b170817b27419f0d4c589facf55463d5ff7aba62
[platform/kernel/linux-rpi.git] / drivers / infiniband / hw / cxgb4 / t4.h
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4_tcb.h"
39 #include "t4fw_ri_api.h"
40
41 #define T4_MAX_NUM_PD 65536
42 #define T4_MAX_MR_SIZE (~0ULL)
43 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
44 #define T4_STAG_UNSET 0xffffffff
45 #define T4_FW_MAJ 0
46 #define PCIE_MA_SYNC_A 0x30b4
47
48 struct t4_status_page {
49         __be32 rsvd1;   /* flit 0 - hw owns */
50         __be16 rsvd2;
51         __be16 qid;
52         __be16 cidx;
53         __be16 pidx;
54         u8 qp_err;      /* flit 1 - sw owns */
55         u8 db_off;
56         u8 pad[2];
57         u16 host_wq_pidx;
58         u16 host_cidx;
59         u16 host_pidx;
60         u16 pad2;
61         u32 srqidx;
62 };
63
64 #define T4_RQT_ENTRY_SHIFT 6
65 #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
66 #define T4_EQ_ENTRY_SIZE 64
67
68 #define T4_SQ_NUM_SLOTS 5
69 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73                         sizeof(struct fw_ri_immd)))
74 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75                         sizeof(struct fw_ri_rdma_write_wr) - \
76                         sizeof(struct fw_ri_immd)))
77 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78                         sizeof(struct fw_ri_rdma_write_wr) - \
79                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81                         sizeof(struct fw_ri_immd)) & ~31UL)
82 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83 #define T4_MAX_FR_DSGL 1024
84 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
85
86 static inline int t4_max_fr_depth(int use_dsgl)
87 {
88         return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
89 }
90
91 #define T4_RQ_NUM_SLOTS 2
92 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93 #define T4_MAX_RECV_SGE 4
94
95 #define T4_WRITE_CMPL_MAX_SGL 4
96 #define T4_WRITE_CMPL_MAX_CQE 16
97
98 union t4_wr {
99         struct fw_ri_res_wr res;
100         struct fw_ri_wr ri;
101         struct fw_ri_rdma_write_wr write;
102         struct fw_ri_send_wr send;
103         struct fw_ri_rdma_read_wr read;
104         struct fw_ri_bind_mw_wr bind;
105         struct fw_ri_fr_nsmr_wr fr;
106         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
107         struct fw_ri_inv_lstag_wr inv;
108         struct fw_ri_rdma_write_cmpl_wr write_cmpl;
109         struct t4_status_page status;
110         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
111 };
112
113 union t4_recv_wr {
114         struct fw_ri_recv_wr recv;
115         struct t4_status_page status;
116         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
117 };
118
119 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
121 {
122         wqe->send.opcode = (u8)opcode;
123         wqe->send.flags = flags;
124         wqe->send.wrid = wrid;
125         wqe->send.r1[0] = 0;
126         wqe->send.r1[1] = 0;
127         wqe->send.r1[2] = 0;
128         wqe->send.len16 = len16;
129 }
130
131 /* CQE/AE status codes */
132 #define T4_ERR_SUCCESS                     0x0
133 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
134                                                 /* STAG is offlimt, being 0, */
135                                                 /* or STAG_key mismatch */
136 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
137 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
138 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
139 #define T4_ERR_WRAP                        0x5  /* Wrap error */
140 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
141 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
142                                                 /* shared memory region */
143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
144                                                 /* shared memory region */
145 #define T4_ERR_ECC                         0x9  /* ECC error detected */
146 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
147                                                 /* reading PSTAG for a MW  */
148                                                 /* Invalidate */
149 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
150                                                 /* software error */
151 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
152 #define T4_ERR_CRC                         0x10 /* CRC error */
153 #define T4_ERR_MARKER                      0x11 /* Marker error */
154 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
155 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
156 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
157 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
158 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
159 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
160 #define T4_ERR_MSN                         0x18 /* MSN error */
161 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
162 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
163                                                 /* or READ_REQ */
164 #define T4_ERR_MSN_GAP                     0x1B
165 #define T4_ERR_MSN_RANGE                   0x1C
166 #define T4_ERR_IRD_OVERFLOW                0x1D
167 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
168                                                 /* software error */
169 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
170                                                 /* mismatch) */
171 /*
172  * CQE defs
173  */
174 struct t4_cqe {
175         __be32 header;
176         __be32 len;
177         union {
178                 struct {
179                         __be32 stag;
180                         __be32 msn;
181                 } rcqe;
182                 struct {
183                         __be32 stag;
184                         u16 nada2;
185                         u16 cidx;
186                 } scqe;
187                 struct {
188                         __be32 wrid_hi;
189                         __be32 wrid_low;
190                 } gen;
191                 struct {
192                         __be32 stag;
193                         __be32 msn;
194                         __be32 reserved;
195                         __be32 abs_rqe_idx;
196                 } srcqe;
197                 struct {
198                         __be32 mo;
199                         __be32 msn;
200                         /*
201                          * Use union for immediate data to be consistent with
202                          * stack's 32 bit data and iWARP spec's 64 bit data.
