2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
53 #include "core_priv.h"
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
84 EXPORT_SYMBOL(ib_event_msg);
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 size_t index = status;
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
118 EXPORT_SYMBOL(ib_wc_status_msg);
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
135 EXPORT_SYMBOL(ib_rate_to_mult);
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
152 EXPORT_SYMBOL(mult_to_ib_rate);
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
177 EXPORT_SYMBOL(ib_rate_to_mbps);
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
198 EXPORT_SYMBOL(rdma_node_get_transport);
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
213 return IB_LINK_LAYER_UNSPECIFIED;
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
218 /* Protection domains */
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
234 pd = device->alloc_pd(device, NULL, NULL);
241 atomic_set(&pd->usecnt, 0);
243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244 pd->local_dma_lkey = device->local_dma_lkey;
248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
251 return (struct ib_pd *)mr;
255 pd->local_dma_lkey = pd->local_mr->lkey;
259 EXPORT_SYMBOL(ib_alloc_pd);
262 * ib_dealloc_pd - Deallocates a protection domain.
263 * @pd: The protection domain to deallocate.
265 * It is an error to call this function while any resources in the pd still
266 * exist. The caller is responsible to synchronously destroy them and
267 * guarantee no new allocations will happen.
269 void ib_dealloc_pd(struct ib_pd *pd)
274 ret = ib_dereg_mr(pd->local_mr);
279 /* uverbs manipulates usecnt with proper locking, while the kabi
280 requires the caller to guarantee we can't race here. */
281 WARN_ON(atomic_read(&pd->usecnt));
283 /* Making delalloc_pd a void return is a WIP, no driver should return
285 ret = pd->device->dealloc_pd(pd);
286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
288 EXPORT_SYMBOL(ib_dealloc_pd);
290 /* Address handles */
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
296 ah = pd->device->create_ah(pd, ah_attr);
299 ah->device = pd->device;
302 atomic_inc(&pd->usecnt);
307 EXPORT_SYMBOL(ib_create_ah);
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312 struct iphdr ip4h_checked;
313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
315 /* If it's IPv6, the version must be 6, otherwise, the first
316 * 20 bytes (before the IPv4 header) are garbled.
318 if (ip6h->version != 6)
319 return (ip4h->version == 4) ? 4 : 0;
320 /* version may be 6 or 4 because the first 20 bytes could be garbled */
322 /* RoCE v2 requires no options, thus header length
329 * We can't write on scattered buffers so we need to copy to
332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333 ip4h_checked.check = 0;
334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335 /* if IPv4 header checksum is OK, believe it */
336 if (ip4h->check == ip4h_checked.check)
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
343 const struct ib_grh *grh)
347 if (rdma_protocol_ib(device, port_num))
348 return RDMA_NETWORK_IB;
350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
352 if (grh_version == 4)
353 return RDMA_NETWORK_IPV4;
355 if (grh->next_hdr == IPPROTO_UDP)
356 return RDMA_NETWORK_IPV6;
358 return RDMA_NETWORK_ROCE_V1;
361 struct find_gid_index_context {
363 enum ib_gid_type gid_type;
366 static bool find_gid_index(const union ib_gid *gid,
367 const struct ib_gid_attr *gid_attr,
370 struct find_gid_index_context *ctx =
371 (struct find_gid_index_context *)context;
373 if (ctx->gid_type != gid_attr->gid_type)
376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377 (is_vlan_dev(gid_attr->ndev) &&
378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385 u16 vlan_id, const union ib_gid *sgid,
386 enum ib_gid_type gid_type,
389 struct find_gid_index_context context = {.vlan_id = vlan_id,
390 .gid_type = gid_type};
392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393 &context, gid_index);
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397 enum rdma_network_type net_type,
398 union ib_gid *sgid, union ib_gid *dgid)
400 struct sockaddr_in src_in;
401 struct sockaddr_in dst_in;
