2b0798151fb7532df809b31166a9b725fee2ba62
[platform/kernel/linux-rpi.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory bind operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "remote invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         default:               return  -1;
151         }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157         switch (mult) {
158         case 1:   return IB_RATE_2_5_GBPS;
159         case 2:   return IB_RATE_5_GBPS;
160         case 4:   return IB_RATE_10_GBPS;
161         case 8:   return IB_RATE_20_GBPS;
162         case 12:  return IB_RATE_30_GBPS;
163         case 16:  return IB_RATE_40_GBPS;
164         case 24:  return IB_RATE_60_GBPS;
165         case 32:  return IB_RATE_80_GBPS;
166         case 48:  return IB_RATE_120_GBPS;
167         case 6:   return IB_RATE_14_GBPS;
168         case 22:  return IB_RATE_56_GBPS;
169         case 45:  return IB_RATE_112_GBPS;
170         case 67:  return IB_RATE_168_GBPS;
171         case 10:  return IB_RATE_25_GBPS;
172         case 40:  return IB_RATE_100_GBPS;
173         case 80:  return IB_RATE_200_GBPS;
174         case 120: return IB_RATE_300_GBPS;
175         case 11:  return IB_RATE_28_GBPS;
176         case 20:  return IB_RATE_50_GBPS;
177         case 160: return IB_RATE_400_GBPS;
178         case 240: return IB_RATE_600_GBPS;
179         default:  return IB_RATE_PORT_CURRENT;
180         }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186         switch (rate) {
187         case IB_RATE_2_5_GBPS: return 2500;
188         case IB_RATE_5_GBPS:   return 5000;
189         case IB_RATE_10_GBPS:  return 10000;
190         case IB_RATE_20_GBPS:  return 20000;
191         case IB_RATE_30_GBPS:  return 30000;
192         case IB_RATE_40_GBPS:  return 40000;
193         case IB_RATE_60_GBPS:  return 60000;
194         case IB_RATE_80_GBPS:  return 80000;
195         case IB_RATE_120_GBPS: return 120000;
196         case IB_RATE_14_GBPS:  return 14062;
197         case IB_RATE_56_GBPS:  return 56250;
198         case IB_RATE_112_GBPS: return 112500;
199         case IB_RATE_168_GBPS: return 168750;
200         case IB_RATE_25_GBPS:  return 25781;
201         case IB_RATE_100_GBPS: return 103125;
202         case IB_RATE_200_GBPS: return 206250;
203         case IB_RATE_300_GBPS: return 309375;
204         case IB_RATE_28_GBPS:  return 28125;
205         case IB_RATE_50_GBPS:  return 53125;
206         case IB_RATE_400_GBPS: return 425000;
207         case IB_RATE_600_GBPS: return 637500;
208         default:               return -1;
209         }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217         if (node_type == RDMA_NODE_USNIC)
218                 return RDMA_TRANSPORT_USNIC;
219         if (node_type == RDMA_NODE_USNIC_UDP)
220                 return RDMA_TRANSPORT_USNIC_UDP;
221         if (node_type == RDMA_NODE_RNIC)
222                 return RDMA_TRANSPORT_IWARP;
223         if (node_type == RDMA_NODE_UNSPECIFIED)
224                 return RDMA_TRANSPORT_UNSPECIFIED;
225
226         return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231                                               u32 port_num)
232 {
233         enum rdma_transport_type lt;
234         if (device->ops.get_link_layer)
235                 return device->ops.get_link_layer(device, port_num);
236
237         lt = rdma_node_get_transport(device->node_type);
238         if (lt == RDMA_TRANSPORT_IB)
239                 return IB_LINK_LAYER_INFINIBAND;
240
241         return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248  * __ib_alloc_pd - Allocates an unused protection domain.
249  * @device: The device on which to allocate the protection domain.
250  * @flags: protection domain flags
251  * @caller: caller's build-time module name
252  *
253  * A protection domain object provides an association between QPs, shared
254  * receive queues, address handles, memory regions, and memory windows.
255  *
256  * Every PD has a local_dma_lkey which can be used as the lkey value for local
257  * memory operations.
258  */
259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260                 const char *caller)
261 {
262         struct ib_pd *pd;
263         int mr_access_flags = 0;
264         int ret;
265
266         pd = rdma_zalloc_drv_obj(device, ib_pd);
267         if (!pd)
268                 return ERR_PTR(-ENOMEM);
269
270         pd->device = device;
271         pd->uobject = NULL;
272         pd->__internal_mr = NULL;
273         atomic_set(&pd->usecnt, 0);
274         pd->flags = flags;
275
276         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277         rdma_restrack_set_name(&pd->res, caller);
278
279         ret = device->ops.alloc_pd(pd, NULL);
280         if (ret) {
281                 rdma_restrack_put(&pd->res);
282                 kfree(pd);
283                 return ERR_PTR(ret);
284         }
285         rdma_restrack_add(&pd->res);
286
287         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288                 pd->local_dma_lkey = device->local_dma_lkey;
289         else
290                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293                 pr_warn("%s: enabling unsafe global rkey\n", caller);
294                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295         }
296
297         if (mr_access_flags) {
298                 struct ib_mr *mr;
299
300                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301                 if (IS_ERR(mr)) {
302                         ib_dealloc_pd(pd);
303                         return ERR_CAST(mr);
304                 }
305
306                 mr->device      = pd->device;
307                 mr->pd          = pd;
308                 mr->type        = IB_MR_TYPE_DMA;
309                 mr->uobject     = NULL;
310                 mr->need_inval  = false;
311
312                 pd->__internal_mr = mr;
313
314                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315                         pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319         }
320
321         return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326  * ib_dealloc_pd_user - Deallocates a protection domain.
327  * @pd: The protection domain to deallocate.
328  * @udata: Valid user data or NULL for kernel object
329  *
330  * It is an error to call this function while any resources in the pd still
331  * exist.  The caller is responsible to synchronously destroy them and
332  * guarantee no new allocations will happen.
333  */
334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336         int ret;
337
338         if (pd->__internal_mr) {
339                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340                 WARN_ON(ret);
341                 pd->__internal_mr = NULL;
342         }
343
344         /* uverbs manipulates usecnt with proper locking, while the kabi
345          * requires the caller to guarantee we can't race here.
346          */
347         WARN_ON(atomic_read(&pd->usecnt));
348
349         ret = pd->device->ops.dealloc_pd(pd, udata);
350         if (ret)
351                 return ret;
352
353         rdma_restrack_del(&pd->res);
354         kfree(pd);
355         return ret;
356 }
357 EXPORT_SYMBOL(ib_dealloc_pd_user);
358
359 /* Address handles */
360
361 /**
362  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
363  * @dest:       Pointer to destination ah_attr. Contents of the destination
364  *              pointer is assumed to be invalid and attribute are overwritten.
365  * @src:        Pointer to source ah_attr.
366  */
367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
368                        const struct rdma_ah_attr *src)
369 {
370         *dest = *src;
371         if (dest->grh.sgid_attr)
372                 rdma_hold_gid_attr(dest->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_copy_ah_attr);
375
376 /**
377  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
378  * @old:        Pointer to existing ah_attr which needs to be replaced.
379  *              old is assumed to be valid or zero'd
380  * @new:        Pointer to the new ah_attr.
381  *
382  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
383  * old the ah_attr is valid; after that it copies the new attribute and holds
384  * the reference to the replaced ah_attr.
385  */
386 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
387                           const struct rdma_ah_attr *new)
388 {
389         rdma_destroy_ah_attr(old);
390         *old = *new;
391         if (old->grh.sgid_attr)
392                 rdma_hold_gid_attr(old->grh.sgid_attr);
393 }
394 EXPORT_SYMBOL(rdma_replace_ah_attr);
395
396 /**
397  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
398  * @dest:       Pointer to destination ah_attr to copy to.
399  *              dest is assumed to be valid or zero'd
400  * @src:        Pointer to the new ah_attr.
401  *
402  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
403  * if it is valid. This also transfers ownership of internal references from
404  * src to dest, making src invalid in the process. No new reference of the src
405  * ah_attr is taken.
406  */
407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
408 {
409         rdma_destroy_ah_attr(dest);
410         *dest = *src;
411         src->grh.sgid_attr = NULL;
412 }
413 EXPORT_SYMBOL(rdma_move_ah_attr);
414
415 /*
416  * Validate that the rdma_ah_attr is valid for the device before passing it
417  * off to the driver.
418  */
419 static int rdma_check_ah_attr(struct ib_device *device,
420                               struct rdma_ah_attr *ah_attr)
421 {
422         if (!rdma_is_port_valid(device, ah_attr->port_num))
423                 return -EINVAL;
424
425         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
426              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
427             !(ah_attr->ah_flags & IB_AH_GRH))
428                 return -EINVAL;
429
430         if (ah_attr->grh.sgid_attr) {
431                 /*
432                  * Make sure the passed sgid_attr is consistent with the
433                  * parameters
434                  */
435                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
436                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
437                         return -EINVAL;
438         }
439         return 0;
440 }
441
442 /*
443  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
444  * On success the caller is responsible to call rdma_unfill_sgid_attr().
445  */
446 static int rdma_fill_sgid_attr(struct ib_device *device,
447                                struct rdma_ah_attr *ah_attr,
448                                const struct ib_gid_attr **old_sgid_attr)
449 {
450         const struct ib_gid_attr *sgid_attr;
451         struct ib_global_route *grh;
452         int ret;
453
454         *old_sgid_attr = ah_attr->grh.sgid_attr;
455
456         ret = rdma_check_ah_attr(device, ah_attr);
457         if (ret)
458                 return ret;
459
460         if (!(ah_attr->ah_flags & IB_AH_GRH))
461                 return 0;
462
463         grh = rdma_ah_retrieve_grh(ah_attr);
464         if (grh->sgid_attr)
465                 return 0;
466
467         sgid_attr =
468                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
469         if (IS_ERR(sgid_attr))
470                 return PTR_ERR(sgid_attr);
471
472         /* Move ownerhip of the kref into the ah_attr */
473         grh->sgid_attr = sgid_attr;
474         return 0;
475 }
476
477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
478                                   const struct ib_gid_attr *old_sgid_attr)
479 {
480         /*
481          * Fill didn't change anything, the caller retains ownership of
482          * whatever it passed
483          */
484         if (ah_attr->grh.sgid_attr == old_sgid_attr)
485                 return;
486
487         /*
488          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
489          * doesn't see any change in the rdma_ah_attr. If we get here
490          * old_sgid_attr is NULL.