203                          */
204                         union {
205                                 struct {
206                                         __be32 imm_data32;
207                                         u32 reserved;
208                                 } ib_imm_data;
209                                 __be64 imm_data64;
210                         } iw_imm_data;
211                 } imm_data_rcqe;
212
213                 u64 drain_cookie;
214                 __be64 flits[3];
215         } u;
216         __be64 reserved[3];
217         __be64 bits_type_ts;
218 };
219
220 /* macros for flit 0 of the cqe */
221
222 #define CQE_QPID_S        12
223 #define CQE_QPID_M        0xFFFFF
224 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225 #define CQE_QPID_V(x)     ((x)<<CQE_QPID_S)
226
227 #define CQE_SWCQE_S       11
228 #define CQE_SWCQE_M       0x1
229 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230 #define CQE_SWCQE_V(x)    ((x)<<CQE_SWCQE_S)
231
232 #define CQE_DRAIN_S       10
233 #define CQE_DRAIN_M       0x1
234 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235 #define CQE_DRAIN_V(x)    ((x)<<CQE_DRAIN_S)
236
237 #define CQE_STATUS_S      5
238 #define CQE_STATUS_M      0x1F
239 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
241
242 #define CQE_TYPE_S        4
243 #define CQE_TYPE_M        0x1
244 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
246
247 #define CQE_OPCODE_S      0
248 #define CQE_OPCODE_M      0xF
249 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
251
252 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
255 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
256 #define SQ_TYPE(x)        (CQE_TYPE((x)))
257 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
258 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
259 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
260
261 #define CQE_SEND_OPCODE(x)( \
262         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265         (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
266
267 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
268
269 /* used for RQ completion processing */
270 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
271 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
272 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273 #define CQE_IMM_DATA(x)( \
274         (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
275
276 /* used for SQ completion processing */
277 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
278 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
279
280 /* generic accessor macros */
281 #define CQE_WRID_HI(x)          (be32_to_cpu((x)->u.gen.wrid_hi))
282 #define CQE_WRID_LOW(x)         (be32_to_cpu((x)->u.gen.wrid_low))
283 #define CQE_DRAIN_COOKIE(x)     ((x)->u.drain_cookie)
284
285 /* macros for flit 3 of the cqe */
286 #define CQE_GENBIT_S    63
287 #define CQE_GENBIT_M    0x1
288 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
290
291 #define CQE_OVFBIT_S    62
292 #define CQE_OVFBIT_M    0x1
293 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
294
295 #define CQE_IQTYPE_S    60
296 #define CQE_IQTYPE_M    0x3
297 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
298
299 #define CQE_TS_M        0x0fffffffffffffffULL
300 #define CQE_TS_G(x)     ((x) & CQE_TS_M)
301
302 #define CQE_OVFBIT(x)   ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_GENBIT(x)   ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304 #define CQE_TS(x)       (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
305
306 struct t4_swsqe {
307         u64                     wr_id;
308         struct t4_cqe           cqe;
309         int                     read_len;
310         int                     opcode;
311         int                     complete;
312         int                     signaled;
313         u16                     idx;
314         int                     flushed;
315         ktime_t                 host_time;
316         u64                     sge_ts;
317 };
318
319 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
320 {
321 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322         return pgprot_writecombine(prot);
323 #else
324         return pgprot_noncached(prot);
325 #endif
326 }
327
328 enum {
329         T4_SQ_ONCHIP = (1<<0),
330 };
331
332 struct t4_sq {
333         union t4_wr *queue;
334         dma_addr_t dma_addr;
335         DEFINE_DMA_UNMAP_ADDR(mapping);
336         unsigned long phys_addr;
337         struct t4_swsqe *sw_sq;
338         struct t4_swsqe *oldest_read;
339         void __iomem *bar2_va;
340         u64 bar2_pa;
341         size_t memsize;
342         u32 bar2_qid;
343         u32 qid;
344         u16 in_use;
345         u16 size;
346         u16 cidx;
347         u16 pidx;
348         u16 wq_pidx;
349         u16 wq_pidx_inc;
350         u16 flags;
351         short flush_cidx;
352 };
353
354 struct t4_swrqe {
355         u64 wr_id;
356         ktime_t host_time;
357         u64 sge_ts;
358         int valid;
359 };
360
361 struct t4_rq {
