2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
53 #include "core_priv.h"
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
84 EXPORT_SYMBOL(ib_event_msg);
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 size_t index = status;
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
118 EXPORT_SYMBOL(ib_wc_status_msg);
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
135 EXPORT_SYMBOL(ib_rate_to_mult);
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
152 EXPORT_SYMBOL(mult_to_ib_rate);
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
177 EXPORT_SYMBOL(ib_rate_to_mbps);
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
198 EXPORT_SYMBOL(rdma_node_get_transport);
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
213 return IB_LINK_LAYER_UNSPECIFIED;
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
218 /* Protection domains */
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
234 pd = device->alloc_pd(device, NULL, NULL);
241 atomic_set(&pd->usecnt, 0);
243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244 pd->local_dma_lkey = device->local_dma_lkey;
248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
251 return (struct ib_pd *)mr;
255 pd->local_dma_lkey = pd->local_mr->lkey;
259 EXPORT_SYMBOL(ib_alloc_pd);
262 * ib_dealloc_pd - Deallocates a protection domain.
263 * @pd: The protection domain to deallocate.
265 * It is an error to call this function while any resources in the pd still
266 * exist. The caller is responsible to synchronously destroy them and
267 * guarantee no new allocations will happen.
269 void ib_dealloc_pd(struct ib_pd *pd)
274 ret = ib_dereg_mr(pd->local_mr);
279 /* uverbs manipulates usecnt with proper locking, while the kabi
280 requires the caller to guarantee we can't race here. */
281 WARN_ON(atomic_read(&pd->usecnt));
283 /* Making delalloc_pd a void return is a WIP, no driver should return
285 ret = pd->device->dealloc_pd(pd);
286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
288 EXPORT_SYMBOL(ib_dealloc_pd);
290 /* Address handles */
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
296 ah = pd->device->create_ah(pd, ah_attr);
299 ah->device = pd->device;
302 atomic_inc(&pd->usecnt);
307 EXPORT_SYMBOL(ib_create_ah);
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312 struct iphdr ip4h_checked;
313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
315 /* If it's IPv6, the version must be 6, otherwise, the first
316 * 20 bytes (before the IPv4 header) are garbled.
318 if (ip6h->version != 6)
319 return (ip4h->version == 4) ? 4 : 0;
320 /* version may be 6 or 4 because the first 20 bytes could be garbled */
322 /* RoCE v2 requires no options, thus header length
329 * We can't write on scattered buffers so we need to copy to
332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333 ip4h_checked.check = 0;
334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335 /* if IPv4 header checksum is OK, believe it */
336 if (ip4h->check == ip4h_checked.check)
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
343 const struct ib_grh *grh)
347 if (rdma_protocol_ib(device, port_num))
348 return RDMA_NETWORK_IB;
350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
352 if (grh_version == 4)
353 return RDMA_NETWORK_IPV4;
355 if (grh->next_hdr == IPPROTO_UDP)
356 return RDMA_NETWORK_IPV6;
358 return RDMA_NETWORK_ROCE_V1;
361 struct find_gid_index_context {
363 enum ib_gid_type gid_type;
366 static bool find_gid_index(const union ib_gid *gid,
367 const struct ib_gid_attr *gid_attr,
370 struct find_gid_index_context *ctx =
371 (struct find_gid_index_context *)context;
373 if (ctx->gid_type != gid_attr->gid_type)
376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377 (is_vlan_dev(gid_attr->ndev) &&
378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385 u16 vlan_id, const union ib_gid *sgid,
386 enum ib_gid_type gid_type,
389 struct find_gid_index_context context = {.vlan_id = vlan_id,
390 .gid_type = gid_type};
392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393 &context, gid_index);
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397 enum rdma_network_type net_type,
398 union ib_gid *sgid, union ib_gid *dgid)
400 struct sockaddr_in src_in;
401 struct sockaddr_in dst_in;