402 __be32 src_saddr, dst_saddr;
407 if (net_type == RDMA_NETWORK_IPV4) {
408 memcpy(&src_in.sin_addr.s_addr,
409 &hdr->roce4grh.saddr, 4);
410 memcpy(&dst_in.sin_addr.s_addr,
411 &hdr->roce4grh.daddr, 4);
412 src_saddr = src_in.sin_addr.s_addr;
413 dst_saddr = dst_in.sin_addr.s_addr;
414 ipv6_addr_set_v4mapped(src_saddr,
415 (struct in6_addr *)sgid);
416 ipv6_addr_set_v4mapped(dst_saddr,
417 (struct in6_addr *)dgid);
419 } else if (net_type == RDMA_NETWORK_IPV6 ||
420 net_type == RDMA_NETWORK_IB) {
421 *dgid = hdr->ibgrh.dgid;
422 *sgid = hdr->ibgrh.sgid;
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430 const struct ib_wc *wc, const struct ib_grh *grh,
431 struct ib_ah_attr *ah_attr)
436 enum rdma_network_type net_type = RDMA_NETWORK_IB;
437 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
442 memset(ah_attr, 0, sizeof *ah_attr);
443 if (rdma_cap_eth_ah(device, port_num)) {
444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445 net_type = wc->network_hdr_type;
447 net_type = ib_get_net_type_by_grh(device, port_num, grh);
448 gid_type = ib_network_to_gid_type(net_type);
450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
455 if (rdma_protocol_roce(device, port_num)) {
457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458 wc->vlan_id : 0xffff;
459 struct net_device *idev;
460 struct net_device *resolved_dev;
462 if (!(wc->wc_flags & IB_WC_GRH))
465 if (!device->get_netdev)
468 idev = device->get_netdev(device, port_num);
472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
474 wc->wc_flags & IB_WC_WITH_VLAN ?
476 &if_index, &hoplimit);
482 resolved_dev = dev_get_by_index(&init_net, if_index);
483 if (resolved_dev->flags & IFF_LOOPBACK) {
484 dev_put(resolved_dev);
486 dev_hold(resolved_dev);
489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
494 dev_put(resolved_dev);
498 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499 &dgid, gid_type, &gid_index);
504 ah_attr->dlid = wc->slid;
505 ah_attr->sl = wc->sl;
506 ah_attr->src_path_bits = wc->dlid_path_bits;
507 ah_attr->port_num = port_num;
509 if (wc->wc_flags & IB_WC_GRH) {
510 ah_attr->ah_flags = IB_AH_GRH;
511 ah_attr->grh.dgid = sgid;
513 if (!rdma_cap_eth_ah(device, port_num)) {
514 ret = ib_find_cached_gid_by_port(device, &dgid,
522 ah_attr->grh.sgid_index = (u8) gid_index;
523 flow_class = be32_to_cpu(grh->version_tclass_flow);
524 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
525 ah_attr->grh.hop_limit = hoplimit;
526 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
530 EXPORT_SYMBOL(ib_init_ah_from_wc);
532 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
533 const struct ib_grh *grh, u8 port_num)
535 struct ib_ah_attr ah_attr;
538 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
542 return ib_create_ah(pd, &ah_attr);
544 EXPORT_SYMBOL(ib_create_ah_from_wc);
546 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
548 return ah->device->modify_ah ?
549 ah->device->modify_ah(ah, ah_attr) :
552 EXPORT_SYMBOL(ib_modify_ah);
554 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
556 return ah->device->query_ah ?
557 ah->device->query_ah(ah, ah_attr) :
560 EXPORT_SYMBOL(ib_query_ah);
562 int ib_destroy_ah(struct ib_ah *ah)
568 ret = ah->device->destroy_ah(ah);
570 atomic_dec(&pd->usecnt);
574 EXPORT_SYMBOL(ib_destroy_ah);
576 /* Shared receive queues */
578 struct ib_srq *ib_create_srq(struct ib_pd *pd,
579 struct ib_srq_init_attr *srq_init_attr)
583 if (!pd->device->create_srq)
584 return ERR_PTR(-ENOSYS);
586 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
589 srq->device = pd->device;
592 srq->event_handler = srq_init_attr->event_handler;
593 srq->srq_context = srq_init_attr->srq_context;
594 srq->srq_type = srq_init_attr->srq_type;
595 if (srq->srq_type == IB_SRQT_XRC) {
596 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
597 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
598 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
599 atomic_inc(&srq->ext.xrc.cq->usecnt);
601 atomic_inc(&pd->usecnt);
602 atomic_set(&srq->usecnt, 0);
607 EXPORT_SYMBOL(ib_create_srq);
609 int ib_modify_srq(struct ib_srq *srq,
610 struct ib_srq_attr *srq_attr,
611 enum ib_srq_attr_mask srq_attr_mask)
613 return srq->device->modify_srq ?