362         union  t4_recv_wr *queue;
363         dma_addr_t dma_addr;
364         DEFINE_DMA_UNMAP_ADDR(mapping);
365         struct t4_swrqe *sw_rq;
366         void __iomem *bar2_va;
367         u64 bar2_pa;
368         size_t memsize;
369         u32 bar2_qid;
370         u32 qid;
371         u32 msn;
372         u32 rqt_hwaddr;
373         u16 rqt_size;
374         u16 in_use;
375         u16 size;
376         u16 cidx;
377         u16 pidx;
378         u16 wq_pidx;
379         u16 wq_pidx_inc;
380 };
381
382 struct t4_wq {
383         struct t4_sq sq;
384         struct t4_rq rq;
385         void __iomem *db;
386         struct c4iw_rdev *rdev;
387         int flushed;
388         u8 *qp_errp;
389         u32 *srqidxp;
390 };
391
392 struct t4_srq_pending_wr {
393         u64 wr_id;
394         union t4_recv_wr wqe;
395         u8 len16;
396 };
397
398 struct t4_srq {
399         union t4_recv_wr *queue;
400         dma_addr_t dma_addr;
401         DEFINE_DMA_UNMAP_ADDR(mapping);
402         struct t4_swrqe *sw_rq;
403         void __iomem *bar2_va;
404         u64 bar2_pa;
405         size_t memsize;
406         u32 bar2_qid;
407         u32 qid;
408         u32 msn;
409         u32 rqt_hwaddr;
410         u32 rqt_abs_idx;
411         u16 rqt_size;
412         u16 size;
413         u16 cidx;
414         u16 pidx;
415         u16 wq_pidx;
416         u16 wq_pidx_inc;
417         u16 in_use;
418         struct t4_srq_pending_wr *pending_wrs;
419         u16 pending_cidx;
420         u16 pending_pidx;
421         u16 pending_in_use;
422         u16 ooo_count;
423 };
424
425 static inline u32 t4_srq_avail(struct t4_srq *srq)
426 {
427         return srq->size - 1 - srq->in_use;
428 }
429
430 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
431 {
432         srq->in_use++;
433         if (++srq->pidx == srq->size)
434                 srq->pidx = 0;
435         srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
436         if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
437                 srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
438         srq->queue[srq->size].status.host_pidx = srq->pidx;
439 }
440
441 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
442 {
443         srq->pending_in_use++;
444         srq->in_use++;
445         if (++srq->pending_pidx == srq->size)
446                 srq->pending_pidx = 0;
447 }
448
449 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
450 {
451         srq->pending_in_use--;
452         srq->in_use--;
453         if (++srq->pending_cidx == srq->size)
454                 srq->pending_cidx = 0;
455 }
456
457 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
458 {
459         srq->in_use--;
460         srq->ooo_count++;
461 }
462
463 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
464 {
465         srq->cidx++;
466         if (srq->cidx == srq->size)
467                 srq->cidx  = 0;
468         srq->queue[srq->size].status.host_cidx = srq->cidx;
469         srq->ooo_count--;
470 }
471
472 static inline void t4_srq_consume(struct t4_srq *srq)
473 {
474         srq->in_use--;
475         if (++srq->cidx == srq->size)
476                 srq->cidx = 0;
477         srq->queue[srq->size].status.host_cidx = srq->cidx;
478 }
479
480 static inline int t4_rqes_posted(struct t4_wq *wq)
481 {
482         return wq->rq.in_use;
483 }
484
485 static inline int t4_rq_empty(struct t4_wq *wq)
486 {
487         return wq->rq.in_use == 0;
488 }
489
490 static inline int t4_rq_full(struct t4_wq *wq)
491 {
492         return wq->rq.in_use == (wq->rq.size - 1);
493 }
494
495 static inline u32 t4_rq_avail(struct t4_wq *wq)
496 {
497         return wq->rq.size - 1 - wq->rq.in_use;
498 }
499
500 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
501 {
502         wq->rq.in_use++;
503         if (++wq->rq.pidx == wq->rq.size)
504                 wq->rq.pidx = 0;
505         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
506         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
507                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
508 }
509
510 static inline void t4_rq_consume(struct t4_wq *wq)
511 {
512         wq->rq.in_use--;
513         if (++wq->rq.cidx == wq->rq.size)
514                 wq->rq.cidx = 0;
515 }
516
517 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
518 {
519         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
520 }
521
522 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
523 {
524                 return wq->rq.size * T4_RQ_NUM_SLOTS;
525 }
526
527 static inline int t4_sq_onchip(struct t4_sq *sq)
528 {
529         return sq->flags & T4_SQ_ONCHIP;
530 }
531
532 static inline int t4_sq_empty(struct t4_wq *wq)
533 {
534         return wq->sq.in_use == 0;
535 }
536
537 static inline int t4_sq_full(struct t4_wq *wq)
538 {
539         return wq->sq.in_use == (wq->sq.size - 1);
540 }
541
542 static inline u32 t4_sq_avail(struct t4_wq *wq)
543 {
544         return wq->sq.size - 1 - wq->sq.in_use;
545 }
546
547 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