402 __be32 src_saddr, dst_saddr;
407 if (net_type == RDMA_NETWORK_IPV4) {
408 memcpy(&src_in.sin_addr.s_addr,
409 &hdr->roce4grh.saddr, 4);
410 memcpy(&dst_in.sin_addr.s_addr,
411 &hdr->roce4grh.daddr, 4);
412 src_saddr = src_in.sin_addr.s_addr;
413 dst_saddr = dst_in.sin_addr.s_addr;
414 ipv6_addr_set_v4mapped(src_saddr,
415 (struct in6_addr *)sgid);
416 ipv6_addr_set_v4mapped(dst_saddr,
417 (struct in6_addr *)dgid);
419 } else if (net_type == RDMA_NETWORK_IPV6 ||
420 net_type == RDMA_NETWORK_IB) {
421 *dgid = hdr->ibgrh.dgid;
422 *sgid = hdr->ibgrh.sgid;
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430 const struct ib_wc *wc, const struct ib_grh *grh,
431 struct ib_ah_attr *ah_attr)
436 enum rdma_network_type net_type = RDMA_NETWORK_IB;
437 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
442 memset(ah_attr, 0, sizeof *ah_attr);
443 if (rdma_cap_eth_ah(device, port_num)) {
444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445 net_type = wc->network_hdr_type;
447 net_type = ib_get_net_type_by_grh(device, port_num, grh);
448 gid_type = ib_network_to_gid_type(net_type);
450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
455 if (rdma_protocol_roce(device, port_num)) {
457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458 wc->vlan_id : 0xffff;
459 struct net_device *idev;
460 struct net_device *resolved_dev;
462 if (!(wc->wc_flags & IB_WC_GRH))
465 if (!device->get_netdev)
468 idev = device->get_netdev(device, port_num);
472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
474 wc->wc_flags & IB_WC_WITH_VLAN ?
476 &if_index, &hoplimit);
482 resolved_dev = dev_get_by_index(&init_net, if_index);
483 if (resolved_dev->flags & IFF_LOOPBACK) {
484 dev_put(resolved_dev);
486 dev_hold(resolved_dev);
489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
494 dev_put(resolved_dev);
498 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499 &dgid, gid_type, &gid_index);
504 ah_attr->dlid = wc->slid;
505 ah_attr->sl = wc->sl;
506 ah_attr->src_path_bits = wc->dlid_path_bits;
507 ah_attr->port_num = port_num;
509 if (wc->wc_flags & IB_WC_GRH) {
510 ah_attr->ah_flags = IB_AH_GRH;
511 ah_attr->grh.dgid = sgid;
513 if (!rdma_cap_eth_ah(device, port_num)) {
514 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
515 ret = ib_find_cached_gid_by_port(device, &dgid,
526 ah_attr->grh.sgid_index = (u8) gid_index;
527 flow_class = be32_to_cpu(grh->version_tclass_flow);
528 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
529 ah_attr->grh.hop_limit = hoplimit;
530 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
534 EXPORT_SYMBOL(ib_init_ah_from_wc);
536 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
537 const struct ib_grh *grh, u8 port_num)
539 struct ib_ah_attr ah_attr;
542 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
546 return ib_create_ah(pd, &ah_attr);
548 EXPORT_SYMBOL(ib_create_ah_from_wc);
550 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
552 return ah->device->modify_ah ?
553 ah->device->modify_ah(ah, ah_attr) :
556 EXPORT_SYMBOL(ib_modify_ah);
558 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
560 return ah->device->query_ah ?
561 ah->device->query_ah(ah, ah_attr) :
564 EXPORT_SYMBOL(ib_query_ah);
566 int ib_destroy_ah(struct ib_ah *ah)
572 ret = ah->device->destroy_ah(ah);
574 atomic_dec(&pd->usecnt);
578 EXPORT_SYMBOL(ib_destroy_ah);
580 /* Shared receive queues */
582 struct ib_srq *ib_create_srq(struct ib_pd *pd,
583 struct ib_srq_init_attr *srq_init_attr)
587 if (!pd->device->create_srq)
588 return ERR_PTR(-ENOSYS);
590 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
593 srq->device = pd->device;
596 srq->event_handler = srq_init_attr->event_handler;
597 srq->srq_context = srq_init_attr->srq_context;
598 srq->srq_type = srq_init_attr->srq_type;
599 if (srq->srq_type == IB_SRQT_XRC) {
600 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
601 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
602 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
603 atomic_inc(&srq->ext.xrc.cq->usecnt);
605 atomic_inc(&pd->usecnt);
606 atomic_set(&srq->usecnt, 0);
611 EXPORT_SYMBOL(ib_create_srq);
613 int ib_modify_srq(struct ib_srq *srq,
614 struct ib_srq_attr *srq_attr,
615 enum ib_srq_attr_mask srq_attr_mask)
617 return srq->device->modify_srq ?
