2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
90 EXPORT_SYMBOL(ib_event_msg);
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 size_t index = status;
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
124 EXPORT_SYMBOL(ib_wc_status_msg);
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
153 EXPORT_SYMBOL(ib_rate_to_mult);
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
182 EXPORT_SYMBOL(mult_to_ib_rate);
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
211 EXPORT_SYMBOL(ib_rate_to_mbps);
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
226 return RDMA_TRANSPORT_IB;
228 EXPORT_SYMBOL(rdma_node_get_transport);
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
241 return IB_LINK_LAYER_ETHERNET;
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
245 /* Protection domains */
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 int mr_access_flags = 0;
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
268 return ERR_PTR(-ENOMEM);
272 pd->__internal_mr = NULL;
273 atomic_set(&pd->usecnt, 0);
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
279 ret = device->ops.alloc_pd(pd, NULL);
281 rdma_restrack_put(&pd->res);
285 rdma_restrack_add(&pd->res);
287 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
297 if (mr_access_flags) {
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
306 mr->device = pd->device;
308 mr->type = IB_MR_TYPE_DMA;
310 mr->need_inval = false;
312 pd->__internal_mr = mr;
314 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
323 EXPORT_SYMBOL(__ib_alloc_pd);
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
341 pd->__internal_mr = NULL;
344 /* uverbs manipulates usecnt with proper locking, while the kabi
345 * requires the caller to guarantee we can't race here.
347 WARN_ON(atomic_read(&pd->usecnt));
349 ret = pd->device->ops.dealloc_pd(pd, udata);
353 rdma_restrack_del(&pd->res);
357 EXPORT_SYMBOL(ib_dealloc_pd_user);
359 /* Address handles */
362 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
363 * @dest: Pointer to destination ah_attr. Contents of the destination
364 * pointer is assumed to be invalid and attribute are overwritten.
365 * @src: Pointer to source ah_attr.
367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
368 const struct rdma_ah_attr *src)
371 if (dest->grh.sgid_attr)
372 rdma_hold_gid_attr(dest->grh.sgid_attr);
374 EXPORT_SYMBOL(rdma_copy_ah_attr);
377 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
378 * @old: Pointer to existing ah_attr which needs to be replaced.
379 * old is assumed to be valid or zero'd
380 * @new: Pointer to the new ah_attr.
382 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
383 * old the ah_attr is valid; after that it copies the new attribute and holds
384 * the reference to the replaced ah_attr.
386 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
387 const struct rdma_ah_attr *new)
389 rdma_destroy_ah_attr(old);
391 if (old->grh.sgid_attr)
392 rdma_hold_gid_attr(old->grh.sgid_attr);
394 EXPORT_SYMBOL(rdma_replace_ah_attr);
397 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
398 * @dest: Pointer to destination ah_attr to copy to.
399 * dest is assumed to be valid or zero'd
400 * @src: Pointer to the new ah_attr.
402 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
403 * if it is valid. This also transfers ownership of internal references from
404 * src to dest, making src invalid in the process. No new reference of the src
407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
409 rdma_destroy_ah_attr(dest);
411 src->grh.sgid_attr = NULL;
413 EXPORT_SYMBOL(rdma_move_ah_attr);
416 * Validate that the rdma_ah_attr is valid for the device before passing it
419 static int rdma_check_ah_attr(struct ib_device *device,
420 struct rdma_ah_attr *ah_attr)
422 if (!rdma_is_port_valid(device, ah_attr->port_num))
425 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
426 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
427 !(ah_attr->ah_flags & IB_AH_GRH))
430 if (ah_attr->grh.sgid_attr) {
432 * Make sure the passed sgid_attr is consistent with the
435 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
436 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
443 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
444 * On success the caller is responsible to call rdma_unfill_sgid_attr().
446 static int rdma_fill_sgid_attr(struct ib_device *device,
447 struct rdma_ah_attr *ah_attr,
448 const struct ib_gid_attr **old_sgid_attr)
450 const struct ib_gid_attr *sgid_attr;
451 struct ib_global_route *grh;
454 *old_sgid_attr = ah_attr->grh.sgid_attr;
456 ret = rdma_check_ah_attr(device, ah_attr);
460 if (!(ah_attr->ah_flags & IB_AH_GRH))
463 grh = rdma_ah_retrieve_grh(ah_attr);
468 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
469 if (IS_ERR(sgid_attr))
470 return PTR_ERR(sgid_attr);
472 /* Move ownerhip of the kref into the ah_attr */
473 grh->sgid_attr = sgid_attr;
477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
478 const struct ib_gid_attr *old_sgid_attr)
481 * Fill didn't change anything, the caller retains ownership of
484 if (ah_attr->grh.sgid_attr == old_sgid_attr)
488 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
489 * doesn't see any change in the rdma_ah_attr. If we get here
490 * old_sgid_attr is NULL.
492 rdma_destroy_ah_attr(ah_attr);
495 static const struct ib_gid_attr *
496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
497 const struct ib_gid_attr *old_attr)
500 rdma_put_gid_attr(old_attr);
501 if (ah_attr->ah_flags & IB_AH_GRH) {
502 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
503 return ah_attr->grh.sgid_attr;
508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
509 struct rdma_ah_attr *ah_attr,
511 struct ib_udata *udata,
512 struct net_device *xmit_slave)
514 struct rdma_ah_init_attr init_attr = {};
515 struct ib_device *device = pd->device;
519 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
521 if (!udata && !device->ops.create_ah)
522 return ERR_PTR(-EOPNOTSUPP);
524 ah = rdma_zalloc_drv_obj_gfp(
526 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
528 return ERR_PTR(-ENOMEM);
532 ah->type = ah_attr->type;
533 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
534 init_attr.ah_attr = ah_attr;
535 init_attr.flags = flags;
536 init_attr.xmit_slave = xmit_slave;
539 ret = device->ops.create_user_ah(ah, &init_attr, udata);
541 ret = device->ops.create_ah(ah, &init_attr, NULL);
547 atomic_inc(&pd->usecnt);
552 * rdma_create_ah - Creates an address handle for the
553 * given address vector.
554 * @pd: The protection domain associated with the address handle.
555 * @ah_attr: The attributes of the address vector.
556 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
558 * It returns 0 on success and returns appropriate error code on error.
559 * The address handle is used to reference a local or global destination
560 * in all UD QP post sends.
562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
565 const struct ib_gid_attr *old_sgid_attr;
566 struct net_device *slave;
570 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
573 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575 GFP_KERNEL : GFP_ATOMIC);
577 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578 return (void *)slave;
580 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581 rdma_lag_put_ah_roce_slave(slave);
582 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
585 EXPORT_SYMBOL(rdma_create_ah);
588 * rdma_create_user_ah - Creates an address handle for the
589 * given address vector.
590 * It resolves destination mac address for ah attribute of RoCE type.
591 * @pd: The protection domain associated with the address handle.
592 * @ah_attr: The attributes of the address vector.
593 * @udata: pointer to user's input output buffer information need by
596 * It returns 0 on success and returns appropriate error code on error.
597 * The address handle is used to reference a local or global destination
598 * in all UD QP post sends.