491          */
492         rdma_destroy_ah_attr(ah_attr);
493 }
494
495 static const struct ib_gid_attr *
496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
497                       const struct ib_gid_attr *old_attr)
498 {
499         if (old_attr)
500                 rdma_put_gid_attr(old_attr);
501         if (ah_attr->ah_flags & IB_AH_GRH) {
502                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
503                 return ah_attr->grh.sgid_attr;
504         }
505         return NULL;
506 }
507
508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
509                                      struct rdma_ah_attr *ah_attr,
510                                      u32 flags,
511                                      struct ib_udata *udata,
512                                      struct net_device *xmit_slave)
513 {
514         struct rdma_ah_init_attr init_attr = {};
515         struct ib_device *device = pd->device;
516         struct ib_ah *ah;
517         int ret;
518
519         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
520
521         if (!udata && !device->ops.create_ah)
522                 return ERR_PTR(-EOPNOTSUPP);
523
524         ah = rdma_zalloc_drv_obj_gfp(
525                 device, ib_ah,
526                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
527         if (!ah)
528                 return ERR_PTR(-ENOMEM);
529
530         ah->device = device;
531         ah->pd = pd;
532         ah->type = ah_attr->type;
533         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
534         init_attr.ah_attr = ah_attr;
535         init_attr.flags = flags;
536         init_attr.xmit_slave = xmit_slave;
537
538         if (udata)
539                 ret = device->ops.create_user_ah(ah, &init_attr, udata);
540         else
541                 ret = device->ops.create_ah(ah, &init_attr, NULL);
542         if (ret) {
543                 kfree(ah);
544                 return ERR_PTR(ret);
545         }
546
547         atomic_inc(&pd->usecnt);
548         return ah;
549 }
550
551 /**
552  * rdma_create_ah - Creates an address handle for the
553  * given address vector.
554  * @pd: The protection domain associated with the address handle.
555  * @ah_attr: The attributes of the address vector.
556  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
557  *
558  * It returns 0 on success and returns appropriate error code on error.
559  * The address handle is used to reference a local or global destination
560  * in all UD QP post sends.
561  */
562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563                              u32 flags)
564 {
565         const struct ib_gid_attr *old_sgid_attr;
566         struct net_device *slave;
567         struct ib_ah *ah;
568         int ret;
569
570         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571         if (ret)
572                 return ERR_PTR(ret);
573         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575                                            GFP_KERNEL : GFP_ATOMIC);
576         if (IS_ERR(slave)) {
577                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578                 return (void *)slave;
579         }
580         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581         rdma_lag_put_ah_roce_slave(slave);
582         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583         return ah;
584 }
585 EXPORT_SYMBOL(rdma_create_ah);
586
587 /**
588  * rdma_create_user_ah - Creates an address handle for the
589  * given address vector.
590  * It resolves destination mac address for ah attribute of RoCE type.
591  * @pd: The protection domain associated with the address handle.
592  * @ah_attr: The attributes of the address vector.
593  * @udata: pointer to user's input output buffer information need by
594  *         provider driver.
595  *
596  * It returns 0 on success and returns appropriate error code on error.
597  * The address handle is used to reference a local or global destination
598  * in all UD QP post sends.
599  */
600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601                                   struct rdma_ah_attr *ah_attr,
602                                   struct ib_udata *udata)
603 {
604         const struct ib_gid_attr *old_sgid_attr;
605         struct ib_ah *ah;
606         int err;
607
608         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
609         if (err)
610                 return ERR_PTR(err);
611
612         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
614                 if (err) {
615                         ah = ERR_PTR(err);
616                         goto out;
617                 }
618         }
619
620         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
621                              udata, NULL);
622
623 out:
624         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625         return ah;
626 }
627 EXPORT_SYMBOL(rdma_create_user_ah);
628
629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
630 {
631         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632         struct iphdr ip4h_checked;
633         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
634
635         /* If it's IPv6, the version must be 6, otherwise, the first
636          * 20 bytes (before the IPv4 header) are garbled.
637          */
638         if (ip6h->version != 6)
639                 return (ip4h->version == 4) ? 4 : 0;
640         /* version may be 6 or 4 because the first 20 bytes could be garbled */
641
642         /* RoCE v2 requires no options, thus header length
643          * must be 5 words
644          */
645         if (ip4h->ihl != 5)
646                 return 6;
647
648         /* Verify checksum.
649          * We can't write on scattered buffers so we need to copy to
650          * temp buffer.
651          */
652         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653         ip4h_checked.check = 0;
654         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655         /* if IPv4 header checksum is OK, believe it */
656         if (ip4h->check == ip4h_checked.check)
657                 return 4;
658         return 6;
659 }
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
661
662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
663                                                      u32 port_num,
664                                                      const struct ib_grh *grh)
665 {
666         int grh_version;
667
668         if (rdma_protocol_ib(device, port_num))
669                 return RDMA_NETWORK_IB;
670
671         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
672
673         if (grh_version == 4)
674                 return RDMA_NETWORK_IPV4;
675
676         if (grh->next_hdr == IPPROTO_UDP)
677                 return RDMA_NETWORK_IPV6;
678
679         return RDMA_NETWORK_ROCE_V1;
680 }
681
682 struct find_gid_index_context {
683         u16 vlan_id;
684         enum ib_gid_type gid_type;
685 };
686
687 static bool find_gid_index(const union ib_gid *gid,
688                            const struct ib_gid_attr *gid_attr,
689                            void *context)
690 {
691         struct find_gid_index_context *ctx = context;
692         u16 vlan_id = 0xffff;
693         int ret;
694
695         if (ctx->gid_type != gid_attr->gid_type)
696                 return false;
697
698         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
699         if (ret)
700                 return false;
701
702         return ctx->vlan_id == vlan_id;
703 }
704
705 static const struct ib_gid_attr *
706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707                        u16 vlan_id, const union ib_gid *sgid,
708                        enum ib_gid_type gid_type)
709 {
710         struct find_gid_index_context context = {.vlan_id = vlan_id,
711                                                  .gid_type = gid_type};
712
713         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
714                                        &context);
715 }
716
717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718                               enum rdma_network_type net_type,
719                               union ib_gid *sgid, union ib_gid *dgid)
720 {
721         struct sockaddr_in  src_in;
722         struct sockaddr_in  dst_in;
723         __be32 src_saddr, dst_saddr;
724
725         if (!sgid || !dgid)
726                 return -EINVAL;
727
728         if (net_type == RDMA_NETWORK_IPV4) {
729                 memcpy(&src_in.sin_addr.s_addr,
730                        &hdr->roce4grh.saddr, 4);
731                 memcpy(&dst_in.sin_addr.s_addr,
732                        &hdr->roce4grh.daddr, 4);
733                 src_saddr = src_in.sin_addr.s_addr;
734                 dst_saddr = dst_in.sin_addr.s_addr;
735                 ipv6_addr_set_v4mapped(src_saddr,
736                                        (struct in6_addr *)sgid);
737                 ipv6_addr_set_v4mapped(dst_saddr,
738                                        (struct in6_addr *)dgid);
739                 return 0;
740         } else if (net_type == RDMA_NETWORK_IPV6 ||
741                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742                 *dgid = hdr->ibgrh.dgid;
743                 *sgid = hdr->ibgrh.sgid;
744                 return 0;
745         } else {
746                 return -EINVAL;
747         }
748 }
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
750
751 /* Resolve destination mac address and hop limit for unicast destination
752  * GID entry, considering the source GID entry as well.
753  * ah_attribute must have have valid port_num, sgid_index.
754  */
755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756                                        struct rdma_ah_attr *ah_attr)
757 {
758         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760         int hop_limit = 0xff;
761         int ret = 0;
762
763         /* If destination is link local and source GID is RoCEv1,
764          * IP stack is not used.
765          */
766         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
769                                 ah_attr->roce.dmac);
770                 return ret;
771         }
772
773         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
774                                            ah_attr->roce.dmac,
775                                            sgid_attr, &hop_limit);
776
777         grh->hop_limit = hop_limit;
778         return ret;
779 }
780
781 /*
782  * This function initializes address handle attributes from the incoming packet.
783  * Incoming packet has dgid of the receiver node on which this code is
784  * getting executed and, sgid contains the GID of the sender.
785  *
786  * When resolving mac address of destination, the arrived dgid is used
787  * as sgid and, sgid is used as dgid because sgid contains destinations
788  * GID whom to respond to.
789  *
790  * On success the caller is responsible to call rdma_destroy_ah_attr on the
791  * attr.
792  */
793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794                             const struct ib_wc *wc, const struct ib_grh *grh,
795                             struct rdma_ah_attr *ah_attr)
796 {
797         u32 flow_class;
798         int ret;
799         enum rdma_network_type net_type = RDMA_NETWORK_IB;
800         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801         const struct ib_gid_attr *sgid_attr;
802         int hoplimit = 0xff;
803         union ib_gid dgid;
804         union ib_gid sgid;
805
806         might_sleep();
807
808         memset(ah_attr, 0, sizeof *ah_attr);
809         ah_attr->type = rdma_ah_find_type(device, port_num);
810         if (rdma_cap_eth_ah(device, port_num)) {
811                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812                         net_type = wc->network_hdr_type;
813                 else
814                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
815                 gid_type = ib_network_to_gid_type(net_type);
816         }
817         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
818                                         &sgid, &dgid);
819         if (ret)
820                 return ret;
821
822         rdma_ah_set_sl(ah_attr, wc->sl);
823         rdma_ah_set_port_num(ah_attr, port_num);
824
825         if (rdma_protocol_roce(device, port_num)) {
826                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827                                 wc->vlan_id : 0xffff;
828
829                 if (!(wc->wc_flags & IB_WC_GRH))
830                         return -EPROTOTYPE;
831
832                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
833                                                    vlan_id, &dgid,
834                                                    gid_type);
835                 if (IS_ERR(sgid_attr))
836                         return PTR_ERR(sgid_attr);
837
838                 flow_class = be32_to_cpu(grh->version_tclass_flow);
839                 rdma_move_grh_sgid_attr(ah_attr,
840                                         &sgid,
841                                         flow_class & 0xFFFFF,
842                                         hoplimit,
843                                         (flow_class >> 20) & 0xFF,
844                                         sgid_attr);
845
846                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
847                 if (ret)
848                         rdma_destroy_ah_attr(ah_attr);
849
850                 return ret;
851         } else {
852                 rdma_ah_set_dlid(ah_attr, wc->slid);
853                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
854
855                 if ((wc->wc_flags & IB_WC_GRH) == 0)
856                         return 0;
857
858                 if (dgid.global.interface_id !=
859                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860                         sgid_attr = rdma_find_gid_by_port(
861                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
862                 } else
863                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
864
865                 if (IS_ERR(sgid_attr))
866                         return PTR_ERR(sgid_attr);
867                 flow_class = be32_to_cpu(grh->version_tclass_flow);
868                 rdma_move_grh_sgid_attr(ah_attr,
869                                         &sgid,
870                                         flow_class & 0xFFFFF,
871                                         hoplimit,
872                                         (flow_class >> 20) & 0xFF,
873                                         sgid_attr);
874
875                 return 0;
876         }
877 }
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879
880 /**
881  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882  * of the reference
883  *
884  * @attr:       Pointer to AH attribute structure
885  * @dgid:       Destination GID
886  * @flow_label: Flow label
887  * @hop_limit:  Hop limit
888  * @traffic_class: traffic class
889  * @sgid_attr:  Pointer to SGID attribute
890  *
891  * This takes ownership of the sgid_attr reference. The caller must ensure
892  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893  * calling this function.
