Merge 6.4-rc5 into usb-next
[platform/kernel/linux-starfive.git] / drivers / iio / adc / ad4130.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2022 Analog Devices, Inc.
4  * Author: Cosmin Tanislav <cosmin.tanislav@analog.com>
5  */
6
7 #include <linux/bitfield.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
23 #include <linux/units.h>
24
25 #include <asm/div64.h>
26 #include <asm/unaligned.h>
27
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/kfifo_buf.h>
31 #include <linux/iio/sysfs.h>
32
33 #define AD4130_NAME                             "ad4130"
34
35 #define AD4130_COMMS_READ_MASK                  BIT(6)
36
37 #define AD4130_STATUS_REG                       0x00
38
39 #define AD4130_ADC_CONTROL_REG                  0x01
40 #define AD4130_ADC_CONTROL_BIPOLAR_MASK         BIT(14)
41 #define AD4130_ADC_CONTROL_INT_REF_VAL_MASK     BIT(13)
42 #define AD4130_INT_REF_2_5V                     2500000
43 #define AD4130_INT_REF_1_25V                    1250000
44 #define AD4130_ADC_CONTROL_CSB_EN_MASK          BIT(9)
45 #define AD4130_ADC_CONTROL_INT_REF_EN_MASK      BIT(8)
46 #define AD4130_ADC_CONTROL_MODE_MASK            GENMASK(5, 2)
47 #define AD4130_ADC_CONTROL_MCLK_SEL_MASK        GENMASK(1, 0)
48 #define AD4130_MCLK_FREQ_76_8KHZ                76800
49 #define AD4130_MCLK_FREQ_153_6KHZ               153600
50
51 #define AD4130_DATA_REG                         0x02
52
53 #define AD4130_IO_CONTROL_REG                   0x03
54 #define AD4130_IO_CONTROL_INT_PIN_SEL_MASK      GENMASK(9, 8)
55 #define AD4130_IO_CONTROL_GPIO_DATA_MASK        GENMASK(7, 4)
56 #define AD4130_IO_CONTROL_GPIO_CTRL_MASK        GENMASK(3, 0)
57
58 #define AD4130_VBIAS_REG                        0x04
59
60 #define AD4130_ID_REG                           0x05
61
62 #define AD4130_ERROR_REG                        0x06
63
64 #define AD4130_ERROR_EN_REG                     0x07
65
66 #define AD4130_MCLK_COUNT_REG                   0x08
67
68 #define AD4130_CHANNEL_X_REG(x)                 (0x09 + (x))
69 #define AD4130_CHANNEL_EN_MASK                  BIT(23)
70 #define AD4130_CHANNEL_SETUP_MASK               GENMASK(22, 20)
71 #define AD4130_CHANNEL_AINP_MASK                GENMASK(17, 13)
72 #define AD4130_CHANNEL_AINM_MASK                GENMASK(12, 8)
73 #define AD4130_CHANNEL_IOUT1_MASK               GENMASK(7, 4)
74 #define AD4130_CHANNEL_IOUT2_MASK               GENMASK(3, 0)
75
76 #define AD4130_CONFIG_X_REG(x)                  (0x19 + (x))
77 #define AD4130_CONFIG_IOUT1_VAL_MASK            GENMASK(15, 13)
78 #define AD4130_CONFIG_IOUT2_VAL_MASK            GENMASK(12, 10)
79 #define AD4130_CONFIG_BURNOUT_MASK              GENMASK(9, 8)
80 #define AD4130_CONFIG_REF_BUFP_MASK             BIT(7)
81 #define AD4130_CONFIG_REF_BUFM_MASK             BIT(6)
82 #define AD4130_CONFIG_REF_SEL_MASK              GENMASK(5, 4)
83 #define AD4130_CONFIG_PGA_MASK                  GENMASK(3, 1)
84
85 #define AD4130_FILTER_X_REG(x)                  (0x21 + (x))
86 #define AD4130_FILTER_MODE_MASK                 GENMASK(15, 12)
87 #define AD4130_FILTER_SELECT_MASK               GENMASK(10, 0)
88 #define AD4130_FILTER_SELECT_MIN                1
89
90 #define AD4130_OFFSET_X_REG(x)                  (0x29 + (x))
91
92 #define AD4130_GAIN_X_REG(x)                    (0x31 + (x))
