ALSA: hda - Silence PM ops build warning
[platform/kernel/linux-rpi.git] / drivers / iio / adc / stm32-dfsdm-adc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21
22 #include "stm32-dfsdm.h"
23
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
25
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
29
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING  100
32
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
36
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
40
41 enum sd_converter_type {
42         DFSDM_AUDIO,
43         DFSDM_IIO,
44 };
45
46 struct stm32_dfsdm_dev_data {
47         int type;
48         int (*init)(struct iio_dev *indio_dev);
49         unsigned int num_channels;
50         const struct regmap_config *regmap_cfg;
51 };
52
53 struct stm32_dfsdm_adc {
54         struct stm32_dfsdm *dfsdm;
55         const struct stm32_dfsdm_dev_data *dev_data;
56         unsigned int fl_id;
57         unsigned int ch_id;
58
59         /* ADC specific */
60         unsigned int oversamp;
61         struct iio_hw_consumer *hwc;
62         struct completion completion;
63         u32 *buffer;
64
65         /* Audio specific */
66         unsigned int spi_freq;  /* SPI bus clock frequency */
67         unsigned int sample_freq; /* Sample frequency after filter decimation */
68         int (*cb)(const void *data, size_t size, void *cb_priv);
69         void *cb_priv;
70
71         /* DMA */
72         u8 *rx_buf;
73         unsigned int bufi; /* Buffer current position */
74         unsigned int buf_sz; /* Buffer size */
75         struct dma_chan *dma_chan;
76         dma_addr_t dma_buf;
77 };
78
79 struct stm32_dfsdm_str2field {
80         const char      *name;
81         unsigned int    val;
82 };
83
84 /* DFSDM channel serial interface type */
85 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
86         { "SPI_R", 0 }, /* SPI with data on rising edge */
87         { "SPI_F", 1 }, /* SPI with data on falling edge */
88         { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
89         { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
90         {},
91 };
92
93 /* DFSDM channel clock source */
94 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
95         /* External SPI clock (CLKIN x) */
96         { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
97         /* Internal SPI clock (CLKOUT) */
98         { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
99         /* Internal SPI clock divided by 2 (falling edge) */
100         { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
101         /* Internal SPI clock divided by 2 (falling edge) */
102         { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
103         {},
104 };
105
106 static int stm32_dfsdm_str2val(const char *str,
107                                const struct stm32_dfsdm_str2field *list)
108 {
109         const struct stm32_dfsdm_str2field *p = list;
110
111         for (p = list; p && p->name; p++)
112                 if (!strcmp(p->name, str))
113                         return p->val;
114
115         return -EINVAL;
116 }
117
118 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
119                                 unsigned int fast, unsigned int oversamp)
120 {
121         unsigned int i, d, fosr, iosr;
122         u64 res;
123         s64 delta;
124         unsigned int m = 1;     /* multiplication factor */
125         unsigned int p = fl->ford;      /* filter order (ford) */
126
127         pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
128         /*
129          * This function tries to compute filter oversampling and integrator
130          * oversampling, base on oversampling ratio requested by user.
131          *
132          * Decimation d depends on the filter order and the oversampling ratios.
133          * ford: filter order
134          * fosr: filter over sampling ratio
135          * iosr: integrator over sampling ratio
136          */
137         if (fl->ford == DFSDM_FASTSINC_ORDER) {
138                 m = 2;
139                 p = 2;
140         }
141
142         /*
143          * Look for filter and integrator oversampling ratios which allows
144          * to reach 24 bits data output resolution.
145          * Leave as soon as if exact resolution if reached.
146          * Otherwise the higher resolution below 32 bits is kept.