600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601 struct rdma_ah_attr *ah_attr,
602 struct ib_udata *udata)
604 const struct ib_gid_attr *old_sgid_attr;
608 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
612 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613 err = ib_resolve_eth_dmac(pd->device, ah_attr);
620 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
624 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
627 EXPORT_SYMBOL(rdma_create_user_ah);
629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
631 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632 struct iphdr ip4h_checked;
633 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
635 /* If it's IPv6, the version must be 6, otherwise, the first
636 * 20 bytes (before the IPv4 header) are garbled.
638 if (ip6h->version != 6)
639 return (ip4h->version == 4) ? 4 : 0;
640 /* version may be 6 or 4 because the first 20 bytes could be garbled */
642 /* RoCE v2 requires no options, thus header length
649 * We can't write on scattered buffers so we need to copy to
652 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653 ip4h_checked.check = 0;
654 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655 /* if IPv4 header checksum is OK, believe it */
656 if (ip4h->check == ip4h_checked.check)
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
664 const struct ib_grh *grh)
668 if (rdma_protocol_ib(device, port_num))
669 return RDMA_NETWORK_IB;
671 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
673 if (grh_version == 4)
674 return RDMA_NETWORK_IPV4;
676 if (grh->next_hdr == IPPROTO_UDP)
677 return RDMA_NETWORK_IPV6;
679 return RDMA_NETWORK_ROCE_V1;
682 struct find_gid_index_context {
684 enum ib_gid_type gid_type;
687 static bool find_gid_index(const union ib_gid *gid,
688 const struct ib_gid_attr *gid_attr,
691 struct find_gid_index_context *ctx = context;
692 u16 vlan_id = 0xffff;
695 if (ctx->gid_type != gid_attr->gid_type)
698 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
702 return ctx->vlan_id == vlan_id;
705 static const struct ib_gid_attr *
706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707 u16 vlan_id, const union ib_gid *sgid,
708 enum ib_gid_type gid_type)
710 struct find_gid_index_context context = {.vlan_id = vlan_id,
711 .gid_type = gid_type};
713 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718 enum rdma_network_type net_type,
719 union ib_gid *sgid, union ib_gid *dgid)
721 struct sockaddr_in src_in;
722 struct sockaddr_in dst_in;
723 __be32 src_saddr, dst_saddr;
728 if (net_type == RDMA_NETWORK_IPV4) {
729 memcpy(&src_in.sin_addr.s_addr,
730 &hdr->roce4grh.saddr, 4);
731 memcpy(&dst_in.sin_addr.s_addr,
732 &hdr->roce4grh.daddr, 4);
733 src_saddr = src_in.sin_addr.s_addr;
734 dst_saddr = dst_in.sin_addr.s_addr;
735 ipv6_addr_set_v4mapped(src_saddr,
736 (struct in6_addr *)sgid);
737 ipv6_addr_set_v4mapped(dst_saddr,
738 (struct in6_addr *)dgid);
740 } else if (net_type == RDMA_NETWORK_IPV6 ||
741 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742 *dgid = hdr->ibgrh.dgid;
743 *sgid = hdr->ibgrh.sgid;
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
751 /* Resolve destination mac address and hop limit for unicast destination
752 * GID entry, considering the source GID entry as well.
753 * ah_attribute must have have valid port_num, sgid_index.
755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756 struct rdma_ah_attr *ah_attr)
758 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760 int hop_limit = 0xff;
763 /* If destination is link local and source GID is RoCEv1,
764 * IP stack is not used.
766 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
773 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
775 sgid_attr, &hop_limit);
777 grh->hop_limit = hop_limit;
782 * This function initializes address handle attributes from the incoming packet.
783 * Incoming packet has dgid of the receiver node on which this code is
784 * getting executed and, sgid contains the GID of the sender.
786 * When resolving mac address of destination, the arrived dgid is used
787 * as sgid and, sgid is used as dgid because sgid contains destinations
788 * GID whom to respond to.
790 * On success the caller is responsible to call rdma_destroy_ah_attr on the
793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794 const struct ib_wc *wc, const struct ib_grh *grh,
795 struct rdma_ah_attr *ah_attr)
799 enum rdma_network_type net_type = RDMA_NETWORK_IB;
800 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801 const struct ib_gid_attr *sgid_attr;
808 memset(ah_attr, 0, sizeof *ah_attr);
809 ah_attr->type = rdma_ah_find_type(device, port_num);
810 if (rdma_cap_eth_ah(device, port_num)) {
811 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812 net_type = wc->network_hdr_type;
814 net_type = ib_get_net_type_by_grh(device, port_num, grh);
815 gid_type = ib_network_to_gid_type(net_type);
817 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
822 rdma_ah_set_sl(ah_attr, wc->sl);
823 rdma_ah_set_port_num(ah_attr, port_num);
825 if (rdma_protocol_roce(device, port_num)) {
826 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827 wc->vlan_id : 0xffff;
829 if (!(wc->wc_flags & IB_WC_GRH))
832 sgid_attr = get_sgid_attr_from_eth(device, port_num,
835 if (IS_ERR(sgid_attr))
836 return PTR_ERR(sgid_attr);
838 flow_class = be32_to_cpu(grh->version_tclass_flow);
839 rdma_move_grh_sgid_attr(ah_attr,
841 flow_class & 0xFFFFF,
843 (flow_class >> 20) & 0xFF,
846 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
848 rdma_destroy_ah_attr(ah_attr);
852 rdma_ah_set_dlid(ah_attr, wc->slid);
853 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
855 if ((wc->wc_flags & IB_WC_GRH) == 0)
858 if (dgid.global.interface_id !=
859 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860 sgid_attr = rdma_find_gid_by_port(
861 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
863 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
865 if (IS_ERR(sgid_attr))
866 return PTR_ERR(sgid_attr);
867 flow_class = be32_to_cpu(grh->version_tclass_flow);
868 rdma_move_grh_sgid_attr(ah_attr,
870 flow_class & 0xFFFFF,
872 (flow_class >> 20) & 0xFF,
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
881 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
884 * @attr: Pointer to AH attribute structure
885 * @dgid: Destination GID
886 * @flow_label: Flow label
887 * @hop_limit: Hop limit
888 * @traffic_class: traffic class
889 * @sgid_attr: Pointer to SGID attribute
891 * This takes ownership of the sgid_attr reference. The caller must ensure
892 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893 * calling this function.
895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896 u32 flow_label, u8 hop_limit, u8 traffic_class,
897 const struct ib_gid_attr *sgid_attr)
899 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
901 attr->grh.sgid_attr = sgid_attr;
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
906 * rdma_destroy_ah_attr - Release reference to SGID attribute of
908 * @ah_attr: Pointer to ah attribute
910 * Release reference to the SGID attribute of the ah attribute if it is
911 * non NULL. It is safe to call this multiple times, and safe to call it on
912 * a zero initialized ah_attr.
914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
916 if (ah_attr->grh.sgid_attr) {
917 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918 ah_attr->grh.sgid_attr = NULL;
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924 const struct ib_grh *grh, u32 port_num)
926 struct rdma_ah_attr ah_attr;
930 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
934 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
936 rdma_destroy_ah_attr(&ah_attr);
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
943 const struct ib_gid_attr *old_sgid_attr;
946 if (ah->type != ah_attr->type)
949 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
953 ret = ah->device->ops.modify_ah ?
