usb: typec: mux: fix static inline syntax error
[platform/kernel/linux-starfive.git] / drivers / infiniband / hw / bnxt_re / qplib_res.c
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38
39 #define dev_fmt(fmt) "QPLIB: " fmt
40
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57                                       struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59                                       struct bnxt_qplib_chip_ctx *cctx,
60                                       struct bnxt_qplib_stats *stats);
61
62 /* PBL */
63 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
64                        bool is_umem)
65 {
66         struct pci_dev *pdev = res->pdev;
67         int i;
68
69         if (!is_umem) {
70                 for (i = 0; i < pbl->pg_count; i++) {
71                         if (pbl->pg_arr[i])
72                                 dma_free_coherent(&pdev->dev, pbl->pg_size,
73                                                   (void *)((unsigned long)
74                                                    pbl->pg_arr[i] &
75                                                   PAGE_MASK),
76                                                   pbl->pg_map_arr[i]);
77                         else
78                                 dev_warn(&pdev->dev,
79                                          "PBL free pg_arr[%d] empty?!\n", i);
80                         pbl->pg_arr[i] = NULL;
81                 }
82         }
83         vfree(pbl->pg_arr);
84         pbl->pg_arr = NULL;
85         vfree(pbl->pg_map_arr);
86         pbl->pg_map_arr = NULL;
87         pbl->pg_count = 0;
88         pbl->pg_size = 0;
89 }
90
91 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
92                                            struct bnxt_qplib_sg_info *sginfo)
93 {
94         struct ib_block_iter biter;
95         int i = 0;
96
97         rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
98                 pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
99                 pbl->pg_arr[i] = NULL;
100                 pbl->pg_count++;
101                 i++;
102         }
103 }
104
105 static int __alloc_pbl(struct bnxt_qplib_res *res,
106                        struct bnxt_qplib_pbl *pbl,
107                        struct bnxt_qplib_sg_info *sginfo)
108 {
109         struct pci_dev *pdev = res->pdev;
110         bool is_umem = false;
111         u32 pages;
112         int i;
113
114         if (sginfo->nopte)
115                 return 0;
116         if (sginfo->umem)
117                 pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
118         else
119                 pages = sginfo->npages;
120         /* page ptr arrays */
121         pbl->pg_arr = vmalloc(pages * sizeof(void *));
122         if (!pbl->pg_arr)
123                 return -ENOMEM;
124
125         pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
126         if (!pbl->pg_map_arr) {
127                 vfree(pbl->pg_arr);
128                 pbl->pg_arr = NULL;
129                 return -ENOMEM;
130         }
131         pbl->pg_count = 0;
132         pbl->pg_size = sginfo->pgsize;
133
134         if (!sginfo->umem) {
135                 for (i = 0; i < pages; i++) {
136                         pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
137                                                             pbl->pg_size,
138                                                             &pbl->pg_map_arr[i],
139                                                             GFP_KERNEL);
140                         if (!pbl->pg_arr[i])
141                                 goto fail;
142                         pbl->pg_count++;
143                 }
144         } else {
145                 is_umem = true;
146                 bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
147         }
148
149         return 0;
150 fail:
151         __free_pbl(res, pbl, is_umem);
152         return -ENOMEM;
153 }
154
155 /* HWQ */
156 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
157                          struct bnxt_qplib_hwq *hwq)
158 {
159         int i;
160
161         if (!hwq->max_elements)
162                 return;
163         if (hwq->level >= PBL_LVL_MAX)
164                 return;
165
166         for (i = 0; i < hwq->level + 1; i++) {
167                 if (i == hwq->level)
168                         __free_pbl(res, &hwq->pbl[i], hwq->is_user);
169                 else
170                         __free_pbl(res, &hwq->pbl[i], false);
171         }
172
173         hwq->level = PBL_LVL_MAX;
174         hwq->max_elements = 0;
175         hwq->element_size = 0;
176         hwq->prod = 0;
177         hwq->cons = 0;
178         hwq->cp_bit = 0;
179 }
180
181 /* All HWQs are power of 2 in size */
182
183 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
184                               struct bnxt_qplib_hwq_attr *hwq_attr)
185 {
186         u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
187         struct bnxt_qplib_sg_info sginfo = {};
188         u32 depth, stride, npbl, npde;
189         dma_addr_t *src_phys_ptr, **dst_virt_ptr;
190         struct bnxt_qplib_res *res;
191         struct pci_dev *pdev;
192         int i, rc, lvl;
193
194         res = hwq_attr->res;
195         pdev = res->pdev;
196         pg_size = hwq_attr->sginfo->pgsize;
197         hwq->level = PBL_LVL_MAX;
198
199         depth = roundup_pow_of_two(hwq_attr->depth);
200         stride = roundup_pow_of_two(hwq_attr->stride);
201         if (hwq_attr->aux_depth) {
202                 aux_slots = hwq_attr->aux_depth;
203                 aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
204                 aux_pages = (aux_slots * aux_size) / pg_size;
205                 if ((aux_slots * aux_size) % pg_size)
206                         aux_pages++;
207         }
208
209         if (!hwq_attr->sginfo->umem) {
210                 hwq->is_user = false;
211                 npages = (depth * stride) / pg_size + aux_pages;
212                 if ((depth * stride) % pg_size)
213                         npages++;
214                 if (!npages)
215                         return -EINVAL;
216                 hwq_attr->sginfo->npages = npages;
217         } else {
218                 unsigned long sginfo_num_pages = ib_umem_num_dma_blocks(