548 {
549         wq->sq.in_use++;
550         if (++wq->sq.pidx == wq->sq.size)
551                 wq->sq.pidx = 0;
552         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
553         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
554                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
555 }
556
557 static inline void t4_sq_consume(struct t4_wq *wq)
558 {
559         if (wq->sq.cidx == wq->sq.flush_cidx)
560                 wq->sq.flush_cidx = -1;
561         wq->sq.in_use--;
562         if (++wq->sq.cidx == wq->sq.size)
563                 wq->sq.cidx = 0;
564 }
565
566 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
567 {
568         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
569 }
570
571 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
572 {
573                 return wq->sq.size * T4_SQ_NUM_SLOTS;
574 }
575
576 /* This function copies 64 byte coalesced work request to memory
577  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
578  * from the FIFO instead of from Host.
579  */
580 static inline void pio_copy(u64 __iomem *dst, u64 *src)
581 {
582         int count = 8;
583
584         while (count) {
585                 writeq(*src, dst);
586                 src++;
587                 dst++;
588                 count--;
589         }
590 }
591
592 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
593                                   union t4_recv_wr *wqe)
594 {
595         /* Flush host queue memory writes. */
596         wmb();
597         if (inc == 1 && srq->bar2_qid == 0 && wqe) {
598                 pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
599                          __func__, srq->pidx, len16);
600                 pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
601         } else {
602                 pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
603                          __func__, srq->pidx, len16);
604                 writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
605                        srq->bar2_va + SGE_UDB_KDOORBELL);
606         }
607         /* Flush user doorbell area writes. */
608         wmb();
609 }
610
611 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
612 {
613
614         /* Flush host queue memory writes. */
615         wmb();
616         if (wq->sq.bar2_va) {
617                 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
618                         pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
619                         pio_copy((u64 __iomem *)
620                                  (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
621                                  (u64 *)wqe);
622                 } else {
623                         pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
624                         writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
625                                wq->sq.bar2_va + SGE_UDB_KDOORBELL);
626                 }
627
628                 /* Flush user doorbell area writes. */
629                 wmb();
630                 return;
631         }
632         writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
633 }
634
635 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
636                                  union t4_recv_wr *wqe)
637 {
638
639         /* Flush host queue memory writes. */
640         wmb();
641         if (wq->rq.bar2_va) {
642                 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
643                         pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
644                         pio_copy((u64 __iomem *)
645                                  (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
646                                  (void *)wqe);
647                 } else {
648                         pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
649                         writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
650                                wq->rq.bar2_va + SGE_UDB_KDOORBELL);
651                 }
652
653                 /* Flush user doorbell area writes. */
654                 wmb();
655                 return;
656         }
657         writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
658 }
659
660 static inline int t4_wq_in_error(struct t4_wq *wq)
661 {
662         return *wq->qp_errp;
663 }
664
665 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
666 {
667         if (srqidx)
668                 *wq->srqidxp = srqidx;
669         *wq->qp_errp = 1;
670 }
671
672 static inline void t4_disable_wq_db(struct t4_wq *wq)
673 {
674         wq->rq.queue[wq->rq.size].status.db_off = 1;
675 }
676
677 static inline void t4_enable_wq_db(struct t4_wq *wq)
678 {
679         wq->rq.queue[wq->rq.size].status.db_off = 0;
680 }
681
682 static inline int t4_wq_db_enabled(struct t4_wq *wq)
683 {
684         return !wq->rq.queue[wq->rq.size].status.db_off;
685 }
686
687 enum t4_cq_flags {
688         CQ_ARMED        = 1,
689 };
690
691 struct t4_cq {
692         struct t4_cqe *queue;