954 ah->device->ops.modify_ah(ah, ah_attr) :
957 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
961 EXPORT_SYMBOL(rdma_modify_ah);
963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
965 ah_attr->grh.sgid_attr = NULL;
967 return ah->device->ops.query_ah ?
968 ah->device->ops.query_ah(ah, ah_attr) :
971 EXPORT_SYMBOL(rdma_query_ah);
973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
975 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
979 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
983 ret = ah->device->ops.destroy_ah(ah, flags);
987 atomic_dec(&pd->usecnt);
989 rdma_put_gid_attr(sgid_attr);
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
996 /* Shared receive queues */
999 * ib_create_srq_user - Creates a SRQ associated with the specified protection
1001 * @pd: The protection domain associated with the SRQ.
1002 * @srq_init_attr: A list of initial attributes required to create the
1003 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1004 * the actual capabilities of the created SRQ.
1005 * @uobject: uobject pointer if this is not a kernel SRQ
1006 * @udata: udata pointer if this is not a kernel SRQ
1008 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009 * requested size of the SRQ, and set to the actual values allocated
1010 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1011 * will always be at least as large as the requested values.
1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014 struct ib_srq_init_attr *srq_init_attr,
1015 struct ib_usrq_object *uobject,
1016 struct ib_udata *udata)
1021 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1023 return ERR_PTR(-ENOMEM);
1025 srq->device = pd->device;
1027 srq->event_handler = srq_init_attr->event_handler;
1028 srq->srq_context = srq_init_attr->srq_context;
1029 srq->srq_type = srq_init_attr->srq_type;
1030 srq->uobject = uobject;
1032 if (ib_srq_has_cq(srq->srq_type)) {
1033 srq->ext.cq = srq_init_attr->ext.cq;
1034 atomic_inc(&srq->ext.cq->usecnt);
1036 if (srq->srq_type == IB_SRQT_XRC) {
1037 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1040 atomic_inc(&pd->usecnt);
1042 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1043 rdma_restrack_parent_name(&srq->res, &pd->res);
1045 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1047 rdma_restrack_put(&srq->res);
1048 atomic_dec(&srq->pd->usecnt);
1049 if (srq->srq_type == IB_SRQT_XRC)
1050 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1051 if (ib_srq_has_cq(srq->srq_type))
1052 atomic_dec(&srq->ext.cq->usecnt);
1054 return ERR_PTR(ret);
1057 rdma_restrack_add(&srq->res);
1061 EXPORT_SYMBOL(ib_create_srq_user);
1063 int ib_modify_srq(struct ib_srq *srq,
1064 struct ib_srq_attr *srq_attr,
1065 enum ib_srq_attr_mask srq_attr_mask)
1067 return srq->device->ops.modify_srq ?
1068 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1069 NULL) : -EOPNOTSUPP;
1071 EXPORT_SYMBOL(ib_modify_srq);
1073 int ib_query_srq(struct ib_srq *srq,
1074 struct ib_srq_attr *srq_attr)
1076 return srq->device->ops.query_srq ?
1077 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1079 EXPORT_SYMBOL(ib_query_srq);
1081 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1085 if (atomic_read(&srq->usecnt))
1088 ret = srq->device->ops.destroy_srq(srq, udata);
1092 atomic_dec(&srq->pd->usecnt);
1093 if (srq->srq_type == IB_SRQT_XRC)
1094 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1095 if (ib_srq_has_cq(srq->srq_type))
1096 atomic_dec(&srq->ext.cq->usecnt);
1097 rdma_restrack_del(&srq->res);
1102 EXPORT_SYMBOL(ib_destroy_srq_user);
1106 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1108 struct ib_qp *qp = context;
1109 unsigned long flags;
1111 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1112 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1113 if (event->element.qp->event_handler)
1114 event->element.qp->event_handler(event, event->element.qp->qp_context);
1115 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1118 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1119 void (*event_handler)(struct ib_event *, void *),
1123 unsigned long flags;
1126 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1128 return ERR_PTR(-ENOMEM);
1130 qp->real_qp = real_qp;
1131 err = ib_open_shared_qp_security(qp, real_qp->device);
1134 return ERR_PTR(err);
1137 qp->real_qp = real_qp;
1138 atomic_inc(&real_qp->usecnt);
1139 qp->device = real_qp->device;
1140 qp->event_handler = event_handler;
1141 qp->qp_context = qp_context;
1142 qp->qp_num = real_qp->qp_num;
1143 qp->qp_type = real_qp->qp_type;
1145 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1146 list_add(&qp->open_list, &real_qp->open_list);
1147 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1152 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1153 struct ib_qp_open_attr *qp_open_attr)
1155 struct ib_qp *qp, *real_qp;
1157 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1158 return ERR_PTR(-EINVAL);
1160 down_read(&xrcd->tgt_qps_rwsem);
1161 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1163 up_read(&xrcd->tgt_qps_rwsem);
1164 return ERR_PTR(-EINVAL);
1166 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1167 qp_open_attr->qp_context);
1168 up_read(&xrcd->tgt_qps_rwsem);
1171 EXPORT_SYMBOL(ib_open_qp);
1173 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1174 struct ib_qp_init_attr *qp_init_attr)
1176 struct ib_qp *real_qp = qp;
1179 qp->event_handler = __ib_shared_qp_event_handler;
1180 qp->qp_context = qp;
1182 qp->send_cq = qp->recv_cq = NULL;
1184 qp->xrcd = qp_init_attr->xrcd;
1185 atomic_inc(&qp_init_attr->xrcd->usecnt);
1186 INIT_LIST_HEAD(&qp->open_list);
1188 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1189 qp_init_attr->qp_context);
1193 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1194 real_qp, GFP_KERNEL));
1197 return ERR_PTR(err);
1203 * ib_create_named_qp - Creates a kernel QP associated with the specified protection
1205 * @pd: The protection domain associated with the QP.
1206 * @qp_init_attr: A list of initial attributes required to create the
1207 * QP. If QP creation succeeds, then the attributes are updated to
1208 * the actual capabilities of the created QP.
1209 * @caller: caller's build-time module name
1211 * NOTE: for user qp use ib_create_qp_user with valid udata!
1213 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
1214 struct ib_qp_init_attr *qp_init_attr,
1217 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1221 if (qp_init_attr->rwq_ind_tbl &&
1222 (qp_init_attr->recv_cq ||
1223 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1224 qp_init_attr->cap.max_recv_sge))
1225 return ERR_PTR(-EINVAL);
1227 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1228 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1229 return ERR_PTR(-EINVAL);
1232 * If the callers is using the RDMA API calculate the resources
1233 * needed for the RDMA READ/WRITE operations.
1235 * Note that these callers need to pass in a port number.