894  */
895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896                              u32 flow_label, u8 hop_limit, u8 traffic_class,
897                              const struct ib_gid_attr *sgid_attr)
898 {
899         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
900                         traffic_class);
901         attr->grh.sgid_attr = sgid_attr;
902 }
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904
905 /**
906  * rdma_destroy_ah_attr - Release reference to SGID attribute of
907  * ah attribute.
908  * @ah_attr: Pointer to ah attribute
909  *
910  * Release reference to the SGID attribute of the ah attribute if it is
911  * non NULL. It is safe to call this multiple times, and safe to call it on
912  * a zero initialized ah_attr.
913  */
914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
915 {
916         if (ah_attr->grh.sgid_attr) {
917                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918                 ah_attr->grh.sgid_attr = NULL;
919         }
920 }
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
922
923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924                                    const struct ib_grh *grh, u32 port_num)
925 {
926         struct rdma_ah_attr ah_attr;
927         struct ib_ah *ah;
928         int ret;
929
930         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
931         if (ret)
932                 return ERR_PTR(ret);
933
934         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
935
936         rdma_destroy_ah_attr(&ah_attr);
937         return ah;
938 }
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
940
941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
942 {
943         const struct ib_gid_attr *old_sgid_attr;
944         int ret;
945
946         if (ah->type != ah_attr->type)
947                 return -EINVAL;
948
949         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
950         if (ret)
951                 return ret;
952
953         ret = ah->device->ops.modify_ah ?
954                 ah->device->ops.modify_ah(ah, ah_attr) :
955                 -EOPNOTSUPP;
956
957         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959         return ret;
960 }
961 EXPORT_SYMBOL(rdma_modify_ah);
962
963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
964 {
965         ah_attr->grh.sgid_attr = NULL;
966
967         return ah->device->ops.query_ah ?
968                 ah->device->ops.query_ah(ah, ah_attr) :
969                 -EOPNOTSUPP;
970 }
971 EXPORT_SYMBOL(rdma_query_ah);
972
973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
974 {
975         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
976         struct ib_pd *pd;
977         int ret;
978
979         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
980
981         pd = ah->pd;
982
983         ret = ah->device->ops.destroy_ah(ah, flags);
984         if (ret)
985                 return ret;
986
987         atomic_dec(&pd->usecnt);
988         if (sgid_attr)
989                 rdma_put_gid_attr(sgid_attr);
990
991         kfree(ah);
992         return ret;
993 }
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
995
996 /* Shared receive queues */
997
998 /**
999  * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000  *   domain.
1001  * @pd: The protection domain associated with the SRQ.
1002  * @srq_init_attr: A list of initial attributes required to create the
1003  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1004  *   the actual capabilities of the created SRQ.
1005  * @uobject: uobject pointer if this is not a kernel SRQ
1006  * @udata: udata pointer if this is not a kernel SRQ
1007  *
1008  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009  * requested size of the SRQ, and set to the actual values allocated
1010  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1011  * will always be at least as large as the requested values.
1012  */
1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014                                   struct ib_srq_init_attr *srq_init_attr,
1015                                   struct ib_usrq_object *uobject,
1016                                   struct ib_udata *udata)
1017 {
1018         struct ib_srq *srq;
1019         int ret;
1020
1021         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022         if (!srq)
1023                 return ERR_PTR(-ENOMEM);
1024
1025         srq->device = pd->device;
1026         srq->pd = pd;
1027         srq->event_handler = srq_init_attr->event_handler;
1028         srq->srq_context = srq_init_attr->srq_context;
1029         srq->srq_type = srq_init_attr->srq_type;
1030         srq->uobject = uobject;
1031
1032         if (ib_srq_has_cq(srq->srq_type)) {
1033                 srq->ext.cq = srq_init_attr->ext.cq;
1034                 atomic_inc(&srq->ext.cq->usecnt);
1035         }
1036         if (srq->srq_type == IB_SRQT_XRC) {
1037                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1039         }
1040         atomic_inc(&pd->usecnt);
1041
1042         rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1043         rdma_restrack_parent_name(&srq->res, &pd->res);
1044
1045         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1046         if (ret) {
1047                 rdma_restrack_put(&srq->res);
1048                 atomic_dec(&srq->pd->usecnt);
1049                 if (srq->srq_type == IB_SRQT_XRC)
1050                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1051                 if (ib_srq_has_cq(srq->srq_type))
1052                         atomic_dec(&srq->ext.cq->usecnt);
1053                 kfree(srq);
1054                 return ERR_PTR(ret);
1055         }
1056
1057         rdma_restrack_add(&srq->res);
1058
1059         return srq;
1060 }
1061 EXPORT_SYMBOL(ib_create_srq_user);
1062
1063 int ib_modify_srq(struct ib_srq *srq,
1064                   struct ib_srq_attr *srq_attr,
1065                   enum ib_srq_attr_mask srq_attr_mask)
1066 {
1067         return srq->device->ops.modify_srq ?
1068                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1069                                             NULL) : -EOPNOTSUPP;
1070 }
1071 EXPORT_SYMBOL(ib_modify_srq);
1072
1073 int ib_query_srq(struct ib_srq *srq,
1074                  struct ib_srq_attr *srq_attr)
1075 {
1076         return srq->device->ops.query_srq ?
1077                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1078 }
1079 EXPORT_SYMBOL(ib_query_srq);
1080
1081 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1082 {
1083         int ret;
1084
1085         if (atomic_read(&srq->usecnt))
1086                 return -EBUSY;
1087
1088         ret = srq->device->ops.destroy_srq(srq, udata);
1089         if (ret)
1090                 return ret;
1091
1092         atomic_dec(&srq->pd->usecnt);
1093         if (srq->srq_type == IB_SRQT_XRC)
1094                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1095         if (ib_srq_has_cq(srq->srq_type))
1096                 atomic_dec(&srq->ext.cq->usecnt);
1097         rdma_restrack_del(&srq->res);
1098         kfree(srq);
1099
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(ib_destroy_srq_user);
1103
1104 /* Queue pairs */
1105
1106 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1107 {
1108         struct ib_qp *qp = context;
1109         unsigned long flags;
1110
1111         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1112         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1113                 if (event->element.qp->event_handler)
1114                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1115         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1116 }
1117
1118 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1119                                   void (*event_handler)(struct ib_event *, void *),
1120                                   void *qp_context)
1121 {
1122         struct ib_qp *qp;
1123         unsigned long flags;
1124         int err;
1125
1126         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1127         if (!qp)
1128                 return ERR_PTR(-ENOMEM);
1129
1130         qp->real_qp = real_qp;
1131         err = ib_open_shared_qp_security(qp, real_qp->device);
1132         if (err) {
1133                 kfree(qp);
1134                 return ERR_PTR(err);
1135         }
1136
1137         qp->real_qp = real_qp;
1138         atomic_inc(&real_qp->usecnt);
1139         qp->device = real_qp->device;
1140         qp->event_handler = event_handler;
1141         qp->qp_context = qp_context;
1142         qp->qp_num = real_qp->qp_num;
1143         qp->qp_type = real_qp->qp_type;
1144
1145         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1146         list_add(&qp->open_list, &real_qp->open_list);
1147         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1148
1149         return qp;
1150 }
1151
1152 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1153                          struct ib_qp_open_attr *qp_open_attr)
1154 {
1155         struct ib_qp *qp, *real_qp;
1156
1157         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1158                 return ERR_PTR(-EINVAL);
1159
1160         down_read(&xrcd->tgt_qps_rwsem);
1161         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1162         if (!real_qp) {
1163                 up_read(&xrcd->tgt_qps_rwsem);
1164                 return ERR_PTR(-EINVAL);
1165         }
1166         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1167                           qp_open_attr->qp_context);
1168         up_read(&xrcd->tgt_qps_rwsem);
1169         return qp;
1170 }
1171 EXPORT_SYMBOL(ib_open_qp);
1172
1173 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1174                                         struct ib_qp_init_attr *qp_init_attr)
1175 {
1176         struct ib_qp *real_qp = qp;
1177         int err;
1178
1179         qp->event_handler = __ib_shared_qp_event_handler;
1180         qp->qp_context = qp;
1181         qp->pd = NULL;
1182         qp->send_cq = qp->recv_cq = NULL;
1183         qp->srq = NULL;
1184         qp->xrcd = qp_init_attr->xrcd;
1185         atomic_inc(&qp_init_attr->xrcd->usecnt);
1186         INIT_LIST_HEAD(&qp->open_list);
1187
1188         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1189                           qp_init_attr->qp_context);
1190         if (IS_ERR(qp))
1191                 return qp;
1192
1193         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1194                               real_qp, GFP_KERNEL));
1195         if (err) {
1196                 ib_close_qp(qp);
1197                 return ERR_PTR(err);
1198         }
1199         return qp;
1200 }
1201
1202 /**
1203  * ib_create_named_qp - Creates a kernel QP associated with the specified protection
1204  *   domain.
1205  * @pd: The protection domain associated with the QP.
1206  * @qp_init_attr: A list of initial attributes required to create the
1207  *   QP.  If QP creation succeeds, then the attributes are updated to
1208  *   the actual capabilities of the created QP.
1209  * @caller: caller's build-time module name
1210  *
1211  * NOTE: for user qp use ib_create_qp_user with valid udata!
1212  */
1213 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
1214                                  struct ib_qp_init_attr *qp_init_attr,
1215                                  const char *caller)
1216 {
1217         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1218         struct ib_qp *qp;
1219         int ret;
1220
1221         if (qp_init_attr->rwq_ind_tbl &&
1222             (qp_init_attr->recv_cq ||
1223             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1224             qp_init_attr->cap.max_recv_sge))
1225                 return ERR_PTR(-EINVAL);
1226
1227         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1228             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1229                 return ERR_PTR(-EINVAL);
1230
1231         /*
1232          * If the callers is using the RDMA API calculate the resources
1233          * needed for the RDMA READ/WRITE operations.
1234          *
1235          * Note that these callers need to pass in a port number.
