378          * offline.quiet and before host_link_state is changed.
10379          */
10380         set_host_lcb_access(dd);
10381         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10382
10383         /* make sure the logical state is also down */
10384         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10385         if (ret)
10386                 force_logical_link_state_down(ppd);
10387
10388         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10389
10390         /*
10391          * The LNI has a mandatory wait time after the physical state
10392          * moves to Offline.Quiet.  The wait time may be different
10393          * depending on how the link went down.  The 8051 firmware
10394          * will observe the needed wait time and only move to ready
10395          * when that is completed.  The largest of the quiet timeouts
10396          * is 6s, so wait that long and then at least 0.5s more for
10397          * other transitions, and another 0.5s for a buffer.
10398          */
10399         ret = wait_fm_ready(dd, 7000);
10400         if (ret) {
10401                 dd_dev_err(dd,
10402                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10403                 /* state is really offline, so make it so */
10404                 ppd->host_link_state = HLS_DN_OFFLINE;
10405                 return ret;
10406         }
10407
10408         /*
10409          * The state is now offline and the 8051 is ready to accept host
10410          * requests.
10411          *      - change our state
10412          *      - notify others if we were previously in a linkup state
10413          */
10414         ppd->host_link_state = HLS_DN_OFFLINE;
10415         if (previous_state & HLS_UP) {
10416                 /* went down while link was up */
10417                 handle_linkup_change(dd, 0);
10418         } else if (previous_state
10419                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10420                 /* went down while attempting link up */
10421                 check_lni_states(ppd);
10422
10423                 /* The QSFP doesn't need to be reset on LNI failure */
10424                 ppd->qsfp_info.reset_needed = 0;
10425         }
10426
10427         /* the active link width (downgrade) is 0 on link down */
10428         ppd->link_width_active = 0;
10429         ppd->link_width_downgrade_tx_active = 0;
10430         ppd->link_width_downgrade_rx_active = 0;
10431         ppd->current_egress_rate = 0;
10432         return 0;
10433 }
10434
10435 /* return the link state name */
10436 static const char *link_state_name(u32 state)
10437 {
10438         const char *name;
10439         int n = ilog2(state);
10440         static const char * const names[] = {
10441                 [__HLS_UP_INIT_BP]       = "INIT",
10442                 [__HLS_UP_ARMED_BP]      = "ARMED",
10443                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10444                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10445                 [__HLS_DN_POLL_BP]       = "POLL",
10446                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10447                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10448                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10449                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10450                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10451                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10452         };
10453
10454         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10455         return name ? name : "unknown";
10456 }
10457
10458 /* return the link state reason name */
10459 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10460 {
10461         if (state == HLS_UP_INIT) {
10462                 switch (ppd->linkinit_reason) {
10463                 case OPA_LINKINIT_REASON_LINKUP:
10464                         return "(LINKUP)";
10465                 case OPA_LINKINIT_REASON_FLAPPING:
10466                         return "(FLAPPING)";
10467                 case OPA_LINKINIT_OUTSIDE_POLICY:
10468                         return "(OUTSIDE_POLICY)";
10469                 case OPA_LINKINIT_QUARANTINED:
10470                         return "(QUARANTINED)";
10471                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10472                         return "(INSUFIC_CAPABILITY)";
10473                 default:
10474                         break;
10475                 }
10476         }
10477         return "";
10478 }
10479
10480 /*
10481  * driver_pstate - convert the driver's notion of a port's
10482  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10483  * Return -1 (converted to a u32) to indicate error.
10484  */
10485 u32 driver_pstate(struct hfi1_pportdata *ppd)
10486 {
10487         switch (ppd->host_link_state) {
10488         case HLS_UP_INIT:
10489         case HLS_UP_ARMED:
10490         case HLS_UP_ACTIVE:
10491                 return IB_PORTPHYSSTATE_LINKUP;
10492         case HLS_DN_POLL:
10493                 return IB_PORTPHYSSTATE_POLLING;
10494         case HLS_DN_DISABLE:
10495                 return IB_PORTPHYSSTATE_DISABLED;
10496         case HLS_DN_OFFLINE:
10497                 return OPA_PORTPHYSSTATE_OFFLINE;
10498         case HLS_VERIFY_CAP:
10499                 return IB_PORTPHYSSTATE_POLLING;
10500         case HLS_GOING_UP:
10501                 return IB_PORTPHYSSTATE_POLLING;
10502         case HLS_GOING_OFFLINE:
10503                 return OPA_PORTPHYSSTATE_OFFLINE;
10504         case HLS_LINK_COOLDOWN:
10505                 return OPA_PORTPHYSSTATE_OFFLINE;
10506         case HLS_DN_DOWNDEF:
10507         default:
10508                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10509                            ppd->host_link_state);
10510                 return  -1;
10511         }
10512 }
10513
10514 /*
10515  * driver_lstate - convert the driver's notion of a port's
10516  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10517  * (converted to a u32) to indicate error.
10518  */
10519 u32 driver_lstate(struct hfi1_pportdata *ppd)
10520 {
10521         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10522                 return IB_PORT_DOWN;
10523
10524         switch (ppd->host_link_state & HLS_UP) {
10525         case HLS_UP_INIT:
10526                 return IB_PORT_INIT;
10527         case HLS_UP_ARMED:
10528                 return IB_PORT_ARMED;
10529         case HLS_UP_ACTIVE:
10530                 return IB_PORT_ACTIVE;
10531         default:
10532                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10533                            ppd->host_link_state);
10534         return -1;
10535         }
10536 }
10537
10538 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10539                           u8 neigh_reason, u8 rem_reason)
10540 {
10541         if (ppd->local_link_down_reason.latest == 0 &&
10542             ppd->neigh_link_down_reason.latest == 0) {
10543                 ppd->local_link_down_reason.latest = lcl_reason;
10544                 ppd->neigh_link_down_reason.latest = neigh_reason;
10545                 ppd->remote_link_down_reason = rem_reason;
10546         }
10547 }
10548
10549 /*
10550  * Verify if BCT for data VLs is non-zero.
10551  */
10552 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10553 {
10554         return !!ppd->actual_vls_operational;
10555 }
10556
10557 /*
10558  * Change the physical and/or logical link state.
10559  *
10560  * Do not call this routine while inside an interrupt.  It contains
10561  * calls to routines that can take multiple seconds to finish.
10562  *
10563  * Returns 0 on success, -errno on failure.
10564  */
10565 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10566 {
10567         struct hfi1_devdata *dd = ppd->dd;
10568         struct ib_event event = {.device = NULL};
10569         int ret1, ret = 0;
10570         int orig_new_state, poll_bounce;
10571
10572         mutex_lock(&ppd->hls_lock);
10573
10574         orig_new_state = state;
10575         if (state == HLS_DN_DOWNDEF)
10576                 state = dd->link_default;
10577
10578         /* interpret poll -> poll as a link bounce */
10579         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10580                       state == HLS_DN_POLL;
10581
10582         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10583                     link_state_name(ppd->host_link_state),
10584                     link_state_name(orig_new_state),
10585                     poll_bounce ? "(bounce) " : "",
10586                     link_state_reason_name(ppd, state));
10587
10588         /*
10589          * If we're going to a (HLS_*) link state that implies the logical
10590          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10591          * reset is_sm_config_started to 0.
10592          */
10593         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10594                 ppd->is_sm_config_started = 0;
10595
10596         /*
10597          * Do nothing if the states match.  Let a poll to poll link bounce
10598          * go through.
10599          */
10600         if (ppd->host_link_state == state && !poll_bounce)
10601                 goto done;
10602
10603         switch (state) {
10604         case HLS_UP_INIT:
10605                 if (ppd->host_link_state == HLS_DN_POLL &&
10606                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10607                         /*
10608                          * Quick link up jumps from polling to here.
10609                          *
10610                          * Whether in normal or loopback mode, the
10611                          * simulator jumps from polling to link up.
10612                          * Accept that here.
10613                          */
10614                         /* OK */
10615                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10616                         goto unexpected;
10617                 }
10618
10619                 /*
10620                  * Wait for Link_Up physical state.
10621                  * Physical and Logical states should already be
10622                  * be transitioned to LinkUp and LinkInit respectively.
10623                  */
10624                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10625                 if (ret) {
10626                         dd_dev_err(dd,
10627                                    "%s: physical state did not change to LINK-UP\n",
10628                                    __func__);
10629                         break;
10630                 }
10631
10632                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10633                 if (ret) {
10634                         dd_dev_err(dd,
10635                                    "%s: logical state did not change to INIT\n",
10636                                    __func__);
10637                         break;
10638                 }
10639
10640                 /* clear old transient LINKINIT_REASON code */
10641                 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10642                         ppd->linkinit_reason =
10643                                 OPA_LINKINIT_REASON_LINKUP;
10644
10645                 /* enable the port */
10646                 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10647
10648                 handle_linkup_change(dd, 1);
10649                 ppd->host_link_state = HLS_UP_INIT;
10650                 break;
10651         case HLS_UP_ARMED:
10652                 if (ppd->host_link_state != HLS_UP_INIT)
10653                         goto unexpected;
10654
10655                 if (!data_vls_operational(ppd)) {
10656                         dd_dev_err(dd,
10657                                    "%s: data VLs not operational\n", __func__);
10658                         ret = -EINVAL;
10659                         break;
10660                 }
10661
10662                 set_logical_state(dd, LSTATE_ARMED);
10663                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10664                 if (ret) {
10665                         dd_dev_err(dd,
10666                                    "%s: logical state did not change to ARMED\n",
10667                                    __func__);
10668                         break;
10669                 }
10670                 ppd->host_link_state = HLS_UP_ARMED;
10671                 /*
10672                  * The simulator does not currently implement SMA messages,
10673                  * so neighbor_normal is not set.  Set it here when we first
10674                  * move to Armed.
10675                  */
10676                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10677                         ppd->neighbor_normal = 1;
10678                 break;
10679         case HLS_UP_ACTIVE:
10680                 if (ppd->host_link_state != HLS_UP_ARMED)
10681                         goto unexpected;
10682
10683                 set_logical_state(dd, LSTATE_ACTIVE);
10684                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10685                 if (ret) {
10686                         dd_dev_err(dd,
10687                                    "%s: logical state did not change to ACTIVE\n",
10688                                    __func__);
10689                 } else {
10690                         /* tell all engines to go running */
10691                         sdma_all_running(dd);
10692                         ppd->host_link_state = HLS_UP_ACTIVE;
10693
10694                         /* Signal the IB layer that the port has went active */
10695                         event.device = &dd->verbs_dev.rdi.ibdev;
10696                         event.element.port_num = ppd->port;
10697                         event.event = IB_EVENT_PORT_ACTIVE;
10698                 }
10699                 break;
10700         case HLS_DN_POLL:
10701                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10702                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10703                     dd->dc_shutdown)
10704                         dc_start(dd);
10705                 /* Hand LED control to the DC */
10706                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10707
10708                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10709                         u8 tmp = ppd->link_enabled;
10710
10711                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10712                         if (ret) {
10713                                 ppd->link_enabled = tmp;
10714                                 break;
10715                         }
10716                         ppd->remote_link_down_reason = 0;
10717
10718                         if (ppd->driver_link_ready)
10719                                 ppd->link_enabled = 1;
10720                 }
10721
10722                 set_all_slowpath(ppd->dd);
10723                 ret = set_local_link_attributes(ppd);
10724                 if (ret)
10725                         break;
10726
10727                 ppd->port_error_action = 0;
10728                 ppd->host_link_state = HLS_DN_POLL;
10729
10730                 if (quick_linkup) {
10731                         /* quick linkup does not go into polling */
10732                         ret = do_quick_linkup(dd);
10733                 } else {
10734                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10735                         if (ret1 != HCMD_SUCCESS) {
10736                                 dd_dev_err(dd,
10737                                            "Failed to transition to Polling link state, return 0x%x\n",
10738                                            ret1);
10739                                 ret = -EINVAL;
10740                         }
10741                 }
10742                 ppd->offline_disabled_reason =
10743                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10744                 /*
10745                  * If an error occurred above, go back to offline.  The
10746                  * caller may reschedule another attempt.
10747                  */
10748                 if (ret)
10749                         goto_offline(ppd, 0);
10750                 else
10751                         log_physical_state(ppd, PLS_POLLING);
10752                 break;
10753         case HLS_DN_DISABLE:
10754                 /* link is disabled */
10755                 ppd->link_enabled = 0;
10756
10757                 /* allow any state to transition to disabled */
10758
10759                 /* must transition to offline first */
10760                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10761                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10762                         if (ret)
10763                                 break;
10764                         ppd->remote_link_down_reason = 0;
10765                 }
10766
10767                 if (!dd->dc_shutdown) {
10768                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10769                         if (ret1 != HCMD_SUCCESS) {
10770                                 dd_dev_err(dd,
10771                                            "Failed to transition to Disabled link state, return 0x%x\n",
10772                                            ret1);
10773                                 ret = -EINVAL;
10774                                 break;
10775                         }
10776                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10777                         if (ret) {
10778                                 dd_dev_err(dd,
10779                                            "%s: physical state did not change to DISABLED\n",
10780                                            __func__);
10781                                 break;
10782                         }
10783                         dc_shutdown(dd);
10784                 }
10785                 ppd->host_link_state = HLS_DN_DISABLE;
10786                 break;
10787         case HLS_DN_OFFLINE:
10788                 if (ppd->host_link_state == HLS_DN_DISABLE)
10789                         dc_start(dd);
10790
10791                 /* allow any state to transition to offline */
10792                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10793                 if (!ret)
10794                         ppd->remote_link_down_reason = 0;
10795                 break;
10796         case HLS_VERIFY_CAP:
10797                 if (ppd->host_link_state != HLS_DN_POLL)
10798                         goto unexpected;
10799                 ppd->host_link_state = HLS_VERIFY_CAP;
10800                 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10801                 break;
10802         case HLS_GOING_UP:
10803                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10804                         goto unexpected;
10805
10806                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10807                 if (ret1 != HCMD_SUCCESS) {
10808                         dd_dev_err(dd,
10809                                    "Failed to transition to link up state, return 0x%x\n",
10810                                    ret1);
10811                         ret = -EINVAL;
10812                         break;
10813                 }
10814                 ppd->host_link_state = HLS_GOING_UP;
10815                 break;
10816
10817         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10818         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10819         default:
10820                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10821                             __func__, state);
10822                 ret = -EINVAL;
10823                 break;
10824         }
10825
10826         goto done;
10827
10828 unexpected:
10829         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10830                    __func__, link_state_name(ppd->host_link_state),
10831                    link_state_name(state));
10832         ret = -EINVAL;
10833
10834 done:
10835         mutex_unlock(&ppd->hls_lock);
10836
10837         if (event.device)
10838                 ib_dispatch_event(&event);
10839
10840         return ret;
10841 }
10842
10843 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10844 {
10845         u64 reg;
10846         int ret = 0;
10847
10848         switch (which) {
10849         case HFI1_IB_CFG_LIDLMC:
10850                 set_lidlmc(ppd);
10851                 break;
10852         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10853                 /*
10854                  * The VL Arbitrator high limit is sent in units of 4k
10855                  * bytes, while HFI stores it in units of 64 bytes.
10856                  */
10857                 val *= 4096 / 64;
10858                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10859                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10860                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10861                 break;
10862         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10863                 /* HFI only supports POLL as the default link down state */
10864                 if (val != HLS_DN_POLL)
10865                         ret = -EINVAL;
10866                 break;
10867         case HFI1_IB_CFG_OP_VLS:
10868                 if (ppd->vls_operational != val) {
10869                         ppd->vls_operational = val;
10870                         if (!ppd->port)
10871                                 ret = -EINVAL;
10872                 }
10873                 break;
10874         /*
10875          * For link width, link width downgrade, and speed enable, always AND
10876          * the setting with what is actually supported.  This has two benefits.
10877          * First, enabled can't have unsupported values, no matter what the
10878          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10879          * "fill in with your supported value" have all the bits in the
10880          * field set, so simply ANDing with supported has the desired result.
10881          */
10882         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10883                 ppd->link_width_enabled = val & ppd->link_width_supported;
10884                 break;
10885         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10886                 ppd->link_width_downgrade_enabled =
10887                                 val & ppd->link_width_downgrade_supported;
10888                 break;
10889         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10890                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10891                 break;
10892         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10893                 /*
10894                  * HFI does not follow IB specs, save this value
10895                  * so we can report it, if asked.
10896                  */
10897                 ppd->overrun_threshold = val;
10898                 break;
10899         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10900                 /*
10901                  * HFI does not follow IB specs, save this value
10902                  * so we can report it, if asked.
10903                  */
10904                 ppd->phy_error_threshold = val;
10905                 break;
10906
10907         case HFI1_IB_CFG_MTU:
10908                 set_send_length(ppd);
10909                 break;
10910
10911         case HFI1_IB_CFG_PKEYS:
10912                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10913                         set_partition_keys(ppd);
10914                 break;
10915
10916         default:
10917                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10918                         dd_dev_info(ppd->dd,
10919                                     "%s: which %s, val 0x%x: not implemented\n",
10920                                     __func__, ib_cfg_name(which), val);
10921                 break;
10922         }
10923         return ret;
10924 }
10925
10926 /* begin functions related to vl arbitration table caching */
10927 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10928 {
10929         int i;
10930
10931         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10932                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10933         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10934                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10935
10936         /*
10937          * Note that we always return values directly from the
10938          * 'vl_arb_cache' (and do no CSR reads) in response to a
10939          * 'Get(VLArbTable)'. This is obviously correct after a
10940          * 'Set(VLArbTable)', since the cache will then be up to
10941          * date. But it's also correct prior to any 'Set(VLArbTable)'
10942          * since then both the cache, and the relevant h/w registers
10943          * will be zeroed.
10944          */
10945
10946         for (i = 0; i < MAX_PRIO_TABLE; i++)
10947                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10948 }
10949
10950 /*
10951  * vl_arb_lock_cache
10952  *
10953  * All other vl_arb_* functions should be called only after locking
10954  * the cache.