1237 if (qp_init_attr->cap.max_rdma_ctxs)
1238 rdma_rw_init_qp(device, qp_init_attr);
1240 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1244 ret = ib_create_qp_security(qp, device);
1248 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1249 struct ib_qp *xrc_qp =
1250 create_xrc_qp_user(qp, qp_init_attr);
1252 if (IS_ERR(xrc_qp)) {
1253 ret = PTR_ERR(xrc_qp);
1259 qp->event_handler = qp_init_attr->event_handler;
1260 qp->qp_context = qp_init_attr->qp_context;
1261 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1265 qp->recv_cq = qp_init_attr->recv_cq;
1266 if (qp_init_attr->recv_cq)
1267 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1268 qp->srq = qp_init_attr->srq;
1270 atomic_inc(&qp_init_attr->srq->usecnt);
1273 qp->send_cq = qp_init_attr->send_cq;
1276 atomic_inc(&pd->usecnt);
1277 if (qp_init_attr->send_cq)
1278 atomic_inc(&qp_init_attr->send_cq->usecnt);
1279 if (qp_init_attr->rwq_ind_tbl)
1280 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1282 if (qp_init_attr->cap.max_rdma_ctxs) {
1283 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1289 * Note: all hw drivers guarantee that max_send_sge is lower than
1290 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1291 * max_send_sge <= max_sge_rd.
1293 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1294 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1295 device->attrs.max_sge_rd);
1296 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1297 qp->integrity_en = true;
1303 return ERR_PTR(ret);
1306 EXPORT_SYMBOL(ib_create_named_qp);
1308 static const struct {
1310 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1311 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1312 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1314 [IB_QPS_RESET] = { .valid = 1 },
1318 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1321 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1322 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1324 IB_QP_ACCESS_FLAGS),
1325 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1327 IB_QP_ACCESS_FLAGS),
1328 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1330 IB_QP_ACCESS_FLAGS),
1331 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1333 IB_QP_ACCESS_FLAGS),
1334 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1336 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1342 [IB_QPS_RESET] = { .valid = 1 },
1343 [IB_QPS_ERR] = { .valid = 1 },
1347 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1350 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1352 IB_QP_ACCESS_FLAGS),
1353 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1355 IB_QP_ACCESS_FLAGS),
1356 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1358 IB_QP_ACCESS_FLAGS),
1359 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1361 IB_QP_ACCESS_FLAGS),
1362 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1364 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1371 [IB_QPT_UC] = (IB_QP_AV |
1375 [IB_QPT_RC] = (IB_QP_AV |
1379 IB_QP_MAX_DEST_RD_ATOMIC |
1380 IB_QP_MIN_RNR_TIMER),
1381 [IB_QPT_XRC_INI] = (IB_QP_AV |
1385 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1389 IB_QP_MAX_DEST_RD_ATOMIC |
1390 IB_QP_MIN_RNR_TIMER),
1393 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1395 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1396 IB_QP_ACCESS_FLAGS |
1398 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1399 IB_QP_ACCESS_FLAGS |
1401 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1402 IB_QP_ACCESS_FLAGS |
1404 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1405 IB_QP_ACCESS_FLAGS |
1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1415 [IB_QPS_RESET] = { .valid = 1 },
1416 [IB_QPS_ERR] = { .valid = 1 },
1420 [IB_QPT_UD] = IB_QP_SQ_PSN,
1421 [IB_QPT_UC] = IB_QP_SQ_PSN,
1422 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1426 IB_QP_MAX_QP_RD_ATOMIC),
1427 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1431 IB_QP_MAX_QP_RD_ATOMIC),
1432 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1434 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1435 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1438 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1440 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1442 IB_QP_ACCESS_FLAGS |
1443 IB_QP_PATH_MIG_STATE),
1444 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1446 IB_QP_ACCESS_FLAGS |
1447 IB_QP_MIN_RNR_TIMER |
1448 IB_QP_PATH_MIG_STATE),
1449 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1451 IB_QP_ACCESS_FLAGS |
1452 IB_QP_PATH_MIG_STATE),
1453 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1455 IB_QP_ACCESS_FLAGS |
1456 IB_QP_MIN_RNR_TIMER |
1457 IB_QP_PATH_MIG_STATE),
1458 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1460 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1462 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1467 [IB_QPS_RESET] = { .valid = 1 },
1468 [IB_QPS_ERR] = { .valid = 1 },
1472 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1474 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1475 IB_QP_ACCESS_FLAGS |
1477 IB_QP_PATH_MIG_STATE),
1478 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1479 IB_QP_ACCESS_FLAGS |
1481 IB_QP_PATH_MIG_STATE |
1482 IB_QP_MIN_RNR_TIMER),
1483 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1484 IB_QP_ACCESS_FLAGS |
1486 IB_QP_PATH_MIG_STATE),
1487 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1488 IB_QP_ACCESS_FLAGS |
1490 IB_QP_PATH_MIG_STATE |
1491 IB_QP_MIN_RNR_TIMER),
1492 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1494 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1496 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1502 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1503 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1504 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1505 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1506 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1507 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1508 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1513 [IB_QPS_RESET] = { .valid = 1 },
1514 [IB_QPS_ERR] = { .valid = 1 },
1518 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1520 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1522 IB_QP_ACCESS_FLAGS |
1523 IB_QP_PATH_MIG_STATE),
1524 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1526 IB_QP_ACCESS_FLAGS |
1527 IB_QP_MIN_RNR_TIMER |
1528 IB_QP_PATH_MIG_STATE),
1529 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1531 IB_QP_ACCESS_FLAGS |
1532 IB_QP_PATH_MIG_STATE),
1533 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1535 IB_QP_ACCESS_FLAGS |
1536 IB_QP_MIN_RNR_TIMER |
1537 IB_QP_PATH_MIG_STATE),
1538 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1540 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1547 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1549 [IB_QPT_UC] = (IB_QP_AV |
1551 IB_QP_ACCESS_FLAGS |
1553 IB_QP_PATH_MIG_STATE),
1554 [IB_QPT_RC] = (IB_QP_PORT |
1559 IB_QP_MAX_QP_RD_ATOMIC |
1560 IB_QP_MAX_DEST_RD_ATOMIC |
1562 IB_QP_ACCESS_FLAGS |
1564 IB_QP_MIN_RNR_TIMER |
1565 IB_QP_PATH_MIG_STATE),
1566 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1571 IB_QP_MAX_QP_RD_ATOMIC |
1573 IB_QP_ACCESS_FLAGS |
1575 IB_QP_PATH_MIG_STATE),
1576 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1579 IB_QP_MAX_DEST_RD_ATOMIC |
1581 IB_QP_ACCESS_FLAGS |
1583 IB_QP_MIN_RNR_TIMER |
1584 IB_QP_PATH_MIG_STATE),
1585 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1587 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1593 [IB_QPS_RESET] = { .valid = 1 },
1594 [IB_QPS_ERR] = { .valid = 1 },
1598 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1600 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1601 IB_QP_ACCESS_FLAGS),
1602 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1604 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1610 [IB_QPS_RESET] = { .valid = 1 },
1611 [IB_QPS_ERR] = { .valid = 1 }
1615 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1616 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1618 enum ib_qp_attr_mask req_param, opt_param;
1620 if (mask & IB_QP_CUR_STATE &&
1621 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1622 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1625 if (!qp_state_table[cur_state][next_state].valid)
1628 req_param = qp_state_table[cur_state][next_state].req_param[type];
1629 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1631 if ((mask & req_param) != req_param)
1634 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1639 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1642 * ib_resolve_eth_dmac - Resolve destination mac address
1643 * @device: Device to consider
1644 * @ah_attr: address handle attribute which describes the
1645 * source and destination parameters
1646 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1647 * returns 0 on success or appropriate error code. It initializes the
1648 * necessary ah_attr fields when call is successful.