693         dma_addr_t dma_addr;
694         DEFINE_DMA_UNMAP_ADDR(mapping);
695         struct t4_cqe *sw_queue;
696         void __iomem *gts;
697         void __iomem *bar2_va;
698         u64 bar2_pa;
699         u32 bar2_qid;
700         struct c4iw_rdev *rdev;
701         size_t memsize;
702         __be64 bits_type_ts;
703         u32 cqid;
704         u32 qid_mask;
705         int vector;
706         u16 size; /* including status page */
707         u16 cidx;
708         u16 sw_pidx;
709         u16 sw_cidx;
710         u16 sw_in_use;
711         u16 cidx_inc;
712         u8 gen;
713         u8 error;
714         u8 *qp_errp;
715         unsigned long flags;
716 };
717
718 static inline void write_gts(struct t4_cq *cq, u32 val)
719 {
720         if (cq->bar2_va)
721                 writel(val | INGRESSQID_V(cq->bar2_qid),
722                        cq->bar2_va + SGE_UDB_GTS);
723         else
724                 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
725 }
726
727 static inline int t4_clear_cq_armed(struct t4_cq *cq)
728 {
729         return test_and_clear_bit(CQ_ARMED, &cq->flags);
730 }
731
732 static inline int t4_arm_cq(struct t4_cq *cq, int se)
733 {
734         u32 val;
735
736         set_bit(CQ_ARMED, &cq->flags);
737         while (cq->cidx_inc > CIDXINC_M) {
738                 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
739                 write_gts(cq, val);
740                 cq->cidx_inc -= CIDXINC_M;
741         }
742         val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
743         write_gts(cq, val);
744         cq->cidx_inc = 0;
745         return 0;
746 }
747
748 static inline void t4_swcq_produce(struct t4_cq *cq)
749 {
750         cq->sw_in_use++;
751         if (cq->sw_in_use == cq->size) {
752                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
753                         __func__, cq->cqid);
754                 cq->error = 1;
755                 cq->sw_in_use--;
756                 return;
757         }
758         if (++cq->sw_pidx == cq->size)
759                 cq->sw_pidx = 0;
760 }
761
762 static inline void t4_swcq_consume(struct t4_cq *cq)
763 {
764         cq->sw_in_use--;
765         if (++cq->sw_cidx == cq->size)
766                 cq->sw_cidx = 0;
767 }
768
769 static inline void t4_hwcq_consume(struct t4_cq *cq)
770 {
771         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
772         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
773                 u32 val;
774
775                 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
776                 write_gts(cq, val);
777                 cq->cidx_inc = 0;
778         }
779         if (++cq->cidx == cq->size) {
780                 cq->cidx = 0;
781                 cq->gen ^= 1;
782         }
783 }
784
785 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
786 {
787         return (CQE_GENBIT(cqe) == cq->gen);
788 }
789
790 static inline int t4_cq_notempty(struct t4_cq *cq)
791 {
792         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
793 }
794
795 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
796 {
797         int ret;
798         u16 prev_cidx;
799
800         if (cq->cidx == 0)
801                 prev_cidx = cq->size - 1;
802         else
803                 prev_cidx = cq->cidx - 1;
804
805         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
806                 ret = -EOVERFLOW;
807                 cq->error = 1;
808                 pr_err("cq overflow cqid %u\n", cq->cqid);
809         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
810
811                 /* Ensure CQE is flushed to memory */
812                 rmb();
813                 *cqe = &cq->queue[cq->cidx];
814                 ret = 0;
815         } else
816                 ret = -ENODATA;
817         return ret;
818 }
819
820 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
821 {
822         if (cq->sw_in_use == cq->size) {
823                 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
824                         __func__, cq->cqid);
825                 cq->error = 1;
826                 return NULL;
827         }
828         if (cq->sw_in_use)
829                 return &cq->sw_queue[cq->sw_cidx];
830         return NULL;
831 }
832
833 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
834 {
835         int ret = 0;
836
837         if (cq->error)
838                 ret = -ENODATA;
839         else if (cq->sw_in_use)
840                 *cqe = &cq->sw_queue[cq->sw_cidx];
841         else
842                 ret = t4_next_hw_cqe(cq, cqe);
843         return ret;
844 }
845
846 static inline int t4_cq_in_error(struct t4_cq *cq)
847 {
848         return *cq->qp_errp;
849 }
850
851 static inline void t4_set_cq_in_error(struct t4_cq *cq)
852 {
853         *cq->qp_errp = 1;
854 }
855 #endif
856
857 struct t4_dev_status_page {
858         u8 db_off;
859         u8 write_cmpl_supported;
860         u16 pad2;
861         u32 pad3;
862         u64 qp_start;
863         u64 qp_size;
864         u64 cq_start;
865         u64 cq_size;
866 };