93
94 #define AD4130_MISC_REG                         0x39
95
96 #define AD4130_FIFO_CONTROL_REG                 0x3a
97 #define AD4130_FIFO_CONTROL_HEADER_MASK         BIT(18)
98 #define AD4130_FIFO_CONTROL_MODE_MASK           GENMASK(17, 16)
99 #define AD4130_FIFO_CONTROL_WM_INT_EN_MASK      BIT(9)
100 #define AD4130_FIFO_CONTROL_WM_MASK             GENMASK(7, 0)
101 #define AD4130_WATERMARK_256                    0
102
103 #define AD4130_FIFO_STATUS_REG                  0x3b
104
105 #define AD4130_FIFO_THRESHOLD_REG               0x3c
106
107 #define AD4130_FIFO_DATA_REG                    0x3d
108 #define AD4130_FIFO_SIZE                        256
109 #define AD4130_FIFO_MAX_SAMPLE_SIZE             3
110
111 #define AD4130_MAX_ANALOG_PINS                  16
112 #define AD4130_MAX_CHANNELS                     16
113 #define AD4130_MAX_DIFF_INPUTS                  30
114 #define AD4130_MAX_GPIOS                        4
115 #define AD4130_MAX_ODR                          2400
116 #define AD4130_MAX_PGA                          8
117 #define AD4130_MAX_SETUPS                       8
118
119 #define AD4130_AIN2_P1                          0x2
120 #define AD4130_AIN3_P2                          0x3
121
122 #define AD4130_RESET_BUF_SIZE                   8
123 #define AD4130_RESET_SLEEP_US                   (160 * MICRO / AD4130_MCLK_FREQ_76_8KHZ)
124
125 #define AD4130_INVALID_SLOT                     -1
126
127 static const unsigned int ad4130_reg_size[] = {
128         [AD4130_STATUS_REG] = 1,
129         [AD4130_ADC_CONTROL_REG] = 2,
130         [AD4130_DATA_REG] = 3,
131         [AD4130_IO_CONTROL_REG] = 2,
132         [AD4130_VBIAS_REG] = 2,
133         [AD4130_ID_REG] = 1,
134         [AD4130_ERROR_REG] = 2,
135         [AD4130_ERROR_EN_REG] = 2,
136         [AD4130_MCLK_COUNT_REG] = 1,
137         [AD4130_CHANNEL_X_REG(0) ... AD4130_CHANNEL_X_REG(AD4130_MAX_CHANNELS - 1)] = 3,
138         [AD4130_CONFIG_X_REG(0) ... AD4130_CONFIG_X_REG(AD4130_MAX_SETUPS - 1)] = 2,
139         [AD4130_FILTER_X_REG(0) ... AD4130_FILTER_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
140         [AD4130_OFFSET_X_REG(0) ... AD4130_OFFSET_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
141         [AD4130_GAIN_X_REG(0) ... AD4130_GAIN_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
142         [AD4130_MISC_REG] = 2,
143         [AD4130_FIFO_CONTROL_REG] = 3,
144         [AD4130_FIFO_STATUS_REG] = 1,
145         [AD4130_FIFO_THRESHOLD_REG] = 3,
146         [AD4130_FIFO_DATA_REG] = 3,
147 };
148
149 enum ad4130_int_ref_val {
150         AD4130_INT_REF_VAL_2_5V,
151         AD4130_INT_REF_VAL_1_25V,
152 };
153
154 enum ad4130_mclk_sel {
155         AD4130_MCLK_76_8KHZ,
156         AD4130_MCLK_76_8KHZ_OUT,
157         AD4130_MCLK_76_8KHZ_EXT,
158         AD4130_MCLK_153_6KHZ_EXT,
159 };
160
161 enum ad4130_int_pin_sel {
162         AD4130_INT_PIN_INT,
163         AD4130_INT_PIN_CLK,
164         AD4130_INT_PIN_P2,
165         AD4130_INT_PIN_DOUT,
166 };
167
168 enum ad4130_iout {
169         AD4130_IOUT_OFF,
170         AD4130_IOUT_10000NA,
171         AD4130_IOUT_20000NA,
172         AD4130_IOUT_50000NA,
173         AD4130_IOUT_100000NA,
174         AD4130_IOUT_150000NA,
175         AD4130_IOUT_200000NA,
176         AD4130_IOUT_100NA,