1650 static int ib_resolve_eth_dmac(struct ib_device *device,
1651 struct rdma_ah_attr *ah_attr)
1655 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1656 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1659 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1660 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1662 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1663 (char *)ah_attr->roce.dmac);
1666 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1671 static bool is_qp_type_connected(const struct ib_qp *qp)
1673 return (qp->qp_type == IB_QPT_UC ||
1674 qp->qp_type == IB_QPT_RC ||
1675 qp->qp_type == IB_QPT_XRC_INI ||
1676 qp->qp_type == IB_QPT_XRC_TGT);
1680 * IB core internal function to perform QP attributes modification.
1682 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1683 int attr_mask, struct ib_udata *udata)
1685 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1686 const struct ib_gid_attr *old_sgid_attr_av;
1687 const struct ib_gid_attr *old_sgid_attr_alt_av;
1690 attr->xmit_slave = NULL;
1691 if (attr_mask & IB_QP_AV) {
1692 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1697 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1698 is_qp_type_connected(qp)) {
1699 struct net_device *slave;
1702 * If the user provided the qp_attr then we have to
1703 * resolve it. Kerne users have to provide already
1704 * resolved rdma_ah_attr's.
1707 ret = ib_resolve_eth_dmac(qp->device,
1712 slave = rdma_lag_get_ah_roce_slave(qp->device,
1715 if (IS_ERR(slave)) {
1716 ret = PTR_ERR(slave);
1719 attr->xmit_slave = slave;
1722 if (attr_mask & IB_QP_ALT_PATH) {
1724 * FIXME: This does not track the migration state, so if the
1725 * user loads a new alternate path after the HW has migrated
1726 * from primary->alternate we will keep the wrong
1727 * references. This is OK for IB because the reference
1728 * counting does not serve any functional purpose.
1730 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1731 &old_sgid_attr_alt_av);
1736 * Today the core code can only handle alternate paths and APM
1737 * for IB. Ban them in roce mode.
1739 if (!(rdma_protocol_ib(qp->device,
1740 attr->alt_ah_attr.port_num) &&
1741 rdma_protocol_ib(qp->device, port))) {
1747 if (rdma_ib_or_roce(qp->device, port)) {
1748 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1749 dev_warn(&qp->device->dev,
1750 "%s rq_psn overflow, masking to 24 bits\n",
1752 attr->rq_psn &= 0xffffff;
1755 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1756 dev_warn(&qp->device->dev,
1757 " %s sq_psn overflow, masking to 24 bits\n",
1759 attr->sq_psn &= 0xffffff;
1764 * Bind this qp to a counter automatically based on the rdma counter
1765 * rules. This only set in RST2INIT with port specified
1767 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1768 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1769 rdma_counter_bind_qp_auto(qp, attr->port_num);
1771 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1775 if (attr_mask & IB_QP_PORT)
1776 qp->port = attr->port_num;
1777 if (attr_mask & IB_QP_AV)
1779 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1780 if (attr_mask & IB_QP_ALT_PATH)
1781 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1782 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1785 if (attr_mask & IB_QP_ALT_PATH)
1786 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1788 if (attr_mask & IB_QP_AV) {
1789 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1790 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1796 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1797 * @ib_qp: The QP to modify.
1798 * @attr: On input, specifies the QP attributes to modify. On output,
1799 * the current values of selected QP attributes are returned.
1800 * @attr_mask: A bit-mask used to specify which attributes of the QP
1801 * are being modified.
1802 * @udata: pointer to user's input output buffer information
1803 * are being modified.
1804 * It returns 0 on success and returns appropriate error code on error.
1806 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1807 int attr_mask, struct ib_udata *udata)
1809 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1811 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1813 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1817 struct net_device *netdev;
1818 struct ethtool_link_ksettings lksettings;
1820 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1823 netdev = ib_device_get_netdev(dev, port_num);
1828 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1833 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1834 netdev_speed = lksettings.base.speed;
1836 netdev_speed = SPEED_1000;
1837 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1841 if (netdev_speed <= SPEED_1000) {
1842 *width = IB_WIDTH_1X;
1843 *speed = IB_SPEED_SDR;
1844 } else if (netdev_speed <= SPEED_10000) {
1845 *width = IB_WIDTH_1X;
1846 *speed = IB_SPEED_FDR10;
1847 } else if (netdev_speed <= SPEED_20000) {
1848 *width = IB_WIDTH_4X;
1849 *speed = IB_SPEED_DDR;
1850 } else if (netdev_speed <= SPEED_25000) {
1851 *width = IB_WIDTH_1X;
1852 *speed = IB_SPEED_EDR;
1853 } else if (netdev_speed <= SPEED_40000) {
1854 *width = IB_WIDTH_4X;
1855 *speed = IB_SPEED_FDR10;
1857 *width = IB_WIDTH_4X;
1858 *speed = IB_SPEED_EDR;
1863 EXPORT_SYMBOL(ib_get_eth_speed);
1865 int ib_modify_qp(struct ib_qp *qp,
1866 struct ib_qp_attr *qp_attr,
1869 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1871 EXPORT_SYMBOL(ib_modify_qp);
1873 int ib_query_qp(struct ib_qp *qp,
1874 struct ib_qp_attr *qp_attr,
1876 struct ib_qp_init_attr *qp_init_attr)
1878 qp_attr->ah_attr.grh.sgid_attr = NULL;
1879 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1881 return qp->device->ops.query_qp ?