10955  */
10956 static inline struct vl_arb_cache *
10957 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10958 {
10959         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10960                 return NULL;
10961         spin_lock(&ppd->vl_arb_cache[idx].lock);
10962         return &ppd->vl_arb_cache[idx];
10963 }
10964
10965 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10966 {
10967         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10968 }
10969
10970 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10971                              struct ib_vl_weight_elem *vl)
10972 {
10973         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10974 }
10975
10976 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10977                              struct ib_vl_weight_elem *vl)
10978 {
10979         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10980 }
10981
10982 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10983                               struct ib_vl_weight_elem *vl)
10984 {
10985         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10986 }
10987
10988 /* end functions related to vl arbitration table caching */
10989
10990 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10991                           u32 size, struct ib_vl_weight_elem *vl)
10992 {
10993         struct hfi1_devdata *dd = ppd->dd;
10994         u64 reg;
10995         unsigned int i, is_up = 0;
10996         int drain, ret = 0;
10997
10998         mutex_lock(&ppd->hls_lock);
10999
11000         if (ppd->host_link_state & HLS_UP)
11001                 is_up = 1;
11002
11003         drain = !is_ax(dd) && is_up;
11004
11005         if (drain)
11006                 /*
11007                  * Before adjusting VL arbitration weights, empty per-VL
11008                  * FIFOs, otherwise a packet whose VL weight is being
11009                  * set to 0 could get stuck in a FIFO with no chance to
11010                  * egress.
11011                  */
11012                 ret = stop_drain_data_vls(dd);
11013
11014         if (ret) {
11015                 dd_dev_err(
11016                         dd,
11017                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11018                         __func__);
11019                 goto err;
11020         }
11021
11022         for (i = 0; i < size; i++, vl++) {
11023                 /*
11024                  * NOTE: The low priority shift and mask are used here, but
11025                  * they are the same for both the low and high registers.
11026                  */
11027                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11028                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11029                       | (((u64)vl->weight
11030                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11031                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11032                 write_csr(dd, target + (i * 8), reg);
11033         }
11034         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11035
11036         if (drain)
11037                 open_fill_data_vls(dd); /* reopen all VLs */
11038
11039 err:
11040         mutex_unlock(&ppd->hls_lock);
11041
11042         return ret;
11043 }
11044
11045 /*
11046  * Read one credit merge VL register.
11047  */
11048 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11049                            struct vl_limit *vll)
11050 {
11051         u64 reg = read_csr(dd, csr);
11052
11053         vll->dedicated = cpu_to_be16(
11054                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11055                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11056         vll->shared = cpu_to_be16(
11057                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11058                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11059 }
11060
11061 /*
11062  * Read the current credit merge limits.
11063  */
11064 static int get_buffer_control(struct hfi1_devdata *dd,
11065                               struct buffer_control *bc, u16 *overall_limit)
11066 {
11067         u64 reg;
11068         int i;
11069
11070         /* not all entries are filled in */
11071         memset(bc, 0, sizeof(*bc));
11072
11073         /* OPA and HFI have a 1-1 mapping */
11074         for (i = 0; i < TXE_NUM_DATA_VL; i++)
11075                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11076
11077         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11078         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11079
11080         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11081         bc->overall_shared_limit = cpu_to_be16(
11082                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11083                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11084         if (overall_limit)
11085                 *overall_limit = (reg
11086                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11087                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11088         return sizeof(struct buffer_control);
11089 }
11090
11091 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11092 {
11093         u64 reg;
11094         int i;
11095
11096         /* each register contains 16 SC->VLnt mappings, 4 bits each */
11097         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11098         for (i = 0; i < sizeof(u64); i++) {
11099                 u8 byte = *(((u8 *)&reg) + i);
11100
11101                 dp->vlnt[2 * i] = byte & 0xf;
11102                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11103         }
11104
11105         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11106         for (i = 0; i < sizeof(u64); i++) {
11107                 u8 byte = *(((u8 *)&reg) + i);
11108
11109                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11110                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11111         }
11112         return sizeof(struct sc2vlnt);
11113 }
11114
11115 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11116                               struct ib_vl_weight_elem *vl)
11117 {
11118         unsigned int i;
11119
11120         for (i = 0; i < nelems; i++, vl++) {
11121                 vl->vl = 0xf;
11122                 vl->weight = 0;
11123         }
11124 }
11125
11126 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11127 {
11128         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11129                   DC_SC_VL_VAL(15_0,
11130                                0, dp->vlnt[0] & 0xf,
11131                                1, dp->vlnt[1] & 0xf,
11132                                2, dp->vlnt[2] & 0xf,
11133                                3, dp->vlnt[3] & 0xf,
11134                                4, dp->vlnt[4] & 0xf,
11135                                5, dp->vlnt[5] & 0xf,
11136                                6, dp->vlnt[6] & 0xf,
11137                                7, dp->vlnt[7] & 0xf,
11138                                8, dp->vlnt[8] & 0xf,
11139                                9, dp->vlnt[9] & 0xf,
11140                                10, dp->vlnt[10] & 0xf,
11141                                11, dp->vlnt[11] & 0xf,
11142                                12, dp->vlnt[12] & 0xf,
11143                                13, dp->vlnt[13] & 0xf,
11144                                14, dp->vlnt[14] & 0xf,
11145                                15, dp->vlnt[15] & 0xf));
11146         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11147                   DC_SC_VL_VAL(31_16,
11148                                16, dp->vlnt[16] & 0xf,
11149                                17, dp->vlnt[17] & 0xf,
11150                                18, dp->vlnt[18] & 0xf,
11151                                19, dp->vlnt[19] & 0xf,
11152                                20, dp->vlnt[20] & 0xf,
11153                                21, dp->vlnt[21] & 0xf,
11154                                22, dp->vlnt[22] & 0xf,
11155                                23, dp->vlnt[23] & 0xf,
11156                                24, dp->vlnt[24] & 0xf,
11157                                25, dp->vlnt[25] & 0xf,
11158                                26, dp->vlnt[26] & 0xf,
11159                                27, dp->vlnt[27] & 0xf,
11160                                28, dp->vlnt[28] & 0xf,
11161                                29, dp->vlnt[29] & 0xf,
11162                                30, dp->vlnt[30] & 0xf,
11163                                31, dp->vlnt[31] & 0xf));
11164 }
11165
11166 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11167                         u16 limit)
11168 {
11169         if (limit != 0)
11170                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11171                             what, (int)limit, idx);
11172 }
11173
11174 /* change only the shared limit portion of SendCmGLobalCredit */
11175 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11176 {
11177         u64 reg;
11178
11179         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11180         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11181         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11182         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11183 }
11184
11185 /* change only the total credit limit portion of SendCmGLobalCredit */
11186 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11187 {
11188         u64 reg;
11189
11190         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11191         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11192         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11193         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11194 }
11195
11196 /* set the given per-VL shared limit */
11197 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11198 {
11199         u64 reg;
11200         u32 addr;
11201
11202         if (vl < TXE_NUM_DATA_VL)
11203                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11204         else
11205                 addr = SEND_CM_CREDIT_VL15;
11206
11207         reg = read_csr(dd, addr);
11208         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11209         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11210         write_csr(dd, addr, reg);
11211 }
11212
11213 /* set the given per-VL dedicated limit */
11214 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11215 {
11216         u64 reg;
11217         u32 addr;
11218
11219         if (vl < TXE_NUM_DATA_VL)
11220                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11221         else
11222                 addr = SEND_CM_CREDIT_VL15;
11223
11224         reg = read_csr(dd, addr);
11225         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11226         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11227         write_csr(dd, addr, reg);
11228 }
11229
11230 /* spin until the given per-VL status mask bits clear */
11231 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11232                                      const char *which)
11233 {
11234         unsigned long timeout;
11235         u64 reg;
11236
11237         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11238         while (1) {
11239                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11240
11241                 if (reg == 0)
11242                         return; /* success */
11243                 if (time_after(jiffies, timeout))
11244                         break;          /* timed out */
11245                 udelay(1);
11246         }
11247
11248         dd_dev_err(dd,
11249                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11250                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11251         /*
11252          * If this occurs, it is likely there was a credit loss on the link.
11253          * The only recovery from that is a link bounce.
11254          */
11255         dd_dev_err(dd,
11256                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11257 }
11258
11259 /*
11260  * The number of credits on the VLs may be changed while everything
11261  * is "live", but the following algorithm must be followed due to
11262  * how the hardware is actually implemented.  In particular,
11263  * Return_Credit_Status[] is the only correct status check.
11264  *
11265  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11266  *     set Global_Shared_Credit_Limit = 0
11267  *     use_all_vl = 1
11268  * mask0 = all VLs that are changing either dedicated or shared limits
11269  * set Shared_Limit[mask0] = 0
11270  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11271  * if (changing any dedicated limit)
11272  *     mask1 = all VLs that are lowering dedicated limits
11273  *     lower Dedicated_Limit[mask1]
11274  *     spin until Return_Credit_Status[mask1] == 0
11275  *     raise Dedicated_Limits
11276  * raise Shared_Limits
11277  * raise Global_Shared_Credit_Limit
11278  *
11279  * lower = if the new limit is lower, set the limit to the new value
11280  * raise = if the new limit is higher than the current value (may be changed
11281  *      earlier in the algorithm), set the new limit to the new value
11282  */
11283 int set_buffer_control(struct hfi1_pportdata *ppd,
11284                        struct buffer_control *new_bc)
11285 {
11286         struct hfi1_devdata *dd = ppd->dd;
11287         u64 changing_mask, ld_mask, stat_mask;
11288         int change_count;
11289         int i, use_all_mask;
11290         int this_shared_changing;
11291         int vl_count = 0, ret;
11292         /*
11293          * A0: add the variable any_shared_limit_changing below and in the
11294          * algorithm above.  If removing A0 support, it can be removed.
11295          */
11296         int any_shared_limit_changing;
11297         struct buffer_control cur_bc;
11298         u8 changing[OPA_MAX_VLS];
11299         u8 lowering_dedicated[OPA_MAX_VLS];
11300         u16 cur_total;
11301         u32 new_total = 0;
11302         const u64 all_mask =
11303         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11304          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11305          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11306          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11307          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11308          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11309          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11310          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11311          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11312
11313 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11314 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11315
11316         /* find the new total credits, do sanity check on unused VLs */
11317         for (i = 0; i < OPA_MAX_VLS; i++) {
11318                 if (valid_vl(i)) {
11319                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11320                         continue;
11321                 }
11322                 nonzero_msg(dd, i, "dedicated",
11323                             be16_to_cpu(new_bc->vl[i].dedicated));
11324                 nonzero_msg(dd, i, "shared",
11325                             be16_to_cpu(new_bc->vl[i].shared));
11326                 new_bc->vl[i].dedicated = 0;
11327                 new_bc->vl[i].shared = 0;
11328         }
11329         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11330
11331         /* fetch the current values */
11332         get_buffer_control(dd, &cur_bc, &cur_total);
11333
11334         /*
11335          * Create the masks we will use.
11336          */
11337         memset(changing, 0, sizeof(changing));
11338         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11339         /*
11340          * NOTE: Assumes that the individual VL bits are adjacent and in
11341          * increasing order
11342          */
11343         stat_mask =
11344                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11345         changing_mask = 0;
11346         ld_mask = 0;
11347         change_count = 0;
11348         any_shared_limit_changing = 0;
11349         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11350                 if (!valid_vl(i))
11351                         continue;
11352                 this_shared_changing = new_bc->vl[i].shared
11353                                                 != cur_bc.vl[i].shared;
11354                 if (this_shared_changing)
11355                         any_shared_limit_changing = 1;
11356                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11357                     this_shared_changing) {
11358                         changing[i] = 1;
11359                         changing_mask |= stat_mask;
11360                         change_count++;
11361                 }
11362                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11363                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11364                         lowering_dedicated[i] = 1;
11365                         ld_mask |= stat_mask;
11366                 }
11367         }
11368
11369         /* bracket the credit change with a total adjustment */
11370         if (new_total > cur_total)
11371                 set_global_limit(dd, new_total);
11372
11373         /*
11374          * Start the credit change algorithm.
11375          */
11376         use_all_mask = 0;
11377         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11378              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11379             (is_ax(dd) && any_shared_limit_changing)) {
11380                 set_global_shared(dd, 0);
11381                 cur_bc.overall_shared_limit = 0;
11382                 use_all_mask = 1;
11383         }
11384
11385         for (i = 0; i < NUM_USABLE_VLS; i++) {
11386                 if (!valid_vl(i))
11387                         continue;
11388
11389                 if (changing[i]) {
11390                         set_vl_shared(dd, i, 0);
11391                         cur_bc.vl[i].shared = 0;
11392                 }
11393         }
11394
11395         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11396                                  "shared");
11397
11398         if (change_count > 0) {
11399                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11400                         if (!valid_vl(i))
11401                                 continue;
11402
11403                         if (lowering_dedicated[i]) {
11404                                 set_vl_dedicated(dd, i,
11405                                                  be16_to_cpu(new_bc->
11406                                                              vl[i].dedicated));
11407                                 cur_bc.vl[i].dedicated =
11408                                                 new_bc->vl[i].dedicated;
11409                         }
11410                 }
11411
11412                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11413
11414                 /* now raise all dedicated that are going up */
11415                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11416                         if (!valid_vl(i))
11417                                 continue;
11418
11419                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11420                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11421                                 set_vl_dedicated(dd, i,
11422                                                  be16_to_cpu(new_bc->
11423                                                              vl[i].dedicated));
11424                 }
11425         }
11426
11427         /* next raise all shared that are going up */
11428         for (i = 0; i < NUM_USABLE_VLS; i++) {
11429                 if (!valid_vl(i))
11430                         continue;
11431
11432                 if (be16_to_cpu(new_bc->vl[i].shared) >
11433                                 be16_to_cpu(cur_bc.vl[i].shared))
11434                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11435         }
11436
11437         /* finally raise the global shared */
11438         if (be16_to_cpu(new_bc->overall_shared_limit) >
11439             be16_to_cpu(cur_bc.overall_shared_limit))
11440                 set_global_shared(dd,
11441                                   be16_to_cpu(new_bc->overall_shared_limit));
11442
11443         /* bracket the credit change with a total adjustment */
11444         if (new_total < cur_total)
11445                 set_global_limit(dd, new_total);
11446
11447         /*
11448          * Determine the actual number of operational VLS using the number of
11449          * dedicated and shared credits for each VL.
11450          */
11451         if (change_count > 0) {
11452                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11453                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11454                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11455                                 vl_count++;
11456                 ppd->actual_vls_operational = vl_count;
11457                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11458                                     ppd->actual_vls_operational :
11459                                     ppd->vls_operational,
11460                                     NULL);
11461                 if (ret == 0)
11462                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11463                                            ppd->actual_vls_operational :
11464                                            ppd->vls_operational, NULL);
11465                 if (ret)
11466                         return ret;
11467         }
11468         return 0;
11469 }
11470
11471 /*
11472  * Read the given fabric manager table. Return the size of the
11473  * table (in bytes) on success, and a negative error code on
11474  * failure.
11475  */
11476 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11477
11478 {
11479         int size;
11480         struct vl_arb_cache *vlc;
11481
11482         switch (which) {
11483         case FM_TBL_VL_HIGH_ARB:
11484                 size = 256;
11485                 /*
11486                  * OPA specifies 128 elements (of 2 bytes each), though
11487                  * HFI supports only 16 elements in h/w.
11488                  */
11489                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11490                 vl_arb_get_cache(vlc, t);
11491                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11492                 break;
11493         case FM_TBL_VL_LOW_ARB:
11494                 size = 256;
11495                 /*
11496                  * OPA specifies 128 elements (of 2 bytes each), though
11497                  * HFI supports only 16 elements in h/w.
11498                  */
11499                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11500                 vl_arb_get_cache(vlc, t);
11501                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11502                 break;
11503         case FM_TBL_BUFFER_CONTROL:
11504                 size = get_buffer_control(ppd->dd, t, NULL);
11505                 break;
11506         case FM_TBL_SC2VLNT:
11507                 size = get_sc2vlnt(ppd->dd, t);
11508                 break;
11509         case FM_TBL_VL_PREEMPT_ELEMS:
11510                 size = 256;
11511                 /* OPA specifies 128 elements, of 2 bytes each */
11512                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11513                 break;
11514         case FM_TBL_VL_PREEMPT_MATRIX:
11515                 size = 256;
11516                 /*
11517                  * OPA specifies that this is the same size as the VL
11518                  * arbitration tables (i.e., 256 bytes).
11519                  */
11520                 break;
11521         default:
11522                 return -EINVAL;
11523         }
11524         return size;
11525 }
11526
11527 /*
11528  * Write the given fabric manager table.
11529  */
11530 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11531 {
11532         int ret = 0;
11533         struct vl_arb_cache *vlc;
11534
11535         switch (which) {
11536         case FM_TBL_VL_HIGH_ARB:
11537                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11538                 if (vl_arb_match_cache(vlc, t)) {
11539                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11540                         break;
11541                 }
11542                 vl_arb_set_cache(vlc, t);
11543                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11544                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11545                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11546                 break;
11547         case FM_TBL_VL_LOW_ARB:
11548                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11549                 if (vl_arb_match_cache(vlc, t)) {
11550                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11551                         break;
11552                 }
11553                 vl_arb_set_cache(vlc, t);
11554                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11555                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11556                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11557                 break;
11558         case FM_TBL_BUFFER_CONTROL:
11559                 ret = set_buffer_control(ppd, t);
11560                 break;
11561         case FM_TBL_SC2VLNT:
11562                 set_sc2vlnt(ppd->dd, t);
11563                 break;
11564         default:
11565                 ret = -EINVAL;
11566         }
11567         return ret;
11568 }
11569
11570 /*
11571  * Disable all data VLs.
11572  *
11573  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11574  */
11575 static int disable_data_vls(struct hfi1_devdata *dd)
11576 {
11577         if (is_ax(dd))
11578                 return 1;
11579
11580         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11581
11582         return 0;
11583 }
11584
11585 /*
11586  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11587  * Just re-enables all data VLs (the "fill" part happens
11588  * automatically - the name was chosen for symmetry with
11589  * stop_drain_data_vls()).
11590  *
11591  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11592  */
11593 int open_fill_data_vls(struct hfi1_devdata *dd)
11594 {
11595         if (is_ax(dd))
11596                 return 1;
11597
11598         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11599
11600         return 0;
11601 }
11602
11603 /*
11604  * drain_data_vls() - assumes that disable_data_vls() has been called,
11605  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11606  * engines to drop to 0.
11607  */
11608 static void drain_data_vls(struct hfi1_devdata *dd)
11609 {
11610         sc_wait(dd);
11611         sdma_wait(dd);
11612         pause_for_credit_return(dd);
11613 }
11614
11615 /*
11616  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11617  *
11618  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11619  * meant to be used like this:
11620  *
11621  * stop_drain_data_vls(dd);
11622  * // do things with per-VL resources
11623  * open_fill_data_vls(dd);
11624  */
11625 int stop_drain_data_vls(struct hfi1_devdata *dd)
11626 {
11627         int ret;
11628
11629         ret = disable_data_vls(dd);
11630         if (ret == 0)
11631                 drain_data_vls(dd);
11632
11633         return ret;
11634 }
11635
11636 /*
11637  * Convert a nanosecond time to a cclock count.  No matter how slow
11638  * the cclock, a non-zero ns will always have a non-zero result.