177         AD4130_IOUT_MAX
178 };
179
180 enum ad4130_burnout {
181         AD4130_BURNOUT_OFF,
182         AD4130_BURNOUT_500NA,
183         AD4130_BURNOUT_2000NA,
184         AD4130_BURNOUT_4000NA,
185         AD4130_BURNOUT_MAX
186 };
187
188 enum ad4130_ref_sel {
189         AD4130_REF_REFIN1,
190         AD4130_REF_REFIN2,
191         AD4130_REF_REFOUT_AVSS,
192         AD4130_REF_AVDD_AVSS,
193         AD4130_REF_SEL_MAX
194 };
195
196 enum ad4130_fifo_mode {
197         AD4130_FIFO_MODE_DISABLED = 0b00,
198         AD4130_FIFO_MODE_WM = 0b01,
199 };
200
201 enum ad4130_mode {
202         AD4130_MODE_CONTINUOUS = 0b0000,
203         AD4130_MODE_IDLE = 0b0100,
204 };
205
206 enum ad4130_filter_mode {
207         AD4130_FILTER_SINC4,
208         AD4130_FILTER_SINC4_SINC1,
209         AD4130_FILTER_SINC3,
210         AD4130_FILTER_SINC3_REJ60,
211         AD4130_FILTER_SINC3_SINC1,
212         AD4130_FILTER_SINC3_PF1,
213         AD4130_FILTER_SINC3_PF2,
214         AD4130_FILTER_SINC3_PF3,
215         AD4130_FILTER_SINC3_PF4,
216 };
217
218 enum ad4130_pin_function {
219         AD4130_PIN_FN_NONE,
220         AD4130_PIN_FN_SPECIAL = BIT(0),
221         AD4130_PIN_FN_DIFF = BIT(1),
222         AD4130_PIN_FN_EXCITATION = BIT(2),
223         AD4130_PIN_FN_VBIAS = BIT(3),
224 };
225
226 struct ad4130_setup_info {
227         unsigned int                    iout0_val;
228         unsigned int                    iout1_val;
229         unsigned int                    burnout;
230         unsigned int                    pga;
231         unsigned int                    fs;
232         u32                             ref_sel;
233         enum ad4130_filter_mode         filter_mode;
234         bool                            ref_bufp;
235         bool                            ref_bufm;
236 };
237
238 struct ad4130_slot_info {
239         struct ad4130_setup_info        setup;
240         unsigned int                    enabled_channels;
241         unsigned int                    channels;
242 };
243
244 struct ad4130_chan_info {
245         struct ad4130_setup_info        setup;
246         u32                             iout0;
247         u32                             iout1;
248         int                             slot;
249         bool                            enabled;
250         bool                            initialized;
251 };
252
253 struct ad4130_filter_config {
254         enum ad4130_filter_mode         filter_mode;
255         unsigned int                    odr_div;
256         unsigned int                    fs_max;
257         enum iio_available_type         samp_freq_avail_type;
258         int                             samp_freq_avail_len;
259         int                             samp_freq_avail[3][2];
260 };
261
262 struct ad4130_state {
263         struct regmap                   *regmap;
264         struct spi_device               *spi;
265         struct clk                      *mclk;
266         struct regulator_bulk_data      regulators[4];
267         u32                             irq_trigger;
268         u32                             inv_irq_trigger;
269
270         /*
271          * Synchronize access to members the of driver state, and ensure
272          * atomicity of consecutive regmap operations.