147          */
148         for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
149                 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
150                         if (fast)
151                                 d = fosr * iosr;
152                         else if (fl->ford == DFSDM_FASTSINC_ORDER)
153                                 d = fosr * (iosr + 3) + 2;
154                         else
155                                 d = fosr * (iosr - 1 + p) + p;
156
157                         if (d > oversamp)
158                                 break;
159                         else if (d != oversamp)
160                                 continue;
161                         /*
162                          * Check resolution (limited to signed 32 bits)
163                          *   res <= 2^31
164                          * Sincx filters:
165                          *   res = m * fosr^p x iosr (with m=1, p=ford)
166                          * FastSinc filter
167                          *   res = m * fosr^p x iosr (with m=2, p=2)
168                          */
169                         res = fosr;
170                         for (i = p - 1; i > 0; i--) {
171                                 res = res * (u64)fosr;
172                                 if (res > DFSDM_MAX_RES)
173                                         break;
174                         }
175                         if (res > DFSDM_MAX_RES)
176                                 continue;
177                         res = res * (u64)m * (u64)iosr;
178                         if (res > DFSDM_MAX_RES)
179                                 continue;
180
181                         delta = res - DFSDM_DATA_RES;
182
183                         if (res >= fl->res) {
184                                 fl->res = res;
185                                 fl->fosr = fosr;
186                                 fl->iosr = iosr;
187                                 fl->fast = fast;
188                                 pr_debug("%s: fosr = %d, iosr = %d\n",
189                                          __func__, fl->fosr, fl->iosr);
190                         }
191
192                         if (!delta)
193                                 return 0;
194                 }
195         }
196
197         if (!fl->fosr)
198                 return -EINVAL;
199
200         return 0;
201 }
202
203 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
204                                      unsigned int ch_id)
205 {
206         return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
207                                   DFSDM_CHCFGR1_CHEN_MASK,
208                                   DFSDM_CHCFGR1_CHEN(1));
209 }
210
211 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
212                                      unsigned int ch_id)
213 {
214         regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
215                            DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
216 }
217
218 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
219                                       struct stm32_dfsdm_channel *ch)
220 {
221         unsigned int id = ch->id;
222         struct regmap *regmap = dfsdm->regmap;
223         int ret;
224
225         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
226                                  DFSDM_CHCFGR1_SITP_MASK,
227                                  DFSDM_CHCFGR1_SITP(ch->type));
228         if (ret < 0)
229                 return ret;
230         ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
231                                  DFSDM_CHCFGR1_SPICKSEL_MASK,
232                                  DFSDM_CHCFGR1_SPICKSEL(ch->src));
233         if (ret < 0)
234                 return ret;
235         return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
236                                   DFSDM_CHCFGR1_CHINSEL_MASK,
237                                   DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
238 }
239
240 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
241                                     unsigned int fl_id)
242 {
243         int ret;
244
245         /* Enable filter */
246         ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
247                                  DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
248         if (ret < 0)
249                 return ret;
250
251         /* Start conversion */
252         return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
253                                   DFSDM_CR1_RSWSTART_MASK,
254                                   DFSDM_CR1_RSWSTART(1));
255 }
256
257 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, unsigned int fl_id)
258 {
259         /* Disable conversion */
260         regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
261                            DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
262 }
263
264 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
265                                         unsigned int fl_id, unsigned int ch_id)
266 {
267         struct regmap *regmap = dfsdm->regmap;
268         struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
269         int ret;
270
271         /* Average integrator oversampling */
272         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
273                                  DFSDM_FCR_IOSR(fl->iosr - 1));
274         if (ret)
275                 return ret;
276
277         /* Filter order and Oversampling */
278         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
279                                  DFSDM_FCR_FOSR(fl->fosr - 1));
280         if (ret)
281                 return ret;
282
283         ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
284                                  DFSDM_FCR_FORD(fl->ford));
285         if (ret)
286                 return ret;
287
288         /* No scan mode supported for the moment */
289         ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
290                                  DFSDM_CR1_RCH(ch_id));
291         if (ret)
292                 return ret;
293
294         return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
295                                   DFSDM_CR1_RSYNC_MASK,
296                                   DFSDM_CR1_RSYNC(fl->sync_mode));
297 }
298
299 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
300                                         struct iio_dev *indio_dev,
301                                         struct iio_chan_spec *ch)
302 {
303         struct stm32_dfsdm_channel *df_ch;
304         const char *of_str;
305         int chan_idx = ch->scan_index;
306         int ret, val;
307
308         ret = of_property_read_u32_index(indio_dev->dev.of_node,
309                                          "st,adc-channels", chan_idx,
310                                          &ch->channel);
311         if (ret < 0) {
312                 dev_err(&indio_dev->dev,
313                         " Error parsing 'st,adc-channels' for idx %d\n",