618 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
621 EXPORT_SYMBOL(ib_modify_srq);
623 int ib_query_srq(struct ib_srq *srq,
624 struct ib_srq_attr *srq_attr)
626 return srq->device->query_srq ?
627 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
629 EXPORT_SYMBOL(ib_query_srq);
631 int ib_destroy_srq(struct ib_srq *srq)
634 enum ib_srq_type srq_type;
635 struct ib_xrcd *uninitialized_var(xrcd);
636 struct ib_cq *uninitialized_var(cq);
639 if (atomic_read(&srq->usecnt))
643 srq_type = srq->srq_type;
644 if (srq_type == IB_SRQT_XRC) {
645 xrcd = srq->ext.xrc.xrcd;
646 cq = srq->ext.xrc.cq;
649 ret = srq->device->destroy_srq(srq);
651 atomic_dec(&pd->usecnt);
652 if (srq_type == IB_SRQT_XRC) {
653 atomic_dec(&xrcd->usecnt);
654 atomic_dec(&cq->usecnt);
660 EXPORT_SYMBOL(ib_destroy_srq);
664 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
666 struct ib_qp *qp = context;
669 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
670 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
671 if (event->element.qp->event_handler)
672 event->element.qp->event_handler(event, event->element.qp->qp_context);
673 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
676 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
678 mutex_lock(&xrcd->tgt_qp_mutex);
679 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
680 mutex_unlock(&xrcd->tgt_qp_mutex);
683 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
684 void (*event_handler)(struct ib_event *, void *),
690 qp = kzalloc(sizeof *qp, GFP_KERNEL);
692 return ERR_PTR(-ENOMEM);
694 qp->real_qp = real_qp;
695 atomic_inc(&real_qp->usecnt);
696 qp->device = real_qp->device;
697 qp->event_handler = event_handler;
698 qp->qp_context = qp_context;
699 qp->qp_num = real_qp->qp_num;
700 qp->qp_type = real_qp->qp_type;
702 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
703 list_add(&qp->open_list, &real_qp->open_list);
704 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
709 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
710 struct ib_qp_open_attr *qp_open_attr)
712 struct ib_qp *qp, *real_qp;
714 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
715 return ERR_PTR(-EINVAL);
717 qp = ERR_PTR(-EINVAL);
718 mutex_lock(&xrcd->tgt_qp_mutex);
719 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
720 if (real_qp->qp_num == qp_open_attr->qp_num) {
721 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
722 qp_open_attr->qp_context);
726 mutex_unlock(&xrcd->tgt_qp_mutex);
729 EXPORT_SYMBOL(ib_open_qp);
731 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
732 struct ib_qp_init_attr *qp_init_attr)
734 struct ib_qp *real_qp = qp;
736 qp->event_handler = __ib_shared_qp_event_handler;
739 qp->send_cq = qp->recv_cq = NULL;
741 qp->xrcd = qp_init_attr->xrcd;
742 atomic_inc(&qp_init_attr->xrcd->usecnt);
743 INIT_LIST_HEAD(&qp->open_list);
745 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
746 qp_init_attr->qp_context);
748 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
750 real_qp->device->destroy_qp(real_qp);
754 struct ib_qp *ib_create_qp(struct ib_pd *pd,
755 struct ib_qp_init_attr *qp_init_attr)
757 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
762 * If the callers is using the RDMA API calculate the resources
763 * needed for the RDMA READ/WRITE operations.
765 * Note that these callers need to pass in a port number.