219                         hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize);
220
221                 hwq->is_user = true;
222                 npages = sginfo_num_pages;
223                 npages = (npages * PAGE_SIZE) /
224                           BIT_ULL(hwq_attr->sginfo->pgshft);
225                 if ((sginfo_num_pages * PAGE_SIZE) %
226                      BIT_ULL(hwq_attr->sginfo->pgshft))
227                         if (!npages)
228                                 npages++;
229         }
230
231         if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) {
232                 /* This request is Level 0, map PTE */
233                 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
234                 if (rc)
235                         goto fail;
236                 hwq->level = PBL_LVL_0;
237                 goto done;
238         }
239
240         if (npages >= MAX_PBL_LVL_0_PGS) {
241                 if (npages > MAX_PBL_LVL_1_PGS) {
242                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
243                                     0 : PTU_PTE_VALID;
244                         /* 2 levels of indirection */
245                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
246                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
247                                 npbl++;
248                         npde = npbl >> MAX_PDL_LVL_SHIFT;
249                         if (npbl % BIT(MAX_PDL_LVL_SHIFT))
250                                 npde++;
251                         /* Alloc PDE pages */
252                         sginfo.pgsize = npde * pg_size;
253                         sginfo.npages = 1;
254                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
255
256                         /* Alloc PBL pages */
257                         sginfo.npages = npbl;
258                         sginfo.pgsize = PAGE_SIZE;
259                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
260                         if (rc)
261                                 goto fail;
262                         /* Fill PDL with PBL page pointers */
263                         dst_virt_ptr =
264                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
265                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
266                         if (hwq_attr->type == HWQ_TYPE_MR) {
267                         /* For MR it is expected that we supply only 1 contigous
268                          * page i.e only 1 entry in the PDL that will contain
269                          * all the PBLs for the user supplied memory region
270                          */
271                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
272                                      i++)
273                                         dst_virt_ptr[0][i] = src_phys_ptr[i] |
274                                                 flag;
275                         } else {
276                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
277                                      i++)
278                                         dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
279                                                 src_phys_ptr[i] |
280                                                 PTU_PDE_VALID;
281                         }
282                         /* Alloc or init PTEs */
283                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
284                                          hwq_attr->sginfo);
285                         if (rc)
286                                 goto fail;
287                         hwq->level = PBL_LVL_2;
288                         if (hwq_attr->sginfo->nopte)
289                                 goto done;
290                         /* Fill PBLs with PTE pointers */
291                         dst_virt_ptr =
292                                 (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
293                         src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
294                         for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
295                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
296                                         src_phys_ptr[i] | PTU_PTE_VALID;
297                         }
298                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
299                                 /* Find the last pg of the size */
300                                 i = hwq->pbl[PBL_LVL_2].pg_count;
301                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
302                                                                   PTU_PTE_LAST;
303                                 if (i > 1)
304                                         dst_virt_ptr[PTR_PG(i - 2)]
305                                                     [PTR_IDX(i - 2)] |=
306                                                     PTU_PTE_NEXT_TO_LAST;
307                         }
308                 } else { /* pages < 512 npbl = 1, npde = 0 */
309                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
310                                     0 : PTU_PTE_VALID;
311
312                         /* 1 level of indirection */
313                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
314                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
315                                 npbl++;
316                         sginfo.npages = npbl;
317                         sginfo.pgsize = PAGE_SIZE;
318                         /* Alloc PBL page */
319                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
320                         if (rc)
321                                 goto fail;
322                         /* Alloc or init  PTEs */
323                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
324                                          hwq_attr->sginfo);
325                         if (rc)
326                                 goto fail;
327                         hwq->level = PBL_LVL_1;
328                         if (hwq_attr->sginfo->nopte)
329                                 goto done;
330                         /* Fill PBL with PTE pointers */
331                         dst_virt_ptr =
332                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
333                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