1236          */
1237         if (qp_init_attr->cap.max_rdma_ctxs)
1238                 rdma_rw_init_qp(device, qp_init_attr);
1239
1240         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1241         if (IS_ERR(qp))
1242                 return qp;
1243
1244         ret = ib_create_qp_security(qp, device);
1245         if (ret)
1246                 goto err;
1247
1248         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1249                 struct ib_qp *xrc_qp =
1250                         create_xrc_qp_user(qp, qp_init_attr);
1251
1252                 if (IS_ERR(xrc_qp)) {
1253                         ret = PTR_ERR(xrc_qp);
1254                         goto err;
1255                 }
1256                 return xrc_qp;
1257         }
1258
1259         qp->event_handler = qp_init_attr->event_handler;
1260         qp->qp_context = qp_init_attr->qp_context;
1261         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1262                 qp->recv_cq = NULL;
1263                 qp->srq = NULL;
1264         } else {
1265                 qp->recv_cq = qp_init_attr->recv_cq;
1266                 if (qp_init_attr->recv_cq)
1267                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1268                 qp->srq = qp_init_attr->srq;
1269                 if (qp->srq)
1270                         atomic_inc(&qp_init_attr->srq->usecnt);
1271         }
1272
1273         qp->send_cq = qp_init_attr->send_cq;
1274         qp->xrcd    = NULL;
1275
1276         atomic_inc(&pd->usecnt);
1277         if (qp_init_attr->send_cq)
1278                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1279         if (qp_init_attr->rwq_ind_tbl)
1280                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1281
1282         if (qp_init_attr->cap.max_rdma_ctxs) {
1283                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1284                 if (ret)
1285                         goto err;
1286         }
1287
1288         /*
1289          * Note: all hw drivers guarantee that max_send_sge is lower than
1290          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1291          * max_send_sge <= max_sge_rd.
1292          */
1293         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1294         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1295                                  device->attrs.max_sge_rd);
1296         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1297                 qp->integrity_en = true;
1298
1299         return qp;
1300
1301 err:
1302         ib_destroy_qp(qp);
1303         return ERR_PTR(ret);
1304
1305 }
1306 EXPORT_SYMBOL(ib_create_named_qp);
1307
1308 static const struct {
1309         int                     valid;
1310         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1311         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1312 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1313         [IB_QPS_RESET] = {
1314                 [IB_QPS_RESET] = { .valid = 1 },
1315                 [IB_QPS_INIT]  = {
1316                         .valid = 1,
1317                         .req_param = {
1318                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1319                                                 IB_QP_PORT                      |
1320                                                 IB_QP_QKEY),
1321                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1322                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1323                                                 IB_QP_PORT                      |
1324                                                 IB_QP_ACCESS_FLAGS),
1325                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1326                                                 IB_QP_PORT                      |
1327                                                 IB_QP_ACCESS_FLAGS),
1328                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1329                                                 IB_QP_PORT                      |
1330                                                 IB_QP_ACCESS_FLAGS),
1331                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1332                                                 IB_QP_PORT                      |
1333                                                 IB_QP_ACCESS_FLAGS),
1334                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1335                                                 IB_QP_QKEY),
1336                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1337                                                 IB_QP_QKEY),
1338                         }
1339                 },
1340         },
1341         [IB_QPS_INIT]  = {
1342                 [IB_QPS_RESET] = { .valid = 1 },
1343                 [IB_QPS_ERR] =   { .valid = 1 },
1344                 [IB_QPS_INIT]  = {
1345                         .valid = 1,
1346                         .opt_param = {
1347                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1348                                                 IB_QP_PORT                      |
1349                                                 IB_QP_QKEY),
1350                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1351                                                 IB_QP_PORT                      |
1352                                                 IB_QP_ACCESS_FLAGS),
1353                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1354                                                 IB_QP_PORT                      |
1355                                                 IB_QP_ACCESS_FLAGS),
1356                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1357                                                 IB_QP_PORT                      |
1358                                                 IB_QP_ACCESS_FLAGS),
1359                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1360                                                 IB_QP_PORT                      |
1361                                                 IB_QP_ACCESS_FLAGS),
1362                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1363                                                 IB_QP_QKEY),
1364                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1365                                                 IB_QP_QKEY),
1366                         }
1367                 },
1368                 [IB_QPS_RTR]   = {
1369                         .valid = 1,
1370                         .req_param = {
1371                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1372                                                 IB_QP_PATH_MTU                  |
1373                                                 IB_QP_DEST_QPN                  |
1374                                                 IB_QP_RQ_PSN),
1375                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1376                                                 IB_QP_PATH_MTU                  |
1377                                                 IB_QP_DEST_QPN                  |
1378                                                 IB_QP_RQ_PSN                    |
1379                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1380                                                 IB_QP_MIN_RNR_TIMER),
1381                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1382                                                 IB_QP_PATH_MTU                  |
1383                                                 IB_QP_DEST_QPN                  |
1384                                                 IB_QP_RQ_PSN),
1385                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1386                                                 IB_QP_PATH_MTU                  |
1387                                                 IB_QP_DEST_QPN                  |
1388                                                 IB_QP_RQ_PSN                    |
1389                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1390                                                 IB_QP_MIN_RNR_TIMER),
1391                         },
1392                         .opt_param = {
1393                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1394                                                  IB_QP_QKEY),
1395                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1396                                                  IB_QP_ACCESS_FLAGS             |
1397                                                  IB_QP_PKEY_INDEX),
1398                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1399                                                  IB_QP_ACCESS_FLAGS             |
1400                                                  IB_QP_PKEY_INDEX),
1401                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1402                                                  IB_QP_ACCESS_FLAGS             |
1403                                                  IB_QP_PKEY_INDEX),
1404                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1405                                                  IB_QP_ACCESS_FLAGS             |
1406                                                  IB_QP_PKEY_INDEX),
1407                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1408                                                  IB_QP_QKEY),
1409                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1410                                                  IB_QP_QKEY),
1411                          },
1412                 },
1413         },
1414         [IB_QPS_RTR]   = {
1415                 [IB_QPS_RESET] = { .valid = 1 },
1416                 [IB_QPS_ERR] =   { .valid = 1 },
1417                 [IB_QPS_RTS]   = {
1418                         .valid = 1,
1419                         .req_param = {
1420                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1421                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1422                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1423                                                 IB_QP_RETRY_CNT                 |
1424                                                 IB_QP_RNR_RETRY                 |
1425                                                 IB_QP_SQ_PSN                    |
1426                                                 IB_QP_MAX_QP_RD_ATOMIC),
1427                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1428                                                 IB_QP_RETRY_CNT                 |
1429                                                 IB_QP_RNR_RETRY                 |
1430                                                 IB_QP_SQ_PSN                    |
1431                                                 IB_QP_MAX_QP_RD_ATOMIC),
1432                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1433                                                 IB_QP_SQ_PSN),
1434                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1435                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1436                         },
1437                         .opt_param = {
1438                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1439                                                  IB_QP_QKEY),
1440                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1441                                                  IB_QP_ALT_PATH                 |
1442                                                  IB_QP_ACCESS_FLAGS             |
1443                                                  IB_QP_PATH_MIG_STATE),
1444                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1445                                                  IB_QP_ALT_PATH                 |
1446                                                  IB_QP_ACCESS_FLAGS             |
1447                                                  IB_QP_MIN_RNR_TIMER            |
1448                                                  IB_QP_PATH_MIG_STATE),
1449                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1450                                                  IB_QP_ALT_PATH                 |
1451                                                  IB_QP_ACCESS_FLAGS             |
1452                                                  IB_QP_PATH_MIG_STATE),
1453                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1454                                                  IB_QP_ALT_PATH                 |
1455                                                  IB_QP_ACCESS_FLAGS             |
1456                                                  IB_QP_MIN_RNR_TIMER            |
1457                                                  IB_QP_PATH_MIG_STATE),
1458                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1459                                                  IB_QP_QKEY),
1460                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1461                                                  IB_QP_QKEY),
1462                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1463                          }
1464                 }
1465         },
1466         [IB_QPS_RTS]   = {
1467                 [IB_QPS_RESET] = { .valid = 1 },
1468                 [IB_QPS_ERR] =   { .valid = 1 },
1469                 [IB_QPS_RTS]   = {
1470                         .valid = 1,
1471                         .opt_param = {
1472                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1473                                                 IB_QP_QKEY),
1474                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1475                                                 IB_QP_ACCESS_FLAGS              |
1476                                                 IB_QP_ALT_PATH                  |
1477                                                 IB_QP_PATH_MIG_STATE),
1478                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1479                                                 IB_QP_ACCESS_FLAGS              |
1480                                                 IB_QP_ALT_PATH                  |
1481                                                 IB_QP_PATH_MIG_STATE            |
1482                                                 IB_QP_MIN_RNR_TIMER),
1483                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1484                                                 IB_QP_ACCESS_FLAGS              |
1485                                                 IB_QP_ALT_PATH                  |
1486                                                 IB_QP_PATH_MIG_STATE),
1487                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1488                                                 IB_QP_ACCESS_FLAGS              |
1489                                                 IB_QP_ALT_PATH                  |
1490                                                 IB_QP_PATH_MIG_STATE            |
1491                                                 IB_QP_MIN_RNR_TIMER),
1492                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1493                                                 IB_QP_QKEY),
1494                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1495                                                 IB_QP_QKEY),
1496                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1497                         }
1498                 },
1499                 [IB_QPS_SQD]   = {
1500                         .valid = 1,
1501                         .opt_param = {
1502                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1503                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1504                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1505                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1506                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1507                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1508                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1509                         }
1510                 },
1511         },
1512         [IB_QPS_SQD]   = {
1513                 [IB_QPS_RESET] = { .valid = 1 },
1514                 [IB_QPS_ERR] =   { .valid = 1 },
1515                 [IB_QPS_RTS]   = {
1516                         .valid = 1,
1517                         .opt_param = {
1518                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1519                                                 IB_QP_QKEY),
1520                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1521                                                 IB_QP_ALT_PATH                  |
1522                                                 IB_QP_ACCESS_FLAGS              |
1523                                                 IB_QP_PATH_MIG_STATE),
1524                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1525                                                 IB_QP_ALT_PATH                  |