767 if (qp_init_attr->cap.max_rdma_ctxs)
768 rdma_rw_init_qp(device, qp_init_attr);
770 qp = device->create_qp(pd, qp_init_attr, NULL);
777 qp->qp_type = qp_init_attr->qp_type;
779 atomic_set(&qp->usecnt, 0);
781 spin_lock_init(&qp->mr_lock);
782 INIT_LIST_HEAD(&qp->rdma_mrs);
783 INIT_LIST_HEAD(&qp->sig_mrs);
785 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
786 return ib_create_xrc_qp(qp, qp_init_attr);
788 qp->event_handler = qp_init_attr->event_handler;
789 qp->qp_context = qp_init_attr->qp_context;
790 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
794 qp->recv_cq = qp_init_attr->recv_cq;
795 atomic_inc(&qp_init_attr->recv_cq->usecnt);
796 qp->srq = qp_init_attr->srq;
798 atomic_inc(&qp_init_attr->srq->usecnt);
802 qp->send_cq = qp_init_attr->send_cq;
805 atomic_inc(&pd->usecnt);
806 atomic_inc(&qp_init_attr->send_cq->usecnt);
808 if (qp_init_attr->cap.max_rdma_ctxs) {
809 ret = rdma_rw_init_mrs(qp, qp_init_attr);
811 pr_err("failed to init MR pool ret= %d\n", ret);
819 EXPORT_SYMBOL(ib_create_qp);
821 static const struct {
823 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
824 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
825 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
827 [IB_QPS_RESET] = { .valid = 1 },
831 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
834 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
835 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
838 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
841 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
844 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
847 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
849 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
855 [IB_QPS_RESET] = { .valid = 1 },
856 [IB_QPS_ERR] = { .valid = 1 },
860 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
863 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
866 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
869 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
872 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
875 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
877 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
884 [IB_QPT_UC] = (IB_QP_AV |
888 [IB_QPT_RC] = (IB_QP_AV |
892 IB_QP_MAX_DEST_RD_ATOMIC |
893 IB_QP_MIN_RNR_TIMER),
894 [IB_QPT_XRC_INI] = (IB_QP_AV |
898 [IB_QPT_XRC_TGT] = (IB_QP_AV |
902 IB_QP_MAX_DEST_RD_ATOMIC |
903 IB_QP_MIN_RNR_TIMER),
906 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
908 [IB_QPT_UC] = (IB_QP_ALT_PATH |
911 [IB_QPT_RC] = (IB_QP_ALT_PATH |
914 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
917 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
920 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
922 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
928 [IB_QPS_RESET] = { .valid = 1 },
929 [IB_QPS_ERR] = { .valid = 1 },
933 [IB_QPT_UD] = IB_QP_SQ_PSN,
934 [IB_QPT_UC] = IB_QP_SQ_PSN,
935 [IB_QPT_RC] = (IB_QP_TIMEOUT |
939 IB_QP_MAX_QP_RD_ATOMIC),
940 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
944 IB_QP_MAX_QP_RD_ATOMIC),
945 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
947 [IB_QPT_SMI] = IB_QP_SQ_PSN,
948 [IB_QPT_GSI] = IB_QP_SQ_PSN,
951 [IB_QPT_UD] = (IB_QP_CUR_STATE |
953 [IB_QPT_UC] = (IB_QP_CUR_STATE |
956 IB_QP_PATH_MIG_STATE),
957 [IB_QPT_RC] = (IB_QP_CUR_STATE |
960 IB_QP_MIN_RNR_TIMER |
961 IB_QP_PATH_MIG_STATE),
962 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
965 IB_QP_PATH_MIG_STATE),
966 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
969 IB_QP_MIN_RNR_TIMER |
970 IB_QP_PATH_MIG_STATE),
971 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
973 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
979 [IB_QPS_RESET] = { .valid = 1 },
980 [IB_QPS_ERR] = { .valid = 1 },
984 [IB_QPT_UD] = (IB_QP_CUR_STATE |
986 [IB_QPT_UC] = (IB_QP_CUR_STATE |
989 IB_QP_PATH_MIG_STATE),
990 [IB_QPT_RC] = (IB_QP_CUR_STATE |
993 IB_QP_PATH_MIG_STATE |
994 IB_QP_MIN_RNR_TIMER),
995 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
998 IB_QP_PATH_MIG_STATE),
999 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1000 IB_QP_ACCESS_FLAGS |
1002 IB_QP_PATH_MIG_STATE |
1003 IB_QP_MIN_RNR_TIMER),
1004 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1006 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1013 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1014 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1015 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1016 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1017 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1018 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1019 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1024 [IB_QPS_RESET] = { .valid = 1 },
1025 [IB_QPS_ERR] = { .valid = 1 },
1029 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1031 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1033 IB_QP_ACCESS_FLAGS |
1034 IB_QP_PATH_MIG_STATE),
1035 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1037 IB_QP_ACCESS_FLAGS |
1038 IB_QP_MIN_RNR_TIMER |
1039 IB_QP_PATH_MIG_STATE),
1040 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1042 IB_QP_ACCESS_FLAGS |
1043 IB_QP_PATH_MIG_STATE),
1044 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1046 IB_QP_ACCESS_FLAGS |