614 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
617 EXPORT_SYMBOL(ib_modify_srq);
619 int ib_query_srq(struct ib_srq *srq,
620 struct ib_srq_attr *srq_attr)
622 return srq->device->query_srq ?
623 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
625 EXPORT_SYMBOL(ib_query_srq);
627 int ib_destroy_srq(struct ib_srq *srq)
630 enum ib_srq_type srq_type;
631 struct ib_xrcd *uninitialized_var(xrcd);
632 struct ib_cq *uninitialized_var(cq);
635 if (atomic_read(&srq->usecnt))
639 srq_type = srq->srq_type;
640 if (srq_type == IB_SRQT_XRC) {
641 xrcd = srq->ext.xrc.xrcd;
642 cq = srq->ext.xrc.cq;
645 ret = srq->device->destroy_srq(srq);
647 atomic_dec(&pd->usecnt);
648 if (srq_type == IB_SRQT_XRC) {
649 atomic_dec(&xrcd->usecnt);
650 atomic_dec(&cq->usecnt);
656 EXPORT_SYMBOL(ib_destroy_srq);
660 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
662 struct ib_qp *qp = context;
665 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
666 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
667 if (event->element.qp->event_handler)
668 event->element.qp->event_handler(event, event->element.qp->qp_context);
669 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
672 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
674 mutex_lock(&xrcd->tgt_qp_mutex);
675 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
676 mutex_unlock(&xrcd->tgt_qp_mutex);
679 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
680 void (*event_handler)(struct ib_event *, void *),
686 qp = kzalloc(sizeof *qp, GFP_KERNEL);
688 return ERR_PTR(-ENOMEM);
690 qp->real_qp = real_qp;
691 atomic_inc(&real_qp->usecnt);
692 qp->device = real_qp->device;
693 qp->event_handler = event_handler;
694 qp->qp_context = qp_context;
695 qp->qp_num = real_qp->qp_num;
696 qp->qp_type = real_qp->qp_type;
698 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
699 list_add(&qp->open_list, &real_qp->open_list);
700 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
705 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
706 struct ib_qp_open_attr *qp_open_attr)
708 struct ib_qp *qp, *real_qp;
710 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
711 return ERR_PTR(-EINVAL);
713 qp = ERR_PTR(-EINVAL);
714 mutex_lock(&xrcd->tgt_qp_mutex);
715 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
716 if (real_qp->qp_num == qp_open_attr->qp_num) {
717 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
718 qp_open_attr->qp_context);
722 mutex_unlock(&xrcd->tgt_qp_mutex);
725 EXPORT_SYMBOL(ib_open_qp);
727 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
728 struct ib_qp_init_attr *qp_init_attr)
730 struct ib_qp *real_qp = qp;
732 qp->event_handler = __ib_shared_qp_event_handler;
735 qp->send_cq = qp->recv_cq = NULL;
737 qp->xrcd = qp_init_attr->xrcd;
738 atomic_inc(&qp_init_attr->xrcd->usecnt);
739 INIT_LIST_HEAD(&qp->open_list);
741 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
742 qp_init_attr->qp_context);
744 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
746 real_qp->device->destroy_qp(real_qp);
750 struct ib_qp *ib_create_qp(struct ib_pd *pd,
751 struct ib_qp_init_attr *qp_init_attr)
753 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
758 * If the callers is using the RDMA API calculate the resources
759 * needed for the RDMA READ/WRITE operations.
761 * Note that these callers need to pass in a port number.