1882 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1883 qp_init_attr) : -EOPNOTSUPP;
1885 EXPORT_SYMBOL(ib_query_qp);
1887 int ib_close_qp(struct ib_qp *qp)
1889 struct ib_qp *real_qp;
1890 unsigned long flags;
1892 real_qp = qp->real_qp;
1896 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1897 list_del(&qp->open_list);
1898 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1900 atomic_dec(&real_qp->usecnt);
1902 ib_close_shared_qp_security(qp->qp_sec);
1907 EXPORT_SYMBOL(ib_close_qp);
1909 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1911 struct ib_xrcd *xrcd;
1912 struct ib_qp *real_qp;
1915 real_qp = qp->real_qp;
1916 xrcd = real_qp->xrcd;
1917 down_write(&xrcd->tgt_qps_rwsem);
1919 if (atomic_read(&real_qp->usecnt) == 0)
1920 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1923 up_write(&xrcd->tgt_qps_rwsem);
1926 ret = ib_destroy_qp(real_qp);
1928 atomic_dec(&xrcd->usecnt);
1934 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1936 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1937 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1939 struct ib_cq *scq, *rcq;
1941 struct ib_rwq_ind_table *ind_tbl;
1942 struct ib_qp_security *sec;
1945 WARN_ON_ONCE(qp->mrs_used > 0);
1947 if (atomic_read(&qp->usecnt))
1950 if (qp->real_qp != qp)
1951 return __ib_destroy_shared_qp(qp);
1957 ind_tbl = qp->rwq_ind_tbl;
1960 ib_destroy_qp_security_begin(sec);
1963 rdma_rw_cleanup_mrs(qp);
1965 rdma_counter_unbind_qp(qp, true);
1966 rdma_restrack_del(&qp->res);
1967 ret = qp->device->ops.destroy_qp(qp, udata);
1969 if (alt_path_sgid_attr)
1970 rdma_put_gid_attr(alt_path_sgid_attr);
1972 rdma_put_gid_attr(av_sgid_attr);
1974 atomic_dec(&pd->usecnt);
1976 atomic_dec(&scq->usecnt);
1978 atomic_dec(&rcq->usecnt);
1980 atomic_dec(&srq->usecnt);
1982 atomic_dec(&ind_tbl->usecnt);
1984 ib_destroy_qp_security_end(sec);
1987 ib_destroy_qp_security_abort(sec);
1992 EXPORT_SYMBOL(ib_destroy_qp_user);
1994 /* Completion queues */
1996 struct ib_cq *__ib_create_cq(struct ib_device *device,
1997 ib_comp_handler comp_handler,
1998 void (*event_handler)(struct ib_event *, void *),
2000 const struct ib_cq_init_attr *cq_attr,
2006 cq = rdma_zalloc_drv_obj(device, ib_cq);
2008 return ERR_PTR(-ENOMEM);
2010 cq->device = device;
2012 cq->comp_handler = comp_handler;
2013 cq->event_handler = event_handler;
2014 cq->cq_context = cq_context;
2015 atomic_set(&cq->usecnt, 0);
2017 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2018 rdma_restrack_set_name(&cq->res, caller);
2020 ret = device->ops.create_cq(cq, cq_attr, NULL);
2022 rdma_restrack_put(&cq->res);
2024 return ERR_PTR(ret);
2027 rdma_restrack_add(&cq->res);
2030 EXPORT_SYMBOL(__ib_create_cq);
2032 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2037 return cq->device->ops.modify_cq ?
2038 cq->device->ops.modify_cq(cq, cq_count,
2039 cq_period) : -EOPNOTSUPP;
2041 EXPORT_SYMBOL(rdma_set_cq_moderation);
2043 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2047 if (WARN_ON_ONCE(cq->shared))
2050 if (atomic_read(&cq->usecnt))
2053 ret = cq->device->ops.destroy_cq(cq, udata);
2057 rdma_restrack_del(&cq->res);
2061 EXPORT_SYMBOL(ib_destroy_cq_user);
2063 int ib_resize_cq(struct ib_cq *cq, int cqe)
2068 return cq->device->ops.resize_cq ?
2069 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2071 EXPORT_SYMBOL(ib_resize_cq);
2073 /* Memory regions */
2075 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2076 u64 virt_addr, int access_flags)
2080 if (access_flags & IB_ACCESS_ON_DEMAND) {
2081 if (!(pd->device->attrs.device_cap_flags &
2082 IB_DEVICE_ON_DEMAND_PAGING)) {
2083 pr_debug("ODP support not available\n");
2084 return ERR_PTR(-EINVAL);
2088 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2089 access_flags, NULL);
2094 mr->device = pd->device;
2097 atomic_inc(&pd->usecnt);
2099 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2100 rdma_restrack_parent_name(&mr->res, &pd->res);
2101 rdma_restrack_add(&mr->res);
2105 EXPORT_SYMBOL(ib_reg_user_mr);
2107 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2108 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2110 if (!pd->device->ops.advise_mr)
2116 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2119 EXPORT_SYMBOL(ib_advise_mr);
2121 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2123 struct ib_pd *pd = mr->pd;
2124 struct ib_dm *dm = mr->dm;
2125 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2129 rdma_restrack_del(&mr->res);
2130 ret = mr->device->ops.dereg_mr(mr, udata);
2132 atomic_dec(&pd->usecnt);
2134 atomic_dec(&dm->usecnt);
2140 EXPORT_SYMBOL(ib_dereg_mr_user);
2143 * ib_alloc_mr() - Allocates a memory region
2144 * @pd: protection domain associated with the region
2145 * @mr_type: memory region type
2146 * @max_num_sg: maximum sg entries available for registration.
2149 * Memory registeration page/sg lists must not exceed max_num_sg.
2150 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2151 * max_num_sg * used_page_size.
2154 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2159 if (!pd->device->ops.alloc_mr) {
2160 mr = ERR_PTR(-EOPNOTSUPP);
2164 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2166 mr = ERR_PTR(-EINVAL);
2170 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2174 mr->device = pd->device;
2178 atomic_inc(&pd->usecnt);
2179 mr->need_inval = false;
2181 mr->sig_attrs = NULL;
2183 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2184 rdma_restrack_parent_name(&mr->res, &pd->res);
2185 rdma_restrack_add(&mr->res);
2187 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2190 EXPORT_SYMBOL(ib_alloc_mr);
2193 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2194 * @pd: protection domain associated with the region
2195 * @max_num_data_sg: maximum data sg entries available for registration
2196 * @max_num_meta_sg: maximum metadata sg entries available for
2200 * Memory registration page/sg lists must not exceed max_num_sg,
2201 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2204 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2205 u32 max_num_data_sg,
2206 u32 max_num_meta_sg)
2209 struct ib_sig_attrs *sig_attrs;
2211 if (!pd->device->ops.alloc_mr_integrity ||
2212 !pd->device->ops.map_mr_sg_pi) {
2213 mr = ERR_PTR(-EOPNOTSUPP);
2217 if (!max_num_meta_sg) {
2218 mr = ERR_PTR(-EINVAL);
2222 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2224 mr = ERR_PTR(-ENOMEM);
2228 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2235 mr->device = pd->device;
2239 atomic_inc(&pd->usecnt);
2240 mr->need_inval = false;
2241 mr->type = IB_MR_TYPE_INTEGRITY;
2242 mr->sig_attrs = sig_attrs;
2244 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2245 rdma_restrack_parent_name(&mr->res, &pd->res);
2246 rdma_restrack_add(&mr->res);
2248 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2251 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2253 /* Multicast groups */
2255 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2257 struct ib_qp_init_attr init_attr = {};
2258 struct ib_qp_attr attr = {};
2259 int num_eth_ports = 0;
2262 /* If QP state >= init, it is assigned to a port and we can check this
2265 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2266 if (attr.qp_state >= IB_QPS_INIT) {
2267 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2268 IB_LINK_LAYER_INFINIBAND)
2274 /* Can't get a quick answer, iterate over all ports */
2275 rdma_for_each_port(qp->device, port)
2276 if (rdma_port_get_link_layer(qp->device, port) !=
2277 IB_LINK_LAYER_INFINIBAND)
2280 /* If we have at lease one Ethernet port, RoCE annex declares that
2281 * multicast LID should be ignored. We can't tell at this step if the
2282 * QP belongs to an IB or Ethernet port.
2287 /* If all the ports are IB, we can check according to IB spec. */
2289 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2290 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2293 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2297 if (!qp->device->ops.attach_mcast)
2300 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2301 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2304 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2306 atomic_inc(&qp->usecnt);
2309 EXPORT_SYMBOL(ib_attach_mcast);
2311 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2315 if (!qp->device->ops.detach_mcast)
2318 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2319 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2322 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2324 atomic_dec(&qp->usecnt);
2327 EXPORT_SYMBOL(ib_detach_mcast);
2330 * ib_alloc_xrcd_user - Allocates an XRC domain.