314                         chan_idx);
315                 return ret;
316         }
317         if (ch->channel >= dfsdm->num_chs) {
318                 dev_err(&indio_dev->dev,
319                         " Error bad channel number %d (max = %d)\n",
320                         ch->channel, dfsdm->num_chs);
321                 return -EINVAL;
322         }
323
324         ret = of_property_read_string_index(indio_dev->dev.of_node,
325                                             "st,adc-channel-names", chan_idx,
326                                             &ch->datasheet_name);
327         if (ret < 0) {
328                 dev_err(&indio_dev->dev,
329                         " Error parsing 'st,adc-channel-names' for idx %d\n",
330                         chan_idx);
331                 return ret;
332         }
333
334         df_ch =  &dfsdm->ch_list[ch->channel];
335         df_ch->id = ch->channel;
336
337         ret = of_property_read_string_index(indio_dev->dev.of_node,
338                                             "st,adc-channel-types", chan_idx,
339                                             &of_str);
340         if (!ret) {
341                 val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
342                 if (val < 0)
343                         return val;
344         } else {
345                 val = 0;
346         }
347         df_ch->type = val;
348
349         ret = of_property_read_string_index(indio_dev->dev.of_node,
350                                             "st,adc-channel-clk-src", chan_idx,
351                                             &of_str);
352         if (!ret) {
353                 val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
354                 if (val < 0)
355                         return val;
356         } else {
357                 val = 0;
358         }
359         df_ch->src = val;
360
361         ret = of_property_read_u32_index(indio_dev->dev.of_node,
362                                          "st,adc-alt-channel", chan_idx,
363                                          &df_ch->alt_si);
364         if (ret < 0)
365                 df_ch->alt_si = 0;
366
367         return 0;
368 }
369
370 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
371                                           uintptr_t priv,
372                                           const struct iio_chan_spec *chan,
373                                           char *buf)
374 {
375         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
376
377         return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
378 }
379
380 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
381                                           uintptr_t priv,
382                                           const struct iio_chan_spec *chan,
383                                           const char *buf, size_t len)
384 {
385         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
386         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
387         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
388         unsigned int sample_freq = adc->sample_freq;
389         unsigned int spi_freq;
390         int ret;
391
392         dev_err(&indio_dev->dev, "enter %s\n", __func__);
393         /* If DFSDM is master on SPI, SPI freq can not be updated */
394         if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
395                 return -EPERM;
396
397         ret = kstrtoint(buf, 0, &spi_freq);
398         if (ret)
399                 return ret;
400
401         if (!spi_freq)
402                 return -EINVAL;
403
404         if (sample_freq) {
405                 if (spi_freq % sample_freq)
406                         dev_warn(&indio_dev->dev,
407                                  "Sampling rate not accurate (%d)\n",
408                                  spi_freq / (spi_freq / sample_freq));
409
410                 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
411                 if (ret < 0) {
412                         dev_err(&indio_dev->dev,
413                                 "No filter parameters that match!\n");
414                         return ret;
415                 }
416         }
417         adc->spi_freq = spi_freq;
418
419         return len;
420 }
421
422 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc, bool dma)
423 {
424         struct regmap *regmap = adc->dfsdm->regmap;
425         int ret;
426         unsigned int dma_en = 0, cont_en = 0;
427
428         ret = stm32_dfsdm_start_channel(adc->dfsdm, adc->ch_id);
429         if (ret < 0)
430                 return ret;
431
432         ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
433                                            adc->ch_id);
434         if (ret < 0)
435                 goto stop_channels;
436
437         if (dma) {
438                 /* Enable DMA transfer*/
439                 dma_en =  DFSDM_CR1_RDMAEN(1);
440                 /* Enable conversion triggered by SPI clock*/
441                 cont_en = DFSDM_CR1_RCONT(1);
442         }
443         /* Enable DMA transfer*/
444         ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
445                                  DFSDM_CR1_RDMAEN_MASK, dma_en);
446         if (ret < 0)
447                 goto stop_channels;
448
449         /* Enable conversion triggered by SPI clock*/
450         ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
451                                  DFSDM_CR1_RCONT_MASK, cont_en);
452         if (ret < 0)
453                 goto stop_channels;
454
455         ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
456         if (ret < 0)
457                 goto stop_channels;
458
459         return 0;
460
461 stop_channels:
462         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
463                            DFSDM_CR1_RDMAEN_MASK, 0);
464
465         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
466                            DFSDM_CR1_RCONT_MASK, 0);
467         stm32_dfsdm_stop_channel(adc->dfsdm, adc->fl_id);
468
469         return ret;
470 }
471
472 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
473 {
474         struct regmap *regmap = adc->dfsdm->regmap;
475
476         stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
477
478         /* Clean conversion options */
479         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
480                            DFSDM_CR1_RDMAEN_MASK, 0);
481
482         regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
483                            DFSDM_CR1_RCONT_MASK, 0);
484
485         stm32_dfsdm_stop_channel(adc->dfsdm, adc->ch_id);
486 }
487
488 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
489                                      unsigned int val)
490 {
491         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
492         unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
493
494         /*
495          * DMA cyclic transfers are used, buffer is split into two periods.