11639  */
11640 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11641 {
11642         u32 cclocks;
11643
11644         if (dd->icode == ICODE_FPGA_EMULATION)
11645                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11646         else  /* simulation pretends to be ASIC */
11647                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11648         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11649                 cclocks = 1;
11650         return cclocks;
11651 }
11652
11653 /*
11654  * Convert a cclock count to nanoseconds. Not matter how slow
11655  * the cclock, a non-zero cclocks will always have a non-zero result.
11656  */
11657 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11658 {
11659         u32 ns;
11660
11661         if (dd->icode == ICODE_FPGA_EMULATION)
11662                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11663         else  /* simulation pretends to be ASIC */
11664                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11665         if (cclocks && !ns)
11666                 ns = 1;
11667         return ns;
11668 }
11669
11670 /*
11671  * Dynamically adjust the receive interrupt timeout for a context based on
11672  * incoming packet rate.
11673  *
11674  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11675  */
11676 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11677 {
11678         struct hfi1_devdata *dd = rcd->dd;
11679         u32 timeout = rcd->rcvavail_timeout;
11680
11681         /*
11682          * This algorithm doubles or halves the timeout depending on whether
11683          * the number of packets received in this interrupt were less than or
11684          * greater equal the interrupt count.
11685          *
11686          * The calculations below do not allow a steady state to be achieved.
11687          * Only at the endpoints it is possible to have an unchanging
11688          * timeout.
11689          */
11690         if (npkts < rcv_intr_count) {
11691                 /*
11692                  * Not enough packets arrived before the timeout, adjust
11693                  * timeout downward.
11694                  */
11695                 if (timeout < 2) /* already at minimum? */
11696                         return;
11697                 timeout >>= 1;
11698         } else {
11699                 /*
11700                  * More than enough packets arrived before the timeout, adjust
11701                  * timeout upward.
11702                  */
11703                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11704                         return;
11705                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11706         }
11707
11708         rcd->rcvavail_timeout = timeout;
11709         /*
11710          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11711          * been verified to be in range
11712          */
11713         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11714                         (u64)timeout <<
11715                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11716 }
11717
11718 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11719                     u32 intr_adjust, u32 npkts)
11720 {
11721         struct hfi1_devdata *dd = rcd->dd;
11722         u64 reg;
11723         u32 ctxt = rcd->ctxt;
11724
11725         /*
11726          * Need to write timeout register before updating RcvHdrHead to ensure
11727          * that a new value is used when the HW decides to restart counting.
11728          */
11729         if (intr_adjust)
11730                 adjust_rcv_timeout(rcd, npkts);
11731         if (updegr) {
11732                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11733                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11734                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11735         }
11736         mmiowb();
11737         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11738                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11739                         << RCV_HDR_HEAD_HEAD_SHIFT);
11740         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11741         mmiowb();
11742 }
11743
11744 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11745 {
11746         u32 head, tail;
11747
11748         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11749                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11750
11751         if (rcd->rcvhdrtail_kvaddr)
11752                 tail = get_rcvhdrtail(rcd);
11753         else
11754                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11755
11756         return head == tail;
11757 }
11758
11759 /*
11760  * Context Control and Receive Array encoding for buffer size:
11761  *      0x0 invalid
11762  *      0x1   4 KB
11763  *      0x2   8 KB
11764  *      0x3  16 KB
11765  *      0x4  32 KB
11766  *      0x5  64 KB
11767  *      0x6 128 KB
11768  *      0x7 256 KB
11769  *      0x8 512 KB (Receive Array only)
11770  *      0x9   1 MB (Receive Array only)
11771  *      0xa   2 MB (Receive Array only)
11772  *
11773  *      0xB-0xF - reserved (Receive Array only)
11774  *
11775  *
11776  * This routine assumes that the value has already been sanity checked.
11777  */
11778 static u32 encoded_size(u32 size)
11779 {
11780         switch (size) {
11781         case   4 * 1024: return 0x1;
11782         case   8 * 1024: return 0x2;
11783         case  16 * 1024: return 0x3;
11784         case  32 * 1024: return 0x4;
11785         case  64 * 1024: return 0x5;
11786         case 128 * 1024: return 0x6;
11787         case 256 * 1024: return 0x7;
11788         case 512 * 1024: return 0x8;
11789         case   1 * 1024 * 1024: return 0x9;
11790         case   2 * 1024 * 1024: return 0xa;
11791         }
11792         return 0x1;     /* if invalid, go with the minimum size */
11793 }
11794
11795 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11796                   struct hfi1_ctxtdata *rcd)
11797 {
11798         u64 rcvctrl, reg;
11799         int did_enable = 0;
11800         u16 ctxt;
11801
11802         if (!rcd)
11803                 return;
11804
11805         ctxt = rcd->ctxt;
11806
11807         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11808
11809         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11810         /* if the context already enabled, don't do the extra steps */
11811         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11812             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11813                 /* reset the tail and hdr addresses, and sequence count */
11814                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11815                                 rcd->rcvhdrq_dma);
11816                 if (rcd->rcvhdrtail_kvaddr)
11817                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11818                                         rcd->rcvhdrqtailaddr_dma);
11819                 rcd->seq_cnt = 1;
11820
11821                 /* reset the cached receive header queue head value */
11822                 rcd->head = 0;
11823
11824                 /*
11825                  * Zero the receive header queue so we don't get false
11826                  * positives when checking the sequence number.  The
11827                  * sequence numbers could land exactly on the same spot.
11828                  * E.g. a rcd restart before the receive header wrapped.
11829                  */
11830                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11831
11832                 /* starting timeout */
11833                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11834
11835                 /* enable the context */
11836                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11837
11838                 /* clean the egr buffer size first */
11839                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11840                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11841                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11842                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11843
11844                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11845                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11846                 did_enable = 1;
11847
11848                 /* zero RcvEgrIndexHead */
11849                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11850
11851                 /* set eager count and base index */
11852                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11853                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11854                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11855                         (((rcd->eager_base >> RCV_SHIFT)
11856                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11857                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11858                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11859
11860                 /*
11861                  * Set TID (expected) count and base index.
11862                  * rcd->expected_count is set to individual RcvArray entries,
11863                  * not pairs, and the CSR takes a pair-count in groups of
11864                  * four, so divide by 8.
11865                  */
11866                 reg = (((rcd->expected_count >> RCV_SHIFT)
11867                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11868                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11869                       (((rcd->expected_base >> RCV_SHIFT)
11870                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11871                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11872                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11873                 if (ctxt == HFI1_CTRL_CTXT)
11874                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11875         }
11876         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11877                 write_csr(dd, RCV_VL15, 0);
11878                 /*
11879                  * When receive context is being disabled turn on tail
11880                  * update with a dummy tail address and then disable
11881                  * receive context.
11882                  */
11883                 if (dd->rcvhdrtail_dummy_dma) {
11884                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11885                                         dd->rcvhdrtail_dummy_dma);
11886                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11887                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11888                 }
11889
11890                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11891         }
11892         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11893                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11894         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11895                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11896         if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11897                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11898         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11899                 /* See comment on RcvCtxtCtrl.TailUpd above */
11900                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11901                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11902         }
11903         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11904                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11905         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11906                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11907         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11908                 /*
11909                  * In one-packet-per-eager mode, the size comes from
11910                  * the RcvArray entry.
11911                  */
11912                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11913                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11914         }
11915         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11916                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11917         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11918                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11919         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11920                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11921         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11922                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11923         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11924                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11925         rcd->rcvctrl = rcvctrl;
11926         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11927         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11928
11929         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11930         if (did_enable &&
11931             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11932                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11933                 if (reg != 0) {
11934                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11935                                     ctxt, reg);
11936                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11937                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11938                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11939                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11940                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11941                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11942                                     ctxt, reg, reg == 0 ? "not" : "still");
11943                 }
11944         }
11945
11946         if (did_enable) {
11947                 /*
11948                  * The interrupt timeout and count must be set after
11949                  * the context is enabled to take effect.
11950                  */
11951                 /* set interrupt timeout */
11952                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11953                                 (u64)rcd->rcvavail_timeout <<
11954                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11955
11956                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11957                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11958                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11959         }
11960
11961         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11962                 /*
11963                  * If the context has been disabled and the Tail Update has
11964                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11965                  * so it doesn't contain an address that is invalid.
11966                  */
11967                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11968                                 dd->rcvhdrtail_dummy_dma);
11969 }
11970
11971 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11972 {
11973         int ret;
11974         u64 val = 0;
11975
11976         if (namep) {
11977                 ret = dd->cntrnameslen;
11978                 *namep = dd->cntrnames;
11979         } else {
11980                 const struct cntr_entry *entry;
11981                 int i, j;
11982
11983                 ret = (dd->ndevcntrs) * sizeof(u64);
11984
11985                 /* Get the start of the block of counters */
11986                 *cntrp = dd->cntrs;
11987
11988                 /*
11989                  * Now go and fill in each counter in the block.
11990                  */
11991                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11992                         entry = &dev_cntrs[i];
11993                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11994                         if (entry->flags & CNTR_DISABLED) {
11995                                 /* Nothing */
11996                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11997                         } else {
11998                                 if (entry->flags & CNTR_VL) {
11999                                         hfi1_cdbg(CNTR, "\tPer VL\n");
12000                                         for (j = 0; j < C_VL_COUNT; j++) {
12001                                                 val = entry->rw_cntr(entry,
12002                                                                   dd, j,
12003                                                                   CNTR_MODE_R,
12004                                                                   0);
12005                                                 hfi1_cdbg(
12006                                                    CNTR,
12007                                                    "\t\tRead 0x%llx for %d\n",
12008                                                    val, j);
12009                                                 dd->cntrs[entry->offset + j] =
12010                                                                             val;
12011                                         }
12012                                 } else if (entry->flags & CNTR_SDMA) {
12013                                         hfi1_cdbg(CNTR,
12014                                                   "\t Per SDMA Engine\n");
12015                                         for (j = 0; j < dd->chip_sdma_engines;
12016                                              j++) {
12017                                                 val =
12018                                                 entry->rw_cntr(entry, dd, j,
12019                                                                CNTR_MODE_R, 0);
12020                                                 hfi1_cdbg(CNTR,
12021                                                           "\t\tRead 0x%llx for %d\n",
12022                                                           val, j);
12023                                                 dd->cntrs[entry->offset + j] =
12024                                                                         val;
12025                                         }
12026                                 } else {
12027                                         val = entry->rw_cntr(entry, dd,
12028                                                         CNTR_INVALID_VL,
12029                                                         CNTR_MODE_R, 0);
12030                                         dd->cntrs[entry->offset] = val;
12031                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12032                                 }
12033                         }
12034                 }
12035         }
12036         return ret;
12037 }
12038
12039 /*
12040  * Used by sysfs to create files for hfi stats to read
12041  */
12042 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12043 {
12044         int ret;
12045         u64 val = 0;
12046
12047         if (namep) {
12048                 ret = ppd->dd->portcntrnameslen;
12049                 *namep = ppd->dd->portcntrnames;
12050         } else {
12051                 const struct cntr_entry *entry;
12052                 int i, j;
12053
12054                 ret = ppd->dd->nportcntrs * sizeof(u64);
12055                 *cntrp = ppd->cntrs;
12056
12057                 for (i = 0; i < PORT_CNTR_LAST; i++) {
12058                         entry = &port_cntrs[i];
12059                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12060                         if (entry->flags & CNTR_DISABLED) {
12061                                 /* Nothing */
12062                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12063                                 continue;
12064                         }
12065
12066                         if (entry->flags & CNTR_VL) {
12067                                 hfi1_cdbg(CNTR, "\tPer VL");
12068                                 for (j = 0; j < C_VL_COUNT; j++) {
12069                                         val = entry->rw_cntr(entry, ppd, j,
12070                                                                CNTR_MODE_R,
12071                                                                0);
12072                                         hfi1_cdbg(
12073                                            CNTR,
12074                                            "\t\tRead 0x%llx for %d",
12075                                            val, j);
12076                                         ppd->cntrs[entry->offset + j] = val;
12077                                 }
12078                         } else {
12079                                 val = entry->rw_cntr(entry, ppd,
12080                                                        CNTR_INVALID_VL,
12081                                                        CNTR_MODE_R,
12082                                                        0);
12083                                 ppd->cntrs[entry->offset] = val;
12084                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12085                         }
12086                 }
12087         }
12088         return ret;
12089 }
12090
12091 static void free_cntrs(struct hfi1_devdata *dd)
12092 {
12093         struct hfi1_pportdata *ppd;
12094         int i;
12095
12096         if (dd->synth_stats_timer.data)
12097                 del_timer_sync(&dd->synth_stats_timer);
12098         dd->synth_stats_timer.data = 0;
12099         ppd = (struct hfi1_pportdata *)(dd + 1);
12100         for (i = 0; i < dd->num_pports; i++, ppd++) {
12101                 kfree(ppd->cntrs);
12102                 kfree(ppd->scntrs);
12103                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12104                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12105                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12106                 ppd->cntrs = NULL;
12107                 ppd->scntrs = NULL;
12108                 ppd->ibport_data.rvp.rc_acks = NULL;
12109                 ppd->ibport_data.rvp.rc_qacks = NULL;
12110                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12111         }
12112         kfree(dd->portcntrnames);
12113         dd->portcntrnames = NULL;
12114         kfree(dd->cntrs);
12115         dd->cntrs = NULL;
12116         kfree(dd->scntrs);
12117         dd->scntrs = NULL;
12118         kfree(dd->cntrnames);
12119         dd->cntrnames = NULL;
12120         if (dd->update_cntr_wq) {
12121                 destroy_workqueue(dd->update_cntr_wq);
12122                 dd->update_cntr_wq = NULL;
12123         }
12124 }
12125
12126 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12127                               u64 *psval, void *context, int vl)
12128 {
12129         u64 val;
12130         u64 sval = *psval;
12131
12132         if (entry->flags & CNTR_DISABLED) {
12133                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12134                 return 0;
12135         }
12136
12137         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12138
12139         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12140
12141         /* If its a synthetic counter there is more work we need to do */
12142         if (entry->flags & CNTR_SYNTH) {
12143                 if (sval == CNTR_MAX) {
12144                         /* No need to read already saturated */
12145                         return CNTR_MAX;
12146                 }
12147
12148                 if (entry->flags & CNTR_32BIT) {
12149                         /* 32bit counters can wrap multiple times */
12150                         u64 upper = sval >> 32;
12151                         u64 lower = (sval << 32) >> 32;
12152
12153                         if (lower > val) { /* hw wrapped */
12154                                 if (upper == CNTR_32BIT_MAX)
12155                                         val = CNTR_MAX;
12156                                 else
12157                                         upper++;
12158                         }
12159
12160                         if (val != CNTR_MAX)
12161                                 val = (upper << 32) | val;
12162
12163                 } else {
12164                         /* If we rolled we are saturated */
12165                         if ((val < sval) || (val > CNTR_MAX))
12166                                 val = CNTR_MAX;
12167                 }
12168         }
12169
12170         *psval = val;
12171
12172         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12173
12174         return val;
12175 }
12176
12177 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12178                                struct cntr_entry *entry,
12179                                u64 *psval, void *context, int vl, u64 data)
12180 {
12181         u64 val;
12182
12183         if (entry->flags & CNTR_DISABLED) {
12184                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12185                 return 0;
12186         }
12187
12188         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12189
12190         if (entry->flags & CNTR_SYNTH) {
12191                 *psval = data;
12192                 if (entry->flags & CNTR_32BIT) {
12193                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12194                                              (data << 32) >> 32);
12195                         val = data; /* return the full 64bit value */
12196                 } else {
12197                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12198                                              data);
12199                 }
12200         } else {
12201                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12202         }
12203
12204         *psval = val;
12205
12206         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12207
12208         return val;
12209 }
12210
12211 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12212 {
12213         struct cntr_entry *entry;
12214         u64 *sval;
12215
12216         entry = &dev_cntrs[index];
12217         sval = dd->scntrs + entry->offset;
12218
12219         if (vl != CNTR_INVALID_VL)
12220                 sval += vl;
12221
12222         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12223 }
12224
12225 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12226 {
12227         struct cntr_entry *entry;
12228         u64 *sval;
12229
12230         entry = &dev_cntrs[index];
12231         sval = dd->scntrs + entry->offset;
12232
12233         if (vl != CNTR_INVALID_VL)
12234                 sval += vl;
12235
12236         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12237 }
12238
12239 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12240 {
12241         struct cntr_entry *entry;
12242         u64 *sval;
12243
12244         entry = &port_cntrs[index];
12245         sval = ppd->scntrs + entry->offset;
12246
12247         if (vl != CNTR_INVALID_VL)
12248                 sval += vl;
12249
12250         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12251             (index <= C_RCV_HDR_OVF_LAST)) {
12252                 /* We do not want to bother for disabled contexts */
12253                 return 0;
12254         }
12255
12256         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12257 }
12258
12259 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12260 {
12261         struct cntr_entry *entry;
12262         u64 *sval;
12263
12264         entry = &port_cntrs[index];
12265         sval = ppd->scntrs + entry->offset;
12266
12267         if (vl != CNTR_INVALID_VL)
12268                 sval += vl;
12269
12270         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12271             (index <= C_RCV_HDR_OVF_LAST)) {
12272                 /* We do not want to bother for disabled contexts */
12273                 return 0;
12274         }
12275
12276         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12277 }
12278
12279 static void do_update_synth_timer(struct work_struct *work)
12280 {
12281         u64 cur_tx;
12282         u64 cur_rx;
12283         u64 total_flits;
12284         u8 update = 0;
12285         int i, j, vl;
12286         struct hfi1_pportdata *ppd;
12287         struct cntr_entry *entry;
12288         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12289                                                update_cntr_work);
12290
12291         /*
12292          * Rather than keep beating on the CSRs pick a minimal set that we can
12293          * check to watch for potential roll over. We can do this by looking at
12294          * the number of flits sent/recv. If the total flits exceeds 32bits then
12295          * we have to iterate all the counters and update.
12296          */
12297         entry = &dev_cntrs[C_DC_RCV_FLITS];
12298         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12299
12300         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12301         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12302
12303         hfi1_cdbg(
12304             CNTR,
12305             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12306             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12307
12308         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12309                 /*
12310                  * May not be strictly necessary to update but it won't hurt and
12311                  * simplifies the logic here.