2331 * @device: The device on which to allocate the XRC domain.
2332 * @inode: inode to connect XRCD
2333 * @udata: Valid user data or NULL for kernel object
2335 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2336 struct inode *inode, struct ib_udata *udata)
2338 struct ib_xrcd *xrcd;
2341 if (!device->ops.alloc_xrcd)
2342 return ERR_PTR(-EOPNOTSUPP);
2344 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2346 return ERR_PTR(-ENOMEM);
2348 xrcd->device = device;
2349 xrcd->inode = inode;
2350 atomic_set(&xrcd->usecnt, 0);
2351 init_rwsem(&xrcd->tgt_qps_rwsem);
2352 xa_init(&xrcd->tgt_qps);
2354 ret = device->ops.alloc_xrcd(xrcd, udata);
2360 return ERR_PTR(ret);
2362 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2365 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2366 * @xrcd: The XRC domain to deallocate.
2367 * @udata: Valid user data or NULL for kernel object
2369 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2373 if (atomic_read(&xrcd->usecnt))
2376 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2377 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2383 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2386 * ib_create_wq - Creates a WQ associated with the specified protection
2388 * @pd: The protection domain associated with the WQ.
2389 * @wq_attr: A list of initial attributes required to create the
2390 * WQ. If WQ creation succeeds, then the attributes are updated to
2391 * the actual capabilities of the created WQ.
2393 * wq_attr->max_wr and wq_attr->max_sge determine
2394 * the requested size of the WQ, and set to the actual values allocated
2396 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2397 * at least as large as the requested values.
2399 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2400 struct ib_wq_init_attr *wq_attr)
2404 if (!pd->device->ops.create_wq)
2405 return ERR_PTR(-EOPNOTSUPP);
2407 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2409 wq->event_handler = wq_attr->event_handler;
2410 wq->wq_context = wq_attr->wq_context;
2411 wq->wq_type = wq_attr->wq_type;
2412 wq->cq = wq_attr->cq;
2413 wq->device = pd->device;
2416 atomic_inc(&pd->usecnt);
2417 atomic_inc(&wq_attr->cq->usecnt);
2418 atomic_set(&wq->usecnt, 0);
2422 EXPORT_SYMBOL(ib_create_wq);
2425 * ib_destroy_wq_user - Destroys the specified user WQ.
2426 * @wq: The WQ to destroy.
2427 * @udata: Valid user data
2429 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2431 struct ib_cq *cq = wq->cq;
2432 struct ib_pd *pd = wq->pd;
2435 if (atomic_read(&wq->usecnt))
2438 ret = wq->device->ops.destroy_wq(wq, udata);
2442 atomic_dec(&pd->usecnt);
2443 atomic_dec(&cq->usecnt);
2446 EXPORT_SYMBOL(ib_destroy_wq_user);
2449 * ib_modify_wq - Modifies the specified WQ.
2450 * @wq: The WQ to modify.
2451 * @wq_attr: On input, specifies the WQ attributes to modify.
2452 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2453 * are being modified.
2454 * On output, the current values of selected WQ attributes are returned.
2456 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2461 if (!wq->device->ops.modify_wq)
2464 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2467 EXPORT_SYMBOL(ib_modify_wq);
2469 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2470 struct ib_mr_status *mr_status)
2472 if (!mr->device->ops.check_mr_status)
2475 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2477 EXPORT_SYMBOL(ib_check_mr_status);
2479 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2482 if (!device->ops.set_vf_link_state)
2485 return device->ops.set_vf_link_state(device, vf, port, state);
2487 EXPORT_SYMBOL(ib_set_vf_link_state);
2489 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2490 struct ifla_vf_info *info)
2492 if (!device->ops.get_vf_config)
2495 return device->ops.get_vf_config(device, vf, port, info);
2497 EXPORT_SYMBOL(ib_get_vf_config);
2499 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2500 struct ifla_vf_stats *stats)
2502 if (!device->ops.get_vf_stats)
2505 return device->ops.get_vf_stats(device, vf, port, stats);
2507 EXPORT_SYMBOL(ib_get_vf_stats);
2509 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2512 if (!device->ops.set_vf_guid)
2515 return device->ops.set_vf_guid(device, vf, port, guid, type);
2517 EXPORT_SYMBOL(ib_set_vf_guid);
2519 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2520 struct ifla_vf_guid *node_guid,
2521 struct ifla_vf_guid *port_guid)
2523 if (!device->ops.get_vf_guid)
2526 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2528 EXPORT_SYMBOL(ib_get_vf_guid);
2530 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2531 * information) and set an appropriate memory region for registration.
2532 * @mr: memory region
2533 * @data_sg: dma mapped scatterlist for data
2534 * @data_sg_nents: number of entries in data_sg
2535 * @data_sg_offset: offset in bytes into data_sg
2536 * @meta_sg: dma mapped scatterlist for metadata
2537 * @meta_sg_nents: number of entries in meta_sg
2538 * @meta_sg_offset: offset in bytes into meta_sg
2539 * @page_size: page vector desired page size
2542 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2544 * Return: 0 on success.
2546 * After this completes successfully, the memory region
2547 * is ready for registration.
2549 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2550 int data_sg_nents, unsigned int *data_sg_offset,
2551 struct scatterlist *meta_sg, int meta_sg_nents,
2552 unsigned int *meta_sg_offset, unsigned int page_size)
2554 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2555 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2558 mr->page_size = page_size;
2560 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2561 data_sg_offset, meta_sg,
2562 meta_sg_nents, meta_sg_offset);
2564 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2567 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2568 * and set it the memory region.
2569 * @mr: memory region
2570 * @sg: dma mapped scatterlist
2571 * @sg_nents: number of entries in sg
2572 * @sg_offset: offset in bytes into sg
2573 * @page_size: page vector desired page size
2577 * - The first sg element is allowed to have an offset.
2578 * - Each sg element must either be aligned to page_size or virtually
2579 * contiguous to the previous element. In case an sg element has a
2580 * non-contiguous offset, the mapping prefix will not include it.
2581 * - The last sg element is allowed to have length less than page_size.
2582 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2583 * then only max_num_sg entries will be mapped.
2584 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2585 * constraints holds and the page_size argument is ignored.
2587 * Returns the number of sg elements that were mapped to the memory region.
2589 * After this completes successfully, the memory region
2590 * is ready for registration.
2592 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2593 unsigned int *sg_offset, unsigned int page_size)
2595 if (unlikely(!mr->device->ops.map_mr_sg))
2598 mr->page_size = page_size;
2600 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2602 EXPORT_SYMBOL(ib_map_mr_sg);
2605 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2607 * @mr: memory region
2608 * @sgl: dma mapped scatterlist
2609 * @sg_nents: number of entries in sg
2610 * @sg_offset_p: ==== =======================================================
2611 * IN start offset in bytes into sg
2612 * OUT offset in bytes for element n of the sg of the first
2613 * byte that has not been processed where n is the return
2614 * value of this function.