1047 IB_QP_MIN_RNR_TIMER |
1048 IB_QP_PATH_MIG_STATE),
1049 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1051 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1058 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1060 [IB_QPT_UC] = (IB_QP_AV |
1062 IB_QP_ACCESS_FLAGS |
1064 IB_QP_PATH_MIG_STATE),
1065 [IB_QPT_RC] = (IB_QP_PORT |
1070 IB_QP_MAX_QP_RD_ATOMIC |
1071 IB_QP_MAX_DEST_RD_ATOMIC |
1073 IB_QP_ACCESS_FLAGS |
1075 IB_QP_MIN_RNR_TIMER |
1076 IB_QP_PATH_MIG_STATE),
1077 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1082 IB_QP_MAX_QP_RD_ATOMIC |
1084 IB_QP_ACCESS_FLAGS |
1086 IB_QP_PATH_MIG_STATE),
1087 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1090 IB_QP_MAX_DEST_RD_ATOMIC |
1092 IB_QP_ACCESS_FLAGS |
1094 IB_QP_MIN_RNR_TIMER |
1095 IB_QP_PATH_MIG_STATE),
1096 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1098 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1104 [IB_QPS_RESET] = { .valid = 1 },
1105 [IB_QPS_ERR] = { .valid = 1 },
1109 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1111 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1112 IB_QP_ACCESS_FLAGS),
1113 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1115 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1121 [IB_QPS_RESET] = { .valid = 1 },
1122 [IB_QPS_ERR] = { .valid = 1 }
1126 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1127 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1128 enum rdma_link_layer ll)
1130 enum ib_qp_attr_mask req_param, opt_param;
1132 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1133 next_state < 0 || next_state > IB_QPS_ERR)
1136 if (mask & IB_QP_CUR_STATE &&
1137 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1138 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1141 if (!qp_state_table[cur_state][next_state].valid)
1144 req_param = qp_state_table[cur_state][next_state].req_param[type];
1145 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1147 if ((mask & req_param) != req_param)
1150 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1155 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1157 int ib_resolve_eth_dmac(struct ib_qp *qp,
1158 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1162 if (*qp_attr_mask & IB_QP_AV) {
1163 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1164 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1167 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1170 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1171 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1172 qp_attr->ah_attr.dmac);
1175 struct ib_gid_attr sgid_attr;
1179 ret = ib_query_gid(qp->device,
1180 qp_attr->ah_attr.port_num,
1181 qp_attr->ah_attr.grh.sgid_index,
1184 if (ret || !sgid_attr.ndev) {
1190 ifindex = sgid_attr.ndev->ifindex;
1192 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1193 &qp_attr->ah_attr.grh.dgid,
1194 qp_attr->ah_attr.dmac,
1195 NULL, &ifindex, &hop_limit);
1197 dev_put(sgid_attr.ndev);
1199 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1205 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1208 int ib_modify_qp(struct ib_qp *qp,
1209 struct ib_qp_attr *qp_attr,
1214 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1218 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1220 EXPORT_SYMBOL(ib_modify_qp);
1222 int ib_query_qp(struct ib_qp *qp,
1223 struct ib_qp_attr *qp_attr,
1225 struct ib_qp_init_attr *qp_init_attr)
1227 return qp->device->query_qp ?
1228 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1231 EXPORT_SYMBOL(ib_query_qp);
1233 int ib_close_qp(struct ib_qp *qp)
1235 struct ib_qp *real_qp;
1236 unsigned long flags;
1238 real_qp = qp->real_qp;
1242 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1243 list_del(&qp->open_list);
1244 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1246 atomic_dec(&real_qp->usecnt);
1251 EXPORT_SYMBOL(ib_close_qp);
1253 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1255 struct ib_xrcd *xrcd;
1256 struct ib_qp *real_qp;
1259 real_qp = qp->real_qp;
1260 xrcd = real_qp->xrcd;
1262 mutex_lock(&xrcd->tgt_qp_mutex);
1264 if (atomic_read(&real_qp->usecnt) == 0)
1265 list_del(&real_qp->xrcd_list);
1268 mutex_unlock(&xrcd->tgt_qp_mutex);
1271 ret = ib_destroy_qp(real_qp);
1273 atomic_dec(&xrcd->usecnt);
1275 __ib_insert_xrcd_qp(xrcd, real_qp);
1281 int ib_destroy_qp(struct ib_qp *qp)
1284 struct ib_cq *scq, *rcq;
1288 WARN_ON_ONCE(qp->mrs_used > 0);
1290 if (atomic_read(&qp->usecnt))
1293 if (qp->real_qp != qp)
1294 return __ib_destroy_shared_qp(qp);
1302 rdma_rw_cleanup_mrs(qp);
1304 ret = qp->device->destroy_qp(qp);
1307 atomic_dec(&pd->usecnt);
1309 atomic_dec(&scq->usecnt);
1311 atomic_dec(&rcq->usecnt);
1313 atomic_dec(&srq->usecnt);
1318 EXPORT_SYMBOL(ib_destroy_qp);
1320 /* Completion queues */
1322 struct ib_cq *ib_create_cq(struct ib_device *device,
1323 ib_comp_handler comp_handler,
1324 void (*event_handler)(struct ib_event *, void *),
1326 const struct ib_cq_init_attr *cq_attr)
1330 cq = device->create_cq(device, cq_attr, NULL, NULL);
1333 cq->device = device;
1335 cq->comp_handler = comp_handler;
1336 cq->event_handler = event_handler;
1337 cq->cq_context = cq_context;
1338 atomic_set(&cq->usecnt, 0);
1343 EXPORT_SYMBOL(ib_create_cq);
1345 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1347 return cq->device->modify_cq ?