12312                  */
12313                 update = 1;
12314                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12315                           dd->unit);
12316         } else {
12317                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12318                 hfi1_cdbg(CNTR,
12319                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12320                           total_flits, (u64)CNTR_32BIT_MAX);
12321                 if (total_flits >= CNTR_32BIT_MAX) {
12322                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12323                                   dd->unit);
12324                         update = 1;
12325                 }
12326         }
12327
12328         if (update) {
12329                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12330                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12331                         entry = &dev_cntrs[i];
12332                         if (entry->flags & CNTR_VL) {
12333                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12334                                         read_dev_cntr(dd, i, vl);
12335                         } else {
12336                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12337                         }
12338                 }
12339                 ppd = (struct hfi1_pportdata *)(dd + 1);
12340                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12341                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12342                                 entry = &port_cntrs[j];
12343                                 if (entry->flags & CNTR_VL) {
12344                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12345                                                 read_port_cntr(ppd, j, vl);
12346                                 } else {
12347                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12348                                 }
12349                         }
12350                 }
12351
12352                 /*
12353                  * We want the value in the register. The goal is to keep track
12354                  * of the number of "ticks" not the counter value. In other
12355                  * words if the register rolls we want to notice it and go ahead
12356                  * and force an update.
12357                  */
12358                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12359                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12360                                                 CNTR_MODE_R, 0);
12361
12362                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12363                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12364                                                 CNTR_MODE_R, 0);
12365
12366                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12367                           dd->unit, dd->last_tx, dd->last_rx);
12368
12369         } else {
12370                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12371         }
12372 }
12373
12374 static void update_synth_timer(unsigned long opaque)
12375 {
12376         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12377
12378         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12379         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12380 }
12381
12382 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12383 static int init_cntrs(struct hfi1_devdata *dd)
12384 {
12385         int i, rcv_ctxts, j;
12386         size_t sz;
12387         char *p;
12388         char name[C_MAX_NAME];
12389         struct hfi1_pportdata *ppd;
12390         const char *bit_type_32 = ",32";
12391         const int bit_type_32_sz = strlen(bit_type_32);
12392
12393         /* set up the stats timer; the add_timer is done at the end */
12394         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12395                     (unsigned long)dd);
12396
12397         /***********************/
12398         /* per device counters */
12399         /***********************/
12400
12401         /* size names and determine how many we have*/
12402         dd->ndevcntrs = 0;
12403         sz = 0;
12404
12405         for (i = 0; i < DEV_CNTR_LAST; i++) {
12406                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12407                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12408                         continue;
12409                 }
12410
12411                 if (dev_cntrs[i].flags & CNTR_VL) {
12412                         dev_cntrs[i].offset = dd->ndevcntrs;
12413                         for (j = 0; j < C_VL_COUNT; j++) {
12414                                 snprintf(name, C_MAX_NAME, "%s%d",
12415                                          dev_cntrs[i].name, vl_from_idx(j));
12416                                 sz += strlen(name);
12417                                 /* Add ",32" for 32-bit counters */
12418                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12419                                         sz += bit_type_32_sz;
12420                                 sz++;
12421                                 dd->ndevcntrs++;
12422                         }
12423                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12424                         dev_cntrs[i].offset = dd->ndevcntrs;
12425                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12426                                 snprintf(name, C_MAX_NAME, "%s%d",
12427                                          dev_cntrs[i].name, j);
12428                                 sz += strlen(name);
12429                                 /* Add ",32" for 32-bit counters */
12430                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12431                                         sz += bit_type_32_sz;
12432                                 sz++;
12433                                 dd->ndevcntrs++;
12434                         }
12435                 } else {
12436                         /* +1 for newline. */
12437                         sz += strlen(dev_cntrs[i].name) + 1;
12438                         /* Add ",32" for 32-bit counters */
12439                         if (dev_cntrs[i].flags & CNTR_32BIT)
12440                                 sz += bit_type_32_sz;
12441                         dev_cntrs[i].offset = dd->ndevcntrs;
12442                         dd->ndevcntrs++;
12443                 }
12444         }
12445
12446         /* allocate space for the counter values */
12447         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12448         if (!dd->cntrs)
12449                 goto bail;
12450
12451         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12452         if (!dd->scntrs)
12453                 goto bail;
12454
12455         /* allocate space for the counter names */
12456         dd->cntrnameslen = sz;
12457         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12458         if (!dd->cntrnames)
12459                 goto bail;
12460
12461         /* fill in the names */
12462         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12463                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12464                         /* Nothing */
12465                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12466                         for (j = 0; j < C_VL_COUNT; j++) {
12467                                 snprintf(name, C_MAX_NAME, "%s%d",
12468                                          dev_cntrs[i].name,
12469                                          vl_from_idx(j));
12470                                 memcpy(p, name, strlen(name));
12471                                 p += strlen(name);
12472
12473                                 /* Counter is 32 bits */
12474                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12475                                         memcpy(p, bit_type_32, bit_type_32_sz);
12476                                         p += bit_type_32_sz;
12477                                 }
12478
12479                                 *p++ = '\n';
12480                         }
12481                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12482                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12483                                 snprintf(name, C_MAX_NAME, "%s%d",
12484                                          dev_cntrs[i].name, j);
12485                                 memcpy(p, name, strlen(name));
12486                                 p += strlen(name);
12487
12488                                 /* Counter is 32 bits */
12489                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12490                                         memcpy(p, bit_type_32, bit_type_32_sz);
12491                                         p += bit_type_32_sz;
12492                                 }
12493
12494                                 *p++ = '\n';
12495                         }
12496                 } else {
12497                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12498                         p += strlen(dev_cntrs[i].name);
12499
12500                         /* Counter is 32 bits */
12501                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12502                                 memcpy(p, bit_type_32, bit_type_32_sz);
12503                                 p += bit_type_32_sz;
12504                         }
12505
12506                         *p++ = '\n';
12507                 }
12508         }
12509
12510         /*********************/
12511         /* per port counters */
12512         /*********************/
12513
12514         /*
12515          * Go through the counters for the overflows and disable the ones we
12516          * don't need. This varies based on platform so we need to do it
12517          * dynamically here.
12518          */
12519         rcv_ctxts = dd->num_rcv_contexts;
12520         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12521              i <= C_RCV_HDR_OVF_LAST; i++) {
12522                 port_cntrs[i].flags |= CNTR_DISABLED;
12523         }
12524
12525         /* size port counter names and determine how many we have*/
12526         sz = 0;
12527         dd->nportcntrs = 0;
12528         for (i = 0; i < PORT_CNTR_LAST; i++) {
12529                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12530                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12531                         continue;
12532                 }
12533
12534                 if (port_cntrs[i].flags & CNTR_VL) {
12535                         port_cntrs[i].offset = dd->nportcntrs;
12536                         for (j = 0; j < C_VL_COUNT; j++) {
12537                                 snprintf(name, C_MAX_NAME, "%s%d",
12538                                          port_cntrs[i].name, vl_from_idx(j));
12539                                 sz += strlen(name);
12540                                 /* Add ",32" for 32-bit counters */
12541                                 if (port_cntrs[i].flags & CNTR_32BIT)
12542                                         sz += bit_type_32_sz;
12543                                 sz++;
12544                                 dd->nportcntrs++;
12545                         }
12546                 } else {
12547                         /* +1 for newline */
12548                         sz += strlen(port_cntrs[i].name) + 1;
12549                         /* Add ",32" for 32-bit counters */
12550                         if (port_cntrs[i].flags & CNTR_32BIT)
12551                                 sz += bit_type_32_sz;
12552                         port_cntrs[i].offset = dd->nportcntrs;
12553                         dd->nportcntrs++;
12554                 }
12555         }
12556
12557         /* allocate space for the counter names */
12558         dd->portcntrnameslen = sz;
12559         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12560         if (!dd->portcntrnames)
12561                 goto bail;
12562
12563         /* fill in port cntr names */
12564         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12565                 if (port_cntrs[i].flags & CNTR_DISABLED)
12566                         continue;
12567
12568                 if (port_cntrs[i].flags & CNTR_VL) {
12569                         for (j = 0; j < C_VL_COUNT; j++) {
12570                                 snprintf(name, C_MAX_NAME, "%s%d",
12571                                          port_cntrs[i].name, vl_from_idx(j));
12572                                 memcpy(p, name, strlen(name));
12573                                 p += strlen(name);
12574
12575                                 /* Counter is 32 bits */
12576                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12577                                         memcpy(p, bit_type_32, bit_type_32_sz);
12578                                         p += bit_type_32_sz;
12579                                 }
12580
12581                                 *p++ = '\n';
12582                         }
12583                 } else {
12584                         memcpy(p, port_cntrs[i].name,
12585                                strlen(port_cntrs[i].name));
12586                         p += strlen(port_cntrs[i].name);
12587
12588                         /* Counter is 32 bits */
12589                         if (port_cntrs[i].flags & CNTR_32BIT) {
12590                                 memcpy(p, bit_type_32, bit_type_32_sz);
12591                                 p += bit_type_32_sz;
12592                         }
12593
12594                         *p++ = '\n';
12595                 }
12596         }
12597
12598         /* allocate per port storage for counter values */
12599         ppd = (struct hfi1_pportdata *)(dd + 1);
12600         for (i = 0; i < dd->num_pports; i++, ppd++) {
12601                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12602                 if (!ppd->cntrs)
12603                         goto bail;
12604
12605                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12606                 if (!ppd->scntrs)
12607                         goto bail;
12608         }
12609
12610         /* CPU counters need to be allocated and zeroed */
12611         if (init_cpu_counters(dd))
12612                 goto bail;
12613
12614         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12615                                                      WQ_MEM_RECLAIM, dd->unit);
12616         if (!dd->update_cntr_wq)
12617                 goto bail;
12618
12619         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12620
12621         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12622         return 0;
12623 bail:
12624         free_cntrs(dd);
12625         return -ENOMEM;
12626 }
12627
12628 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12629 {
12630         switch (chip_lstate) {
12631         default:
12632                 dd_dev_err(dd,
12633                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12634                            chip_lstate);
12635                 /* fall through */
12636         case LSTATE_DOWN:
12637                 return IB_PORT_DOWN;
12638         case LSTATE_INIT:
12639                 return IB_PORT_INIT;
12640         case LSTATE_ARMED:
12641                 return IB_PORT_ARMED;
12642         case LSTATE_ACTIVE:
12643                 return IB_PORT_ACTIVE;
12644         }
12645 }
12646
12647 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12648 {
12649         /* look at the HFI meta-states only */
12650         switch (chip_pstate & 0xf0) {
12651         default:
12652                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12653                            chip_pstate);
12654                 /* fall through */
12655         case PLS_DISABLED:
12656                 return IB_PORTPHYSSTATE_DISABLED;
12657         case PLS_OFFLINE:
12658                 return OPA_PORTPHYSSTATE_OFFLINE;
12659         case PLS_POLLING:
12660                 return IB_PORTPHYSSTATE_POLLING;
12661         case PLS_CONFIGPHY:
12662                 return IB_PORTPHYSSTATE_TRAINING;
12663         case PLS_LINKUP:
12664                 return IB_PORTPHYSSTATE_LINKUP;
12665         case PLS_PHYTEST:
12666                 return IB_PORTPHYSSTATE_PHY_TEST;
12667         }
12668 }
12669
12670 /* return the OPA port logical state name */
12671 const char *opa_lstate_name(u32 lstate)
12672 {
12673         static const char * const port_logical_names[] = {
12674                 "PORT_NOP",
12675                 "PORT_DOWN",
12676                 "PORT_INIT",
12677                 "PORT_ARMED",
12678                 "PORT_ACTIVE",
12679                 "PORT_ACTIVE_DEFER",
12680         };
12681         if (lstate < ARRAY_SIZE(port_logical_names))
12682                 return port_logical_names[lstate];
12683         return "unknown";
12684 }
12685
12686 /* return the OPA port physical state name */
12687 const char *opa_pstate_name(u32 pstate)
12688 {
12689         static const char * const port_physical_names[] = {
12690                 "PHYS_NOP",
12691                 "reserved1",
12692                 "PHYS_POLL",
12693                 "PHYS_DISABLED",
12694                 "PHYS_TRAINING",
12695                 "PHYS_LINKUP",
12696                 "PHYS_LINK_ERR_RECOVER",
12697                 "PHYS_PHY_TEST",
12698                 "reserved8",
12699                 "PHYS_OFFLINE",
12700                 "PHYS_GANGED",
12701                 "PHYS_TEST",
12702         };
12703         if (pstate < ARRAY_SIZE(port_physical_names))
12704                 return port_physical_names[pstate];
12705         return "unknown";
12706 }
12707
12708 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12709 {
12710         /*
12711          * Set port status flags in the page mapped into userspace
12712          * memory. Do it here to ensure a reliable state - this is
12713          * the only function called by all state handling code.
12714          * Always set the flags due to the fact that the cache value
12715          * might have been changed explicitly outside of this
12716          * function.
12717          */
12718         if (ppd->statusp) {
12719                 switch (state) {
12720                 case IB_PORT_DOWN:
12721                 case IB_PORT_INIT:
12722                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12723                                            HFI1_STATUS_IB_READY);
12724                         break;
12725                 case IB_PORT_ARMED:
12726                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12727                         break;
12728                 case IB_PORT_ACTIVE:
12729                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12730                         break;
12731                 }
12732         }
12733 }
12734
12735 /*
12736  * wait_logical_linkstate - wait for an IB link state change to occur
12737  * @ppd: port device
12738  * @state: the state to wait for
12739  * @msecs: the number of milliseconds to wait
12740  *
12741  * Wait up to msecs milliseconds for IB link state change to occur.
12742  * For now, take the easy polling route.
12743  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12744  */
12745 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12746                                   int msecs)
12747 {
12748         unsigned long timeout;
12749         u32 new_state;
12750
12751         timeout = jiffies + msecs_to_jiffies(msecs);
12752         while (1) {
12753                 new_state = chip_to_opa_lstate(ppd->dd,
12754                                                read_logical_state(ppd->dd));
12755                 if (new_state == state)
12756                         break;
12757                 if (time_after(jiffies, timeout)) {
12758                         dd_dev_err(ppd->dd,
12759                                    "timeout waiting for link state 0x%x\n",
12760                                    state);
12761                         return -ETIMEDOUT;
12762                 }
12763                 msleep(20);
12764         }
12765
12766         update_statusp(ppd, state);
12767         dd_dev_info(ppd->dd,
12768                     "logical state changed to %s (0x%x)\n",
12769                     opa_lstate_name(state),
12770                     state);
12771         return 0;
12772 }
12773
12774 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12775 {
12776         u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12777
12778         dd_dev_info(ppd->dd,
12779                     "physical state changed to %s (0x%x), phy 0x%x\n",
12780                     opa_pstate_name(ib_pstate), ib_pstate, state);
12781 }
12782
12783 /*
12784  * Read the physical hardware link state and check if it matches host
12785  * drivers anticipated state.
12786  */
12787 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12788 {
12789         u32 read_state = read_physical_state(ppd->dd);
12790
12791         if (read_state == state) {
12792                 log_state_transition(ppd, state);
12793         } else {
12794                 dd_dev_err(ppd->dd,
12795                            "anticipated phy link state 0x%x, read 0x%x\n",
12796                            state, read_state);
12797         }
12798 }
12799
12800 /*
12801  * wait_physical_linkstate - wait for an physical link state change to occur
12802  * @ppd: port device
12803  * @state: the state to wait for
12804  * @msecs: the number of milliseconds to wait
12805  *
12806  * Wait up to msecs milliseconds for physical link state change to occur.
12807  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12808  */
12809 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12810                                    int msecs)
12811 {
12812         u32 read_state;
12813         unsigned long timeout;
12814
12815         timeout = jiffies + msecs_to_jiffies(msecs);
12816         while (1) {
12817                 read_state = read_physical_state(ppd->dd);
12818                 if (read_state == state)
12819                         break;
12820                 if (time_after(jiffies, timeout)) {
12821                         dd_dev_err(ppd->dd,
12822                                    "timeout waiting for phy link state 0x%x\n",
12823                                    state);
12824                         return -ETIMEDOUT;
12825                 }
12826                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12827         }
12828
12829         log_state_transition(ppd, state);
12830         return 0;
12831 }
12832
12833 /*
12834  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12835  * @ppd: port device
12836  * @msecs: the number of milliseconds to wait
12837  *
12838  * Wait up to msecs milliseconds for any offline physical link
12839  * state change to occur.
12840  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12841  */
12842 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12843                                             int msecs)
12844 {
12845         u32 read_state;
12846         unsigned long timeout;
12847
12848         timeout = jiffies + msecs_to_jiffies(msecs);
12849         while (1) {
12850                 read_state = read_physical_state(ppd->dd);
12851                 if ((read_state & 0xF0) == PLS_OFFLINE)
12852                         break;
12853                 if (time_after(jiffies, timeout)) {
12854                         dd_dev_err(ppd->dd,
12855                                    "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12856                                    read_state, msecs);
12857                         return -ETIMEDOUT;
12858                 }
12859                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12860         }
12861
12862         log_state_transition(ppd, read_state);
12863         return read_state;
12864 }
12865
12866 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12867 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12868
12869 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12870 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12871
12872 void hfi1_init_ctxt(struct send_context *sc)
12873 {
12874         if (sc) {
12875                 struct hfi1_devdata *dd = sc->dd;
12876                 u64 reg;
12877                 u8 set = (sc->type == SC_USER ?
12878                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12879                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12880                 reg = read_kctxt_csr(dd, sc->hw_context,
12881                                      SEND_CTXT_CHECK_ENABLE);
12882                 if (set)
12883                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12884                 else
12885                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12886                 write_kctxt_csr(dd, sc->hw_context,
12887                                 SEND_CTXT_CHECK_ENABLE, reg);
12888         }
12889 }
12890
12891 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12892 {
12893         int ret = 0;
12894         u64 reg;
12895
12896         if (dd->icode != ICODE_RTL_SILICON) {
12897                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12898                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12899                                     __func__);
12900                 return -EINVAL;
12901         }
12902         reg = read_csr(dd, ASIC_STS_THERM);
12903         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12904                       ASIC_STS_THERM_CURR_TEMP_MASK);
12905         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12906                         ASIC_STS_THERM_LO_TEMP_MASK);
12907         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12908                         ASIC_STS_THERM_HI_TEMP_MASK);
12909         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12910                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12911         /* triggers is a 3-bit value - 1 bit per trigger. */
12912         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12913
12914         return ret;
12915 }
12916
12917 /* ========================================================================= */
12918
12919 /*
12920  * Enable/disable chip from delivering interrupts.