2615 * ==== =======================================================
2616 * @set_page: driver page assignment function pointer
2618 * Core service helper for drivers to convert the largest
2619 * prefix of given sg list to a page vector. The sg list
2620 * prefix converted is the prefix that meet the requirements
2623 * Returns the number of sg elements that were assigned to
2626 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2627 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2629 struct scatterlist *sg;
2630 u64 last_end_dma_addr = 0;
2631 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2632 unsigned int last_page_off = 0;
2633 u64 page_mask = ~((u64)mr->page_size - 1);
2636 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2639 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2642 for_each_sg(sgl, sg, sg_nents, i) {
2643 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2644 u64 prev_addr = dma_addr;
2645 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2646 u64 end_dma_addr = dma_addr + dma_len;
2647 u64 page_addr = dma_addr & page_mask;
2650 * For the second and later elements, check whether either the
2651 * end of element i-1 or the start of element i is not aligned
2652 * on a page boundary.
2654 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2655 /* Stop mapping if there is a gap. */
2656 if (last_end_dma_addr != dma_addr)
2660 * Coalesce this element with the last. If it is small
2661 * enough just update mr->length. Otherwise start
2662 * mapping from the next page.
2668 ret = set_page(mr, page_addr);
2669 if (unlikely(ret < 0)) {
2670 sg_offset = prev_addr - sg_dma_address(sg);
2671 mr->length += prev_addr - dma_addr;
2673 *sg_offset_p = sg_offset;
2674 return i || sg_offset ? i : ret;
2676 prev_addr = page_addr;
2678 page_addr += mr->page_size;
2679 } while (page_addr < end_dma_addr);
2681 mr->length += dma_len;
2682 last_end_dma_addr = end_dma_addr;
2683 last_page_off = end_dma_addr & ~page_mask;
2692 EXPORT_SYMBOL(ib_sg_to_pages);
2694 struct ib_drain_cqe {
2696 struct completion done;
2699 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2701 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2704 complete(&cqe->done);
2708 * Post a WR and block until its completion is reaped for the SQ.
2710 static void __ib_drain_sq(struct ib_qp *qp)
2712 struct ib_cq *cq = qp->send_cq;
2713 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2714 struct ib_drain_cqe sdrain;
2715 struct ib_rdma_wr swr = {
2718 { .wr_cqe = &sdrain.cqe, },
2719 .opcode = IB_WR_RDMA_WRITE,
2724 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2726 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2730 sdrain.cqe.done = ib_drain_qp_done;
2731 init_completion(&sdrain.done);
2733 ret = ib_post_send(qp, &swr.wr, NULL);
2735 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2739 if (cq->poll_ctx == IB_POLL_DIRECT)
2740 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2741 ib_process_cq_direct(cq, -1);
2743 wait_for_completion(&sdrain.done);
2747 * Post a WR and block until its completion is reaped for the RQ.
2749 static void __ib_drain_rq(struct ib_qp *qp)
2751 struct ib_cq *cq = qp->recv_cq;
2752 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2753 struct ib_drain_cqe rdrain;
2754 struct ib_recv_wr rwr = {};
2757 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2759 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2763 rwr.wr_cqe = &rdrain.cqe;
2764 rdrain.cqe.done = ib_drain_qp_done;
2765 init_completion(&rdrain.done);
2767 ret = ib_post_recv(qp, &rwr, NULL);
2769 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2773 if (cq->poll_ctx == IB_POLL_DIRECT)
2774 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2775 ib_process_cq_direct(cq, -1);
2777 wait_for_completion(&rdrain.done);
2781 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2783 * @qp: queue pair to drain
2785 * If the device has a provider-specific drain function, then
2786 * call that. Otherwise call the generic drain function
2791 * ensure there is room in the CQ and SQ for the drain work request and
2794 * allocate the CQ using ib_alloc_cq().
2796 * ensure that there are no other contexts that are posting WRs concurrently.
2797 * Otherwise the drain is not guaranteed.
2799 void ib_drain_sq(struct ib_qp *qp)
2801 if (qp->device->ops.drain_sq)
2802 qp->device->ops.drain_sq(qp);
2805 trace_cq_drain_complete(qp->send_cq);
2807 EXPORT_SYMBOL(ib_drain_sq);
2810 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2812 * @qp: queue pair to drain
2814 * If the device has a provider-specific drain function, then
2815 * call that. Otherwise call the generic drain function
2820 * ensure there is room in the CQ and RQ for the drain work request and
2823 * allocate the CQ using ib_alloc_cq().
2825 * ensure that there are no other contexts that are posting WRs concurrently.
2826 * Otherwise the drain is not guaranteed.
2828 void ib_drain_rq(struct ib_qp *qp)
2830 if (qp->device->ops.drain_rq)
2831 qp->device->ops.drain_rq(qp);
2834 trace_cq_drain_complete(qp->recv_cq);
2836 EXPORT_SYMBOL(ib_drain_rq);
2839 * ib_drain_qp() - Block until all CQEs have been consumed by the
2840 * application on both the RQ and SQ.
2841 * @qp: queue pair to drain
2845 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2848 * allocate the CQs using ib_alloc_cq().
2850 * ensure that there are no other contexts that are posting WRs concurrently.
2851 * Otherwise the drain is not guaranteed.
2853 void ib_drain_qp(struct ib_qp *qp)
2859 EXPORT_SYMBOL(ib_drain_qp);
2861 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2862 enum rdma_netdev_t type, const char *name,
2863 unsigned char name_assign_type,
2864 void (*setup)(struct net_device *))
2866 struct rdma_netdev_alloc_params params;
2867 struct net_device *netdev;
2870 if (!device->ops.rdma_netdev_get_params)
2871 return ERR_PTR(-EOPNOTSUPP);
2873 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2878 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2879 setup, params.txqs, params.rxqs);
2881 return ERR_PTR(-ENOMEM);
2885 EXPORT_SYMBOL(rdma_alloc_netdev);
2887 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2888 enum rdma_netdev_t type, const char *name,
2889 unsigned char name_assign_type,
2890 void (*setup)(struct net_device *),
2891 struct net_device *netdev)
2893 struct rdma_netdev_alloc_params params;
2896 if (!device->ops.rdma_netdev_get_params)
2899 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2904 return params.initialize_rdma_netdev(device, port_num,
2905 netdev, params.param);
2907 EXPORT_SYMBOL(rdma_init_netdev);
2909 void __rdma_block_iter_start(struct ib_block_iter *biter,
2910 struct scatterlist *sglist, unsigned int nents,
2913 memset(biter, 0, sizeof(struct ib_block_iter));
2914 biter->__sg = sglist;
2915 biter->__sg_nents = nents;
2917 /* Driver provides best block size to use */
2918 biter->__pg_bit = __fls(pgsz);
2920 EXPORT_SYMBOL(__rdma_block_iter_start);
2922 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2924 unsigned int block_offset;
2926 if (!biter->__sg_nents || !biter->__sg)
2929 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2930 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2931 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2933 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2934 biter->__sg_advance = 0;
2935 biter->__sg = sg_next(biter->__sg);
2936 biter->__sg_nents--;
2941 EXPORT_SYMBOL(__rdma_block_iter_next);