334                         for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
335                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
336                                         src_phys_ptr[i] | flag;
337                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
338                                 /* Find the last pg of the size */
339                                 i = hwq->pbl[PBL_LVL_1].pg_count;
340                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
341                                                                   PTU_PTE_LAST;
342                                 if (i > 1)
343                                         dst_virt_ptr[PTR_PG(i - 2)]
344                                                     [PTR_IDX(i - 2)] |=
345                                                     PTU_PTE_NEXT_TO_LAST;
346                         }
347                 }
348         }
349 done:
350         hwq->prod = 0;
351         hwq->cons = 0;
352         hwq->pdev = pdev;
353         hwq->depth = hwq_attr->depth;
354         hwq->max_elements = depth;
355         hwq->element_size = stride;
356         hwq->qe_ppg = pg_size / stride;
357         /* For direct access to the elements */
358         lvl = hwq->level;
359         if (hwq_attr->sginfo->nopte && hwq->level)
360                 lvl = hwq->level - 1;
361         hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
362         hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
363         spin_lock_init(&hwq->lock);
364
365         return 0;
366 fail:
367         bnxt_qplib_free_hwq(res, hwq);
368         return -ENOMEM;
369 }
370
371 /* Context Tables */
372 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
373                          struct bnxt_qplib_ctx *ctx)
374 {
375         int i;
376
377         bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
378         bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
379         bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
380         bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
381         bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
382         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
383                 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
384         /* restore original pde level before destroy */
385         ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
386         bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
387         bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
388 }
389
390 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
391                                       struct bnxt_qplib_ctx *ctx)
392 {
393         struct bnxt_qplib_hwq_attr hwq_attr = {};
394         struct bnxt_qplib_sg_info sginfo = {};
395         struct bnxt_qplib_tqm_ctx *tqmctx;
396         int rc = 0;
397         int i;
398
399         tqmctx = &ctx->tqm_ctx;
400
401         sginfo.pgsize = PAGE_SIZE;
402         sginfo.pgshft = PAGE_SHIFT;
403         hwq_attr.sginfo = &sginfo;
404         hwq_attr.res = res;
405         hwq_attr.type = HWQ_TYPE_CTX;
406         hwq_attr.depth = 512;
407         hwq_attr.stride = sizeof(u64);
408         /* Alloc pdl buffer */
409         rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
410         if (rc)
411                 goto out;
412         /* Save original pdl level */
413         tqmctx->pde_level = tqmctx->pde.level;
414
415         hwq_attr.stride = 1;
416         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
417                 if (!tqmctx->qcount[i])
418                         continue;
419                 hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
420                 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
421                 if (rc)
422                         goto out;
423         }
424 out:
425         return rc;
426 }
427
428 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
429 {
430         struct bnxt_qplib_hwq *tbl;
431         dma_addr_t *dma_ptr;
432         __le64 **pbl_ptr, *ptr;
433         int i, j, k;
434         int fnz_idx = -1;
435         int pg_count;
436
437         pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
438
439         for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
440              i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
441                 tbl = &ctx->qtbl[i];
442                 if (!tbl->max_elements)
443                         continue;
444                 if (fnz_idx == -1)
445                         fnz_idx = i; /* first non-zero index */
446                 switch (tbl->level) {
447                 case PBL_LVL_2:
448                         pg_count = tbl->pbl[PBL_LVL_1].pg_count;
449                         for (k = 0; k < pg_count; k++) {
450                                 ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
451                                 dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
452                                 *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
453                         }
454                         break;
455                 case PBL_LVL_1:
456                 case PBL_LVL_0:
457                 default:
458                         ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
459                         *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
460                                            PTU_PTE_VALID);
461                         break;
462                 }
463         }
464         if (fnz_idx == -1)
465                 fnz_idx = 0;
466         /* update pde level as per page table programming */
467         ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
468                           ctx->qtbl[fnz_idx].level + 1;
469 }
470
471 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
472                                       struct bnxt_qplib_ctx *ctx)
473 {
474         int rc = 0;
475
476         rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
477         if (rc)
478                 goto fail;
479
480         bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
481 fail:
482         return rc;
483 }
484
485 /*
486  * Routine: bnxt_qplib_alloc_ctx
487  * Description:
488  *     Context tables are memories which are used by the chip fw.