12921  */
12922 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12923 {
12924         int i;
12925
12926         /*
12927          * In HFI, the mask needs to be 1 to allow interrupts.
12928          */
12929         if (enable) {
12930                 /* enable all interrupts */
12931                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12932                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12933
12934                 init_qsfp_int(dd);
12935         } else {
12936                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12937                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12938         }
12939 }
12940
12941 /*
12942  * Clear all interrupt sources on the chip.
12943  */
12944 static void clear_all_interrupts(struct hfi1_devdata *dd)
12945 {
12946         int i;
12947
12948         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12949                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12950
12951         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12952         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12953         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12954         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12955         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12956         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12957         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12958         for (i = 0; i < dd->chip_send_contexts; i++)
12959                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12960         for (i = 0; i < dd->chip_sdma_engines; i++)
12961                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12962
12963         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12964         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12965         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12966 }
12967
12968 /* Move to pcie.c? */
12969 static void disable_intx(struct pci_dev *pdev)
12970 {
12971         pci_intx(pdev, 0);
12972 }
12973
12974 /**
12975  * hfi1_clean_up_interrupts() - Free all IRQ resources
12976  * @dd: valid device data data structure
12977  *
12978  * Free the MSI or INTx IRQs and assoicated PCI resources,
12979  * if they have been allocated.
12980  */
12981 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
12982 {
12983         int i;
12984
12985         /* remove irqs - must happen before disabling/turning off */
12986         if (dd->num_msix_entries) {
12987                 /* MSI-X */
12988                 struct hfi1_msix_entry *me = dd->msix_entries;
12989
12990                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12991                         if (!me->arg) /* => no irq, no affinity */
12992                                 continue;
12993                         hfi1_put_irq_affinity(dd, me);
12994                         free_irq(me->irq, me->arg);
12995                 }
12996
12997                 /* clean structures */
12998                 kfree(dd->msix_entries);
12999                 dd->msix_entries = NULL;
13000                 dd->num_msix_entries = 0;
13001         } else {
13002                 /* INTx */
13003                 if (dd->requested_intx_irq) {
13004                         free_irq(dd->pcidev->irq, dd);
13005                         dd->requested_intx_irq = 0;
13006                 }
13007                 disable_intx(dd->pcidev);
13008         }
13009
13010         pci_free_irq_vectors(dd->pcidev);
13011 }
13012
13013 /*
13014  * Remap the interrupt source from the general handler to the given MSI-X
13015  * interrupt.
13016  */
13017 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13018 {
13019         u64 reg;
13020         int m, n;
13021
13022         /* clear from the handled mask of the general interrupt */
13023         m = isrc / 64;
13024         n = isrc % 64;
13025         if (likely(m < CCE_NUM_INT_CSRS)) {
13026                 dd->gi_mask[m] &= ~((u64)1 << n);
13027         } else {
13028                 dd_dev_err(dd, "remap interrupt err\n");
13029                 return;
13030         }
13031
13032         /* direct the chip source to the given MSI-X interrupt */
13033         m = isrc / 8;
13034         n = isrc % 8;
13035         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13036         reg &= ~((u64)0xff << (8 * n));
13037         reg |= ((u64)msix_intr & 0xff) << (8 * n);
13038         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13039 }
13040
13041 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13042                                   int engine, int msix_intr)
13043 {
13044         /*
13045          * SDMA engine interrupt sources grouped by type, rather than
13046          * engine.  Per-engine interrupts are as follows:
13047          *      SDMA
13048          *      SDMAProgress
13049          *      SDMAIdle
13050          */
13051         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13052                    msix_intr);
13053         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13054                    msix_intr);
13055         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13056                    msix_intr);
13057 }
13058
13059 static int request_intx_irq(struct hfi1_devdata *dd)
13060 {
13061         int ret;
13062
13063         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
13064                  dd->unit);
13065         ret = request_irq(dd->pcidev->irq, general_interrupt,
13066                           IRQF_SHARED, dd->intx_name, dd);
13067         if (ret)
13068                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13069                            ret);
13070         else
13071                 dd->requested_intx_irq = 1;
13072         return ret;
13073 }
13074
13075 static int request_msix_irqs(struct hfi1_devdata *dd)
13076 {
13077         int first_general, last_general;
13078         int first_sdma, last_sdma;
13079         int first_rx, last_rx;
13080         int i, ret = 0;
13081
13082         /* calculate the ranges we are going to use */
13083         first_general = 0;
13084         last_general = first_general + 1;
13085         first_sdma = last_general;
13086         last_sdma = first_sdma + dd->num_sdma;
13087         first_rx = last_sdma;
13088         last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13089
13090         /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13091         dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13092
13093         /*
13094          * Sanity check - the code expects all SDMA chip source
13095          * interrupts to be in the same CSR, starting at bit 0.  Verify
13096          * that this is true by checking the bit location of the start.
13097          */
13098         BUILD_BUG_ON(IS_SDMA_START % 64);
13099
13100         for (i = 0; i < dd->num_msix_entries; i++) {
13101                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13102                 const char *err_info;
13103                 irq_handler_t handler;
13104                 irq_handler_t thread = NULL;
13105                 void *arg = NULL;
13106                 int idx;
13107                 struct hfi1_ctxtdata *rcd = NULL;
13108                 struct sdma_engine *sde = NULL;
13109
13110                 /* obtain the arguments to request_irq */
13111                 if (first_general <= i && i < last_general) {
13112                         idx = i - first_general;
13113                         handler = general_interrupt;
13114                         arg = dd;
13115                         snprintf(me->name, sizeof(me->name),
13116                                  DRIVER_NAME "_%d", dd->unit);
13117                         err_info = "general";
13118                         me->type = IRQ_GENERAL;
13119                 } else if (first_sdma <= i && i < last_sdma) {
13120                         idx = i - first_sdma;
13121                         sde = &dd->per_sdma[idx];
13122                         handler = sdma_interrupt;
13123                         arg = sde;
13124                         snprintf(me->name, sizeof(me->name),
13125                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13126                         err_info = "sdma";
13127                         remap_sdma_interrupts(dd, idx, i);
13128                         me->type = IRQ_SDMA;
13129                 } else if (first_rx <= i && i < last_rx) {
13130                         idx = i - first_rx;
13131                         rcd = hfi1_rcd_get_by_index(dd, idx);
13132                         if (rcd) {
13133                                 /*
13134                                  * Set the interrupt register and mask for this
13135                                  * context's interrupt.
13136                                  */
13137                                 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13138                                 rcd->imask = ((u64)1) <<
13139                                           ((IS_RCVAVAIL_START + idx) % 64);
13140                                 handler = receive_context_interrupt;
13141                                 thread = receive_context_thread;
13142                                 arg = rcd;
13143                                 snprintf(me->name, sizeof(me->name),
13144                                          DRIVER_NAME "_%d kctxt%d",
13145                                          dd->unit, idx);
13146                                 err_info = "receive context";
13147                                 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13148                                 me->type = IRQ_RCVCTXT;
13149                                 rcd->msix_intr = i;
13150                                 hfi1_rcd_put(rcd);
13151                         }
13152                 } else {
13153                         /* not in our expected range - complain, then
13154                          * ignore it
13155                          */
13156                         dd_dev_err(dd,
13157                                    "Unexpected extra MSI-X interrupt %d\n", i);
13158                         continue;
13159                 }
13160                 /* no argument, no interrupt */
13161                 if (!arg)
13162                         continue;
13163                 /* make sure the name is terminated */
13164                 me->name[sizeof(me->name) - 1] = 0;
13165                 me->irq = pci_irq_vector(dd->pcidev, i);
13166                 /*
13167                  * On err return me->irq.  Don't need to clear this
13168                  * because 'arg' has not been set, and cleanup will
13169                  * do the right thing.
13170                  */
13171                 if (me->irq < 0)
13172                         return me->irq;
13173
13174                 ret = request_threaded_irq(me->irq, handler, thread, 0,
13175                                            me->name, arg);
13176                 if (ret) {
13177                         dd_dev_err(dd,
13178                                    "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13179                                    err_info, me->irq, idx, ret);
13180                         return ret;
13181                 }
13182                 /*
13183                  * assign arg after request_irq call, so it will be
13184                  * cleaned up
13185                  */
13186                 me->arg = arg;
13187
13188                 ret = hfi1_get_irq_affinity(dd, me);
13189                 if (ret)
13190                         dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13191         }
13192
13193         return ret;
13194 }
13195
13196 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13197 {
13198         int i;
13199
13200         if (!dd->num_msix_entries) {
13201                 synchronize_irq(dd->pcidev->irq);
13202                 return;
13203         }
13204
13205         for (i = 0; i < dd->vnic.num_ctxt; i++) {
13206                 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13207                 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13208
13209                 synchronize_irq(me->irq);
13210         }
13211 }
13212
13213 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13214 {
13215         struct hfi1_devdata *dd = rcd->dd;
13216         struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13217
13218         if (!me->arg) /* => no irq, no affinity */
13219                 return;
13220
13221         hfi1_put_irq_affinity(dd, me);
13222         free_irq(me->irq, me->arg);
13223
13224         me->arg = NULL;
13225 }
13226
13227 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13228 {
13229         struct hfi1_devdata *dd = rcd->dd;
13230         struct hfi1_msix_entry *me;
13231         int idx = rcd->ctxt;
13232         void *arg = rcd;
13233         int ret;
13234
13235         rcd->msix_intr = dd->vnic.msix_idx++;
13236         me = &dd->msix_entries[rcd->msix_intr];
13237
13238         /*
13239          * Set the interrupt register and mask for this
13240          * context's interrupt.
13241          */
13242         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13243         rcd->imask = ((u64)1) <<
13244                   ((IS_RCVAVAIL_START + idx) % 64);
13245
13246         snprintf(me->name, sizeof(me->name),
13247                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13248         me->name[sizeof(me->name) - 1] = 0;
13249         me->type = IRQ_RCVCTXT;
13250         me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13251         if (me->irq < 0) {
13252                 dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13253                            idx, me->irq);
13254                 return;
13255         }
13256         remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13257
13258         ret = request_threaded_irq(me->irq, receive_context_interrupt,
13259                                    receive_context_thread, 0, me->name, arg);
13260         if (ret) {
13261                 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13262                            me->irq, idx, ret);
13263                 return;
13264         }
13265         /*
13266          * assign arg after request_irq call, so it will be
13267          * cleaned up
13268          */
13269         me->arg = arg;
13270
13271         ret = hfi1_get_irq_affinity(dd, me);
13272         if (ret) {
13273                 dd_dev_err(dd,
13274                            "unable to pin IRQ %d\n", ret);
13275                 free_irq(me->irq, me->arg);
13276         }
13277 }
13278
13279 /*
13280  * Set the general handler to accept all interrupts, remap all
13281  * chip interrupts back to MSI-X 0.
13282  */
13283 static void reset_interrupts(struct hfi1_devdata *dd)
13284 {
13285         int i;
13286
13287         /* all interrupts handled by the general handler */
13288         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13289                 dd->gi_mask[i] = ~(u64)0;
13290
13291         /* all chip interrupts map to MSI-X 0 */
13292         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13293                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13294 }
13295
13296 static int set_up_interrupts(struct hfi1_devdata *dd)
13297 {
13298         u32 total;
13299         int ret, request;
13300         int single_interrupt = 0; /* we expect to have all the interrupts */
13301
13302         /*
13303          * Interrupt count:
13304          *      1 general, "slow path" interrupt (includes the SDMA engines
13305          *              slow source, SDMACleanupDone)
13306          *      N interrupts - one per used SDMA engine
13307          *      M interrupt - one per kernel receive context
13308          *      V interrupt - one for each VNIC context
13309          */
13310         total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13311
13312         /* ask for MSI-X interrupts */
13313         request = request_msix(dd, total);
13314         if (request < 0) {
13315                 ret = request;
13316                 goto fail;
13317         } else if (request == 0) {
13318                 /* using INTx */
13319                 /* dd->num_msix_entries already zero */
13320                 single_interrupt = 1;
13321                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13322         } else if (request < total) {
13323                 /* using MSI-X, with reduced interrupts */
13324                 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13325                            total, request);
13326                 ret = -EINVAL;
13327                 goto fail;
13328         } else {
13329                 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13330                                            GFP_KERNEL);
13331                 if (!dd->msix_entries) {
13332                         ret = -ENOMEM;
13333                         goto fail;
13334                 }
13335                 /* using MSI-X */
13336                 dd->num_msix_entries = total;
13337                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13338         }
13339
13340         /* mask all interrupts */
13341         set_intr_state(dd, 0);
13342         /* clear all pending interrupts */
13343         clear_all_interrupts(dd);
13344
13345         /* reset general handler mask, chip MSI-X mappings */
13346         reset_interrupts(dd);
13347
13348         if (single_interrupt)
13349                 ret = request_intx_irq(dd);
13350         else
13351                 ret = request_msix_irqs(dd);
13352         if (ret)
13353                 goto fail;
13354
13355         return 0;
13356
13357 fail:
13358         hfi1_clean_up_interrupts(dd);
13359         return ret;
13360 }
13361
13362 /*
13363  * Set up context values in dd.  Sets:
13364  *
13365  *      num_rcv_contexts - number of contexts being used
13366  *      n_krcv_queues - number of kernel contexts
13367  *      first_dyn_alloc_ctxt - first dynamically allocated context
13368  *                             in array of contexts
13369  *      freectxts  - number of free user contexts
13370  *      num_send_contexts - number of PIO send contexts being used
13371  *      num_vnic_contexts - number of contexts reserved for VNIC
13372  */
13373 static int set_up_context_variables(struct hfi1_devdata *dd)
13374 {
13375         unsigned long num_kernel_contexts;
13376         u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13377         int total_contexts;
13378         int ret;
13379         unsigned ngroups;
13380         int qos_rmt_count;
13381         int user_rmt_reduced;
13382
13383         /*
13384          * Kernel receive contexts:
13385          * - Context 0 - control context (VL15/multicast/error)
13386          * - Context 1 - first kernel context
13387          * - Context 2 - second kernel context
13388          * ...
13389          */
13390         if (n_krcvqs)
13391                 /*
13392                  * n_krcvqs is the sum of module parameter kernel receive
13393                  * contexts, krcvqs[].  It does not include the control
13394                  * context, so add that.
13395                  */
13396                 num_kernel_contexts = n_krcvqs + 1;
13397         else
13398                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13399         /*
13400          * Every kernel receive context needs an ACK send context.
13401          * one send context is allocated for each VL{0-7} and VL15
13402          */
13403         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13404                 dd_dev_err(dd,
13405                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13406                            (int)(dd->chip_send_contexts - num_vls - 1),
13407                            num_kernel_contexts);
13408                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13409         }
13410
13411         /* Accommodate VNIC contexts if possible */
13412         if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13413                 dd_dev_err(dd, "No receive contexts available for VNIC\n");
13414                 num_vnic_contexts = 0;
13415         }
13416         total_contexts = num_kernel_contexts + num_vnic_contexts;
13417
13418         /*
13419          * User contexts:
13420          *      - default to 1 user context per real (non-HT) CPU core if
13421          *        num_user_contexts is negative
13422          */
13423         if (num_user_contexts < 0)
13424                 num_user_contexts =
13425                         cpumask_weight(&node_affinity.real_cpu_mask);
13426
13427         /*
13428          * Adjust the counts given a global max.
13429          */
13430         if (total_contexts + num_user_contexts > dd->chip_rcv_contexts) {
13431                 dd_dev_err(dd,
13432                            "Reducing # user receive contexts to: %d, from %d\n",
13433                            (int)(dd->chip_rcv_contexts - total_contexts),
13434                            (int)num_user_contexts);
13435                 /* recalculate */
13436                 num_user_contexts = dd->chip_rcv_contexts - total_contexts;
13437         }
13438
13439         /* each user context requires an entry in the RMT */
13440         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13441         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13442                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13443                 dd_dev_err(dd,
13444                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13445                            (int)num_user_contexts,
13446                            user_rmt_reduced);
13447                 /* recalculate */
13448                 num_user_contexts = user_rmt_reduced;
13449         }
13450
13451         total_contexts += num_user_contexts;
13452
13453         /* the first N are kernel contexts, the rest are user/vnic contexts */
13454         dd->num_rcv_contexts = total_contexts;
13455         dd->n_krcv_queues = num_kernel_contexts;
13456         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13457         dd->num_vnic_contexts = num_vnic_contexts;
13458         dd->num_user_contexts = num_user_contexts;
13459         dd->freectxts = num_user_contexts;
13460         dd_dev_info(dd,
13461                     "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13462                     (int)dd->chip_rcv_contexts,
13463                     (int)dd->num_rcv_contexts,
13464                     (int)dd->n_krcv_queues,
13465                     dd->num_vnic_contexts,
13466                     dd->num_user_contexts);
13467
13468         /*
13469          * Receive array allocation:
13470          *   All RcvArray entries are divided into groups of 8. This
13471          *   is required by the hardware and will speed up writes to
13472          *   consecutive entries by using write-combining of the entire
13473          *   cacheline.
13474          *
13475          *   The number of groups are evenly divided among all contexts.
13476          *   any left over groups will be given to the first N user
13477          *   contexts.
13478          */
13479         dd->rcv_entries.group_size = RCV_INCREMENT;
13480         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13481         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13482         dd->rcv_entries.nctxt_extra = ngroups -
13483                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13484         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13485                     dd->rcv_entries.ngroups,
13486                     dd->rcv_entries.nctxt_extra);
13487         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13488             MAX_EAGER_ENTRIES * 2) {
13489                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13490                         dd->rcv_entries.group_size;
13491                 dd_dev_info(dd,
13492                             "RcvArray group count too high, change to %u\n",
13493                             dd->rcv_entries.ngroups);
13494                 dd->rcv_entries.nctxt_extra = 0;
13495         }
13496         /*
13497          * PIO send contexts
13498          */
13499         ret = init_sc_pools_and_sizes(dd);
13500         if (ret >= 0) { /* success */
13501                 dd->num_send_contexts = ret;
13502                 dd_dev_info(
13503                         dd,
13504                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13505                         dd->chip_send_contexts,
13506                         dd->num_send_contexts,
13507                         dd->sc_sizes[SC_KERNEL].count,
13508                         dd->sc_sizes[SC_ACK].count,
13509                         dd->sc_sizes[SC_USER].count,
13510                         dd->sc_sizes[SC_VL15].count);
13511                 ret = 0;        /* success */
13512         }
13513
13514         return ret;
13515 }
13516
13517 /*
13518  * Set the device/port partition key table. The MAD code
13519  * will ensure that, at least, the partial management
13520  * partition key is present in the table.
