2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include "t4_values.h"
39 #include "t4fw_ri_api.h"
41 #define T4_MAX_NUM_PD 65536
42 #define T4_MAX_MR_SIZE (~0ULL)
43 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
44 #define T4_STAG_UNSET 0xffffffff
46 #define PCIE_MA_SYNC_A 0x30b4
48 struct t4_status_page {
49 __be32 rsvd1; /* flit 0 - hw owns */
54 u8 qp_err; /* flit 1 - sw owns */
64 #define T4_RQT_ENTRY_SHIFT 6
65 #define T4_RQT_ENTRY_SIZE BIT(T4_RQT_ENTRY_SHIFT)
66 #define T4_EQ_ENTRY_SIZE 64
68 #define T4_SQ_NUM_SLOTS 5
69 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73 sizeof(struct fw_ri_immd)))
74 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75 sizeof(struct fw_ri_rdma_write_wr) - \
76 sizeof(struct fw_ri_immd)))
77 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78 sizeof(struct fw_ri_rdma_write_wr) - \
79 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81 sizeof(struct fw_ri_immd)) & ~31UL)
82 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83 #define T4_MAX_FR_DSGL 1024
84 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
86 static inline int t4_max_fr_depth(int use_dsgl)
88 return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
91 #define T4_RQ_NUM_SLOTS 2
92 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93 #define T4_MAX_RECV_SGE 4
95 #define T4_WRITE_CMPL_MAX_SGL 4
96 #define T4_WRITE_CMPL_MAX_CQE 16
99 struct fw_ri_res_wr res;
101 struct fw_ri_rdma_write_wr write;
102 struct fw_ri_send_wr send;
103 struct fw_ri_rdma_read_wr read;
104 struct fw_ri_bind_mw_wr bind;
105 struct fw_ri_fr_nsmr_wr fr;
106 struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
107 struct fw_ri_inv_lstag_wr inv;
108 struct fw_ri_rdma_write_cmpl_wr write_cmpl;
109 struct t4_status_page status;
110 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
114 struct fw_ri_recv_wr recv;
115 struct t4_status_page status;
116 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
119 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
122 wqe->send.opcode = (u8)opcode;
123 wqe->send.flags = flags;
124 wqe->send.wrid = wrid;
128 wqe->send.len16 = len16;
131 /* CQE/AE status codes */
132 #define T4_ERR_SUCCESS 0x0
133 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
134 /* STAG is offlimt, being 0, */
135 /* or STAG_key mismatch */
136 #define T4_ERR_PDID 0x2 /* PDID mismatch */
137 #define T4_ERR_QPID 0x3 /* QPID mismatch */
138 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
139 #define T4_ERR_WRAP 0x5 /* Wrap error */
140 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
141 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
142 /* shared memory region */
143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
144 /* shared memory region */
145 #define T4_ERR_ECC 0x9 /* ECC error detected */
146 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
147 /* reading PSTAG for a MW */
149 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
151 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
152 #define T4_ERR_CRC 0x10 /* CRC error */
153 #define T4_ERR_MARKER 0x11 /* Marker error */
154 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
155 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
156 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
157 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
158 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
159 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
160 #define T4_ERR_MSN 0x18 /* MSN error */
161 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
162 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
164 #define T4_ERR_MSN_GAP 0x1B
165 #define T4_ERR_MSN_RANGE 0x1C
166 #define T4_ERR_IRD_OVERFLOW 0x1D
167 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
169 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
201 * Use union for immediate data to be consistent with
202 * stack's 32 bit data and iWARP spec's 64 bit data.