273          */
274         struct mutex                    lock;
275         struct completion               completion;
276
277         struct iio_chan_spec            chans[AD4130_MAX_CHANNELS];
278         struct ad4130_chan_info         chans_info[AD4130_MAX_CHANNELS];
279         struct ad4130_slot_info         slots_info[AD4130_MAX_SETUPS];
280         enum ad4130_pin_function        pins_fn[AD4130_MAX_ANALOG_PINS];
281         u32                             vbias_pins[AD4130_MAX_ANALOG_PINS];
282         u32                             num_vbias_pins;
283         int                             scale_tbls[AD4130_REF_SEL_MAX][AD4130_MAX_PGA][2];
284         struct gpio_chip                gc;
285         struct clk_hw                   int_clk_hw;
286
287         u32                     int_pin_sel;
288         u32                     int_ref_uv;
289         u32                     mclk_sel;
290         bool                    int_ref_en;
291         bool                    bipolar;
292
293         unsigned int            num_enabled_channels;
294         unsigned int            effective_watermark;
295         unsigned int            watermark;
296
297         struct spi_message      fifo_msg;
298         struct spi_transfer     fifo_xfer[2];
299
300         /*
301          * DMA (thus cache coherency maintenance) requires any transfer
302          * buffers to live in their own cache lines. As the use of these
303          * buffers is synchronous, all of the buffers used for DMA in this
304          * driver may share a cache line.
305          */
306         u8                      reset_buf[AD4130_RESET_BUF_SIZE] __aligned(IIO_DMA_MINALIGN);
307         u8                      reg_write_tx_buf[4];
308         u8                      reg_read_tx_buf[1];
309         u8                      reg_read_rx_buf[3];
310         u8                      fifo_tx_buf[2];
311         u8                      fifo_rx_buf[AD4130_FIFO_SIZE *
312                                             AD4130_FIFO_MAX_SAMPLE_SIZE];
313 };
314
315 static const char * const ad4130_int_pin_names[] = {
316         [AD4130_INT_PIN_INT] = "int",
317         [AD4130_INT_PIN_CLK] = "clk",
318         [AD4130_INT_PIN_P2] = "p2",
319         [AD4130_INT_PIN_DOUT] = "dout",
320 };
321
322 static const unsigned int ad4130_iout_current_na_tbl[AD4130_IOUT_MAX] = {
323         [AD4130_IOUT_OFF] = 0,
324         [AD4130_IOUT_100NA] = 100,
325         [AD4130_IOUT_10000NA] = 10000,
326         [AD4130_IOUT_20000NA] = 20000,
327         [AD4130_IOUT_50000NA] = 50000,
328         [AD4130_IOUT_100000NA] = 100000,
329         [AD4130_IOUT_150000NA] = 150000,
330         [AD4130_IOUT_200000NA] = 200000,
331 };
332
333 static const unsigned int ad4130_burnout_current_na_tbl[AD4130_BURNOUT_MAX] = {
334         [AD4130_BURNOUT_OFF] = 0,
335         [AD4130_BURNOUT_500NA] = 500,
336         [AD4130_BURNOUT_2000NA] = 2000,
337         [AD4130_BURNOUT_4000NA] = 4000,
338 };
339
340 #define AD4130_VARIABLE_ODR_CONFIG(_filter_mode, _odr_div, _fs_max)     \
341 {                                                                       \
342                 .filter_mode = (_filter_mode),                          \
343                 .odr_div = (_odr_div),                                  \
344                 .fs_max = (_fs_max),                                    \
345                 .samp_freq_avail_type = IIO_AVAIL_RANGE,                \
346                 .samp_freq_avail = {                                    \
347                         { AD4130_MAX_ODR, (_odr_div) * (_fs_max) },     \
348                         { AD4130_MAX_ODR, (_odr_div) * (_fs_max) },     \
349                         { AD4130_MAX_ODR, (_odr_div) },                 \
350                 },                                                      \
351 }
352
353 #define AD4130_FIXED_ODR_CONFIG(_filter_mode, _odr_div)                 \
354 {                                                                       \
355                 .filter_mode = (_filter_mode),                          \
356                 .odr_div = (_odr_div),                                  \