763 if (qp_init_attr->cap.max_rdma_ctxs)
764 rdma_rw_init_qp(device, qp_init_attr);
766 qp = device->create_qp(pd, qp_init_attr, NULL);
773 qp->qp_type = qp_init_attr->qp_type;
775 atomic_set(&qp->usecnt, 0);
777 spin_lock_init(&qp->mr_lock);
778 INIT_LIST_HEAD(&qp->rdma_mrs);
779 INIT_LIST_HEAD(&qp->sig_mrs);
781 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
782 return ib_create_xrc_qp(qp, qp_init_attr);
784 qp->event_handler = qp_init_attr->event_handler;
785 qp->qp_context = qp_init_attr->qp_context;
786 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
790 qp->recv_cq = qp_init_attr->recv_cq;
791 atomic_inc(&qp_init_attr->recv_cq->usecnt);
792 qp->srq = qp_init_attr->srq;
794 atomic_inc(&qp_init_attr->srq->usecnt);
798 qp->send_cq = qp_init_attr->send_cq;
801 atomic_inc(&pd->usecnt);
802 atomic_inc(&qp_init_attr->send_cq->usecnt);
804 if (qp_init_attr->cap.max_rdma_ctxs) {
805 ret = rdma_rw_init_mrs(qp, qp_init_attr);
807 pr_err("failed to init MR pool ret= %d\n", ret);
815 EXPORT_SYMBOL(ib_create_qp);
817 static const struct {
819 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
820 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
821 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
823 [IB_QPS_RESET] = { .valid = 1 },
827 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
830 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
831 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
834 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
837 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
840 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
843 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
845 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
851 [IB_QPS_RESET] = { .valid = 1 },
852 [IB_QPS_ERR] = { .valid = 1 },
856 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
859 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
862 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
865 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
868 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
871 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
873 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
880 [IB_QPT_UC] = (IB_QP_AV |
884 [IB_QPT_RC] = (IB_QP_AV |
888 IB_QP_MAX_DEST_RD_ATOMIC |
889 IB_QP_MIN_RNR_TIMER),
890 [IB_QPT_XRC_INI] = (IB_QP_AV |
894 [IB_QPT_XRC_TGT] = (IB_QP_AV |
898 IB_QP_MAX_DEST_RD_ATOMIC |
899 IB_QP_MIN_RNR_TIMER),
902 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
904 [IB_QPT_UC] = (IB_QP_ALT_PATH |
907 [IB_QPT_RC] = (IB_QP_ALT_PATH |
910 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
913 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
916 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
918 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
924 [IB_QPS_RESET] = { .valid = 1 },
925 [IB_QPS_ERR] = { .valid = 1 },
929 [IB_QPT_UD] = IB_QP_SQ_PSN,
930 [IB_QPT_UC] = IB_QP_SQ_PSN,
931 [IB_QPT_RC] = (IB_QP_TIMEOUT |
935 IB_QP_MAX_QP_RD_ATOMIC),
936 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
940 IB_QP_MAX_QP_RD_ATOMIC),
941 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
943 [IB_QPT_SMI] = IB_QP_SQ_PSN,
944 [IB_QPT_GSI] = IB_QP_SQ_PSN,
947 [IB_QPT_UD] = (IB_QP_CUR_STATE |
949 [IB_QPT_UC] = (IB_QP_CUR_STATE |
952 IB_QP_PATH_MIG_STATE),
953 [IB_QPT_RC] = (IB_QP_CUR_STATE |
956 IB_QP_MIN_RNR_TIMER |
957 IB_QP_PATH_MIG_STATE),
958 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
961 IB_QP_PATH_MIG_STATE),
962 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
965 IB_QP_MIN_RNR_TIMER |
966 IB_QP_PATH_MIG_STATE),
967 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
969 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
975 [IB_QPS_RESET] = { .valid = 1 },
976 [IB_QPS_ERR] = { .valid = 1 },
980 [IB_QPT_UD] = (IB_QP_CUR_STATE |
982 [IB_QPT_UC] = (IB_QP_CUR_STATE |
985 IB_QP_PATH_MIG_STATE),
986 [IB_QPT_RC] = (IB_QP_CUR_STATE |
989 IB_QP_PATH_MIG_STATE |
990 IB_QP_MIN_RNR_TIMER),
991 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
994 IB_QP_PATH_MIG_STATE),
995 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
998 IB_QP_PATH_MIG_STATE |
999 IB_QP_MIN_RNR_TIMER),
1000 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1002 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1009 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1010 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1011 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1012 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1013 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1014 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1015 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1020 [IB_QPS_RESET] = { .valid = 1 },
1021 [IB_QPS_ERR] = { .valid = 1 },
1025 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1027 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1029 IB_QP_ACCESS_FLAGS |
1030 IB_QP_PATH_MIG_STATE),
1031 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1033 IB_QP_ACCESS_FLAGS |
1034 IB_QP_MIN_RNR_TIMER |
1035 IB_QP_PATH_MIG_STATE),
1036 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1038 IB_QP_ACCESS_FLAGS |
1039 IB_QP_PATH_MIG_STATE),
1040 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1042 IB_QP_ACCESS_FLAGS |
1043 IB_QP_MIN_RNR_TIMER |