1526                                                 IB_QP_ACCESS_FLAGS              |
1527                                                 IB_QP_MIN_RNR_TIMER             |
1528                                                 IB_QP_PATH_MIG_STATE),
1529                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1530                                                 IB_QP_ALT_PATH                  |
1531                                                 IB_QP_ACCESS_FLAGS              |
1532                                                 IB_QP_PATH_MIG_STATE),
1533                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1534                                                 IB_QP_ALT_PATH                  |
1535                                                 IB_QP_ACCESS_FLAGS              |
1536                                                 IB_QP_MIN_RNR_TIMER             |
1537                                                 IB_QP_PATH_MIG_STATE),
1538                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1539                                                 IB_QP_QKEY),
1540                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1541                                                 IB_QP_QKEY),
1542                         }
1543                 },
1544                 [IB_QPS_SQD]   = {
1545                         .valid = 1,
1546                         .opt_param = {
1547                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1548                                                 IB_QP_QKEY),
1549                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1550                                                 IB_QP_ALT_PATH                  |
1551                                                 IB_QP_ACCESS_FLAGS              |
1552                                                 IB_QP_PKEY_INDEX                |
1553                                                 IB_QP_PATH_MIG_STATE),
1554                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1555                                                 IB_QP_AV                        |
1556                                                 IB_QP_TIMEOUT                   |
1557                                                 IB_QP_RETRY_CNT                 |
1558                                                 IB_QP_RNR_RETRY                 |
1559                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1560                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1561                                                 IB_QP_ALT_PATH                  |
1562                                                 IB_QP_ACCESS_FLAGS              |
1563                                                 IB_QP_PKEY_INDEX                |
1564                                                 IB_QP_MIN_RNR_TIMER             |
1565                                                 IB_QP_PATH_MIG_STATE),
1566                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1567                                                 IB_QP_AV                        |
1568                                                 IB_QP_TIMEOUT                   |
1569                                                 IB_QP_RETRY_CNT                 |
1570                                                 IB_QP_RNR_RETRY                 |
1571                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1572                                                 IB_QP_ALT_PATH                  |
1573                                                 IB_QP_ACCESS_FLAGS              |
1574                                                 IB_QP_PKEY_INDEX                |
1575                                                 IB_QP_PATH_MIG_STATE),
1576                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1577                                                 IB_QP_AV                        |
1578                                                 IB_QP_TIMEOUT                   |
1579                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1580                                                 IB_QP_ALT_PATH                  |
1581                                                 IB_QP_ACCESS_FLAGS              |
1582                                                 IB_QP_PKEY_INDEX                |
1583                                                 IB_QP_MIN_RNR_TIMER             |
1584                                                 IB_QP_PATH_MIG_STATE),
1585                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1586                                                 IB_QP_QKEY),
1587                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1588                                                 IB_QP_QKEY),
1589                         }
1590                 }
1591         },
1592         [IB_QPS_SQE]   = {
1593                 [IB_QPS_RESET] = { .valid = 1 },
1594                 [IB_QPS_ERR] =   { .valid = 1 },
1595                 [IB_QPS_RTS]   = {
1596                         .valid = 1,
1597                         .opt_param = {
1598                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1599                                                 IB_QP_QKEY),
1600                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1601                                                 IB_QP_ACCESS_FLAGS),
1602                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1603                                                 IB_QP_QKEY),
1604                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1605                                                 IB_QP_QKEY),
1606                         }
1607                 }
1608         },
1609         [IB_QPS_ERR] = {
1610                 [IB_QPS_RESET] = { .valid = 1 },
1611                 [IB_QPS_ERR] =   { .valid = 1 }
1612         }
1613 };
1614
1615 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1616                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1617 {
1618         enum ib_qp_attr_mask req_param, opt_param;
1619
1620         if (mask & IB_QP_CUR_STATE  &&
1621             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1622             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1623                 return false;
1624
1625         if (!qp_state_table[cur_state][next_state].valid)
1626                 return false;
1627
1628         req_param = qp_state_table[cur_state][next_state].req_param[type];
1629         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1630
1631         if ((mask & req_param) != req_param)
1632                 return false;
1633
1634         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1635                 return false;
1636
1637         return true;
1638 }
1639 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1640
1641 /**
1642  * ib_resolve_eth_dmac - Resolve destination mac address
1643  * @device:             Device to consider
1644  * @ah_attr:            address handle attribute which describes the
1645  *                      source and destination parameters
1646  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1647  * returns 0 on success or appropriate error code. It initializes the
1648  * necessary ah_attr fields when call is successful.
1649  */
1650 static int ib_resolve_eth_dmac(struct ib_device *device,
1651                                struct rdma_ah_attr *ah_attr)
1652 {
1653         int ret = 0;
1654
1655         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1656                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1657                         __be32 addr = 0;
1658
1659                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1660                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1661                 } else {
1662                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1663                                         (char *)ah_attr->roce.dmac);
1664                 }
1665         } else {
1666                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1667         }
1668         return ret;
1669 }
1670
1671 static bool is_qp_type_connected(const struct ib_qp *qp)
1672 {
1673         return (qp->qp_type == IB_QPT_UC ||
1674                 qp->qp_type == IB_QPT_RC ||
1675                 qp->qp_type == IB_QPT_XRC_INI ||
1676                 qp->qp_type == IB_QPT_XRC_TGT);
1677 }
1678
1679 /*
1680  * IB core internal function to perform QP attributes modification.
1681  */
1682 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1683                          int attr_mask, struct ib_udata *udata)
1684 {
1685         u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1686         const struct ib_gid_attr *old_sgid_attr_av;
1687         const struct ib_gid_attr *old_sgid_attr_alt_av;
1688         int ret;
1689
1690         attr->xmit_slave = NULL;
1691         if (attr_mask & IB_QP_AV) {
1692                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1693                                           &old_sgid_attr_av);
1694                 if (ret)
1695                         return ret;
1696
1697                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1698                     is_qp_type_connected(qp)) {
1699                         struct net_device *slave;
1700
1701                         /*
1702                          * If the user provided the qp_attr then we have to
1703                          * resolve it. Kerne users have to provide already
1704                          * resolved rdma_ah_attr's.
1705                          */
1706                         if (udata) {
1707                                 ret = ib_resolve_eth_dmac(qp->device,
1708                                                           &attr->ah_attr);
1709                                 if (ret)
1710                                         goto out_av;
1711                         }
1712                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1713                                                            &attr->ah_attr,
1714                                                            GFP_KERNEL);
1715                         if (IS_ERR(slave)) {
1716                                 ret = PTR_ERR(slave);
1717                                 goto out_av;
1718                         }
1719                         attr->xmit_slave = slave;
1720                 }
1721         }
1722         if (attr_mask & IB_QP_ALT_PATH) {
1723                 /*
1724                  * FIXME: This does not track the migration state, so if the
1725                  * user loads a new alternate path after the HW has migrated
1726                  * from primary->alternate we will keep the wrong
1727                  * references. This is OK for IB because the reference
1728                  * counting does not serve any functional purpose.
1729                  */
1730                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1731                                           &old_sgid_attr_alt_av);
1732                 if (ret)
1733                         goto out_av;
1734
1735                 /*
1736                  * Today the core code can only handle alternate paths and APM
1737                  * for IB. Ban them in roce mode.
1738                  */
1739                 if (!(rdma_protocol_ib(qp->device,
1740                                        attr->alt_ah_attr.port_num) &&
1741                       rdma_protocol_ib(qp->device, port))) {
1742                         ret = -EINVAL;
1743                         goto out;
1744                 }
1745         }
1746
1747         if (rdma_ib_or_roce(qp->device, port)) {
1748                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1749                         dev_warn(&qp->device->dev,
1750                                  "%s rq_psn overflow, masking to 24 bits\n",
1751                                  __func__);
1752                         attr->rq_psn &= 0xffffff;
1753                 }
1754
1755                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1756                         dev_warn(&qp->device->dev,
1757                                  " %s sq_psn overflow, masking to 24 bits\n",
1758                                  __func__);
1759                         attr->sq_psn &= 0xffffff;
1760                 }
1761         }
1762
1763         /*
1764          * Bind this qp to a counter automatically based on the rdma counter
1765          * rules. This only set in RST2INIT with port specified
1766          */
1767         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1768             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1769                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1770
1771         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1772         if (ret)
1773                 goto out;
1774
1775         if (attr_mask & IB_QP_PORT)
1776                 qp->port = attr->port_num;
1777         if (attr_mask & IB_QP_AV)
1778                 qp->av_sgid_attr =
1779                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1780         if (attr_mask & IB_QP_ALT_PATH)
1781                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1782                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1783
1784 out:
1785         if (attr_mask & IB_QP_ALT_PATH)
1786                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1787 out_av:
1788         if (attr_mask & IB_QP_AV) {
1789                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1790                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1791         }
1792         return ret;
1793 }
1794
1795 /**
1796  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1797  * @ib_qp: The QP to modify.
1798  * @attr: On input, specifies the QP attributes to modify.  On output,
1799  *   the current values of selected QP attributes are returned.
1800  * @attr_mask: A bit-mask used to specify which attributes of the QP
1801  *   are being modified.
1802  * @udata: pointer to user's input output buffer information
1803  *   are being modified.
1804  * It returns 0 on success and returns appropriate error code on error.
1805  */
1806 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1807                             int attr_mask, struct ib_udata *udata)
1808 {
1809         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1810 }
1811 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1812
1813 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1814 {
1815         int rc;
1816         u32 netdev_speed;
1817         struct net_device *netdev;
1818         struct ethtool_link_ksettings lksettings;
1819
1820         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1821                 return -EINVAL;
1822
1823         netdev = ib_device_get_netdev(dev, port_num);
1824         if (!netdev)
1825                 return -ENODEV;
1826
1827         rtnl_lock();
1828         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1829         rtnl_unlock();
1830
1831         dev_put(netdev);
1832
1833         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1834                 netdev_speed = lksettings.base.speed;
1835         } else {
1836                 netdev_speed = SPEED_1000;
1837                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1838                         netdev_speed);
1839         }
1840
1841         if (netdev_speed <= SPEED_1000) {
1842                 *width = IB_WIDTH_1X;
1843                 *speed = IB_SPEED_SDR;
1844         } else if (netdev_speed <= SPEED_10000) {
1845                 *width = IB_WIDTH_1X;
1846                 *speed = IB_SPEED_FDR10;
1847         } else if (netdev_speed <= SPEED_20000) {
1848                 *width = IB_WIDTH_4X;
1849                 *speed = IB_SPEED_DDR;
1850         } else if (netdev_speed <= SPEED_25000) {
1851                 *width = IB_WIDTH_1X;
1852                 *speed = IB_SPEED_EDR;
1853         } else if (netdev_speed <= SPEED_40000) {
1854                 *width = IB_WIDTH_4X;
1855                 *speed = IB_SPEED_FDR10;
1856         } else {
1857                 *width = IB_WIDTH_4X;
1858                 *speed = IB_SPEED_EDR;
1859         }
1860
1861         return 0;
1862 }
1863 EXPORT_SYMBOL(ib_get_eth_speed);
1864
1865 int ib_modify_qp(struct ib_qp *qp,
1866                  struct ib_qp_attr *qp_attr,
1867                  int qp_attr_mask)
1868 {
1869         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1870 }
1871 EXPORT_SYMBOL(ib_modify_qp);
1872
1873 int ib_query_qp(struct ib_qp *qp,
1874                 struct ib_qp_attr *qp_attr,
1875                 int qp_attr_mask,
1876                 struct ib_qp_init_attr *qp_init_attr)
1877 {
1878         qp_attr->ah_attr.grh.sgid_attr = NULL;
1879         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1880
1881         return qp->device->ops.query_qp ?