496          * There should be :
497          * - always one buffer (period) DMA is working on
498          * - one buffer (period) driver pushed to ASoC side.
499          */
500         watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
501         adc->buf_sz = watermark * 2;
502
503         return 0;
504 }
505
506 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
507 {
508         struct dma_tx_state state;
509         enum dma_status status;
510
511         status = dmaengine_tx_status(adc->dma_chan,
512                                      adc->dma_chan->cookie,
513                                      &state);
514         if (status == DMA_IN_PROGRESS) {
515                 /* Residue is size in bytes from end of buffer */
516                 unsigned int i = adc->buf_sz - state.residue;
517                 unsigned int size;
518
519                 /* Return available bytes */
520                 if (i >= adc->bufi)
521                         size = i - adc->bufi;
522                 else
523                         size = adc->buf_sz + i - adc->bufi;
524
525                 return size;
526         }
527
528         return 0;
529 }
530
531 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
532 {
533         struct iio_dev *indio_dev = data;
534         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
535         int available = stm32_dfsdm_adc_dma_residue(adc);
536         size_t old_pos;
537
538         /*
539          * FIXME: In Kernel interface does not support cyclic DMA buffer,and
540          * offers only an interface to push data samples per samples.
541          * For this reason IIO buffer interface is not used and interface is
542          * bypassed using a private callback registered by ASoC.
543          * This should be a temporary solution waiting a cyclic DMA engine
544          * support in IIO.
545          */
546
547         dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
548                 adc->bufi, available);
549         old_pos = adc->bufi;
550
551         while (available >= indio_dev->scan_bytes) {
552                 u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
553
554                 /* Mask 8 LSB that contains the channel ID */
555                 *buffer = (*buffer & 0xFFFFFF00) << 8;
556                 available -= indio_dev->scan_bytes;
557                 adc->bufi += indio_dev->scan_bytes;
558                 if (adc->bufi >= adc->buf_sz) {
559                         if (adc->cb)
560                                 adc->cb(&adc->rx_buf[old_pos],
561                                          adc->buf_sz - old_pos, adc->cb_priv);
562                         adc->bufi = 0;
563                         old_pos = 0;
564                 }
565         }
566         if (adc->cb)
567                 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
568                         adc->cb_priv);
569 }
570
571 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
572 {
573         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
574         struct dma_async_tx_descriptor *desc;
575         dma_cookie_t cookie;
576         int ret;
577
578         if (!adc->dma_chan)
579                 return -EINVAL;
580
581         dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
582                 adc->buf_sz, adc->buf_sz / 2);
583
584         /* Prepare a DMA cyclic transaction */
585         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
586                                          adc->dma_buf,
587                                          adc->buf_sz, adc->buf_sz / 2,
588                                          DMA_DEV_TO_MEM,
589                                          DMA_PREP_INTERRUPT);
590         if (!desc)
591                 return -EBUSY;
592
593         desc->callback = stm32_dfsdm_audio_dma_buffer_done;
594         desc->callback_param = indio_dev;
595
596         cookie = dmaengine_submit(desc);
597         ret = dma_submit_error(cookie);
598         if (ret) {
599                 dmaengine_terminate_all(adc->dma_chan);
600                 return ret;
601         }
602
603         /* Issue pending DMA requests */
604         dma_async_issue_pending(adc->dma_chan);
605
606         return 0;
607 }
608
609 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
610 {
611         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
612         int ret;
613
614         /* Reset adc buffer index */
615         adc->bufi = 0;
616
617         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
618         if (ret < 0)
619                 return ret;
620
621         ret = stm32_dfsdm_start_conv(adc, true);
622         if (ret) {
623                 dev_err(&indio_dev->dev, "Can't start conversion\n");
624                 goto stop_dfsdm;
625         }
626
627         if (adc->dma_chan) {
628                 ret = stm32_dfsdm_adc_dma_start(indio_dev);
629                 if (ret) {
630                         dev_err(&indio_dev->dev, "Can't start DMA\n");
631                         goto err_stop_conv;