1044 IB_QP_PATH_MIG_STATE),
1045 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1047 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1054 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1056 [IB_QPT_UC] = (IB_QP_AV |
1058 IB_QP_ACCESS_FLAGS |
1060 IB_QP_PATH_MIG_STATE),
1061 [IB_QPT_RC] = (IB_QP_PORT |
1066 IB_QP_MAX_QP_RD_ATOMIC |
1067 IB_QP_MAX_DEST_RD_ATOMIC |
1069 IB_QP_ACCESS_FLAGS |
1071 IB_QP_MIN_RNR_TIMER |
1072 IB_QP_PATH_MIG_STATE),
1073 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1078 IB_QP_MAX_QP_RD_ATOMIC |
1080 IB_QP_ACCESS_FLAGS |
1082 IB_QP_PATH_MIG_STATE),
1083 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1086 IB_QP_MAX_DEST_RD_ATOMIC |
1088 IB_QP_ACCESS_FLAGS |
1090 IB_QP_MIN_RNR_TIMER |
1091 IB_QP_PATH_MIG_STATE),
1092 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1094 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1100 [IB_QPS_RESET] = { .valid = 1 },
1101 [IB_QPS_ERR] = { .valid = 1 },
1105 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1107 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1108 IB_QP_ACCESS_FLAGS),
1109 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1111 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1117 [IB_QPS_RESET] = { .valid = 1 },
1118 [IB_QPS_ERR] = { .valid = 1 }
1122 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1123 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1124 enum rdma_link_layer ll)
1126 enum ib_qp_attr_mask req_param, opt_param;
1128 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1129 next_state < 0 || next_state > IB_QPS_ERR)
1132 if (mask & IB_QP_CUR_STATE &&
1133 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1134 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1137 if (!qp_state_table[cur_state][next_state].valid)
1140 req_param = qp_state_table[cur_state][next_state].req_param[type];
1141 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1143 if ((mask & req_param) != req_param)
1146 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1151 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1153 int ib_resolve_eth_dmac(struct ib_qp *qp,
1154 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1158 if (*qp_attr_mask & IB_QP_AV) {
1159 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1160 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1163 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1166 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1167 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1168 qp_attr->ah_attr.dmac);
1171 struct ib_gid_attr sgid_attr;
1175 ret = ib_query_gid(qp->device,
1176 qp_attr->ah_attr.port_num,
1177 qp_attr->ah_attr.grh.sgid_index,
1180 if (ret || !sgid_attr.ndev) {
1186 ifindex = sgid_attr.ndev->ifindex;
1188 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1189 &qp_attr->ah_attr.grh.dgid,
1190 qp_attr->ah_attr.dmac,
1191 NULL, &ifindex, &hop_limit);
1193 dev_put(sgid_attr.ndev);
1195 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1201 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1204 int ib_modify_qp(struct ib_qp *qp,
1205 struct ib_qp_attr *qp_attr,
1210 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1214 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1216 EXPORT_SYMBOL(ib_modify_qp);
1218 int ib_query_qp(struct ib_qp *qp,
1219 struct ib_qp_attr *qp_attr,
1221 struct ib_qp_init_attr *qp_init_attr)
1223 return qp->device->query_qp ?
1224 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1227 EXPORT_SYMBOL(ib_query_qp);
1229 int ib_close_qp(struct ib_qp *qp)
1231 struct ib_qp *real_qp;
1232 unsigned long flags;
1234 real_qp = qp->real_qp;
1238 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1239 list_del(&qp->open_list);
1240 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1242 atomic_dec(&real_qp->usecnt);
1247 EXPORT_SYMBOL(ib_close_qp);
1249 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1251 struct ib_xrcd *xrcd;
1252 struct ib_qp *real_qp;
1255 real_qp = qp->real_qp;
1256 xrcd = real_qp->xrcd;
1258 mutex_lock(&xrcd->tgt_qp_mutex);
1260 if (atomic_read(&real_qp->usecnt) == 0)
1261 list_del(&real_qp->xrcd_list);
1264 mutex_unlock(&xrcd->tgt_qp_mutex);
1267 ret = ib_destroy_qp(real_qp);
1269 atomic_dec(&xrcd->usecnt);
1271 __ib_insert_xrcd_qp(xrcd, real_qp);
1277 int ib_destroy_qp(struct ib_qp *qp)
1280 struct ib_cq *scq, *rcq;
1284 WARN_ON_ONCE(qp->mrs_used > 0);
1286 if (atomic_read(&qp->usecnt))
1289 if (qp->real_qp != qp)
1290 return __ib_destroy_shared_qp(qp);
1298 rdma_rw_cleanup_mrs(qp);
1300 ret = qp->device->destroy_qp(qp);
1303 atomic_dec(&pd->usecnt);
1305 atomic_dec(&scq->usecnt);
1307 atomic_dec(&rcq->usecnt);
1309 atomic_dec(&srq->usecnt);
1314 EXPORT_SYMBOL(ib_destroy_qp);
1316 /* Completion queues */
1318 struct ib_cq *ib_create_cq(struct ib_device *device,
1319 ib_comp_handler comp_handler,
1320 void (*event_handler)(struct ib_event *, void *),
1322 const struct ib_cq_init_attr *cq_attr)
1326 cq = device->create_cq(device, cq_attr, NULL, NULL);
1329 cq->device = device;
1331 cq->comp_handler = comp_handler;
1332 cq->event_handler = event_handler;
1333 cq->cq_context = cq_context;
1334 atomic_set(&cq->usecnt, 0);
1339 EXPORT_SYMBOL(ib_create_cq);
1341 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1343 return cq->device->modify_cq ?
