1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Nuvoton NAU7802 ADC
5 * Copyright 2013 Free Electrons
8 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/wait.h>
15 #include <linux/log2.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
20 #define NAU7802_REG_PUCTRL 0x00
21 #define NAU7802_PUCTRL_RR(x) (x << 0)
22 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x) (x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x) (x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x) (x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x) (x << 4)
30 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x) (x << 5)
32 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x) (x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1 0x01
36 #define NAU7802_CTRL1_VLDO(x) (x << 3)
37 #define NAU7802_CTRL1_GAINS(x) (x)
38 #define NAU7802_CTRL1_GAINS_BITS 0x07
39 #define NAU7802_REG_CTRL2 0x02
40 #define NAU7802_CTRL2_CHS(x) (x << 7)
41 #define NAU7802_CTRL2_CRS(x) (x << 4)
42 #define NAU7802_SAMP_FREQ_320 0x07
43 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2 0x12
45 #define NAU7802_REG_ADC_B1 0x13
46 #define NAU7802_REG_ADC_B0 0x14
47 #define NAU7802_REG_ADC_CTRL 0x15
49 #define NAU7802_MIN_CONVERSIONS 6
51 struct nau7802_state {
52 struct i2c_client *client;
55 struct mutex data_lock;
61 struct completion value_ok;
64 #define NAU7802_CHANNEL(chan) { \
65 .type = IIO_VOLTAGE, \
68 .scan_index = (chan), \
69 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
70 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
71 BIT(IIO_CHAN_INFO_SAMP_FREQ) \
74 static const struct iio_chan_spec nau7802_chan_array[] = {
79 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
82 static ssize_t nau7802_show_scales(struct device *dev,
83 struct device_attribute *attr, char *buf)
85 struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
88 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
89 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
99 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
102 static struct attribute *nau7802_attributes[] = {
103 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
104 &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
108 static const struct attribute_group nau7802_attribute_group = {
109 .attrs = nau7802_attributes,
112 static int nau7802_set_gain(struct nau7802_state *st, int gain)
116 mutex_lock(&st->lock);
117 st->conversion_count = 0;
119 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
121 goto nau7802_sysfs_set_gain_out;
122 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
123 (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
126 nau7802_sysfs_set_gain_out:
127 mutex_unlock(&st->lock);
132 static int nau7802_read_conversion(struct nau7802_state *st)
136 mutex_lock(&st->data_lock);
137 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
139 goto nau7802_read_conversion_out;
140 st->last_value = data << 16;
142 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
144 goto nau7802_read_conversion_out;
145 st->last_value |= data << 8;
147 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
149 goto nau7802_read_conversion_out;
150 st->last_value |= data;
152 st->last_value = sign_extend32(st->last_value, 23);
154 nau7802_read_conversion_out:
155 mutex_unlock(&st->data_lock);
161 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
163 static int nau7802_sync(struct nau7802_state *st)
167 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
170 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
171 ret | NAU7802_PUCTRL_CS_BIT);
176 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
178 struct iio_dev *indio_dev = private;
179 struct nau7802_state *st = iio_priv(indio_dev);
182 status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
186 if (!(status & NAU7802_PUCTRL_CR_BIT))
189 if (nau7802_read_conversion(st) < 0)
193 * Because there is actually only one ADC for both channels, we have to
194 * wait for enough conversions to happen before getting a significant
195 * value when changing channels and the values are far apart.
197 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
198 st->conversion_count++;
199 if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
200 complete(&st->value_ok);
205 static int nau7802_read_irq(struct iio_dev *indio_dev,
206 struct iio_chan_spec const *chan,
209 struct nau7802_state *st = iio_priv(indio_dev);
212 reinit_completion(&st->value_ok);
213 enable_irq(st->client->irq);
217 /* read registers to ensure we flush everything */
218 ret = nau7802_read_conversion(st);
220 goto read_chan_info_failure;
222 /* Wait for a conversion to finish */
223 ret = wait_for_completion_interruptible_timeout(&st->value_ok,
224 msecs_to_jiffies(1000));
229 goto read_chan_info_failure;
231 disable_irq(st->client->irq);
233 *val = st->last_value;
237 read_chan_info_failure:
238 disable_irq(st->client->irq);
243 static int nau7802_read_poll(struct iio_dev *indio_dev,
244 struct iio_chan_spec const *chan,
247 struct nau7802_state *st = iio_priv(indio_dev);
252 /* read registers to ensure we flush everything */
253 ret = nau7802_read_conversion(st);
258 * Because there is actually only one ADC for both channels, we have to
259 * wait for enough conversions to happen before getting a significant
260 * value when changing channels and the values are far appart.