489  *     The 6 tables defined are:
490  *             QPC ctx - holds QP states
491  *             MRW ctx - holds memory region and window
492  *             SRQ ctx - holds shared RQ states
493  *             CQ ctx - holds completion queue states
494  *             TQM ctx - holds Tx Queue Manager context
495  *             TIM ctx - holds timer context
496  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
497  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
498  *     instead.
499  *     Table might be employed as follows:
500  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
501  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
502  *             For 512    < ctx size <= MAX, 2 levels of ind is used
503  * Returns:
504  *     0 if success, else -ERRORS
505  */
506 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
507                          struct bnxt_qplib_ctx *ctx,
508                          bool virt_fn, bool is_p5)
509 {
510         struct bnxt_qplib_hwq_attr hwq_attr = {};
511         struct bnxt_qplib_sg_info sginfo = {};
512         int rc = 0;
513
514         if (virt_fn || is_p5)
515                 goto stats_alloc;
516
517         /* QPC Tables */
518         sginfo.pgsize = PAGE_SIZE;
519         sginfo.pgshft = PAGE_SHIFT;
520         hwq_attr.sginfo = &sginfo;
521
522         hwq_attr.res = res;
523         hwq_attr.depth = ctx->qpc_count;
524         hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
525         hwq_attr.type = HWQ_TYPE_CTX;
526         rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
527         if (rc)
528                 goto fail;
529
530         /* MRW Tables */
531         hwq_attr.depth = ctx->mrw_count;
532         hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
533         rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
534         if (rc)
535                 goto fail;
536
537         /* SRQ Tables */
538         hwq_attr.depth = ctx->srqc_count;
539         hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
540         rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
541         if (rc)
542                 goto fail;
543
544         /* CQ Tables */
545         hwq_attr.depth = ctx->cq_count;
546         hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
547         rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
548         if (rc)
549                 goto fail;
550
551         /* TQM Buffer */
552         rc = bnxt_qplib_setup_tqm_rings(res, ctx);
553         if (rc)
554                 goto fail;
555         /* TIM Buffer */
556         ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
557         hwq_attr.depth = ctx->qpc_count * 16;
558         hwq_attr.stride = 1;
559         rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
560         if (rc)
561                 goto fail;
562 stats_alloc:
563         /* Stats */
564         rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats);
565         if (rc)
566                 goto fail;
567
568         return 0;
569
570 fail:
571         bnxt_qplib_free_ctx(res, ctx);
572         return rc;
573 }
574
575 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
576                                      struct bnxt_qplib_sgid_tbl *sgid_tbl)
577 {
578         kfree(sgid_tbl->tbl);
579         kfree(sgid_tbl->hw_id);
580         kfree(sgid_tbl->ctx);
581         kfree(sgid_tbl->vlan);
582         sgid_tbl->tbl = NULL;
583         sgid_tbl->hw_id = NULL;
584         sgid_tbl->ctx = NULL;
585         sgid_tbl->vlan = NULL;
586         sgid_tbl->max = 0;
587         sgid_tbl->active = 0;
588 }
589
590 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
591                                      struct bnxt_qplib_sgid_tbl *sgid_tbl,
592                                      u16 max)
593 {
594         sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
595         if (!sgid_tbl->tbl)
596                 return -ENOMEM;
597
598         sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
599         if (!sgid_tbl->hw_id)
600                 goto out_free1;
601
602         sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
603         if (!sgid_tbl->ctx)
604                 goto out_free2;
605
606         sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
607         if (!sgid_tbl->vlan)
608                 goto out_free3;
609
610         sgid_tbl->max = max;
611         return 0;
612 out_free3:
613         kfree(sgid_tbl->ctx);
614         sgid_tbl->ctx = NULL;
615 out_free2:
616         kfree(sgid_tbl->hw_id);
617         sgid_tbl->hw_id = NULL;
618 out_free1:
619         kfree(sgid_tbl->tbl);
620         sgid_tbl->tbl = NULL;
621         return -ENOMEM;
622 };
623
624 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
625                                         struct bnxt_qplib_sgid_tbl *sgid_tbl)