1344 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1346 EXPORT_SYMBOL(ib_modify_cq);
1348 int ib_destroy_cq(struct ib_cq *cq)
1350 if (atomic_read(&cq->usecnt))
1353 return cq->device->destroy_cq(cq);
1355 EXPORT_SYMBOL(ib_destroy_cq);
1357 int ib_resize_cq(struct ib_cq *cq, int cqe)
1359 return cq->device->resize_cq ?
1360 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1362 EXPORT_SYMBOL(ib_resize_cq);
1364 /* Memory regions */
1366 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1371 err = ib_check_mr_access(mr_access_flags);
1373 return ERR_PTR(err);
1375 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1378 mr->device = pd->device;
1381 atomic_inc(&pd->usecnt);
1382 mr->need_inval = false;
1387 EXPORT_SYMBOL(ib_get_dma_mr);
1389 int ib_dereg_mr(struct ib_mr *mr)
1391 struct ib_pd *pd = mr->pd;
1394 ret = mr->device->dereg_mr(mr);
1396 atomic_dec(&pd->usecnt);
1400 EXPORT_SYMBOL(ib_dereg_mr);
1403 * ib_alloc_mr() - Allocates a memory region
1404 * @pd: protection domain associated with the region
1405 * @mr_type: memory region type
1406 * @max_num_sg: maximum sg entries available for registration.
1409 * Memory registeration page/sg lists must not exceed max_num_sg.
1410 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1411 * max_num_sg * used_page_size.
1414 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1415 enum ib_mr_type mr_type,
1420 if (!pd->device->alloc_mr)
1421 return ERR_PTR(-ENOSYS);
1423 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1425 mr->device = pd->device;
1428 atomic_inc(&pd->usecnt);
1429 mr->need_inval = false;
1434 EXPORT_SYMBOL(ib_alloc_mr);
1436 /* "Fast" memory regions */
1438 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1439 int mr_access_flags,
1440 struct ib_fmr_attr *fmr_attr)
1444 if (!pd->device->alloc_fmr)
1445 return ERR_PTR(-ENOSYS);
1447 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1449 fmr->device = pd->device;
1451 atomic_inc(&pd->usecnt);
1456 EXPORT_SYMBOL(ib_alloc_fmr);
1458 int ib_unmap_fmr(struct list_head *fmr_list)
1462 if (list_empty(fmr_list))
1465 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1466 return fmr->device->unmap_fmr(fmr_list);
1468 EXPORT_SYMBOL(ib_unmap_fmr);
1470 int ib_dealloc_fmr(struct ib_fmr *fmr)
1476 ret = fmr->device->dealloc_fmr(fmr);
1478 atomic_dec(&pd->usecnt);
1482 EXPORT_SYMBOL(ib_dealloc_fmr);
1484 /* Multicast groups */
1486 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1490 if (!qp->device->attach_mcast)
1492 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1495 ret = qp->device->attach_mcast(qp, gid, lid);
1497 atomic_inc(&qp->usecnt);
1500 EXPORT_SYMBOL(ib_attach_mcast);
1502 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1506 if (!qp->device->detach_mcast)
1508 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1511 ret = qp->device->detach_mcast(qp, gid, lid);
1513 atomic_dec(&qp->usecnt);
1516 EXPORT_SYMBOL(ib_detach_mcast);
1518 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1520 struct ib_xrcd *xrcd;
1522 if (!device->alloc_xrcd)
1523 return ERR_PTR(-ENOSYS);
1525 xrcd = device->alloc_xrcd(device, NULL, NULL);
1526 if (!IS_ERR(xrcd)) {
1527 xrcd->device = device;
1529 atomic_set(&xrcd->usecnt, 0);
1530 mutex_init(&xrcd->tgt_qp_mutex);
1531 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1536 EXPORT_SYMBOL(ib_alloc_xrcd);
1538 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1543 if (atomic_read(&xrcd->usecnt))
1546 while (!list_empty(&xrcd->tgt_qp_list)) {