263 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
267 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
268 if (st->sample_rate != NAU7802_SAMP_FREQ_320)
272 ret = i2c_smbus_read_byte_data(st->client,
278 ret = nau7802_read_conversion(st);
281 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
282 st->conversion_count++;
283 } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
285 *val = st->last_value;
290 static int nau7802_read_raw(struct iio_dev *indio_dev,
291 struct iio_chan_spec const *chan,
292 int *val, int *val2, long mask)
294 struct nau7802_state *st = iio_priv(indio_dev);
298 case IIO_CHAN_INFO_RAW:
299 mutex_lock(&st->lock);
301 * Select the channel to use
302 * - Channel 1 is value 0 in the CHS register
303 * - Channel 2 is value 1 in the CHS register
305 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
307 mutex_unlock(&st->lock);
311 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
312 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
314 st->conversion_count = 0;
315 ret = i2c_smbus_write_byte_data(st->client,
317 NAU7802_CTRL2_CHS(chan->channel) |
318 NAU7802_CTRL2_CRS(st->sample_rate));
321 mutex_unlock(&st->lock);
327 ret = nau7802_read_irq(indio_dev, chan, val);
329 ret = nau7802_read_poll(indio_dev, chan, val);
331 mutex_unlock(&st->lock);
334 case IIO_CHAN_INFO_SCALE:
335 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
340 * We have 24 bits of signed data, that means 23 bits of data
344 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
346 return IIO_VAL_FRACTIONAL_LOG2;
348 case IIO_CHAN_INFO_SAMP_FREQ:
349 *val = nau7802_sample_freq_avail[st->sample_rate];
360 static int nau7802_write_raw(struct iio_dev *indio_dev,
361 struct iio_chan_spec const *chan,
362 int val, int val2, long mask)
364 struct nau7802_state *st = iio_priv(indio_dev);
368 case IIO_CHAN_INFO_SCALE:
369 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
370 if (val2 == st->scale_avail[i])
371 return nau7802_set_gain(st, i);
375 case IIO_CHAN_INFO_SAMP_FREQ:
376 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
377 if (val == nau7802_sample_freq_avail[i]) {
378 mutex_lock(&st->lock);
380 st->conversion_count = 0;
381 ret = i2c_smbus_write_byte_data(st->client,
383 NAU7802_CTRL2_CRS(st->sample_rate));
384 mutex_unlock(&st->lock);
397 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
398 struct iio_chan_spec const *chan,
401 return IIO_VAL_INT_PLUS_NANO;
404 static const struct iio_info nau7802_info = {
405 .read_raw = &nau7802_read_raw,
406 .write_raw = &nau7802_write_raw,
407 .write_raw_get_fmt = nau7802_write_raw_get_fmt,
408 .attrs = &nau7802_attribute_group,
411 static int nau7802_probe(struct i2c_client *client)
413 struct iio_dev *indio_dev;
414 struct nau7802_state *st;
419 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
420 if (indio_dev == NULL)
423 st = iio_priv(indio_dev);
425 indio_dev->name = dev_name(&client->dev);
426 indio_dev->modes = INDIO_DIRECT_MODE;
427 indio_dev->info = &nau7802_info;
431 /* Reset the device */
432 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
433 NAU7802_PUCTRL_RR_BIT);
437 /* Enter normal operation mode */
438 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
439 NAU7802_PUCTRL_PUD_BIT);
444 * After about 200 usecs, the device should be ready and then
445 * the Power Up bit will be set to 1. If not, wait for it.
448 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
451 if (!(ret & NAU7802_PUCTRL_PUR_BIT))
454 device_property_read_u32(&client->dev, "nuvoton,vldo", &tmp);
457 data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
458 NAU7802_PUCTRL_CS_BIT;
460 data |= NAU7802_PUCTRL_AVDDS_BIT;
462 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
465 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
470 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
471 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
477 /* Populate available ADC input ranges */
478 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
479 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
482 init_completion(&st->value_ok);
485 * The ADC fires continuously and we can't do anything about
486 * it. So we need to have the IRQ disabled by default, and we
487 * will enable them back when we will need them..
490 ret = devm_request_threaded_irq(&client->dev, client->irq,
493 IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
495 client->dev.driver->name,
499 * What may happen here is that our IRQ controller is
500 * not able to get level interrupt but this is required
501 * by this ADC as when going over 40 sample per second,
502 * the interrupt line may stay high between conversions.
503 * So, we continue no matter what but we switch to
506 dev_info(&client->dev,
507 "Failed to allocate IRQ, using polling mode\n");
514 * We are polling, use the fastest sample rate by
517 st->sample_rate = NAU7802_SAMP_FREQ_320;
518 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
519 NAU7802_CTRL2_CRS(st->sample_rate));
524 /* Setup the ADC channels available on the board */
525 indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
526 indio_dev->channels = nau7802_chan_array;
528 mutex_init(&st->lock);
529 mutex_init(&st->data_lock);
531 return devm_iio_device_register(&client->dev, indio_dev);
534 static const struct i2c_device_id nau7802_i2c_id[] = {
538 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
540 static const struct of_device_id nau7802_dt_ids[] = {
541 { .compatible = "nuvoton,nau7802" },
544 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
546 static struct i2c_driver nau7802_driver = {
547 .probe_new = nau7802_probe,
548 .id_table = nau7802_i2c_id,
551 .of_match_table = nau7802_dt_ids,
555 module_i2c_driver(nau7802_driver);
557 MODULE_LICENSE("GPL");
558 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
559 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
560 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");