357                 .fs_max = AD4130_FILTER_SELECT_MIN,                     \
358                 .samp_freq_avail_type = IIO_AVAIL_LIST,                 \
359                 .samp_freq_avail_len = 1,                               \
360                 .samp_freq_avail = {                                    \
361                         { AD4130_MAX_ODR, (_odr_div) },                 \
362                 },                                                      \
363 }
364
365 static const struct ad4130_filter_config ad4130_filter_configs[] = {
366         AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4,       1,  10),
367         AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4_SINC1, 11, 10),
368         AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3,       1,  2047),
369         AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_REJ60, 1,  2047),
370         AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_SINC1, 10, 2047),
371         AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF1,      92),
372         AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF2,      100),
373         AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF3,      124),
374         AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF4,      148),
375 };
376
377 static const char * const ad4130_filter_modes_str[] = {
378         [AD4130_FILTER_SINC4] = "sinc4",
379         [AD4130_FILTER_SINC4_SINC1] = "sinc4+sinc1",
380         [AD4130_FILTER_SINC3] = "sinc3",
381         [AD4130_FILTER_SINC3_REJ60] = "sinc3+rej60",
382         [AD4130_FILTER_SINC3_SINC1] = "sinc3+sinc1",
383         [AD4130_FILTER_SINC3_PF1] = "sinc3+pf1",
384         [AD4130_FILTER_SINC3_PF2] = "sinc3+pf2",
385         [AD4130_FILTER_SINC3_PF3] = "sinc3+pf3",
386         [AD4130_FILTER_SINC3_PF4] = "sinc3+pf4",
387 };
388
389 static int ad4130_get_reg_size(struct ad4130_state *st, unsigned int reg,
390                                unsigned int *size)
391 {
392         if (reg >= ARRAY_SIZE(ad4130_reg_size))
393                 return -EINVAL;
394
395         *size = ad4130_reg_size[reg];
396
397         return 0;
398 }
399
400 static unsigned int ad4130_data_reg_size(struct ad4130_state *st)
401 {
402         unsigned int data_reg_size;
403         int ret;
404
405         ret = ad4130_get_reg_size(st, AD4130_DATA_REG, &data_reg_size);
406         if (ret)
407                 return 0;
408
409         return data_reg_size;
410 }
411
412 static unsigned int ad4130_resolution(struct ad4130_state *st)
413 {
414         return ad4130_data_reg_size(st) * BITS_PER_BYTE;
415 }
416
417 static int ad4130_reg_write(void *context, unsigned int reg, unsigned int val)
418 {
419         struct ad4130_state *st = context;
420         unsigned int size;
421         int ret;
422
423         ret = ad4130_get_reg_size(st, reg, &size);
424         if (ret)
425                 return ret;
426
427         st->reg_write_tx_buf[0] = reg;
428
429         switch (size) {
430         case 3:
431                 put_unaligned_be24(val, &st->reg_write_tx_buf[1]);
432                 break;
433         case 2:
434                 put_unaligned_be16(val, &st->reg_write_tx_buf[1]);
435                 break;
436         case 1:
437                 st->reg_write_tx_buf[1] = val;
438                 break;
439         default:
440                 return -EINVAL;
441         }
442
443         return spi_write(st->spi, st->reg_write_tx_buf, size + 1);
444 }
445
446 static int ad4130_reg_read(void *context, unsigned int reg, unsigned int *val)
447 {
448         struct ad4130_state *st = context;
449         struct spi_transfer t[] = {
450                 {
451                         .tx_buf = st->reg_read_tx_buf,
452                         .len = sizeof(st->reg_read_tx_buf),
453                 },
454                 {
455                         .rx_buf = st->reg_read_rx_buf,
456                 },
457         };
458         unsigned int size;
459         int ret;
460
461         ret = ad4130_get_reg_size(st, reg, &size);
462         if (ret)
463                 return ret;
464