1882                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1883                                          qp_init_attr) : -EOPNOTSUPP;
1884 }
1885 EXPORT_SYMBOL(ib_query_qp);
1886
1887 int ib_close_qp(struct ib_qp *qp)
1888 {
1889         struct ib_qp *real_qp;
1890         unsigned long flags;
1891
1892         real_qp = qp->real_qp;
1893         if (real_qp == qp)
1894                 return -EINVAL;
1895
1896         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1897         list_del(&qp->open_list);
1898         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1899
1900         atomic_dec(&real_qp->usecnt);
1901         if (qp->qp_sec)
1902                 ib_close_shared_qp_security(qp->qp_sec);
1903         kfree(qp);
1904
1905         return 0;
1906 }
1907 EXPORT_SYMBOL(ib_close_qp);
1908
1909 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1910 {
1911         struct ib_xrcd *xrcd;
1912         struct ib_qp *real_qp;
1913         int ret;
1914
1915         real_qp = qp->real_qp;
1916         xrcd = real_qp->xrcd;
1917         down_write(&xrcd->tgt_qps_rwsem);
1918         ib_close_qp(qp);
1919         if (atomic_read(&real_qp->usecnt) == 0)
1920                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1921         else
1922                 real_qp = NULL;
1923         up_write(&xrcd->tgt_qps_rwsem);
1924
1925         if (real_qp) {
1926                 ret = ib_destroy_qp(real_qp);
1927                 if (!ret)
1928                         atomic_dec(&xrcd->usecnt);
1929         }
1930
1931         return 0;
1932 }
1933
1934 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1935 {
1936         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1937         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1938         struct ib_pd *pd;
1939         struct ib_cq *scq, *rcq;
1940         struct ib_srq *srq;
1941         struct ib_rwq_ind_table *ind_tbl;
1942         struct ib_qp_security *sec;
1943         int ret;
1944
1945         WARN_ON_ONCE(qp->mrs_used > 0);
1946
1947         if (atomic_read(&qp->usecnt))
1948                 return -EBUSY;
1949
1950         if (qp->real_qp != qp)
1951                 return __ib_destroy_shared_qp(qp);
1952
1953         pd   = qp->pd;
1954         scq  = qp->send_cq;
1955         rcq  = qp->recv_cq;
1956         srq  = qp->srq;
1957         ind_tbl = qp->rwq_ind_tbl;
1958         sec  = qp->qp_sec;
1959         if (sec)
1960                 ib_destroy_qp_security_begin(sec);
1961
1962         if (!qp->uobject)
1963                 rdma_rw_cleanup_mrs(qp);
1964
1965         rdma_counter_unbind_qp(qp, true);
1966         rdma_restrack_del(&qp->res);
1967         ret = qp->device->ops.destroy_qp(qp, udata);
1968         if (!ret) {
1969                 if (alt_path_sgid_attr)
1970                         rdma_put_gid_attr(alt_path_sgid_attr);
1971                 if (av_sgid_attr)
1972                         rdma_put_gid_attr(av_sgid_attr);
1973                 if (pd)
1974                         atomic_dec(&pd->usecnt);
1975                 if (scq)
1976                         atomic_dec(&scq->usecnt);
1977                 if (rcq)
1978                         atomic_dec(&rcq->usecnt);
1979                 if (srq)
1980                         atomic_dec(&srq->usecnt);
1981                 if (ind_tbl)
1982                         atomic_dec(&ind_tbl->usecnt);
1983                 if (sec)
1984                         ib_destroy_qp_security_end(sec);
1985         } else {
1986                 if (sec)
1987                         ib_destroy_qp_security_abort(sec);
1988         }
1989
1990         return ret;
1991 }
1992 EXPORT_SYMBOL(ib_destroy_qp_user);
1993
1994 /* Completion queues */
1995
1996 struct ib_cq *__ib_create_cq(struct ib_device *device,
1997                              ib_comp_handler comp_handler,
1998                              void (*event_handler)(struct ib_event *, void *),
1999                              void *cq_context,
2000                              const struct ib_cq_init_attr *cq_attr,
2001                              const char *caller)
2002 {
2003         struct ib_cq *cq;
2004         int ret;
2005
2006         cq = rdma_zalloc_drv_obj(device, ib_cq);
2007         if (!cq)
2008                 return ERR_PTR(-ENOMEM);
2009
2010         cq->device = device;
2011         cq->uobject = NULL;
2012         cq->comp_handler = comp_handler;
2013         cq->event_handler = event_handler;
2014         cq->cq_context = cq_context;
2015         atomic_set(&cq->usecnt, 0);
2016
2017         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2018         rdma_restrack_set_name(&cq->res, caller);
2019
2020         ret = device->ops.create_cq(cq, cq_attr, NULL);
2021         if (ret) {
2022                 rdma_restrack_put(&cq->res);
2023                 kfree(cq);
2024                 return ERR_PTR(ret);
2025         }
2026
2027         rdma_restrack_add(&cq->res);
2028         return cq;
2029 }
2030 EXPORT_SYMBOL(__ib_create_cq);
2031
2032 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2033 {
2034         if (cq->shared)
2035                 return -EOPNOTSUPP;
2036
2037         return cq->device->ops.modify_cq ?
2038                 cq->device->ops.modify_cq(cq, cq_count,
2039                                           cq_period) : -EOPNOTSUPP;
2040 }
2041 EXPORT_SYMBOL(rdma_set_cq_moderation);
2042
2043 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2044 {
2045         int ret;
2046
2047         if (WARN_ON_ONCE(cq->shared))
2048                 return -EOPNOTSUPP;
2049
2050         if (atomic_read(&cq->usecnt))
2051                 return -EBUSY;
2052
2053         ret = cq->device->ops.destroy_cq(cq, udata);
2054         if (ret)
2055                 return ret;
2056
2057         rdma_restrack_del(&cq->res);
2058         kfree(cq);
2059         return ret;
2060 }
2061 EXPORT_SYMBOL(ib_destroy_cq_user);
2062
2063 int ib_resize_cq(struct ib_cq *cq, int cqe)
2064 {
2065         if (cq->shared)
2066                 return -EOPNOTSUPP;
2067
2068         return cq->device->ops.resize_cq ?
2069                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2070 }
2071 EXPORT_SYMBOL(ib_resize_cq);
2072
2073 /* Memory regions */
2074
2075 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2076                              u64 virt_addr, int access_flags)
2077 {
2078         struct ib_mr *mr;
2079
2080         if (access_flags & IB_ACCESS_ON_DEMAND) {
2081                 if (!(pd->device->attrs.device_cap_flags &
2082                       IB_DEVICE_ON_DEMAND_PAGING)) {
2083                         pr_debug("ODP support not available\n");
2084                         return ERR_PTR(-EINVAL);
2085                 }
2086         }
2087
2088         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2089                                          access_flags, NULL);
2090
2091         if (IS_ERR(mr))
2092                 return mr;
2093
2094         mr->device = pd->device;
2095         mr->pd = pd;
2096         mr->dm = NULL;
2097         atomic_inc(&pd->usecnt);
2098
2099         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2100         rdma_restrack_parent_name(&mr->res, &pd->res);
2101         rdma_restrack_add(&mr->res);
2102
2103         return mr;
2104 }
2105 EXPORT_SYMBOL(ib_reg_user_mr);
2106
2107 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2108                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2109 {
2110         if (!pd->device->ops.advise_mr)
2111                 return -EOPNOTSUPP;
2112
2113         if (!num_sge)
2114                 return 0;
2115
2116         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2117                                          NULL);
2118 }
2119 EXPORT_SYMBOL(ib_advise_mr);
2120
2121 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2122 {
2123         struct ib_pd *pd = mr->pd;
2124         struct ib_dm *dm = mr->dm;
2125         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2126         int ret;
2127
2128         trace_mr_dereg(mr);
2129         rdma_restrack_del(&mr->res);
2130         ret = mr->device->ops.dereg_mr(mr, udata);
2131         if (!ret) {
2132                 atomic_dec(&pd->usecnt);
2133                 if (dm)
2134                         atomic_dec(&dm->usecnt);
2135                 kfree(sig_attrs);
2136         }
2137
2138         return ret;
2139 }
2140 EXPORT_SYMBOL(ib_dereg_mr_user);
2141
2142 /**
2143  * ib_alloc_mr() - Allocates a memory region
2144  * @pd:            protection domain associated with the region
2145  * @mr_type:       memory region type
2146  * @max_num_sg:    maximum sg entries available for registration.
2147  *
2148  * Notes:
2149  * Memory registeration page/sg lists must not exceed max_num_sg.
2150  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2151  * max_num_sg * used_page_size.
2152  *
2153  */
2154 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2155                           u32 max_num_sg)
2156 {
2157         struct ib_mr *mr;
2158
2159         if (!pd->device->ops.alloc_mr) {
2160                 mr = ERR_PTR(-EOPNOTSUPP);
2161                 goto out;
2162         }
2163
2164         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2165                 WARN_ON_ONCE(1);
2166                 mr = ERR_PTR(-EINVAL);
2167                 goto out;
2168         }
2169
2170         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2171         if (IS_ERR(mr))
2172                 goto out;
2173
2174         mr->device = pd->device;
2175         mr->pd = pd;
2176         mr->dm = NULL;
2177         mr->uobject = NULL;
2178         atomic_inc(&pd->usecnt);
2179         mr->need_inval = false;
2180         mr->type = mr_type;
2181         mr->sig_attrs = NULL;
2182
2183         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2184         rdma_restrack_parent_name(&mr->res, &pd->res);
2185         rdma_restrack_add(&mr->res);
2186 out:
2187         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2188         return mr;
2189 }
2190 EXPORT_SYMBOL(ib_alloc_mr);
2191
2192 /**
2193  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2194  * @pd:                      protection domain associated with the region
2195  * @max_num_data_sg:         maximum data sg entries available for registration
2196  * @max_num_meta_sg:         maximum metadata sg entries available for
2197  *                           registration
2198  *
2199  * Notes:
2200  * Memory registration page/sg lists must not exceed max_num_sg,
2201  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2202  *
2203  */
2204 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2205                                     u32 max_num_data_sg,
2206                                     u32 max_num_meta_sg)
2207 {
2208         struct ib_mr *mr;
2209         struct ib_sig_attrs *sig_attrs;
2210
2211         if (!pd->device->ops.alloc_mr_integrity ||
2212             !pd->device->ops.map_mr_sg_pi) {
2213                 mr = ERR_PTR(-EOPNOTSUPP);
2214                 goto out;
2215         }
2216
2217         if (!max_num_meta_sg) {
2218                 mr = ERR_PTR(-EINVAL);
2219                 goto out;
2220         }
2221
2222         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2223         if (!sig_attrs) {
2224                 mr = ERR_PTR(-ENOMEM);
2225                 goto out;
2226         }
2227
2228         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2229                                                 max_num_meta_sg);
2230         if (IS_ERR(mr)) {
2231                 kfree(sig_attrs);
2232                 goto out;
2233         }
2234
2235         mr->device = pd->device;
2236         mr->pd = pd;
2237         mr->dm = NULL;
2238         mr->uobject = NULL;
2239         atomic_inc(&pd->usecnt);
2240         mr->need_inval = false;
2241         mr->type = IB_MR_TYPE_INTEGRITY;
2242         mr->sig_attrs = sig_attrs;
2243
2244         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2245         rdma_restrack_parent_name(&mr->res, &pd->res);
2246         rdma_restrack_add(&mr->res);
2247 out:
2248         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2249         return mr;
2250 }
2251 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2252
2253 /* Multicast groups */
2254
2255 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2256 {
2257         struct ib_qp_init_attr init_attr = {};
2258         struct ib_qp_attr attr = {};
2259         int num_eth_ports = 0;
2260         unsigned int port;
2261
2262         /* If QP state >= init, it is assigned to a port and we can check this
2263          * port only.