1348 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1350 EXPORT_SYMBOL(ib_modify_cq);
1352 int ib_destroy_cq(struct ib_cq *cq)
1354 if (atomic_read(&cq->usecnt))
1357 return cq->device->destroy_cq(cq);
1359 EXPORT_SYMBOL(ib_destroy_cq);
1361 int ib_resize_cq(struct ib_cq *cq, int cqe)
1363 return cq->device->resize_cq ?
1364 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1366 EXPORT_SYMBOL(ib_resize_cq);
1368 /* Memory regions */
1370 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1375 err = ib_check_mr_access(mr_access_flags);
1377 return ERR_PTR(err);
1379 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1382 mr->device = pd->device;
1385 atomic_inc(&pd->usecnt);
1386 mr->need_inval = false;
1391 EXPORT_SYMBOL(ib_get_dma_mr);
1393 int ib_dereg_mr(struct ib_mr *mr)
1395 struct ib_pd *pd = mr->pd;
1398 ret = mr->device->dereg_mr(mr);
1400 atomic_dec(&pd->usecnt);
1404 EXPORT_SYMBOL(ib_dereg_mr);
1407 * ib_alloc_mr() - Allocates a memory region
1408 * @pd: protection domain associated with the region
1409 * @mr_type: memory region type
1410 * @max_num_sg: maximum sg entries available for registration.
1413 * Memory registeration page/sg lists must not exceed max_num_sg.
1414 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1415 * max_num_sg * used_page_size.
1418 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1419 enum ib_mr_type mr_type,
1424 if (!pd->device->alloc_mr)
1425 return ERR_PTR(-ENOSYS);
1427 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1429 mr->device = pd->device;
1432 atomic_inc(&pd->usecnt);
1433 mr->need_inval = false;
1438 EXPORT_SYMBOL(ib_alloc_mr);
1440 /* "Fast" memory regions */
1442 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1443 int mr_access_flags,
1444 struct ib_fmr_attr *fmr_attr)
1448 if (!pd->device->alloc_fmr)
1449 return ERR_PTR(-ENOSYS);
1451 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1453 fmr->device = pd->device;
1455 atomic_inc(&pd->usecnt);
1460 EXPORT_SYMBOL(ib_alloc_fmr);
1462 int ib_unmap_fmr(struct list_head *fmr_list)
1466 if (list_empty(fmr_list))
1469 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1470 return fmr->device->unmap_fmr(fmr_list);
1472 EXPORT_SYMBOL(ib_unmap_fmr);
1474 int ib_dealloc_fmr(struct ib_fmr *fmr)
1480 ret = fmr->device->dealloc_fmr(fmr);
1482 atomic_dec(&pd->usecnt);
1486 EXPORT_SYMBOL(ib_dealloc_fmr);
1488 /* Multicast groups */
1490 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1494 if (!qp->device->attach_mcast)
1496 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1499 ret = qp->device->attach_mcast(qp, gid, lid);
1501 atomic_inc(&qp->usecnt);
1504 EXPORT_SYMBOL(ib_attach_mcast);
1506 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1510 if (!qp->device->detach_mcast)
1512 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1515 ret = qp->device->detach_mcast(qp, gid, lid);
1517 atomic_dec(&qp->usecnt);
1520 EXPORT_SYMBOL(ib_detach_mcast);
1522 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1524 struct ib_xrcd *xrcd;
1526 if (!device->alloc_xrcd)
1527 return ERR_PTR(-ENOSYS);
1529 xrcd = device->alloc_xrcd(device, NULL, NULL);
1530 if (!IS_ERR(xrcd)) {
1531 xrcd->device = device;
1533 atomic_set(&xrcd->usecnt, 0);
1534 mutex_init(&xrcd->tgt_qp_mutex);
1535 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1540 EXPORT_SYMBOL(ib_alloc_xrcd);
1542 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1547 if (atomic_read(&xrcd->usecnt))
1550 while (!list_empty(&xrcd->tgt_qp_list)) {