13521  */
13522 static void set_partition_keys(struct hfi1_pportdata *ppd)
13523 {
13524         struct hfi1_devdata *dd = ppd->dd;
13525         u64 reg = 0;
13526         int i;
13527
13528         dd_dev_info(dd, "Setting partition keys\n");
13529         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13530                 reg |= (ppd->pkeys[i] &
13531                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13532                         ((i % 4) *
13533                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13534                 /* Each register holds 4 PKey values. */
13535                 if ((i % 4) == 3) {
13536                         write_csr(dd, RCV_PARTITION_KEY +
13537                                   ((i - 3) * 2), reg);
13538                         reg = 0;
13539                 }
13540         }
13541
13542         /* Always enable HW pkeys check when pkeys table is set */
13543         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13544 }
13545
13546 /*
13547  * These CSRs and memories are uninitialized on reset and must be
13548  * written before reading to set the ECC/parity bits.
13549  *
13550  * NOTE: All user context CSRs that are not mmaped write-only
13551  * (e.g. the TID flows) must be initialized even if the driver never
13552  * reads them.
13553  */
13554 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13555 {
13556         int i, j;
13557
13558         /* CceIntMap */
13559         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13560                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13561
13562         /* SendCtxtCreditReturnAddr */
13563         for (i = 0; i < dd->chip_send_contexts; i++)
13564                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13565
13566         /* PIO Send buffers */
13567         /* SDMA Send buffers */
13568         /*
13569          * These are not normally read, and (presently) have no method
13570          * to be read, so are not pre-initialized
13571          */
13572
13573         /* RcvHdrAddr */
13574         /* RcvHdrTailAddr */
13575         /* RcvTidFlowTable */
13576         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13577                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13578                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13579                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13580                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13581         }
13582
13583         /* RcvArray */
13584         for (i = 0; i < dd->chip_rcv_array_count; i++)
13585                 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13586
13587         /* RcvQPMapTable */
13588         for (i = 0; i < 32; i++)
13589                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13590 }
13591
13592 /*
13593  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13594  */
13595 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13596                              u64 ctrl_bits)
13597 {
13598         unsigned long timeout;
13599         u64 reg;
13600
13601         /* is the condition present? */
13602         reg = read_csr(dd, CCE_STATUS);
13603         if ((reg & status_bits) == 0)
13604                 return;
13605
13606         /* clear the condition */
13607         write_csr(dd, CCE_CTRL, ctrl_bits);
13608
13609         /* wait for the condition to clear */
13610         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13611         while (1) {
13612                 reg = read_csr(dd, CCE_STATUS);
13613                 if ((reg & status_bits) == 0)
13614                         return;
13615                 if (time_after(jiffies, timeout)) {
13616                         dd_dev_err(dd,
13617                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13618                                    status_bits, reg & status_bits);
13619                         return;
13620                 }
13621                 udelay(1);
13622         }
13623 }
13624
13625 /* set CCE CSRs to chip reset defaults */
13626 static void reset_cce_csrs(struct hfi1_devdata *dd)
13627 {
13628         int i;
13629
13630         /* CCE_REVISION read-only */
13631         /* CCE_REVISION2 read-only */
13632         /* CCE_CTRL - bits clear automatically */
13633         /* CCE_STATUS read-only, use CceCtrl to clear */
13634         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13635         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13636         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13637         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13638                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13639         /* CCE_ERR_STATUS read-only */
13640         write_csr(dd, CCE_ERR_MASK, 0);
13641         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13642         /* CCE_ERR_FORCE leave alone */
13643         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13644                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13645         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13646         /* CCE_PCIE_CTRL leave alone */
13647         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13648                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13649                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13650                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13651         }
13652         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13653                 /* CCE_MSIX_PBA read-only */
13654                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13655                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13656         }
13657         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13658                 write_csr(dd, CCE_INT_MAP, 0);
13659         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13660                 /* CCE_INT_STATUS read-only */
13661                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13662                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13663                 /* CCE_INT_FORCE leave alone */
13664                 /* CCE_INT_BLOCKED read-only */
13665         }
13666         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13667                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13668 }
13669
13670 /* set MISC CSRs to chip reset defaults */
13671 static void reset_misc_csrs(struct hfi1_devdata *dd)
13672 {
13673         int i;
13674
13675         for (i = 0; i < 32; i++) {
13676                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13677                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13678                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13679         }
13680         /*
13681          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13682          * only be written 128-byte chunks
13683          */
13684         /* init RSA engine to clear lingering errors */
13685         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13686         write_csr(dd, MISC_CFG_RSA_MU, 0);
13687         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13688         /* MISC_STS_8051_DIGEST read-only */
13689         /* MISC_STS_SBM_DIGEST read-only */
13690         /* MISC_STS_PCIE_DIGEST read-only */
13691         /* MISC_STS_FAB_DIGEST read-only */
13692         /* MISC_ERR_STATUS read-only */
13693         write_csr(dd, MISC_ERR_MASK, 0);
13694         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13695         /* MISC_ERR_FORCE leave alone */
13696 }
13697
13698 /* set TXE CSRs to chip reset defaults */
13699 static void reset_txe_csrs(struct hfi1_devdata *dd)
13700 {
13701         int i;
13702
13703         /*
13704          * TXE Kernel CSRs
13705          */
13706         write_csr(dd, SEND_CTRL, 0);
13707         __cm_reset(dd, 0);      /* reset CM internal state */
13708         /* SEND_CONTEXTS read-only */
13709         /* SEND_DMA_ENGINES read-only */
13710         /* SEND_PIO_MEM_SIZE read-only */
13711         /* SEND_DMA_MEM_SIZE read-only */
13712         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13713         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13714         /* SEND_PIO_ERR_STATUS read-only */
13715         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13716         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13717         /* SEND_PIO_ERR_FORCE leave alone */
13718         /* SEND_DMA_ERR_STATUS read-only */
13719         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13720         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13721         /* SEND_DMA_ERR_FORCE leave alone */
13722         /* SEND_EGRESS_ERR_STATUS read-only */
13723         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13724         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13725         /* SEND_EGRESS_ERR_FORCE leave alone */
13726         write_csr(dd, SEND_BTH_QP, 0);
13727         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13728         write_csr(dd, SEND_SC2VLT0, 0);
13729         write_csr(dd, SEND_SC2VLT1, 0);
13730         write_csr(dd, SEND_SC2VLT2, 0);
13731         write_csr(dd, SEND_SC2VLT3, 0);
13732         write_csr(dd, SEND_LEN_CHECK0, 0);
13733         write_csr(dd, SEND_LEN_CHECK1, 0);
13734         /* SEND_ERR_STATUS read-only */
13735         write_csr(dd, SEND_ERR_MASK, 0);
13736         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13737         /* SEND_ERR_FORCE read-only */
13738         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13739                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13740         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13741                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13742         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13743                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13744         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13745                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13746         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13747                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13748         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13749         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13750         /* SEND_CM_CREDIT_USED_STATUS read-only */
13751         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13752         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13753         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13754         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13755         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13756         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13757                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13758         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13759         /* SEND_CM_CREDIT_USED_VL read-only */
13760         /* SEND_CM_CREDIT_USED_VL15 read-only */
13761         /* SEND_EGRESS_CTXT_STATUS read-only */
13762         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13763         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13764         /* SEND_EGRESS_ERR_INFO read-only */
13765         /* SEND_EGRESS_ERR_SOURCE read-only */
13766
13767         /*
13768          * TXE Per-Context CSRs
13769          */
13770         for (i = 0; i < dd->chip_send_contexts; i++) {
13771                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13772                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13773                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13774                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13775                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13776                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13777                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13778                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13779                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13780                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13781                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13782                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13783         }
13784
13785         /*
13786          * TXE Per-SDMA CSRs
13787          */
13788         for (i = 0; i < dd->chip_sdma_engines; i++) {
13789                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13790                 /* SEND_DMA_STATUS read-only */
13791                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13792                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13793                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13794                 /* SEND_DMA_HEAD read-only */
13795                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13796                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13797                 /* SEND_DMA_IDLE_CNT read-only */
13798                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13799                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13800                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13801                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13802                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13803                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13804                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13805                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13806                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13807                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13808                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13809                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13810                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13811                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13812         }
13813 }
13814
13815 /*
13816  * Expect on entry:
13817  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13818  */
13819 static void init_rbufs(struct hfi1_devdata *dd)
13820 {
13821         u64 reg;
13822         int count;
13823
13824         /*
13825          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13826          * clear.
13827          */
13828         count = 0;
13829         while (1) {
13830                 reg = read_csr(dd, RCV_STATUS);
13831                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13832                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13833                         break;
13834                 /*
13835                  * Give up after 1ms - maximum wait time.
13836                  *
13837                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13838                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13839                  *      136 KB / (66% * 250MB/s) = 844us
13840                  */
13841                 if (count++ > 500) {
13842                         dd_dev_err(dd,
13843                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13844                                    __func__, reg);
13845                         break;
13846                 }
13847                 udelay(2); /* do not busy-wait the CSR */
13848         }
13849
13850         /* start the init - expect RcvCtrl to be 0 */
13851         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13852
13853         /*
13854          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13855          * period after the write before RcvStatus.RxRbufInitDone is valid.
13856          * The delay in the first run through the loop below is sufficient and
13857          * required before the first read of RcvStatus.RxRbufInintDone.
13858          */
13859         read_csr(dd, RCV_CTRL);
13860
13861         /* wait for the init to finish */
13862         count = 0;
13863         while (1) {
13864                 /* delay is required first time through - see above */
13865                 udelay(2); /* do not busy-wait the CSR */
13866                 reg = read_csr(dd, RCV_STATUS);
13867                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13868                         break;
13869
13870                 /* give up after 100us - slowest possible at 33MHz is 73us */
13871                 if (count++ > 50) {
13872                         dd_dev_err(dd,
13873                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13874                                    __func__);
13875                         break;
13876                 }
13877         }
13878 }
13879
13880 /* set RXE CSRs to chip reset defaults */
13881 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13882 {
13883         int i, j;
13884
13885         /*
13886          * RXE Kernel CSRs
13887          */
13888         write_csr(dd, RCV_CTRL, 0);
13889         init_rbufs(dd);
13890         /* RCV_STATUS read-only */
13891         /* RCV_CONTEXTS read-only */
13892         /* RCV_ARRAY_CNT read-only */
13893         /* RCV_BUF_SIZE read-only */
13894         write_csr(dd, RCV_BTH_QP, 0);
13895         write_csr(dd, RCV_MULTICAST, 0);
13896         write_csr(dd, RCV_BYPASS, 0);
13897         write_csr(dd, RCV_VL15, 0);
13898         /* this is a clear-down */
13899         write_csr(dd, RCV_ERR_INFO,
13900                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13901         /* RCV_ERR_STATUS read-only */
13902         write_csr(dd, RCV_ERR_MASK, 0);
13903         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13904         /* RCV_ERR_FORCE leave alone */
13905         for (i = 0; i < 32; i++)
13906                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13907         for (i = 0; i < 4; i++)
13908                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13909         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13910                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13911         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13912                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13913         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13914                 clear_rsm_rule(dd, i);
13915         for (i = 0; i < 32; i++)
13916                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13917
13918         /*
13919          * RXE Kernel and User Per-Context CSRs
13920          */
13921         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13922                 /* kernel */
13923                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13924                 /* RCV_CTXT_STATUS read-only */
13925                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13926                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13927                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13928                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13929                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13930                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13931                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13932                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13933                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13934                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13935
13936                 /* user */
13937                 /* RCV_HDR_TAIL read-only */
13938                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13939                 /* RCV_EGR_INDEX_TAIL read-only */
13940                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13941                 /* RCV_EGR_OFFSET_TAIL read-only */
13942                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13943                         write_uctxt_csr(dd, i,
13944                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13945                 }
13946         }
13947 }
13948
13949 /*
13950  * Set sc2vl tables.
13951  *
13952  * They power on to zeros, so to avoid send context errors
13953  * they need to be set:
13954  *
13955  * SC 0-7 -> VL 0-7 (respectively)
13956  * SC 15  -> VL 15
13957  * otherwise
13958  *        -> VL 0
13959  */
13960 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13961 {
13962         int i;
13963         /* init per architecture spec, constrained by hardware capability */
13964
13965         /* HFI maps sent packets */
13966         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13967                 0,
13968                 0, 0, 1, 1,
13969                 2, 2, 3, 3,
13970                 4, 4, 5, 5,
13971                 6, 6, 7, 7));
13972         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13973                 1,
13974                 8, 0, 9, 0,
13975                 10, 0, 11, 0,
13976                 12, 0, 13, 0,
13977                 14, 0, 15, 15));
13978         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13979                 2,
13980                 16, 0, 17, 0,
13981                 18, 0, 19, 0,
13982                 20, 0, 21, 0,
13983                 22, 0, 23, 0));
13984         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13985                 3,
13986                 24, 0, 25, 0,
13987                 26, 0, 27, 0,
13988                 28, 0, 29, 0,
13989                 30, 0, 31, 0));
13990
13991         /* DC maps received packets */
13992         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13993                 15_0,
13994                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13995                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13996         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13997                 31_16,
13998                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13999                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14000
14001         /* initialize the cached sc2vl values consistently with h/w */
14002         for (i = 0; i < 32; i++) {
14003                 if (i < 8 || i == 15)
14004                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
14005                 else
14006                         *((u8 *)(dd->sc2vl) + i) = 0;
14007         }
14008 }
14009
14010 /*
14011  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14012  * depend on the chip going through a power-on reset - a driver may be loaded
14013  * and unloaded many times.
14014  *
14015  * Do not write any CSR values to the chip in this routine - there may be
14016  * a reset following the (possible) FLR in this routine.
14017  *
14018  */
14019 static int init_chip(struct hfi1_devdata *dd)
14020 {
14021         int i;
14022         int ret = 0;
14023
14024         /*
14025          * Put the HFI CSRs in a known state.
14026          * Combine this with a DC reset.
14027          *
14028          * Stop the device from doing anything while we do a
14029          * reset.  We know there are no other active users of
14030          * the device since we are now in charge.  Turn off
14031          * off all outbound and inbound traffic and make sure
14032          * the device does not generate any interrupts.
14033          */
14034
14035         /* disable send contexts and SDMA engines */
14036         write_csr(dd, SEND_CTRL, 0);
14037         for (i = 0; i < dd->chip_send_contexts; i++)
14038                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14039         for (i = 0; i < dd->chip_sdma_engines; i++)
14040                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14041         /* disable port (turn off RXE inbound traffic) and contexts */
14042         write_csr(dd, RCV_CTRL, 0);
14043         for (i = 0; i < dd->chip_rcv_contexts; i++)
14044                 write_csr(dd, RCV_CTXT_CTRL, 0);
14045         /* mask all interrupt sources */
14046         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14047                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14048
14049         /*
14050          * DC Reset: do a full DC reset before the register clear.
14051          * A recommended length of time to hold is one CSR read,
14052          * so reread the CceDcCtrl.  Then, hold the DC in reset
14053          * across the clear.
14054          */
14055         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14056         (void)read_csr(dd, CCE_DC_CTRL);
14057
14058         if (use_flr) {
14059                 /*
14060                  * A FLR will reset the SPC core and part of the PCIe.
14061                  * The parts that need to be restored have already been
14062                  * saved.
14063                  */
14064                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14065
14066                 /* do the FLR, the DC reset will remain */
14067                 pcie_flr(dd->pcidev);
14068
14069                 /* restore command and BARs */
14070                 ret = restore_pci_variables(dd);
14071                 if (ret) {
14072                         dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14073                                    __func__);
14074                         return ret;
14075                 }
14076
14077                 if (is_ax(dd)) {
14078                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
14079                         pcie_flr(dd->pcidev);
14080                         ret = restore_pci_variables(dd);
14081                         if (ret) {
14082                                 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14083                                            __func__);
14084                                 return ret;
14085                         }
14086                 }
14087         } else {
14088                 dd_dev_info(dd, "Resetting CSRs with writes\n");
14089                 reset_cce_csrs(dd);
14090                 reset_txe_csrs(dd);
14091                 reset_rxe_csrs(dd);
14092                 reset_misc_csrs(dd);
14093         }
14094         /* clear the DC reset */
14095         write_csr(dd, CCE_DC_CTRL, 0);
14096
14097         /* Set the LED off */
14098         setextled(dd, 0);
14099
14100         /*
14101          * Clear the QSFP reset.
14102          * An FLR enforces a 0 on all out pins. The driver does not touch
14103          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14104          * anything plugged constantly in reset, if it pays attention
14105          * to RESET_N.
14106          * Prime examples of this are optical cables. Set all pins high.
14107          * I2CCLK and I2CDAT will change per direction, and INT_N and
14108          * MODPRS_N are input only and their value is ignored.
14109          */
14110         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14111         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14112         init_chip_resources(dd);
14113         return ret;
14114 }
14115
14116 static void init_early_variables(struct hfi1_devdata *dd)
14117 {
14118         int i;
14119
14120         /* assign link credit variables */
14121         dd->vau = CM_VAU;
14122         dd->link_credits = CM_GLOBAL_CREDITS;
14123         if (is_ax(dd))
14124                 dd->link_credits--;
14125         dd->vcu = cu_to_vcu(hfi1_cu);
14126         /* enough room for 8 MAD packets plus header - 17K */
14127         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14128         if (dd->vl15_init > dd->link_credits)
14129                 dd->vl15_init = dd->link_credits;
14130
14131         write_uninitialized_csrs_and_memories(dd);
14132
14133         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14134                 for (i = 0; i < dd->num_pports; i++) {
14135                         struct hfi1_pportdata *ppd = &dd->pport[i];
14136
14137                         set_partition_keys(ppd);
14138                 }
14139         init_sc2vl_tables(dd);
14140 }
14141
14142 static void init_kdeth_qp(struct hfi1_devdata *dd)
14143 {
14144         /* user changed the KDETH_QP */
14145         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14146                 /* out of range or illegal value */
14147                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14148                 kdeth_qp = 0;
14149         }
14150         if (kdeth_qp == 0)      /* not set, or failed range check */
14151                 kdeth_qp = DEFAULT_KDETH_QP;
14152
14153         write_csr(dd, SEND_BTH_QP,
14154                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14155                   SEND_BTH_QP_KDETH_QP_SHIFT);
14156
14157         write_csr(dd, RCV_BTH_QP,
14158                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14159                   RCV_BTH_QP_KDETH_QP_SHIFT);
14160 }
14161
14162 /**
14163  * init_qpmap_table
14164  * @dd - device data
14165  * @first_ctxt - first context
14166  * @last_ctxt - first context
14167  *
14168  * This return sets the qpn mapping table that
14169  * is indexed by qpn[8:1].