1547 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1548 ret = ib_destroy_qp(qp);
1553 return xrcd->device->dealloc_xrcd(xrcd);
1555 EXPORT_SYMBOL(ib_dealloc_xrcd);
1557 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1558 struct ib_flow_attr *flow_attr,
1561 struct ib_flow *flow_id;
1562 if (!qp->device->create_flow)
1563 return ERR_PTR(-ENOSYS);
1565 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1566 if (!IS_ERR(flow_id))
1567 atomic_inc(&qp->usecnt);
1570 EXPORT_SYMBOL(ib_create_flow);
1572 int ib_destroy_flow(struct ib_flow *flow_id)
1575 struct ib_qp *qp = flow_id->qp;
1577 err = qp->device->destroy_flow(flow_id);
1579 atomic_dec(&qp->usecnt);
1582 EXPORT_SYMBOL(ib_destroy_flow);
1584 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1585 struct ib_mr_status *mr_status)
1587 return mr->device->check_mr_status ?
1588 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1590 EXPORT_SYMBOL(ib_check_mr_status);
1592 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1595 if (!device->set_vf_link_state)
1598 return device->set_vf_link_state(device, vf, port, state);
1600 EXPORT_SYMBOL(ib_set_vf_link_state);
1602 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1603 struct ifla_vf_info *info)
1605 if (!device->get_vf_config)
1608 return device->get_vf_config(device, vf, port, info);
1610 EXPORT_SYMBOL(ib_get_vf_config);
1612 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1613 struct ifla_vf_stats *stats)
1615 if (!device->get_vf_stats)
1618 return device->get_vf_stats(device, vf, port, stats);
1620 EXPORT_SYMBOL(ib_get_vf_stats);
1622 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1625 if (!device->set_vf_guid)
1628 return device->set_vf_guid(device, vf, port, guid, type);
1630 EXPORT_SYMBOL(ib_set_vf_guid);
1633 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1634 * and set it the memory region.
1635 * @mr: memory region
1636 * @sg: dma mapped scatterlist
1637 * @sg_nents: number of entries in sg
1638 * @sg_offset: offset in bytes into sg
1639 * @page_size: page vector desired page size
1642 * - The first sg element is allowed to have an offset.
1643 * - Each sg element must be aligned to page_size (or physically
1644 * contiguous to the previous element). In case an sg element has a
1645 * non contiguous offset, the mapping prefix will not include it.
1646 * - The last sg element is allowed to have length less than page_size.
1647 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1648 * then only max_num_sg entries will be mapped.
1649 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1650 * constraints holds and the page_size argument is ignored.
1652 * Returns the number of sg elements that were mapped to the memory region.
1654 * After this completes successfully, the memory region
1655 * is ready for registration.
1657 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1658 unsigned int *sg_offset, unsigned int page_size)
1660 if (unlikely(!mr->device->map_mr_sg))
1663 mr->page_size = page_size;
1665 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1667 EXPORT_SYMBOL(ib_map_mr_sg);
1670 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1672 * @mr: memory region
1673 * @sgl: dma mapped scatterlist
1674 * @sg_nents: number of entries in sg
1675 * @sg_offset_p: IN: start offset in bytes into sg
1676 * OUT: offset in bytes for element n of the sg of the first
1677 * byte that has not been processed where n is the return
1678 * value of this function.