632                 }
633         }
634
635         return 0;
636
637 err_stop_conv:
638         stm32_dfsdm_stop_conv(adc);
639 stop_dfsdm:
640         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
641
642         return ret;
643 }
644
645 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
646 {
647         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
648
649         if (adc->dma_chan)
650                 dmaengine_terminate_all(adc->dma_chan);
651
652         stm32_dfsdm_stop_conv(adc);
653
654         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
655
656         return 0;
657 }
658
659 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
660         .postenable = &stm32_dfsdm_postenable,
661         .predisable = &stm32_dfsdm_predisable,
662 };
663
664 /**
665  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
666  *                             DMA transfer period is achieved.
667  *
668  * @iio_dev: Handle to IIO device.
669  * @cb: Pointer to callback function:
670  *      - data: pointer to data buffer
671  *      - size: size in byte of the data buffer
672  *      - private: pointer to consumer private structure.
673  * @private: Pointer to consumer private structure.
674  */
675 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
676                             int (*cb)(const void *data, size_t size,
677                                       void *private),
678                             void *private)
679 {
680         struct stm32_dfsdm_adc *adc;
681
682         if (!iio_dev)
683                 return -EINVAL;
684         adc = iio_priv(iio_dev);
685
686         adc->cb = cb;
687         adc->cb_priv = private;
688
689         return 0;
690 }
691 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
692
693 /**
694  * stm32_dfsdm_release_buff_cb - unregister buffer callback
695  *
696  * @iio_dev: Handle to IIO device.
697  */
698 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
699 {
700         struct stm32_dfsdm_adc *adc;
701
702         if (!iio_dev)
703                 return -EINVAL;
704         adc = iio_priv(iio_dev);
705
706         adc->cb = NULL;
707         adc->cb_priv = NULL;
708
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
712
713 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
714                                    const struct iio_chan_spec *chan, int *res)
715 {
716         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
717         long timeout;
718         int ret;
719
720         reinit_completion(&adc->completion);
721
722         adc->buffer = res;
723
724         ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
725         if (ret < 0)
726                 return ret;
727
728         ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
729                                  DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
730         if (ret < 0)
731                 goto stop_dfsdm;
732
733         ret = stm32_dfsdm_start_conv(adc, false);
734         if (ret < 0) {
735                 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
736                                    DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
737                 goto stop_dfsdm;
738         }
739
740         timeout = wait_for_completion_interruptible_timeout(&adc->completion,
741                                                             DFSDM_TIMEOUT);
742
743         /* Mask IRQ for regular conversion achievement*/
744         regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
745                            DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
746
747         if (timeout == 0)
748                 ret = -ETIMEDOUT;
749         else if (timeout < 0)
750                 ret = timeout;
751         else
752                 ret = IIO_VAL_INT;
753
754         stm32_dfsdm_stop_conv(adc);
755
756 stop_dfsdm:
757         stm32_dfsdm_stop_dfsdm(adc->dfsdm);
758
759         return ret;
760 }
761
762 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
763                                  struct iio_chan_spec const *chan,
764                                  int val, int val2, long mask)
765 {
766         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
767         struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
768         struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
769         unsigned int spi_freq = adc->spi_freq;
770         int ret = -EINVAL;
771
772         switch (mask) {
773         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
774                 ret = stm32_dfsdm_set_osrs(fl, 0, val);
775                 if (!ret)
776                         adc->oversamp = val;
777
778                 return ret;
779
780         case IIO_CHAN_INFO_SAMP_FREQ:
781                 if (!val)
782                         return -EINVAL;
783                 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
784                         spi_freq = adc->dfsdm->spi_master_freq;
785
786                 if (spi_freq % val)