1551 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1552 ret = ib_destroy_qp(qp);
1557 return xrcd->device->dealloc_xrcd(xrcd);
1559 EXPORT_SYMBOL(ib_dealloc_xrcd);
1561 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1562 struct ib_flow_attr *flow_attr,
1565 struct ib_flow *flow_id;
1566 if (!qp->device->create_flow)
1567 return ERR_PTR(-ENOSYS);
1569 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1570 if (!IS_ERR(flow_id))
1571 atomic_inc(&qp->usecnt);
1574 EXPORT_SYMBOL(ib_create_flow);
1576 int ib_destroy_flow(struct ib_flow *flow_id)
1579 struct ib_qp *qp = flow_id->qp;
1581 err = qp->device->destroy_flow(flow_id);
1583 atomic_dec(&qp->usecnt);
1586 EXPORT_SYMBOL(ib_destroy_flow);
1588 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1589 struct ib_mr_status *mr_status)
1591 return mr->device->check_mr_status ?
1592 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1594 EXPORT_SYMBOL(ib_check_mr_status);
1596 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1599 if (!device->set_vf_link_state)
1602 return device->set_vf_link_state(device, vf, port, state);
1604 EXPORT_SYMBOL(ib_set_vf_link_state);
1606 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1607 struct ifla_vf_info *info)
1609 if (!device->get_vf_config)
1612 return device->get_vf_config(device, vf, port, info);
1614 EXPORT_SYMBOL(ib_get_vf_config);
1616 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1617 struct ifla_vf_stats *stats)
1619 if (!device->get_vf_stats)
1622 return device->get_vf_stats(device, vf, port, stats);
1624 EXPORT_SYMBOL(ib_get_vf_stats);
1626 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1629 if (!device->set_vf_guid)
1632 return device->set_vf_guid(device, vf, port, guid, type);
1634 EXPORT_SYMBOL(ib_set_vf_guid);
1637 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1638 * and set it the memory region.
1639 * @mr: memory region
1640 * @sg: dma mapped scatterlist
1641 * @sg_nents: number of entries in sg
1642 * @sg_offset: offset in bytes into sg
1643 * @page_size: page vector desired page size
1646 * - The first sg element is allowed to have an offset.
1647 * - Each sg element must be aligned to page_size (or physically
1648 * contiguous to the previous element). In case an sg element has a
1649 * non contiguous offset, the mapping prefix will not include it.
1650 * - The last sg element is allowed to have length less than page_size.
1651 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1652 * then only max_num_sg entries will be mapped.
1653 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1654 * constraints holds and the page_size argument is ignored.
1656 * Returns the number of sg elements that were mapped to the memory region.
1658 * After this completes successfully, the memory region
1659 * is ready for registration.
1661 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1662 unsigned int *sg_offset, unsigned int page_size)
1664 if (unlikely(!mr->device->map_mr_sg))
1667 mr->page_size = page_size;
1669 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1671 EXPORT_SYMBOL(ib_map_mr_sg);
1674 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1676 * @mr: memory region
1677 * @sgl: dma mapped scatterlist
1678 * @sg_nents: number of entries in sg
1679 * @sg_offset_p: IN: start offset in bytes into sg
1680 * OUT: offset in bytes for element n of the sg of the first
1681 * byte that has not been processed where n is the return
1682 * value of this function.