626 {
627         int i;
628
629         for (i = 0; i < sgid_tbl->max; i++) {
630                 if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
631                            sizeof(bnxt_qplib_gid_zero)))
632                         bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
633                                             sgid_tbl->tbl[i].vlan_id, true);
634         }
635         memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
636         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
637         memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
638         sgid_tbl->active = 0;
639 }
640
641 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
642                                      struct net_device *netdev)
643 {
644         u32 i;
645
646         for (i = 0; i < sgid_tbl->max; i++)
647                 sgid_tbl->tbl[i].vlan_id = 0xffff;
648
649         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
650 }
651
652 /* PDs */
653 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
654 {
655         u32 bit_num;
656
657         bit_num = find_first_bit(pdt->tbl, pdt->max);
658         if (bit_num == pdt->max)
659                 return -ENOMEM;
660
661         /* Found unused PD */
662         clear_bit(bit_num, pdt->tbl);
663         pd->id = bit_num;
664         return 0;
665 }
666
667 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
668                           struct bnxt_qplib_pd_tbl *pdt,
669                           struct bnxt_qplib_pd *pd)
670 {
671         if (test_and_set_bit(pd->id, pdt->tbl)) {
672                 dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
673                          pd->id);
674                 return -EINVAL;
675         }
676         pd->id = 0;
677         return 0;
678 }
679
680 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
681 {
682         kfree(pdt->tbl);
683         pdt->tbl = NULL;
684         pdt->max = 0;
685 }
686
687 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
688                                    struct bnxt_qplib_pd_tbl *pdt,
689                                    u32 max)
690 {
691         u32 bytes;
692
693         bytes = max >> 3;
694         if (!bytes)
695                 bytes = 1;
696         pdt->tbl = kmalloc(bytes, GFP_KERNEL);
697         if (!pdt->tbl)
698                 return -ENOMEM;
699
700         pdt->max = max;
701         memset((u8 *)pdt->tbl, 0xFF, bytes);
702
703         return 0;
704 }
705
706 /* DPIs */
707 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
708                          struct bnxt_qplib_dpi     *dpi,
709                          void                      *app)
710 {
711         u32 bit_num;
712
713         bit_num = find_first_bit(dpit->tbl, dpit->max);
714         if (bit_num == dpit->max)
715                 return -ENOMEM;
716
717         /* Found unused DPI */
718         clear_bit(bit_num, dpit->tbl);
719         dpit->app_tbl[bit_num] = app;
720
721         dpi->dpi = bit_num;
722         dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
723         dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
724
725         return 0;
726 }
727
728 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
729                            struct bnxt_qplib_dpi_tbl *dpit,
730                            struct bnxt_qplib_dpi     *dpi)
731 {
732         if (dpi->dpi >= dpit->max) {
733                 dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
734                 return -EINVAL;
735         }
736         if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
737                 dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
738                          dpi->dpi);
739                 return -EINVAL;
740         }
741         if (dpit->app_tbl)
742                 dpit->app_tbl[dpi->dpi] = NULL;
743         memset(dpi, 0, sizeof(*dpi));
744
745         return 0;
746 }
747
748 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
749                                     struct bnxt_qplib_dpi_tbl *dpit)
750 {
751         kfree(dpit->tbl);
752         kfree(dpit->app_tbl);
753         if (dpit->dbr_bar_reg_iomem)
754                 pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
755         memset(dpit, 0, sizeof(*dpit));
756 }
757
758 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
759                                     struct bnxt_qplib_dpi_tbl *dpit,
760                                     u32                       dbr_offset)
761 {
762         u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
763         resource_size_t bar_reg_base;
764         u32 dbr_len, bytes;
765
766         if (dpit->dbr_bar_reg_iomem) {
767                 dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