787                         dev_warn(&indio_dev->dev,
788                                  "Sampling rate not accurate (%d)\n",
789                                  spi_freq / (spi_freq / val));
790
791                 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
792                 if (ret < 0) {
793                         dev_err(&indio_dev->dev,
794                                 "Not able to find parameter that match!\n");
795                         return ret;
796                 }
797                 adc->sample_freq = val;
798
799                 return 0;
800         }
801
802         return -EINVAL;
803 }
804
805 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
806                                 struct iio_chan_spec const *chan, int *val,
807                                 int *val2, long mask)
808 {
809         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
810         int ret;
811
812         switch (mask) {
813         case IIO_CHAN_INFO_RAW:
814                 ret = iio_hw_consumer_enable(adc->hwc);
815                 if (ret < 0) {
816                         dev_err(&indio_dev->dev,
817                                 "%s: IIO enable failed (channel %d)\n",
818                                 __func__, chan->channel);
819                         return ret;
820                 }
821                 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
822                 iio_hw_consumer_disable(adc->hwc);
823                 if (ret < 0) {
824                         dev_err(&indio_dev->dev,
825                                 "%s: Conversion failed (channel %d)\n",
826                                 __func__, chan->channel);
827                         return ret;
828                 }
829                 return IIO_VAL_INT;
830
831         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
832                 *val = adc->oversamp;
833
834                 return IIO_VAL_INT;
835
836         case IIO_CHAN_INFO_SAMP_FREQ:
837                 *val = adc->sample_freq;
838
839                 return IIO_VAL_INT;
840         }
841
842         return -EINVAL;
843 }
844
845 static const struct iio_info stm32_dfsdm_info_audio = {
846         .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
847         .read_raw = stm32_dfsdm_read_raw,
848         .write_raw = stm32_dfsdm_write_raw,
849 };
850
851 static const struct iio_info stm32_dfsdm_info_adc = {
852         .read_raw = stm32_dfsdm_read_raw,
853         .write_raw = stm32_dfsdm_write_raw,
854 };
855
856 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
857 {
858         struct stm32_dfsdm_adc *adc = arg;
859         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
860         struct regmap *regmap = adc->dfsdm->regmap;
861         unsigned int status, int_en;
862
863         regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
864         regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
865
866         if (status & DFSDM_ISR_REOCF_MASK) {
867                 /* Read the data register clean the IRQ status */
868                 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
869                 complete(&adc->completion);
870         }
871
872         if (status & DFSDM_ISR_ROVRF_MASK) {
873                 if (int_en & DFSDM_CR2_ROVRIE_MASK)
874                         dev_warn(&indio_dev->dev, "Overrun detected\n");
875                 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
876                                    DFSDM_ICR_CLRROVRF_MASK,
877                                    DFSDM_ICR_CLRROVRF_MASK);
878         }
879
880         return IRQ_HANDLED;
881 }
882
883 /*
884  * Define external info for SPI Frequency and audio sampling rate that can be
885  * configured by ASoC driver through consumer.h API
886  */
887 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
888         /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
889         {
890                 .name = "spi_clk_freq",
891                 .shared = IIO_SHARED_BY_TYPE,
892                 .read = dfsdm_adc_audio_get_spiclk,
893                 .write = dfsdm_adc_audio_set_spiclk,
894         },
895         {},
896 };
897
898 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
899 {
900         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
901
902         if (adc->dma_chan) {
903                 dma_free_coherent(adc->dma_chan->device->dev,
904                                   DFSDM_DMA_BUFFER_SIZE,
905                                   adc->rx_buf, adc->dma_buf);
906                 dma_release_channel(adc->dma_chan);
907         }
908 }
909
910 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
911 {
912         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
913         struct dma_slave_config config = {
914                 .src_addr = (dma_addr_t)adc->dfsdm->phys_base +
915                         DFSDM_RDATAR(adc->fl_id),
916                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
917         };
918         int ret;
919