2264          */
2265         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2266                 if (attr.qp_state >= IB_QPS_INIT) {
2267                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2268                             IB_LINK_LAYER_INFINIBAND)
2269                                 return true;
2270                         goto lid_check;
2271                 }
2272         }
2273
2274         /* Can't get a quick answer, iterate over all ports */
2275         rdma_for_each_port(qp->device, port)
2276                 if (rdma_port_get_link_layer(qp->device, port) !=
2277                     IB_LINK_LAYER_INFINIBAND)
2278                         num_eth_ports++;
2279
2280         /* If we have at lease one Ethernet port, RoCE annex declares that
2281          * multicast LID should be ignored. We can't tell at this step if the
2282          * QP belongs to an IB or Ethernet port.
2283          */
2284         if (num_eth_ports)
2285                 return true;
2286
2287         /* If all the ports are IB, we can check according to IB spec. */
2288 lid_check:
2289         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2290                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2291 }
2292
2293 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2294 {
2295         int ret;
2296
2297         if (!qp->device->ops.attach_mcast)
2298                 return -EOPNOTSUPP;
2299
2300         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2301             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2302                 return -EINVAL;
2303
2304         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2305         if (!ret)
2306                 atomic_inc(&qp->usecnt);
2307         return ret;
2308 }
2309 EXPORT_SYMBOL(ib_attach_mcast);
2310
2311 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2312 {
2313         int ret;
2314
2315         if (!qp->device->ops.detach_mcast)
2316                 return -EOPNOTSUPP;
2317
2318         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2319             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2320                 return -EINVAL;
2321
2322         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2323         if (!ret)
2324                 atomic_dec(&qp->usecnt);
2325         return ret;
2326 }
2327 EXPORT_SYMBOL(ib_detach_mcast);
2328
2329 /**
2330  * ib_alloc_xrcd_user - Allocates an XRC domain.
2331  * @device: The device on which to allocate the XRC domain.
2332  * @inode: inode to connect XRCD
2333  * @udata: Valid user data or NULL for kernel object
2334  */
2335 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2336                                    struct inode *inode, struct ib_udata *udata)
2337 {
2338         struct ib_xrcd *xrcd;
2339         int ret;
2340
2341         if (!device->ops.alloc_xrcd)
2342                 return ERR_PTR(-EOPNOTSUPP);
2343
2344         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2345         if (!xrcd)
2346                 return ERR_PTR(-ENOMEM);
2347
2348         xrcd->device = device;
2349         xrcd->inode = inode;
2350         atomic_set(&xrcd->usecnt, 0);
2351         init_rwsem(&xrcd->tgt_qps_rwsem);
2352         xa_init(&xrcd->tgt_qps);
2353
2354         ret = device->ops.alloc_xrcd(xrcd, udata);
2355         if (ret)
2356                 goto err;
2357         return xrcd;
2358 err:
2359         kfree(xrcd);
2360         return ERR_PTR(ret);
2361 }
2362 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2363
2364 /**
2365  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2366  * @xrcd: The XRC domain to deallocate.
2367  * @udata: Valid user data or NULL for kernel object
2368  */
2369 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2370 {
2371         int ret;
2372
2373         if (atomic_read(&xrcd->usecnt))
2374                 return -EBUSY;
2375
2376         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2377         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2378         if (ret)
2379                 return ret;
2380         kfree(xrcd);
2381         return ret;
2382 }
2383 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2384
2385 /**
2386  * ib_create_wq - Creates a WQ associated with the specified protection
2387  * domain.
2388  * @pd: The protection domain associated with the WQ.
2389  * @wq_attr: A list of initial attributes required to create the
2390  * WQ. If WQ creation succeeds, then the attributes are updated to
2391  * the actual capabilities of the created WQ.
2392  *
2393  * wq_attr->max_wr and wq_attr->max_sge determine
2394  * the requested size of the WQ, and set to the actual values allocated
2395  * on return.
2396  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2397  * at least as large as the requested values.
2398  */
2399 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2400                            struct ib_wq_init_attr *wq_attr)
2401 {
2402         struct ib_wq *wq;
2403
2404         if (!pd->device->ops.create_wq)
2405                 return ERR_PTR(-EOPNOTSUPP);
2406
2407         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2408         if (!IS_ERR(wq)) {
2409                 wq->event_handler = wq_attr->event_handler;
2410                 wq->wq_context = wq_attr->wq_context;
2411                 wq->wq_type = wq_attr->wq_type;
2412                 wq->cq = wq_attr->cq;
2413                 wq->device = pd->device;
2414                 wq->pd = pd;
2415                 wq->uobject = NULL;
2416                 atomic_inc(&pd->usecnt);
2417                 atomic_inc(&wq_attr->cq->usecnt);
2418                 atomic_set(&wq->usecnt, 0);
2419         }
2420         return wq;
2421 }
2422 EXPORT_SYMBOL(ib_create_wq);
2423
2424 /**
2425  * ib_destroy_wq_user - Destroys the specified user WQ.
2426  * @wq: The WQ to destroy.
2427  * @udata: Valid user data
2428  */
2429 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2430 {
2431         struct ib_cq *cq = wq->cq;
2432         struct ib_pd *pd = wq->pd;
2433         int ret;
2434
2435         if (atomic_read(&wq->usecnt))
2436                 return -EBUSY;
2437
2438         ret = wq->device->ops.destroy_wq(wq, udata);
2439         if (ret)
2440                 return ret;
2441
2442         atomic_dec(&pd->usecnt);
2443         atomic_dec(&cq->usecnt);
2444         return ret;
2445 }
2446 EXPORT_SYMBOL(ib_destroy_wq_user);
2447
2448 /**
2449  * ib_modify_wq - Modifies the specified WQ.
2450  * @wq: The WQ to modify.
2451  * @wq_attr: On input, specifies the WQ attributes to modify.
2452  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2453  *   are being modified.
2454  * On output, the current values of selected WQ attributes are returned.
2455  */
2456 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2457                  u32 wq_attr_mask)
2458 {
2459         int err;
2460
2461         if (!wq->device->ops.modify_wq)
2462                 return -EOPNOTSUPP;
2463
2464         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2465         return err;
2466 }
2467 EXPORT_SYMBOL(ib_modify_wq);
2468
2469 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2470                        struct ib_mr_status *mr_status)
2471 {
2472         if (!mr->device->ops.check_mr_status)
2473                 return -EOPNOTSUPP;
2474
2475         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2476 }
2477 EXPORT_SYMBOL(ib_check_mr_status);
2478
2479 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2480                          int state)
2481 {
2482         if (!device->ops.set_vf_link_state)
2483                 return -EOPNOTSUPP;
2484
2485         return device->ops.set_vf_link_state(device, vf, port, state);
2486 }
2487 EXPORT_SYMBOL(ib_set_vf_link_state);
2488
2489 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2490                      struct ifla_vf_info *info)
2491 {
2492         if (!device->ops.get_vf_config)
2493                 return -EOPNOTSUPP;
2494
2495         return device->ops.get_vf_config(device, vf, port, info);
2496 }
2497 EXPORT_SYMBOL(ib_get_vf_config);
2498
2499 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2500                     struct ifla_vf_stats *stats)
2501 {
2502         if (!device->ops.get_vf_stats)
2503                 return -EOPNOTSUPP;
2504
2505         return device->ops.get_vf_stats(device, vf, port, stats);
2506 }
2507 EXPORT_SYMBOL(ib_get_vf_stats);
2508
2509 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2510                    int type)
2511 {
2512         if (!device->ops.set_vf_guid)
2513                 return -EOPNOTSUPP;
2514
2515         return device->ops.set_vf_guid(device, vf, port, guid, type);
2516 }
2517 EXPORT_SYMBOL(ib_set_vf_guid);
2518
2519 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2520                    struct ifla_vf_guid *node_guid,
2521                    struct ifla_vf_guid *port_guid)
2522 {
2523         if (!device->ops.get_vf_guid)
2524                 return -EOPNOTSUPP;
2525
2526         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2527 }
2528 EXPORT_SYMBOL(ib_get_vf_guid);
2529 /**
2530  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2531  *     information) and set an appropriate memory region for registration.
2532  * @mr:             memory region
2533  * @data_sg:        dma mapped scatterlist for data
2534  * @data_sg_nents:  number of entries in data_sg
2535  * @data_sg_offset: offset in bytes into data_sg
2536  * @meta_sg:        dma mapped scatterlist for metadata
2537  * @meta_sg_nents:  number of entries in meta_sg
2538  * @meta_sg_offset: offset in bytes into meta_sg
2539  * @page_size:      page vector desired page size
2540  *
2541  * Constraints:
2542  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2543  *
2544  * Return: 0 on success.
2545  *
2546  * After this completes successfully, the  memory region
2547  * is ready for registration.
2548  */
2549 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2550                     int data_sg_nents, unsigned int *data_sg_offset,
2551                     struct scatterlist *meta_sg, int meta_sg_nents,
2552                     unsigned int *meta_sg_offset, unsigned int page_size)
2553 {
2554         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2555                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2556                 return -EOPNOTSUPP;
2557
2558         mr->page_size = page_size;
2559
2560         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2561                                             data_sg_offset, meta_sg,
2562                                             meta_sg_nents, meta_sg_offset);
2563 }
2564 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2565
2566 /**
2567  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2568  *     and set it the memory region.
2569  * @mr:            memory region
2570  * @sg:            dma mapped scatterlist
2571  * @sg_nents:      number of entries in sg
2572  * @sg_offset:     offset in bytes into sg
2573  * @page_size:     page vector desired page size
2574  *
2575  * Constraints:
2576  *
2577  * - The first sg element is allowed to have an offset.
2578  * - Each sg element must either be aligned to page_size or virtually
2579  *   contiguous to the previous element. In case an sg element has a
2580  *   non-contiguous offset, the mapping prefix will not include it.
2581  * - The last sg element is allowed to have length less than page_size.
2582  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2583  *   then only max_num_sg entries will be mapped.
2584  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2585  *   constraints holds and the page_size argument is ignored.
2586  *
2587  * Returns the number of sg elements that were mapped to the memory region.