14170  *
14171  * The routine will round robin the 256 settings
14172  * from first_ctxt to last_ctxt.
14173  *
14174  * The first/last looks ahead to having specialized
14175  * receive contexts for mgmt and bypass.  Normal
14176  * verbs traffic will assumed to be on a range
14177  * of receive contexts.
14178  */
14179 static void init_qpmap_table(struct hfi1_devdata *dd,
14180                              u32 first_ctxt,
14181                              u32 last_ctxt)
14182 {
14183         u64 reg = 0;
14184         u64 regno = RCV_QP_MAP_TABLE;
14185         int i;
14186         u64 ctxt = first_ctxt;
14187
14188         for (i = 0; i < 256; i++) {
14189                 reg |= ctxt << (8 * (i % 8));
14190                 ctxt++;
14191                 if (ctxt > last_ctxt)
14192                         ctxt = first_ctxt;
14193                 if (i % 8 == 7) {
14194                         write_csr(dd, regno, reg);
14195                         reg = 0;
14196                         regno += 8;
14197                 }
14198         }
14199
14200         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14201                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14202 }
14203
14204 struct rsm_map_table {
14205         u64 map[NUM_MAP_REGS];
14206         unsigned int used;
14207 };
14208
14209 struct rsm_rule_data {
14210         u8 offset;
14211         u8 pkt_type;
14212         u32 field1_off;
14213         u32 field2_off;
14214         u32 index1_off;
14215         u32 index1_width;
14216         u32 index2_off;
14217         u32 index2_width;
14218         u32 mask1;
14219         u32 value1;
14220         u32 mask2;
14221         u32 value2;
14222 };
14223
14224 /*
14225  * Return an initialized RMT map table for users to fill in.  OK if it
14226  * returns NULL, indicating no table.
14227  */
14228 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14229 {
14230         struct rsm_map_table *rmt;
14231         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14232
14233         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14234         if (rmt) {
14235                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14236                 rmt->used = 0;
14237         }
14238
14239         return rmt;
14240 }
14241
14242 /*
14243  * Write the final RMT map table to the chip and free the table.  OK if
14244  * table is NULL.
14245  */
14246 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14247                                    struct rsm_map_table *rmt)
14248 {
14249         int i;
14250
14251         if (rmt) {
14252                 /* write table to chip */
14253                 for (i = 0; i < NUM_MAP_REGS; i++)
14254                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14255
14256                 /* enable RSM */
14257                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14258         }
14259 }
14260
14261 /*
14262  * Add a receive side mapping rule.
14263  */
14264 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14265                          struct rsm_rule_data *rrd)
14266 {
14267         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14268                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14269                   1ull << rule_index | /* enable bit */
14270                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14271         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14272                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14273                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14274                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14275                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14276                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14277                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14278         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14279                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14280                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14281                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14282                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14283 }
14284
14285 /*
14286  * Clear a receive side mapping rule.
14287  */
14288 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14289 {
14290         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14291         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14292         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14293 }
14294
14295 /* return the number of RSM map table entries that will be used for QOS */
14296 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14297                            unsigned int *np)
14298 {
14299         int i;
14300         unsigned int m, n;
14301         u8 max_by_vl = 0;
14302
14303         /* is QOS active at all? */
14304         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14305             num_vls == 1 ||
14306             krcvqsset <= 1)
14307                 goto no_qos;
14308
14309         /* determine bits for qpn */
14310         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14311                 if (krcvqs[i] > max_by_vl)
14312                         max_by_vl = krcvqs[i];
14313         if (max_by_vl > 32)
14314                 goto no_qos;
14315         m = ilog2(__roundup_pow_of_two(max_by_vl));
14316
14317         /* determine bits for vl */
14318         n = ilog2(__roundup_pow_of_two(num_vls));
14319
14320         /* reject if too much is used */
14321         if ((m + n) > 7)
14322                 goto no_qos;
14323
14324         if (mp)
14325                 *mp = m;
14326         if (np)
14327                 *np = n;
14328
14329         return 1 << (m + n);
14330
14331 no_qos:
14332         if (mp)
14333                 *mp = 0;
14334         if (np)
14335                 *np = 0;
14336         return 0;
14337 }
14338
14339 /**
14340  * init_qos - init RX qos
14341  * @dd - device data
14342  * @rmt - RSM map table
14343  *
14344  * This routine initializes Rule 0 and the RSM map table to implement
14345  * quality of service (qos).
14346  *
14347  * If all of the limit tests succeed, qos is applied based on the array
14348  * interpretation of krcvqs where entry 0 is VL0.
14349  *
14350  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14351  * feed both the RSM map table and the single rule.
14352  */
14353 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14354 {
14355         struct rsm_rule_data rrd;
14356         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14357         unsigned int rmt_entries;
14358         u64 reg;
14359
14360         if (!rmt)
14361                 goto bail;
14362         rmt_entries = qos_rmt_entries(dd, &m, &n);
14363         if (rmt_entries == 0)
14364                 goto bail;
14365         qpns_per_vl = 1 << m;
14366
14367         /* enough room in the map table? */
14368         rmt_entries = 1 << (m + n);
14369         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14370                 goto bail;
14371
14372         /* add qos entries to the the RSM map table */
14373         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14374                 unsigned tctxt;
14375
14376                 for (qpn = 0, tctxt = ctxt;
14377                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14378                         unsigned idx, regoff, regidx;
14379
14380                         /* generate the index the hardware will produce */
14381                         idx = rmt->used + ((qpn << n) ^ i);
14382                         regoff = (idx % 8) * 8;
14383                         regidx = idx / 8;
14384                         /* replace default with context number */
14385                         reg = rmt->map[regidx];
14386                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14387                                 << regoff);
14388                         reg |= (u64)(tctxt++) << regoff;
14389                         rmt->map[regidx] = reg;
14390                         if (tctxt == ctxt + krcvqs[i])
14391                                 tctxt = ctxt;
14392                 }
14393                 ctxt += krcvqs[i];
14394         }
14395
14396         rrd.offset = rmt->used;
14397         rrd.pkt_type = 2;
14398         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14399         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14400         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14401         rrd.index1_width = n;
14402         rrd.index2_off = QPN_SELECT_OFFSET;
14403         rrd.index2_width = m + n;
14404         rrd.mask1 = LRH_BTH_MASK;
14405         rrd.value1 = LRH_BTH_VALUE;
14406         rrd.mask2 = LRH_SC_MASK;
14407         rrd.value2 = LRH_SC_VALUE;
14408
14409         /* add rule 0 */
14410         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14411
14412         /* mark RSM map entries as used */
14413         rmt->used += rmt_entries;
14414         /* map everything else to the mcast/err/vl15 context */
14415         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14416         dd->qos_shift = n + 1;
14417         return;
14418 bail:
14419         dd->qos_shift = 1;
14420         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14421 }
14422
14423 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14424                                     struct rsm_map_table *rmt)
14425 {
14426         struct rsm_rule_data rrd;
14427         u64 reg;
14428         int i, idx, regoff, regidx;
14429         u8 offset;
14430
14431         /* there needs to be enough room in the map table */
14432         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14433                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14434                 return;
14435         }
14436
14437         /*
14438          * RSM will extract the destination context as an index into the
14439          * map table.  The destination contexts are a sequential block
14440          * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14441          * Map entries are accessed as offset + extracted value.  Adjust
14442          * the added offset so this sequence can be placed anywhere in
14443          * the table - as long as the entries themselves do not wrap.
14444          * There are only enough bits in offset for the table size, so
14445          * start with that to allow for a "negative" offset.
14446          */
14447         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14448                                                 (int)dd->first_dyn_alloc_ctxt);
14449
14450         for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14451                                 i < dd->num_rcv_contexts; i++, idx++) {
14452                 /* replace with identity mapping */
14453                 regoff = (idx % 8) * 8;
14454                 regidx = idx / 8;
14455                 reg = rmt->map[regidx];
14456                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14457                 reg |= (u64)i << regoff;
14458                 rmt->map[regidx] = reg;
14459         }
14460
14461         /*
14462          * For RSM intercept of Expected FECN packets:
14463          * o packet type 0 - expected
14464          * o match on F (bit 95), using select/match 1, and
14465          * o match on SH (bit 133), using select/match 2.
14466          *
14467          * Use index 1 to extract the 8-bit receive context from DestQP
14468          * (start at bit 64).  Use that as the RSM map table index.
14469          */
14470         rrd.offset = offset;
14471         rrd.pkt_type = 0;
14472         rrd.field1_off = 95;
14473         rrd.field2_off = 133;
14474         rrd.index1_off = 64;
14475         rrd.index1_width = 8;
14476         rrd.index2_off = 0;
14477         rrd.index2_width = 0;
14478         rrd.mask1 = 1;
14479         rrd.value1 = 1;
14480         rrd.mask2 = 1;
14481         rrd.value2 = 1;
14482
14483         /* add rule 1 */
14484         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14485
14486         rmt->used += dd->num_user_contexts;
14487 }
14488
14489 /* Initialize RSM for VNIC */
14490 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14491 {
14492         u8 i, j;
14493         u8 ctx_id = 0;
14494         u64 reg;
14495         u32 regoff;
14496         struct rsm_rule_data rrd;
14497
14498         if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14499                 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14500                            dd->vnic.rmt_start);
14501                 return;
14502         }
14503
14504         dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14505                 dd->vnic.rmt_start,
14506                 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14507
14508         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14509         regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14510         reg = read_csr(dd, regoff);
14511         for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14512                 /* Update map register with vnic context */
14513                 j = (dd->vnic.rmt_start + i) % 8;
14514                 reg &= ~(0xffllu << (j * 8));
14515                 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14516                 /* Wrap up vnic ctx index */
14517                 ctx_id %= dd->vnic.num_ctxt;
14518                 /* Write back map register */
14519                 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14520                         dev_dbg(&(dd)->pcidev->dev,
14521                                 "Vnic rsm map reg[%d] =0x%llx\n",
14522                                 regoff - RCV_RSM_MAP_TABLE, reg);
14523
14524                         write_csr(dd, regoff, reg);
14525                         regoff += 8;
14526                         if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14527                                 reg = read_csr(dd, regoff);
14528                 }
14529         }
14530
14531         /* Add rule for vnic */
14532         rrd.offset = dd->vnic.rmt_start;
14533         rrd.pkt_type = 4;
14534         /* Match 16B packets */
14535         rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14536         rrd.mask1 = L2_TYPE_MASK;
14537         rrd.value1 = L2_16B_VALUE;
14538         /* Match ETH L4 packets */
14539         rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14540         rrd.mask2 = L4_16B_TYPE_MASK;
14541         rrd.value2 = L4_16B_ETH_VALUE;
14542         /* Calc context from veswid and entropy */
14543         rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14544         rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14545         rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14546         rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14547         add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14548
14549         /* Enable RSM if not already enabled */
14550         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14551 }
14552
14553 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14554 {
14555         clear_rsm_rule(dd, RSM_INS_VNIC);
14556
14557         /* Disable RSM if used only by vnic */
14558         if (dd->vnic.rmt_start == 0)
14559                 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14560 }
14561
14562 static void init_rxe(struct hfi1_devdata *dd)
14563 {
14564         struct rsm_map_table *rmt;
14565         u64 val;
14566
14567         /* enable all receive errors */
14568         write_csr(dd, RCV_ERR_MASK, ~0ull);
14569
14570         rmt = alloc_rsm_map_table(dd);
14571         /* set up QOS, including the QPN map table */
14572         init_qos(dd, rmt);
14573         init_user_fecn_handling(dd, rmt);
14574         complete_rsm_map_table(dd, rmt);
14575         /* record number of used rsm map entries for vnic */
14576         dd->vnic.rmt_start = rmt->used;
14577         kfree(rmt);
14578
14579         /*
14580          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14581          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14582          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14583          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14584          * Max_PayLoad_Size set to its minimum of 128.
14585          *
14586          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14587          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14588          * tune_pcie_caps() which is called after this routine.
14589          */
14590
14591         /* Have 16 bytes (4DW) of bypass header available in header queue */
14592         val = read_csr(dd, RCV_BYPASS);
14593         val |= (4ull << 16);
14594         write_csr(dd, RCV_BYPASS, val);
14595 }
14596
14597 static void init_other(struct hfi1_devdata *dd)
14598 {
14599         /* enable all CCE errors */
14600         write_csr(dd, CCE_ERR_MASK, ~0ull);
14601         /* enable *some* Misc errors */
14602         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14603         /* enable all DC errors, except LCB */
14604         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14605         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14606 }
14607
14608 /*
14609  * Fill out the given AU table using the given CU.  A CU is defined in terms
14610  * AUs.  The table is a an encoding: given the index, how many AUs does that
14611  * represent?
14612  *
14613  * NOTE: Assumes that the register layout is the same for the
14614  * local and remote tables.
14615  */
14616 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14617                                u32 csr0to3, u32 csr4to7)
14618 {
14619         write_csr(dd, csr0to3,
14620                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14621                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14622                   2ull * cu <<
14623                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14624                   4ull * cu <<
14625                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14626         write_csr(dd, csr4to7,
14627                   8ull * cu <<
14628                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14629                   16ull * cu <<
14630                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14631                   32ull * cu <<
14632                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14633                   64ull * cu <<
14634                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14635 }
14636
14637 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14638 {
14639         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14640                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14641 }
14642
14643 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14644 {
14645         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14646                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14647 }
14648
14649 static void init_txe(struct hfi1_devdata *dd)
14650 {
14651         int i;
14652
14653         /* enable all PIO, SDMA, general, and Egress errors */
14654         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14655         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14656         write_csr(dd, SEND_ERR_MASK, ~0ull);
14657         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14658
14659         /* enable all per-context and per-SDMA engine errors */
14660         for (i = 0; i < dd->chip_send_contexts; i++)
14661                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14662         for (i = 0; i < dd->chip_sdma_engines; i++)
14663                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14664
14665         /* set the local CU to AU mapping */
14666         assign_local_cm_au_table(dd, dd->vcu);
14667
14668         /*
14669          * Set reasonable default for Credit Return Timer
14670          * Don't set on Simulator - causes it to choke.
14671          */
14672         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14673                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14674 }
14675
14676 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14677                        u16 jkey)
14678 {
14679         u8 hw_ctxt;
14680         u64 reg;
14681
14682         if (!rcd || !rcd->sc)
14683                 return -EINVAL;
14684
14685         hw_ctxt = rcd->sc->hw_context;
14686         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14687                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14688                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14689         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14690         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14691                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14692         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14693         /*
14694          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14695          */
14696         if (!is_ax(dd)) {
14697                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14698                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14699                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14700         }
14701
14702         /* Enable J_KEY check on receive context. */
14703         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14704                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14705                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14706         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14707
14708         return 0;
14709 }
14710
14711 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14712 {
14713         u8 hw_ctxt;
14714         u64 reg;
14715
14716         if (!rcd || !rcd->sc)
14717                 return -EINVAL;
14718
14719         hw_ctxt = rcd->sc->hw_context;
14720         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14721         /*
14722          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14723          * This check would not have been enabled for A0 h/w, see
14724          * set_ctxt_jkey().
14725          */
14726         if (!is_ax(dd)) {
14727                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14728                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14729                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14730         }
14731         /* Turn off the J_KEY on the receive side */
14732         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14733
14734         return 0;
14735 }
14736
14737 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14738                        u16 pkey)
14739 {
14740         u8 hw_ctxt;
14741         u64 reg;
14742
14743         if (!rcd || !rcd->sc)
14744                 return -EINVAL;
14745
14746         hw_ctxt = rcd->sc->hw_context;
14747         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14748                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14749         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14750         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14751         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14752         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14753         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14754
14755         return 0;
14756 }
14757
14758 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14759 {
14760         u8 hw_ctxt;
14761         u64 reg;
14762
14763         if (!ctxt || !ctxt->sc)
14764                 return -EINVAL;
14765
14766         hw_ctxt = ctxt->sc->hw_context;
14767         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14768         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14769         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14770         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14771
14772         return 0;
14773 }
14774
14775 /*
14776  * Start doing the clean up the the chip. Our clean up happens in multiple
14777  * stages and this is just the first.
14778  */
14779 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14780 {
14781         aspm_exit(dd);
14782         free_cntrs(dd);
14783         free_rcverr(dd);
14784         finish_chip_resources(dd);
14785 }
14786
14787 #define HFI_BASE_GUID(dev) \
14788         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14789
14790 /*
14791  * Information can be shared between the two HFIs on the same ASIC
14792  * in the same OS.  This function finds the peer device and sets
14793  * up a shared structure.
14794  */
14795 static int init_asic_data(struct hfi1_devdata *dd)
14796 {
14797         unsigned long flags;
14798         struct hfi1_devdata *tmp, *peer = NULL;
14799         struct hfi1_asic_data *asic_data;
14800         int ret = 0;
14801
14802         /* pre-allocate the asic structure in case we are the first device */
14803         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14804         if (!asic_data)
14805                 return -ENOMEM;
14806
14807         spin_lock_irqsave(&hfi1_devs_lock, flags);
14808         /* Find our peer device */
14809         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14810                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14811                     dd->unit != tmp->unit) {
14812                         peer = tmp;
14813                         break;
14814                 }
14815         }
14816
14817         if (peer) {
14818                 /* use already allocated structure */
14819                 dd->asic_data = peer->asic_data;
14820                 kfree(asic_data);
14821         } else {
14822                 dd->asic_data = asic_data;
14823                 mutex_init(&dd->asic_data->asic_resource_mutex);
14824         }
14825         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14826         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14827
14828         /* first one through - set up i2c devices */
14829         if (!peer)
14830                 ret = set_up_i2c(dd, dd->asic_data);
14831
14832         return ret;
14833 }
14834
14835 /*
14836  * Set dd->boardname.  Use a generic name if a name is not returned from
14837  * EFI variable space.
14838  *
14839  * Return 0 on success, -ENOMEM if space could not be allocated.
14840  */
14841 static int obtain_boardname(struct hfi1_devdata *dd)
14842 {
14843         /* generic board description */
14844         const char generic[] =
14845                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14846         unsigned long size;
14847         int ret;
14848
14849         ret = read_hfi1_efi_var(dd, "description", &size,
14850                                 (void **)&dd->boardname);
14851         if (ret) {
14852                 dd_dev_info(dd, "Board description not found\n");
14853                 /* use generic description */
14854                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14855                 if (!dd->boardname)
14856                         return -ENOMEM;
14857         }
14858         return 0;
14859 }
14860
14861 /*
14862  * Check the interrupt registers to make sure that they are mapped correctly.