920         adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
921         if (!adc->dma_chan)
922                 return -EINVAL;
923
924         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
925                                          DFSDM_DMA_BUFFER_SIZE,
926                                          &adc->dma_buf, GFP_KERNEL);
927         if (!adc->rx_buf) {
928                 ret = -ENOMEM;
929                 goto err_release;
930         }
931
932         ret = dmaengine_slave_config(adc->dma_chan, &config);
933         if (ret)
934                 goto err_free;
935
936         return 0;
937
938 err_free:
939         dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
940                           adc->rx_buf, adc->dma_buf);
941 err_release:
942         dma_release_channel(adc->dma_chan);
943
944         return ret;
945 }
946
947 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
948                                          struct iio_chan_spec *ch)
949 {
950         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
951         int ret;
952
953         ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
954         if (ret < 0)
955                 return ret;
956
957         ch->type = IIO_VOLTAGE;
958         ch->indexed = 1;
959
960         /*
961          * IIO_CHAN_INFO_RAW: used to compute regular conversion
962          * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
963          */
964         ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
965         ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
966
967         if (adc->dev_data->type == DFSDM_AUDIO) {
968                 ch->scan_type.sign = 's';
969                 ch->ext_info = dfsdm_adc_audio_ext_info;
970         } else {
971                 ch->scan_type.sign = 'u';
972         }
973         ch->scan_type.realbits = 24;
974         ch->scan_type.storagebits = 32;
975         adc->ch_id = ch->channel;
976
977         return stm32_dfsdm_chan_configure(adc->dfsdm,
978                                           &adc->dfsdm->ch_list[ch->channel]);
979 }
980
981 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
982 {
983         struct iio_chan_spec *ch;
984         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
985         struct stm32_dfsdm_channel *d_ch;
986         int ret;
987
988         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
989         indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
990
991         ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
992         if (!ch)
993                 return -ENOMEM;
994
995         ch->scan_index = 0;
996
997         ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
998         if (ret < 0) {
999                 dev_err(&indio_dev->dev, "Channels init failed\n");
1000                 return ret;
1001         }
1002         ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1003
1004         d_ch = &adc->dfsdm->ch_list[adc->ch_id];
1005         if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1006                 adc->spi_freq = adc->dfsdm->spi_master_freq;
1007
1008         indio_dev->num_channels = 1;
1009         indio_dev->channels = ch;
1010
1011         return stm32_dfsdm_dma_request(indio_dev);
1012 }
1013
1014 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1015 {
1016         struct iio_chan_spec *ch;
1017         struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1018         int num_ch;
1019         int ret, chan_idx;
1020
1021         adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1022         ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1023                                    adc->oversamp);
1024         if (ret < 0)
1025                 return ret;
1026
1027         num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1028                                              "st,adc-channels");
1029         if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1030                 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1031                 return num_ch < 0 ? num_ch : -EINVAL;
1032         }
1033
1034         /* Bind to SD modulator IIO device */
1035         adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1036         if (IS_ERR(adc->hwc))
1037                 return -EPROBE_DEFER;
1038
1039         ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1040                           GFP_KERNEL);
1041         if (!ch)
1042                 return -ENOMEM;
1043
1044         for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1045                 ch->scan_index = chan_idx;
1046                 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1047                 if (ret < 0) {
1048                         dev_err(&indio_dev->dev, "Channels init failed\n");
1049                         return ret;
1050                 }
1051         }
1052
1053         indio_dev->num_channels = num_ch;
1054         indio_dev->channels = ch;
1055
1056         init_completion(&adc->completion);
1057
1058         return 0;
1059 }