220 /* macros for flit 0 of the cqe */
222 #define CQE_QPID_S 12
223 #define CQE_QPID_M 0xFFFFF
224 #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225 #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
227 #define CQE_SWCQE_S 11
228 #define CQE_SWCQE_M 0x1
229 #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230 #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
232 #define CQE_DRAIN_S 10
233 #define CQE_DRAIN_M 0x1
234 #define CQE_DRAIN_G(x) ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235 #define CQE_DRAIN_V(x) ((x)<<CQE_DRAIN_S)
237 #define CQE_STATUS_S 5
238 #define CQE_STATUS_M 0x1F
239 #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240 #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
243 #define CQE_TYPE_M 0x1
244 #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245 #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
247 #define CQE_OPCODE_S 0
248 #define CQE_OPCODE_M 0xF
249 #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250 #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
252 #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253 #define DRAIN_CQE(x) (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254 #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
255 #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
256 #define SQ_TYPE(x) (CQE_TYPE((x)))
257 #define RQ_TYPE(x) (!CQE_TYPE((x)))
258 #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
259 #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
261 #define CQE_SEND_OPCODE(x)( \
262 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265 (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
267 #define CQE_LEN(x) (be32_to_cpu((x)->len))
269 /* used for RQ completion processing */
270 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
271 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
272 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273 #define CQE_IMM_DATA(x)( \
274 (x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
276 /* used for SQ completion processing */
277 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
278 #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
280 /* generic accessor macros */
281 #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
282 #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
283 #define CQE_DRAIN_COOKIE(x) ((x)->u.drain_cookie)
285 /* macros for flit 3 of the cqe */
286 #define CQE_GENBIT_S 63
287 #define CQE_GENBIT_M 0x1
288 #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
291 #define CQE_OVFBIT_S 62
292 #define CQE_OVFBIT_M 0x1
293 #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
295 #define CQE_IQTYPE_S 60
296 #define CQE_IQTYPE_M 0x3
297 #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
299 #define CQE_TS_M 0x0fffffffffffffffULL
300 #define CQE_TS_G(x) ((x) & CQE_TS_M)
302 #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304 #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
319 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
321 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322 return pgprot_writecombine(prot);
324 return pgprot_noncached(prot);
329 T4_SQ_ONCHIP = (1<<0),
335 DEFINE_DMA_UNMAP_ADDR(mapping);
336 unsigned long phys_addr;
337 struct t4_swsqe *sw_sq;
338 struct t4_swsqe *oldest_read;
339 void __iomem *bar2_va;
362 union t4_recv_wr *queue;
364 DEFINE_DMA_UNMAP_ADDR(mapping);
365 struct t4_swrqe *sw_rq;
366 void __iomem *bar2_va;
386 struct c4iw_rdev *rdev;
392 struct t4_srq_pending_wr {
394 union t4_recv_wr wqe;
399 union t4_recv_wr *queue;
401 DEFINE_DMA_UNMAP_ADDR(mapping);
402 struct t4_swrqe *sw_rq;
403 void __iomem *bar2_va;
418 struct t4_srq_pending_wr *pending_wrs;
425 static inline u32 t4_srq_avail(struct t4_srq *srq)
427 return srq->size - 1 - srq->in_use;
430 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
433 if (++srq->pidx == srq->size)
435 srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
436 if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
437 srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
438 srq->queue[srq->size].status.host_pidx = srq->pidx;
441 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
443 srq->pending_in_use++;
445 if (++srq->pending_pidx == srq->size)
446 srq->pending_pidx = 0;
449 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
451 srq->pending_in_use--;
453 if (++srq->pending_cidx == srq->size)
454 srq->pending_cidx = 0;
457 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
463 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
466 if (srq->cidx == srq->size)
468 srq->queue[srq->size].status.host_cidx = srq->cidx;
472 static inline void t4_srq_consume(struct t4_srq *srq)
475 if (++srq->cidx == srq->size)
477 srq->queue[srq->size].status.host_cidx = srq->cidx;
480 static inline int t4_rqes_posted(struct t4_wq *wq)
482 return wq->rq.in_use;
485 static inline int t4_rq_empty(struct t4_wq *wq)
487 return wq->rq.in_use == 0;
490 static inline int t4_rq_full(struct t4_wq *wq)
492 return wq->rq.in_use == (wq->rq.size - 1);
495 static inline u32 t4_rq_avail(struct t4_wq *wq)
497 return wq->rq.size - 1 - wq->rq.in_use;
500 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
503 if (++wq->rq.pidx == wq->rq.size)
505 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
506 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
507 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
510 static inline void t4_rq_consume(struct t4_wq *wq)
513 if (++wq->rq.cidx == wq->rq.size)
517 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
519 return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
522 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
524 return wq->rq.size * T4_RQ_NUM_SLOTS;
527 static inline int t4_sq_onchip(struct t4_sq *sq)
529 return sq->flags & T4_SQ_ONCHIP;
532 static inline int t4_sq_empty(struct t4_wq *wq)
534 return wq->sq.in_use == 0;
537 static inline int t4_sq_full(struct t4_wq *wq)
539 return wq->sq.in_use == (wq->sq.size - 1);
542 static inline u32 t4_sq_avail(struct t4_wq *wq)
544 return wq->sq.size - 1 - wq->sq.in_use;
547 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
550 if (++wq->sq.pidx == wq->sq.size)
552 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
553 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
554 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
557 static inline void t4_sq_consume(struct t4_wq *wq)
559 if (wq->sq.cidx == wq->sq.flush_cidx)
560 wq->sq.flush_cidx = -1;
562 if (++wq->sq.cidx == wq->sq.size)
566 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
568 return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
571 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
573 return wq->sq.size * T4_SQ_NUM_SLOTS;
576 /* This function copies 64 byte coalesced work request to memory
577 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
578 * from the FIFO instead of from Host.