1683 * @set_page: driver page assignment function pointer
1685 * Core service helper for drivers to convert the largest
1686 * prefix of given sg list to a page vector. The sg list
1687 * prefix converted is the prefix that meet the requirements
1690 * Returns the number of sg elements that were assigned to
1693 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1694 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1696 struct scatterlist *sg;
1697 u64 last_end_dma_addr = 0;
1698 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1699 unsigned int last_page_off = 0;
1700 u64 page_mask = ~((u64)mr->page_size - 1);
1703 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1706 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1709 for_each_sg(sgl, sg, sg_nents, i) {
1710 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1711 u64 prev_addr = dma_addr;
1712 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1713 u64 end_dma_addr = dma_addr + dma_len;
1714 u64 page_addr = dma_addr & page_mask;
1717 * For the second and later elements, check whether either the
1718 * end of element i-1 or the start of element i is not aligned
1719 * on a page boundary.
1721 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1722 /* Stop mapping if there is a gap. */
1723 if (last_end_dma_addr != dma_addr)
1727 * Coalesce this element with the last. If it is small
1728 * enough just update mr->length. Otherwise start
1729 * mapping from the next page.
1735 ret = set_page(mr, page_addr);
1736 if (unlikely(ret < 0)) {
1737 sg_offset = prev_addr - sg_dma_address(sg);
1738 mr->length += prev_addr - dma_addr;
1740 *sg_offset_p = sg_offset;
1741 return i || sg_offset ? i : ret;
1743 prev_addr = page_addr;
1745 page_addr += mr->page_size;
1746 } while (page_addr < end_dma_addr);
1748 mr->length += dma_len;
1749 last_end_dma_addr = end_dma_addr;
1750 last_page_off = end_dma_addr & ~page_mask;
1759 EXPORT_SYMBOL(ib_sg_to_pages);
1761 struct ib_drain_cqe {
1763 struct completion done;
1766 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1768 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1771 complete(&cqe->done);
1775 * Post a WR and block until its completion is reaped for the SQ.
1777 static void __ib_drain_sq(struct ib_qp *qp)
1779 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1780 struct ib_drain_cqe sdrain;
1781 struct ib_send_wr swr = {}, *bad_swr;
1784 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1785 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1786 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1790 swr.wr_cqe = &sdrain.cqe;
1791 sdrain.cqe.done = ib_drain_qp_done;
1792 init_completion(&sdrain.done);
1794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1796 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1800 ret = ib_post_send(qp, &swr, &bad_swr);
1802 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1806 wait_for_completion(&sdrain.done);
1810 * Post a WR and block until its completion is reaped for the RQ.
1812 static void __ib_drain_rq(struct ib_qp *qp)
1814 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1815 struct ib_drain_cqe rdrain;
1816 struct ib_recv_wr rwr = {}, *bad_rwr;
1819 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1820 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1821 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1825 rwr.wr_cqe = &rdrain.cqe;
1826 rdrain.cqe.done = ib_drain_qp_done;
1827 init_completion(&rdrain.done);
1829 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1831 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1835 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1837 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1841 wait_for_completion(&rdrain.done);
1845 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1847 * @qp: queue pair to drain
1849 * If the device has a provider-specific drain function, then
1850 * call that. Otherwise call the generic drain function
1855 * ensure there is room in the CQ and SQ for the drain work request and
1858 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1861 * ensure that there are no other contexts that are posting WRs concurrently.
1862 * Otherwise the drain is not guaranteed.
1864 void ib_drain_sq(struct ib_qp *qp)
1866 if (qp->device->drain_sq)
1867 qp->device->drain_sq(qp);
1871 EXPORT_SYMBOL(ib_drain_sq);
1874 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1876 * @qp: queue pair to drain
1878 * If the device has a provider-specific drain function, then
1879 * call that. Otherwise call the generic drain function
1884 * ensure there is room in the CQ and RQ for the drain work request and
1887 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1890 * ensure that there are no other contexts that are posting WRs concurrently.
1891 * Otherwise the drain is not guaranteed.
1893 void ib_drain_rq(struct ib_qp *qp)
1895 if (qp->device->drain_rq)
1896 qp->device->drain_rq(qp);
1900 EXPORT_SYMBOL(ib_drain_rq);
1903 * ib_drain_qp() - Block until all CQEs have been consumed by the
1904 * application on both the RQ and SQ.
1905 * @qp: queue pair to drain
1909 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1912 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1915 * ensure that there are no other contexts that are posting WRs concurrently.
1916 * Otherwise the drain is not guaranteed.
1918 void ib_drain_qp(struct ib_qp *qp)
1924 EXPORT_SYMBOL(ib_drain_qp);