768                         dbr_bar_reg);
769                 return -EALREADY;
770         }
771
772         bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
773         if (!bar_reg_base) {
774                 dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
775                         dbr_bar_reg);
776                 return -ENOMEM;
777         }
778
779         dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
780         if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
781                 dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
782                 return -ENOMEM;
783         }
784
785         dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
786                                                   dbr_len);
787         if (!dpit->dbr_bar_reg_iomem) {
788                 dev_err(&res->pdev->dev,
789                         "FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
790                 return -ENOMEM;
791         }
792
793         dpit->unmapped_dbr = bar_reg_base + dbr_offset;
794         dpit->max = dbr_len / PAGE_SIZE;
795
796         dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
797         if (!dpit->app_tbl)
798                 goto unmap_io;
799
800         bytes = dpit->max >> 3;
801         if (!bytes)
802                 bytes = 1;
803
804         dpit->tbl = kmalloc(bytes, GFP_KERNEL);
805         if (!dpit->tbl) {
806                 kfree(dpit->app_tbl);
807                 dpit->app_tbl = NULL;
808                 goto unmap_io;
809         }
810
811         memset((u8 *)dpit->tbl, 0xFF, bytes);
812
813         return 0;
814
815 unmap_io:
816         pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
817         dpit->dbr_bar_reg_iomem = NULL;
818         return -ENOMEM;
819 }
820
821 /* Stats */
822 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
823                                       struct bnxt_qplib_stats *stats)
824 {
825         if (stats->dma) {
826                 dma_free_coherent(&pdev->dev, stats->size,
827                                   stats->dma, stats->dma_map);
828         }
829         memset(stats, 0, sizeof(*stats));
830         stats->fw_id = -1;
831 }
832
833 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
834                                       struct bnxt_qplib_chip_ctx *cctx,
835                                       struct bnxt_qplib_stats *stats)
836 {
837         memset(stats, 0, sizeof(*stats));
838         stats->fw_id = -1;
839         stats->size = cctx->hw_stats_size;
840         stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
841                                         &stats->dma_map, GFP_KERNEL);
842         if (!stats->dma) {
843                 dev_err(&pdev->dev, "Stats DMA allocation failed\n");
844                 return -ENOMEM;
845         }
846         return 0;
847 }
848
849 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
850 {
851         bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
852 }
853
854 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
855 {
856         bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
857
858         return 0;
859 }
860
861 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
862 {
863         bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
864         bnxt_qplib_free_pd_tbl(&res->pd_tbl);
865         bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
866 }
867
868 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
869                          struct net_device *netdev,
870                          struct bnxt_qplib_dev_attr *dev_attr)
871 {
872         int rc = 0;
873
874         res->pdev = pdev;
875         res->netdev = netdev;
876
877         rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
878         if (rc)
879                 goto fail;
880
881         rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
882         if (rc)
883                 goto fail;
884
885         rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
886         if (rc)
887                 goto fail;
888
889         return 0;
890 fail:
891         bnxt_qplib_free_res(res);
892         return rc;
893 }
894
895 int bnxt_qplib_determine_atomics(struct pci_dev *dev)
896 {
897         int comp;
898         u16 ctl2;
899
900         comp = pci_enable_atomic_ops_to_root(dev,
901                                              PCI_EXP_DEVCAP2_ATOMIC_COMP32);
902         if (comp)
903                 return -EOPNOTSUPP;
904         comp = pci_enable_atomic_ops_to_root(dev,
905                                              PCI_EXP_DEVCAP2_ATOMIC_COMP64);
906         if (comp)
907                 return -EOPNOTSUPP;
908         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
909         return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
910 }