580 static inline void pio_copy(u64 __iomem *dst, u64 *src)
592 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
593 union t4_recv_wr *wqe)
595 /* Flush host queue memory writes. */
597 if (inc == 1 && srq->bar2_qid == 0 && wqe) {
598 pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
599 __func__, srq->pidx, len16);
600 pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
602 pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
603 __func__, srq->pidx, len16);
604 writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
605 srq->bar2_va + SGE_UDB_KDOORBELL);
607 /* Flush user doorbell area writes. */
611 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
614 /* Flush host queue memory writes. */
616 if (wq->sq.bar2_va) {
617 if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
618 pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
619 pio_copy((u64 __iomem *)
620 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
623 pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
624 writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
625 wq->sq.bar2_va + SGE_UDB_KDOORBELL);
628 /* Flush user doorbell area writes. */
632 writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
635 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
636 union t4_recv_wr *wqe)
639 /* Flush host queue memory writes. */
641 if (wq->rq.bar2_va) {
642 if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
643 pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
644 pio_copy((u64 __iomem *)
645 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
648 pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
649 writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
650 wq->rq.bar2_va + SGE_UDB_KDOORBELL);
653 /* Flush user doorbell area writes. */
657 writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
660 static inline int t4_wq_in_error(struct t4_wq *wq)
665 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
668 *wq->srqidxp = srqidx;
672 static inline void t4_disable_wq_db(struct t4_wq *wq)
674 wq->rq.queue[wq->rq.size].status.db_off = 1;
677 static inline void t4_enable_wq_db(struct t4_wq *wq)
679 wq->rq.queue[wq->rq.size].status.db_off = 0;
682 static inline int t4_wq_db_enabled(struct t4_wq *wq)
684 return !wq->rq.queue[wq->rq.size].status.db_off;
692 struct t4_cqe *queue;
694 DEFINE_DMA_UNMAP_ADDR(mapping);
695 struct t4_cqe *sw_queue;
697 void __iomem *bar2_va;
700 struct c4iw_rdev *rdev;
706 u16 size; /* including status page */
718 static inline void write_gts(struct t4_cq *cq, u32 val)
721 writel(val | INGRESSQID_V(cq->bar2_qid),
722 cq->bar2_va + SGE_UDB_GTS);
724 writel(val | INGRESSQID_V(cq->cqid), cq->gts);
727 static inline int t4_clear_cq_armed(struct t4_cq *cq)
729 return test_and_clear_bit(CQ_ARMED, &cq->flags);
732 static inline int t4_arm_cq(struct t4_cq *cq, int se)
736 set_bit(CQ_ARMED, &cq->flags);
737 while (cq->cidx_inc > CIDXINC_M) {
738 val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
740 cq->cidx_inc -= CIDXINC_M;
742 val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
748 static inline void t4_swcq_produce(struct t4_cq *cq)
751 if (cq->sw_in_use == cq->size) {
752 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
758 if (++cq->sw_pidx == cq->size)
762 static inline void t4_swcq_consume(struct t4_cq *cq)
765 if (++cq->sw_cidx == cq->size)
769 static inline void t4_hwcq_consume(struct t4_cq *cq)
771 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
772 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
775 val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
779 if (++cq->cidx == cq->size) {
785 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
787 return (CQE_GENBIT(cqe) == cq->gen);
790 static inline int t4_cq_notempty(struct t4_cq *cq)
792 return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
795 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
801 prev_cidx = cq->size - 1;
803 prev_cidx = cq->cidx - 1;
805 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
808 pr_err("cq overflow cqid %u\n", cq->cqid);
809 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
811 /* Ensure CQE is flushed to memory */
813 *cqe = &cq->queue[cq->cidx];
820 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
822 if (cq->sw_in_use == cq->size) {
823 pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
829 return &cq->sw_queue[cq->sw_cidx];
833 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
839 else if (cq->sw_in_use)
840 *cqe = &cq->sw_queue[cq->sw_cidx];
842 ret = t4_next_hw_cqe(cq, cqe);
846 static inline int t4_cq_in_error(struct t4_cq *cq)
851 static inline void t4_set_cq_in_error(struct t4_cq *cq)
857 struct t4_dev_status_page {
859 u8 write_cmpl_supported;