2588  *
2589  * After this completes successfully, the  memory region
2590  * is ready for registration.
2591  */
2592 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2593                  unsigned int *sg_offset, unsigned int page_size)
2594 {
2595         if (unlikely(!mr->device->ops.map_mr_sg))
2596                 return -EOPNOTSUPP;
2597
2598         mr->page_size = page_size;
2599
2600         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2601 }
2602 EXPORT_SYMBOL(ib_map_mr_sg);
2603
2604 /**
2605  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2606  *     to a page vector
2607  * @mr:            memory region
2608  * @sgl:           dma mapped scatterlist
2609  * @sg_nents:      number of entries in sg
2610  * @sg_offset_p:   ==== =======================================================
2611  *                 IN   start offset in bytes into sg
2612  *                 OUT  offset in bytes for element n of the sg of the first
2613  *                      byte that has not been processed where n is the return
2614  *                      value of this function.
2615  *                 ==== =======================================================
2616  * @set_page:      driver page assignment function pointer
2617  *
2618  * Core service helper for drivers to convert the largest
2619  * prefix of given sg list to a page vector. The sg list
2620  * prefix converted is the prefix that meet the requirements
2621  * of ib_map_mr_sg.
2622  *
2623  * Returns the number of sg elements that were assigned to
2624  * a page vector.
2625  */
2626 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2627                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2628 {
2629         struct scatterlist *sg;
2630         u64 last_end_dma_addr = 0;
2631         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2632         unsigned int last_page_off = 0;
2633         u64 page_mask = ~((u64)mr->page_size - 1);
2634         int i, ret;
2635
2636         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2637                 return -EINVAL;
2638
2639         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2640         mr->length = 0;
2641
2642         for_each_sg(sgl, sg, sg_nents, i) {
2643                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2644                 u64 prev_addr = dma_addr;
2645                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2646                 u64 end_dma_addr = dma_addr + dma_len;
2647                 u64 page_addr = dma_addr & page_mask;
2648
2649                 /*
2650                  * For the second and later elements, check whether either the
2651                  * end of element i-1 or the start of element i is not aligned
2652                  * on a page boundary.
2653                  */
2654                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2655                         /* Stop mapping if there is a gap. */
2656                         if (last_end_dma_addr != dma_addr)
2657                                 break;
2658
2659                         /*
2660                          * Coalesce this element with the last. If it is small
2661                          * enough just update mr->length. Otherwise start
2662                          * mapping from the next page.
2663                          */
2664                         goto next_page;
2665                 }
2666
2667                 do {
2668                         ret = set_page(mr, page_addr);
2669                         if (unlikely(ret < 0)) {
2670                                 sg_offset = prev_addr - sg_dma_address(sg);
2671                                 mr->length += prev_addr - dma_addr;
2672                                 if (sg_offset_p)
2673                                         *sg_offset_p = sg_offset;
2674                                 return i || sg_offset ? i : ret;
2675                         }
2676                         prev_addr = page_addr;
2677 next_page:
2678                         page_addr += mr->page_size;
2679                 } while (page_addr < end_dma_addr);
2680
2681                 mr->length += dma_len;
2682                 last_end_dma_addr = end_dma_addr;
2683                 last_page_off = end_dma_addr & ~page_mask;
2684
2685                 sg_offset = 0;
2686         }
2687
2688         if (sg_offset_p)
2689                 *sg_offset_p = 0;
2690         return i;
2691 }
2692 EXPORT_SYMBOL(ib_sg_to_pages);
2693
2694 struct ib_drain_cqe {
2695         struct ib_cqe cqe;
2696         struct completion done;
2697 };
2698
2699 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2700 {
2701         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2702                                                 cqe);
2703
2704         complete(&cqe->done);
2705 }
2706
2707 /*
2708  * Post a WR and block until its completion is reaped for the SQ.
2709  */
2710 static void __ib_drain_sq(struct ib_qp *qp)
2711 {
2712         struct ib_cq *cq = qp->send_cq;
2713         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2714         struct ib_drain_cqe sdrain;
2715         struct ib_rdma_wr swr = {
2716                 .wr = {
2717                         .next = NULL,
2718                         { .wr_cqe       = &sdrain.cqe, },
2719                         .opcode = IB_WR_RDMA_WRITE,
2720                 },
2721         };
2722         int ret;
2723
2724         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2725         if (ret) {
2726                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2727                 return;
2728         }
2729
2730         sdrain.cqe.done = ib_drain_qp_done;
2731         init_completion(&sdrain.done);
2732
2733         ret = ib_post_send(qp, &swr.wr, NULL);
2734         if (ret) {
2735                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2736                 return;
2737         }
2738
2739         if (cq->poll_ctx == IB_POLL_DIRECT)
2740                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2741                         ib_process_cq_direct(cq, -1);
2742         else
2743                 wait_for_completion(&sdrain.done);
2744 }
2745
2746 /*
2747  * Post a WR and block until its completion is reaped for the RQ.
2748  */
2749 static void __ib_drain_rq(struct ib_qp *qp)
2750 {
2751         struct ib_cq *cq = qp->recv_cq;
2752         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2753         struct ib_drain_cqe rdrain;
2754         struct ib_recv_wr rwr = {};
2755         int ret;
2756
2757         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2758         if (ret) {
2759                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2760                 return;
2761         }
2762
2763         rwr.wr_cqe = &rdrain.cqe;
2764         rdrain.cqe.done = ib_drain_qp_done;
2765         init_completion(&rdrain.done);
2766
2767         ret = ib_post_recv(qp, &rwr, NULL);
2768         if (ret) {
2769                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2770                 return;
2771         }
2772
2773         if (cq->poll_ctx == IB_POLL_DIRECT)
2774                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2775                         ib_process_cq_direct(cq, -1);
2776         else
2777                 wait_for_completion(&rdrain.done);
2778 }
2779
2780 /**
2781  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2782  *                 application.
2783  * @qp:            queue pair to drain
2784  *
2785  * If the device has a provider-specific drain function, then
2786  * call that.  Otherwise call the generic drain function
2787  * __ib_drain_sq().
2788  *
2789  * The caller must:
2790  *
2791  * ensure there is room in the CQ and SQ for the drain work request and
2792  * completion.
2793  *
2794  * allocate the CQ using ib_alloc_cq().
2795  *
2796  * ensure that there are no other contexts that are posting WRs concurrently.
2797  * Otherwise the drain is not guaranteed.
2798  */
2799 void ib_drain_sq(struct ib_qp *qp)
2800 {
2801         if (qp->device->ops.drain_sq)
2802                 qp->device->ops.drain_sq(qp);
2803         else
2804                 __ib_drain_sq(qp);
2805         trace_cq_drain_complete(qp->send_cq);
2806 }
2807 EXPORT_SYMBOL(ib_drain_sq);
2808
2809 /**
2810  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2811  *                 application.
2812  * @qp:            queue pair to drain
2813  *
2814  * If the device has a provider-specific drain function, then
2815  * call that.  Otherwise call the generic drain function
2816  * __ib_drain_rq().
2817  *
2818  * The caller must:
2819  *
2820  * ensure there is room in the CQ and RQ for the drain work request and
2821  * completion.
2822  *
2823  * allocate the CQ using ib_alloc_cq().
2824  *
2825  * ensure that there are no other contexts that are posting WRs concurrently.
2826  * Otherwise the drain is not guaranteed.
2827  */
2828 void ib_drain_rq(struct ib_qp *qp)
2829 {
2830         if (qp->device->ops.drain_rq)
2831                 qp->device->ops.drain_rq(qp);
2832         else
2833                 __ib_drain_rq(qp);
2834         trace_cq_drain_complete(qp->recv_cq);
2835 }
2836 EXPORT_SYMBOL(ib_drain_rq);
2837
2838 /**
2839  * ib_drain_qp() - Block until all CQEs have been consumed by the
2840  *                 application on both the RQ and SQ.
2841  * @qp:            queue pair to drain
2842  *
2843  * The caller must:
2844  *
2845  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2846  * and completions.
2847  *
2848  * allocate the CQs using ib_alloc_cq().
2849  *
2850  * ensure that there are no other contexts that are posting WRs concurrently.
2851  * Otherwise the drain is not guaranteed.
2852  */
2853 void ib_drain_qp(struct ib_qp *qp)
2854 {
2855         ib_drain_sq(qp);
2856         if (!qp->srq)
2857                 ib_drain_rq(qp);
2858 }
2859 EXPORT_SYMBOL(ib_drain_qp);
2860
2861 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2862                                      enum rdma_netdev_t type, const char *name,
2863                                      unsigned char name_assign_type,
2864                                      void (*setup)(struct net_device *))
2865 {
2866         struct rdma_netdev_alloc_params params;
2867         struct net_device *netdev;
2868         int rc;
2869
2870         if (!device->ops.rdma_netdev_get_params)
2871                 return ERR_PTR(-EOPNOTSUPP);
2872
2873         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2874                                                 &params);
2875         if (rc)
2876                 return ERR_PTR(rc);
2877
2878         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2879                                   setup, params.txqs, params.rxqs);
2880         if (!netdev)
2881                 return ERR_PTR(-ENOMEM);
2882
2883         return netdev;
2884 }
2885 EXPORT_SYMBOL(rdma_alloc_netdev);
2886
2887 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2888                      enum rdma_netdev_t type, const char *name,
2889                      unsigned char name_assign_type,
2890                      void (*setup)(struct net_device *),
2891                      struct net_device *netdev)
2892 {
2893         struct rdma_netdev_alloc_params params;
2894         int rc;
2895
2896         if (!device->ops.rdma_netdev_get_params)
2897                 return -EOPNOTSUPP;
2898
2899         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2900                                                 &params);
2901         if (rc)
2902                 return rc;
2903
2904         return params.initialize_rdma_netdev(device, port_num,
2905                                              netdev, params.param);
2906 }
2907 EXPORT_SYMBOL(rdma_init_netdev);
2908
2909 void __rdma_block_iter_start(struct ib_block_iter *biter,
2910                              struct scatterlist *sglist, unsigned int nents,
2911                              unsigned long pgsz)
2912 {
2913         memset(biter, 0, sizeof(struct ib_block_iter));
2914         biter->__sg = sglist;
2915         biter->__sg_nents = nents;
2916
2917         /* Driver provides best block size to use */
2918         biter->__pg_bit = __fls(pgsz);
2919 }
2920 EXPORT_SYMBOL(__rdma_block_iter_start);
2921
2922 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2923 {
2924         unsigned int block_offset;
2925
2926         if (!biter->__sg_nents || !biter->__sg)
2927                 return false;
2928
2929         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2930         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2931         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2932
2933         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2934                 biter->__sg_advance = 0;
2935                 biter->__sg = sg_next(biter->__sg);
2936                 biter->__sg_nents--;
2937         }
2938
2939         return true;
2940 }
2941 EXPORT_SYMBOL(__rdma_block_iter_next);