1679 * @set_page: driver page assignment function pointer
1681 * Core service helper for drivers to convert the largest
1682 * prefix of given sg list to a page vector. The sg list
1683 * prefix converted is the prefix that meet the requirements
1686 * Returns the number of sg elements that were assigned to
1689 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1690 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1692 struct scatterlist *sg;
1693 u64 last_end_dma_addr = 0;
1694 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1695 unsigned int last_page_off = 0;
1696 u64 page_mask = ~((u64)mr->page_size - 1);
1699 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1702 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1705 for_each_sg(sgl, sg, sg_nents, i) {
1706 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1707 u64 prev_addr = dma_addr;
1708 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1709 u64 end_dma_addr = dma_addr + dma_len;
1710 u64 page_addr = dma_addr & page_mask;
1713 * For the second and later elements, check whether either the
1714 * end of element i-1 or the start of element i is not aligned
1715 * on a page boundary.
1717 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1718 /* Stop mapping if there is a gap. */
1719 if (last_end_dma_addr != dma_addr)
1723 * Coalesce this element with the last. If it is small
1724 * enough just update mr->length. Otherwise start
1725 * mapping from the next page.
1731 ret = set_page(mr, page_addr);
1732 if (unlikely(ret < 0)) {
1733 sg_offset = prev_addr - sg_dma_address(sg);
1734 mr->length += prev_addr - dma_addr;
1736 *sg_offset_p = sg_offset;
1737 return i || sg_offset ? i : ret;
1739 prev_addr = page_addr;
1741 page_addr += mr->page_size;
1742 } while (page_addr < end_dma_addr);
1744 mr->length += dma_len;
1745 last_end_dma_addr = end_dma_addr;
1746 last_page_off = end_dma_addr & ~page_mask;
1755 EXPORT_SYMBOL(ib_sg_to_pages);
1757 struct ib_drain_cqe {
1759 struct completion done;
1762 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1764 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1767 complete(&cqe->done);
1771 * Post a WR and block until its completion is reaped for the SQ.
1773 static void __ib_drain_sq(struct ib_qp *qp)
1775 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1776 struct ib_drain_cqe sdrain;
1777 struct ib_send_wr swr = {}, *bad_swr;
1780 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1781 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1782 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1786 swr.wr_cqe = &sdrain.cqe;
1787 sdrain.cqe.done = ib_drain_qp_done;
1788 init_completion(&sdrain.done);
1790 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1792 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1796 ret = ib_post_send(qp, &swr, &bad_swr);
1798 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1802 wait_for_completion(&sdrain.done);
1806 * Post a WR and block until its completion is reaped for the RQ.
1808 static void __ib_drain_rq(struct ib_qp *qp)
1810 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1811 struct ib_drain_cqe rdrain;
1812 struct ib_recv_wr rwr = {}, *bad_rwr;
1815 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1816 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1817 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1821 rwr.wr_cqe = &rdrain.cqe;
1822 rdrain.cqe.done = ib_drain_qp_done;
1823 init_completion(&rdrain.done);
1825 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1827 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1831 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1833 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1837 wait_for_completion(&rdrain.done);
1841 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1843 * @qp: queue pair to drain
1845 * If the device has a provider-specific drain function, then
1846 * call that. Otherwise call the generic drain function
1851 * ensure there is room in the CQ and SQ for the drain work request and
1854 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1857 * ensure that there are no other contexts that are posting WRs concurrently.
1858 * Otherwise the drain is not guaranteed.
1860 void ib_drain_sq(struct ib_qp *qp)
1862 if (qp->device->drain_sq)
1863 qp->device->drain_sq(qp);
1867 EXPORT_SYMBOL(ib_drain_sq);
1870 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1872 * @qp: queue pair to drain
1874 * If the device has a provider-specific drain function, then
1875 * call that. Otherwise call the generic drain function
1880 * ensure there is room in the CQ and RQ for the drain work request and
1883 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1886 * ensure that there are no other contexts that are posting WRs concurrently.
1887 * Otherwise the drain is not guaranteed.
1889 void ib_drain_rq(struct ib_qp *qp)
1891 if (qp->device->drain_rq)
1892 qp->device->drain_rq(qp);
1896 EXPORT_SYMBOL(ib_drain_rq);
1899 * ib_drain_qp() - Block until all CQEs have been consumed by the
1900 * application on both the RQ and SQ.
1901 * @qp: queue pair to drain
1905 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1908 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1911 * ensure that there are no other contexts that are posting WRs concurrently.
1912 * Otherwise the drain is not guaranteed.
1914 void ib_drain_qp(struct ib_qp *qp)
1920 EXPORT_SYMBOL(ib_drain_qp);