14863  * It is intended to help user identify any mismapping by VMM when the driver
14864  * is running in a VM. This function should only be called before interrupt
14865  * is set up properly.
14866  *
14867  * Return 0 on success, -EINVAL on failure.
14868  */
14869 static int check_int_registers(struct hfi1_devdata *dd)
14870 {
14871         u64 reg;
14872         u64 all_bits = ~(u64)0;
14873         u64 mask;
14874
14875         /* Clear CceIntMask[0] to avoid raising any interrupts */
14876         mask = read_csr(dd, CCE_INT_MASK);
14877         write_csr(dd, CCE_INT_MASK, 0ull);
14878         reg = read_csr(dd, CCE_INT_MASK);
14879         if (reg)
14880                 goto err_exit;
14881
14882         /* Clear all interrupt status bits */
14883         write_csr(dd, CCE_INT_CLEAR, all_bits);
14884         reg = read_csr(dd, CCE_INT_STATUS);
14885         if (reg)
14886                 goto err_exit;
14887
14888         /* Set all interrupt status bits */
14889         write_csr(dd, CCE_INT_FORCE, all_bits);
14890         reg = read_csr(dd, CCE_INT_STATUS);
14891         if (reg != all_bits)
14892                 goto err_exit;
14893
14894         /* Restore the interrupt mask */
14895         write_csr(dd, CCE_INT_CLEAR, all_bits);
14896         write_csr(dd, CCE_INT_MASK, mask);
14897
14898         return 0;
14899 err_exit:
14900         write_csr(dd, CCE_INT_MASK, mask);
14901         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14902         return -EINVAL;
14903 }
14904
14905 /**
14906  * Allocate and initialize the device structure for the hfi.
14907  * @dev: the pci_dev for hfi1_ib device
14908  * @ent: pci_device_id struct for this dev
14909  *
14910  * Also allocates, initializes, and returns the devdata struct for this
14911  * device instance
14912  *
14913  * This is global, and is called directly at init to set up the
14914  * chip-specific function pointers for later use.
14915  */
14916 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14917                                   const struct pci_device_id *ent)
14918 {
14919         struct hfi1_devdata *dd;
14920         struct hfi1_pportdata *ppd;
14921         u64 reg;
14922         int i, ret;
14923         static const char * const inames[] = { /* implementation names */
14924                 "RTL silicon",
14925                 "RTL VCS simulation",
14926                 "RTL FPGA emulation",
14927                 "Functional simulator"
14928         };
14929         struct pci_dev *parent = pdev->bus->self;
14930
14931         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14932                                 sizeof(struct hfi1_pportdata));
14933         if (IS_ERR(dd))
14934                 goto bail;
14935         ppd = dd->pport;
14936         for (i = 0; i < dd->num_pports; i++, ppd++) {
14937                 int vl;
14938                 /* init common fields */
14939                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14940                 /* DC supports 4 link widths */
14941                 ppd->link_width_supported =
14942                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14943                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14944                 ppd->link_width_downgrade_supported =
14945                         ppd->link_width_supported;
14946                 /* start out enabling only 4X */
14947                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14948                 ppd->link_width_downgrade_enabled =
14949                                         ppd->link_width_downgrade_supported;
14950                 /* link width active is 0 when link is down */
14951                 /* link width downgrade active is 0 when link is down */
14952
14953                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14954                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14955                         hfi1_early_err(&pdev->dev,
14956                                        "Invalid num_vls %u, using %u VLs\n",
14957                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14958                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14959                 }
14960                 ppd->vls_supported = num_vls;
14961                 ppd->vls_operational = ppd->vls_supported;
14962                 /* Set the default MTU. */
14963                 for (vl = 0; vl < num_vls; vl++)
14964                         dd->vld[vl].mtu = hfi1_max_mtu;
14965                 dd->vld[15].mtu = MAX_MAD_PACKET;
14966                 /*
14967                  * Set the initial values to reasonable default, will be set
14968                  * for real when link is up.
14969                  */
14970                 ppd->overrun_threshold = 0x4;
14971                 ppd->phy_error_threshold = 0xf;
14972                 ppd->port_crc_mode_enabled = link_crc_mask;
14973                 /* initialize supported LTP CRC mode */
14974                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14975                 /* initialize enabled LTP CRC mode */
14976                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14977                 /* start in offline */
14978                 ppd->host_link_state = HLS_DN_OFFLINE;
14979                 init_vl_arb_caches(ppd);
14980         }
14981
14982         dd->link_default = HLS_DN_POLL;
14983
14984         /*
14985          * Do remaining PCIe setup and save PCIe values in dd.
14986          * Any error printing is already done by the init code.
14987          * On return, we have the chip mapped.
14988          */
14989         ret = hfi1_pcie_ddinit(dd, pdev);
14990         if (ret < 0)
14991                 goto bail_free;
14992
14993         /* Save PCI space registers to rewrite after device reset */
14994         ret = save_pci_variables(dd);
14995         if (ret < 0)
14996                 goto bail_cleanup;
14997
14998         /* verify that reads actually work, save revision for reset check */
14999         dd->revision = read_csr(dd, CCE_REVISION);
15000         if (dd->revision == ~(u64)0) {
15001                 dd_dev_err(dd, "cannot read chip CSRs\n");
15002                 ret = -EINVAL;
15003                 goto bail_cleanup;
15004         }
15005         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15006                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15007         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15008                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
15009
15010         /*
15011          * Check interrupt registers mapping if the driver has no access to
15012          * the upstream component. In this case, it is likely that the driver
15013          * is running in a VM.
15014          */
15015         if (!parent) {
15016                 ret = check_int_registers(dd);
15017                 if (ret)
15018                         goto bail_cleanup;
15019         }
15020
15021         /*
15022          * obtain the hardware ID - NOT related to unit, which is a
15023          * software enumeration
15024          */
15025         reg = read_csr(dd, CCE_REVISION2);
15026         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15027                                         & CCE_REVISION2_HFI_ID_MASK;
15028         /* the variable size will remove unwanted bits */
15029         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15030         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15031         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15032                     dd->icode < ARRAY_SIZE(inames) ?
15033                     inames[dd->icode] : "unknown", (int)dd->irev);
15034
15035         /* speeds the hardware can support */
15036         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15037         /* speeds allowed to run at */
15038         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15039         /* give a reasonable active value, will be set on link up */
15040         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15041
15042         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15043         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15044         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15045         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15046         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15047         /* fix up link widths for emulation _p */
15048         ppd = dd->pport;
15049         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15050                 ppd->link_width_supported =
15051                         ppd->link_width_enabled =
15052                         ppd->link_width_downgrade_supported =
15053                         ppd->link_width_downgrade_enabled =
15054                                 OPA_LINK_WIDTH_1X;
15055         }
15056         /* insure num_vls isn't larger than number of sdma engines */
15057         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15058                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15059                            num_vls, dd->chip_sdma_engines);
15060                 num_vls = dd->chip_sdma_engines;
15061                 ppd->vls_supported = dd->chip_sdma_engines;
15062                 ppd->vls_operational = ppd->vls_supported;
15063         }
15064
15065         /*
15066          * Convert the ns parameter to the 64 * cclocks used in the CSR.
15067          * Limit the max if larger than the field holds.  If timeout is
15068          * non-zero, then the calculated field will be at least 1.
15069          *
15070          * Must be after icode is set up - the cclock rate depends
15071          * on knowing the hardware being used.
15072          */
15073         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15074         if (dd->rcv_intr_timeout_csr >
15075                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15076                 dd->rcv_intr_timeout_csr =
15077                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15078         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15079                 dd->rcv_intr_timeout_csr = 1;
15080
15081         /* needs to be done before we look for the peer device */
15082         read_guid(dd);
15083
15084         /* set up shared ASIC data with peer device */
15085         ret = init_asic_data(dd);
15086         if (ret)
15087                 goto bail_cleanup;
15088
15089         /* obtain chip sizes, reset chip CSRs */
15090         ret = init_chip(dd);
15091         if (ret)
15092                 goto bail_cleanup;
15093
15094         /* read in the PCIe link speed information */
15095         ret = pcie_speeds(dd);
15096         if (ret)
15097                 goto bail_cleanup;
15098
15099         /* call before get_platform_config(), after init_chip_resources() */
15100         ret = eprom_init(dd);
15101         if (ret)
15102                 goto bail_free_rcverr;
15103
15104         /* Needs to be called before hfi1_firmware_init */
15105         get_platform_config(dd);
15106
15107         /* read in firmware */
15108         ret = hfi1_firmware_init(dd);
15109         if (ret)
15110                 goto bail_cleanup;
15111
15112         /*
15113          * In general, the PCIe Gen3 transition must occur after the
15114          * chip has been idled (so it won't initiate any PCIe transactions
15115          * e.g. an interrupt) and before the driver changes any registers
15116          * (the transition will reset the registers).
15117          *
15118          * In particular, place this call after:
15119          * - init_chip()     - the chip will not initiate any PCIe transactions
15120          * - pcie_speeds()   - reads the current link speed
15121          * - hfi1_firmware_init() - the needed firmware is ready to be
15122          *                          downloaded
15123          */
15124         ret = do_pcie_gen3_transition(dd);
15125         if (ret)
15126                 goto bail_cleanup;
15127
15128         /* start setting dd values and adjusting CSRs */
15129         init_early_variables(dd);
15130
15131         parse_platform_config(dd);
15132
15133         ret = obtain_boardname(dd);
15134         if (ret)
15135                 goto bail_cleanup;
15136
15137         snprintf(dd->boardversion, BOARD_VERS_MAX,
15138                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15139                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15140                  (u32)dd->majrev,
15141                  (u32)dd->minrev,
15142                  (dd->revision >> CCE_REVISION_SW_SHIFT)
15143                     & CCE_REVISION_SW_MASK);
15144
15145         ret = set_up_context_variables(dd);
15146         if (ret)
15147                 goto bail_cleanup;
15148
15149         /* set initial RXE CSRs */
15150         init_rxe(dd);
15151         /* set initial TXE CSRs */
15152         init_txe(dd);
15153         /* set initial non-RXE, non-TXE CSRs */
15154         init_other(dd);
15155         /* set up KDETH QP prefix in both RX and TX CSRs */
15156         init_kdeth_qp(dd);
15157
15158         ret = hfi1_dev_affinity_init(dd);
15159         if (ret)
15160                 goto bail_cleanup;
15161
15162         /* send contexts must be set up before receive contexts */
15163         ret = init_send_contexts(dd);
15164         if (ret)
15165                 goto bail_cleanup;
15166
15167         ret = hfi1_create_kctxts(dd);
15168         if (ret)
15169                 goto bail_cleanup;
15170
15171         /*
15172          * Initialize aspm, to be done after gen3 transition and setting up
15173          * contexts and before enabling interrupts
15174          */
15175         aspm_init(dd);
15176
15177         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15178         /*
15179          * rcd[0] is guaranteed to be valid by this point. Also, all
15180          * context are using the same value, as per the module parameter.
15181          */
15182         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15183
15184         ret = init_pervl_scs(dd);
15185         if (ret)
15186                 goto bail_cleanup;
15187
15188         /* sdma init */
15189         for (i = 0; i < dd->num_pports; ++i) {
15190                 ret = sdma_init(dd, i);
15191                 if (ret)
15192                         goto bail_cleanup;
15193         }
15194
15195         /* use contexts created by hfi1_create_kctxts */
15196         ret = set_up_interrupts(dd);
15197         if (ret)
15198                 goto bail_cleanup;
15199
15200         /* set up LCB access - must be after set_up_interrupts() */
15201         init_lcb_access(dd);
15202
15203         /*
15204          * Serial number is created from the base guid:
15205          * [27:24] = base guid [38:35]
15206          * [23: 0] = base guid [23: 0]
15207          */
15208         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15209                  (dd->base_guid & 0xFFFFFF) |
15210                      ((dd->base_guid >> 11) & 0xF000000));
15211
15212         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15213         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15214         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15215
15216         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15217         if (ret)
15218                 goto bail_clear_intr;
15219
15220         thermal_init(dd);
15221
15222         ret = init_cntrs(dd);
15223         if (ret)
15224                 goto bail_clear_intr;
15225
15226         ret = init_rcverr(dd);
15227         if (ret)
15228                 goto bail_free_cntrs;
15229
15230         init_completion(&dd->user_comp);
15231
15232         /* The user refcount starts with one to inidicate an active device */
15233         atomic_set(&dd->user_refcount, 1);
15234
15235         goto bail;
15236
15237 bail_free_rcverr:
15238         free_rcverr(dd);
15239 bail_free_cntrs:
15240         free_cntrs(dd);
15241 bail_clear_intr:
15242         hfi1_clean_up_interrupts(dd);
15243 bail_cleanup:
15244         hfi1_pcie_ddcleanup(dd);
15245 bail_free:
15246         hfi1_free_devdata(dd);
15247         dd = ERR_PTR(ret);
15248 bail:
15249         return dd;
15250 }
15251
15252 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15253                         u32 dw_len)
15254 {
15255         u32 delta_cycles;
15256         u32 current_egress_rate = ppd->current_egress_rate;
15257         /* rates here are in units of 10^6 bits/sec */
15258
15259         if (desired_egress_rate == -1)
15260                 return 0; /* shouldn't happen */
15261
15262         if (desired_egress_rate >= current_egress_rate)
15263                 return 0; /* we can't help go faster, only slower */
15264
15265         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15266                         egress_cycles(dw_len * 4, current_egress_rate);
15267
15268         return (u16)delta_cycles;
15269 }
15270
15271 /**
15272  * create_pbc - build a pbc for transmission
15273  * @flags: special case flags or-ed in built pbc
15274  * @srate: static rate
15275  * @vl: vl
15276  * @dwlen: dword length (header words + data words + pbc words)
15277  *
15278  * Create a PBC with the given flags, rate, VL, and length.
15279  *
15280  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15281  * for verbs, which does not use this PSM feature.  The lone other caller
15282  * is for the diagnostic interface which calls this if the user does not
15283  * supply their own PBC.
15284  */
15285 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15286                u32 dw_len)
15287 {
15288         u64 pbc, delay = 0;
15289
15290         if (unlikely(srate_mbs))
15291                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15292
15293         pbc = flags
15294                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15295                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15296                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15297                 | (dw_len & PBC_LENGTH_DWS_MASK)
15298                         << PBC_LENGTH_DWS_SHIFT;
15299
15300         return pbc;
15301 }
15302
15303 #define SBUS_THERMAL    0x4f
15304 #define SBUS_THERM_MONITOR_MODE 0x1
15305
15306 #define THERM_FAILURE(dev, ret, reason) \
15307         dd_dev_err((dd),                                                \
15308                    "Thermal sensor initialization failed: %s (%d)\n",   \
15309                    (reason), (ret))
15310
15311 /*
15312  * Initialize the thermal sensor.
15313  *
15314  * After initialization, enable polling of thermal sensor through
15315  * SBus interface. In order for this to work, the SBus Master
15316  * firmware has to be loaded due to the fact that the HW polling
15317  * logic uses SBus interrupts, which are not supported with
15318  * default firmware. Otherwise, no data will be returned through
15319  * the ASIC_STS_THERM CSR.
15320  */
15321 static int thermal_init(struct hfi1_devdata *dd)
15322 {
15323         int ret = 0;
15324
15325         if (dd->icode != ICODE_RTL_SILICON ||
15326             check_chip_resource(dd, CR_THERM_INIT, NULL))
15327                 return ret;
15328
15329         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15330         if (ret) {
15331                 THERM_FAILURE(dd, ret, "Acquire SBus");
15332                 return ret;
15333         }
15334
15335         dd_dev_info(dd, "Initializing thermal sensor\n");
15336         /* Disable polling of thermal readings */
15337         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15338         msleep(100);
15339         /* Thermal Sensor Initialization */
15340         /*    Step 1: Reset the Thermal SBus Receiver */
15341         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15342                                 RESET_SBUS_RECEIVER, 0);
15343         if (ret) {
15344                 THERM_FAILURE(dd, ret, "Bus Reset");
15345                 goto done;
15346         }
15347         /*    Step 2: Set Reset bit in Thermal block */
15348         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15349                                 WRITE_SBUS_RECEIVER, 0x1);
15350         if (ret) {
15351                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15352                 goto done;
15353         }
15354         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15355         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15356                                 WRITE_SBUS_RECEIVER, 0x32);
15357         if (ret) {
15358                 THERM_FAILURE(dd, ret, "Write Clock Div");
15359                 goto done;
15360         }
15361         /*    Step 4: Select temperature mode */
15362         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15363                                 WRITE_SBUS_RECEIVER,
15364                                 SBUS_THERM_MONITOR_MODE);
15365         if (ret) {
15366                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15367                 goto done;
15368         }
15369         /*    Step 5: De-assert block reset and start conversion */
15370         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15371                                 WRITE_SBUS_RECEIVER, 0x2);
15372         if (ret) {
15373                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15374                 goto done;
15375         }
15376         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15377         msleep(22);
15378
15379         /* Enable polling of thermal readings */
15380         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15381
15382         /* Set initialized flag */
15383         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15384         if (ret)
15385                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15386
15387 done:
15388         release_chip_resource(dd, CR_SBUS);
15389         return ret;
15390 }
15391
15392 static void handle_temp_err(struct hfi1_devdata *dd)
15393 {
15394         struct hfi1_pportdata *ppd = &dd->pport[0];
15395         /*
15396          * Thermal Critical Interrupt
15397          * Put the device into forced freeze mode, take link down to
15398          * offline, and put DC into reset.
15399          */
15400         dd_dev_emerg(dd,
15401                      "Critical temperature reached! Forcing device into freeze mode!\n");
15402         dd->flags |= HFI1_FORCED_FREEZE;
15403         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15404         /*
15405          * Shut DC down as much and as quickly as possible.
15406          *
15407          * Step 1: Take the link down to OFFLINE. This will cause the
15408          *         8051 to put the Serdes in reset. However, we don't want to
15409          *         go through the entire link state machine since we want to
15410          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15411          *         but rather an attempt to save the chip.
15412          *         Code below is almost the same as quiet_serdes() but avoids
15413          *         all the extra work and the sleeps.
15414          */
15415         ppd->driver_link_ready = 0;
15416         ppd->link_enabled = 0;
15417         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15418                                 PLS_OFFLINE);
15419         /*
15420          * Step 2: Shutdown LCB and 8051
15421          *         After shutdown, do not restore DC_CFG_RESET value.
15422          */
15423         dc_shutdown(dd);
15424 }