1060
1061 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1062         .type = DFSDM_IIO,
1063         .init = stm32_dfsdm_adc_init,
1064 };
1065
1066 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1067         .type = DFSDM_AUDIO,
1068         .init = stm32_dfsdm_audio_init,
1069 };
1070
1071 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1072         {
1073                 .compatible = "st,stm32-dfsdm-adc",
1074                 .data = &stm32h7_dfsdm_adc_data,
1075         },
1076         {
1077                 .compatible = "st,stm32-dfsdm-dmic",
1078                 .data = &stm32h7_dfsdm_audio_data,
1079         },
1080         {}
1081 };
1082
1083 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1084 {
1085         struct device *dev = &pdev->dev;
1086         struct stm32_dfsdm_adc *adc;
1087         struct device_node *np = dev->of_node;
1088         const struct stm32_dfsdm_dev_data *dev_data;
1089         struct iio_dev *iio;
1090         char *name;
1091         int ret, irq, val;
1092
1093
1094         dev_data = of_device_get_match_data(dev);
1095         iio = devm_iio_device_alloc(dev, sizeof(*adc));
1096         if (!iio) {
1097                 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1098                 return -ENOMEM;
1099         }
1100
1101         adc = iio_priv(iio);
1102         adc->dfsdm = dev_get_drvdata(dev->parent);
1103
1104         iio->dev.parent = dev;
1105         iio->dev.of_node = np;
1106         iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1107
1108         platform_set_drvdata(pdev, adc);
1109
1110         ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1111         if (ret != 0) {
1112                 dev_err(dev, "Missing reg property\n");
1113                 return -EINVAL;
1114         }
1115
1116         name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1117         if (!name)
1118                 return -ENOMEM;
1119         if (dev_data->type == DFSDM_AUDIO) {
1120                 iio->info = &stm32_dfsdm_info_audio;
1121                 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1122         } else {
1123                 iio->info = &stm32_dfsdm_info_adc;
1124                 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1125         }
1126         iio->name = name;
1127
1128         /*
1129          * In a first step IRQs generated for channels are not treated.
1130          * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1131          */
1132         irq = platform_get_irq(pdev, 0);
1133         ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1134                                0, pdev->name, adc);
1135         if (ret < 0) {
1136                 dev_err(dev, "Failed to request IRQ\n");
1137                 return ret;
1138         }
1139
1140         ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1141         if (ret < 0) {
1142                 dev_err(dev, "Failed to set filter order\n");
1143                 return ret;
1144         }
1145
1146         adc->dfsdm->fl_list[adc->fl_id].ford = val;
1147
1148         ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1149         if (!ret)
1150                 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1151
1152         adc->dev_data = dev_data;
1153         ret = dev_data->init(iio);
1154         if (ret < 0)
1155                 return ret;
1156
1157         ret = iio_device_register(iio);
1158         if (ret < 0)
1159                 goto err_cleanup;
1160
1161         dev_err(dev, "of_platform_populate\n");
1162         if (dev_data->type == DFSDM_AUDIO) {
1163                 ret = of_platform_populate(np, NULL, NULL, dev);
1164                 if (ret < 0) {
1165                         dev_err(dev, "Failed to find an audio DAI\n");
1166                         goto err_unregister;
1167                 }
1168         }
1169
1170         return 0;
1171
1172 err_unregister:
1173         iio_device_unregister(iio);
1174 err_cleanup:
1175         stm32_dfsdm_dma_release(iio);
1176
1177         return ret;
1178 }
1179
1180 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1181 {
1182         struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1183         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1184
1185         if (adc->dev_data->type == DFSDM_AUDIO)
1186                 of_platform_depopulate(&pdev->dev);
1187         iio_device_unregister(indio_dev);
1188         stm32_dfsdm_dma_release(indio_dev);
1189
1190         return 0;
1191 }
1192
1193 static struct platform_driver stm32_dfsdm_adc_driver = {
1194         .driver = {
1195                 .name = "stm32-dfsdm-adc",
1196                 .of_match_table = stm32_dfsdm_adc_match,
1197         },
1198         .probe = stm32_dfsdm_adc_probe,
1199         .remove = stm32_dfsdm_adc_remove,
1200 };
1201 module_platform_driver(stm32_dfsdm_adc_driver);
1202
1203 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1204 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1205 MODULE_LICENSE("GPL v2");