465         st->reg_read_tx_buf[0] = AD4130_COMMS_READ_MASK | reg;
466         t[1].len = size;
467
468         ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
469         if (ret)
470                 return ret;
471
472         switch (size) {
473         case 3:
474                 *val = get_unaligned_be24(st->reg_read_rx_buf);
475                 break;
476         case 2:
477                 *val = get_unaligned_be16(st->reg_read_rx_buf);
478                 break;
479         case 1:
480                 *val = st->reg_read_rx_buf[0];
481                 break;
482         default:
483                 return -EINVAL;
484         }
485
486         return 0;
487 }
488
489 static const struct regmap_config ad4130_regmap_config = {
490         .reg_read = ad4130_reg_read,
491         .reg_write = ad4130_reg_write,
492 };
493
494 static int ad4130_gpio_init_valid_mask(struct gpio_chip *gc,
495                                        unsigned long *valid_mask,
496                                        unsigned int ngpios)
497 {
498         struct ad4130_state *st = gpiochip_get_data(gc);
499         unsigned int i;
500
501         /*
502          * Output-only GPIO functionality is available on pins AIN2 through
503          * AIN5. If these pins are used for anything else, do not expose them.
504          */
505         for (i = 0; i < ngpios; i++) {
506                 unsigned int pin = i + AD4130_AIN2_P1;
507                 bool valid = st->pins_fn[pin] == AD4130_PIN_FN_NONE;
508
509                 __assign_bit(i, valid_mask, valid);
510         }
511
512         return 0;
513 }
514
515 static int ad4130_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
516 {
517         return GPIO_LINE_DIRECTION_OUT;
518 }
519
520 static void ad4130_gpio_set(struct gpio_chip *gc, unsigned int offset,
521                             int value)
522 {
523         struct ad4130_state *st = gpiochip_get_data(gc);
524         unsigned int mask = FIELD_PREP(AD4130_IO_CONTROL_GPIO_DATA_MASK,
525                                        BIT(offset));
526
527         regmap_update_bits(st->regmap, AD4130_IO_CONTROL_REG, mask,
528                            value ? mask : 0);
529 }
530
531 static int ad4130_set_mode(struct ad4130_state *st, enum ad4130_mode mode)
532 {
533         return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
534                                   AD4130_ADC_CONTROL_MODE_MASK,
535                                   FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, mode));
536 }
537
538 static int ad4130_set_watermark_interrupt_en(struct ad4130_state *st, bool en)
539 {
540         return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
541                                   AD4130_FIFO_CONTROL_WM_INT_EN_MASK,
542                                   FIELD_PREP(AD4130_FIFO_CONTROL_WM_INT_EN_MASK, en));
543 }
544
545 static unsigned int ad4130_watermark_reg_val(unsigned int val)
546 {
547         if (val == AD4130_FIFO_SIZE)
548                 val = AD4130_WATERMARK_256;
549
550         return val;
551 }
552
553 static int ad4130_set_fifo_mode(struct ad4130_state *st,
554                                 enum ad4130_fifo_mode mode)
555 {
556         return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
557                                   AD4130_FIFO_CONTROL_MODE_MASK,
558                                   FIELD_PREP(AD4130_FIFO_CONTROL_MODE_MASK, mode));
559 }
560
561 static void ad4130_push_fifo_data(struct iio_dev *indio_dev)
562 {
563         struct ad4130_state *st = iio_priv(indio_dev);
564         unsigned int data_reg_size = ad4130_data_reg_size(st);
565         unsigned int transfer_len = st->effective_watermark * data_reg_size;
566         unsigned int set_size = st->num_enabled_channels * data_reg_size;
567         unsigned int i;
568         int ret;
569
570         st->fifo_tx_buf[1] = ad4130_watermark_reg_val(st->effective_watermark);
571         st->fifo_xfer[1].len = transfer_len;
572
573         ret = spi_sync(st->spi, &st->fifo_msg);
574         if (ret)
575                 return;
576
577         for (i = 0; i < transfer_len; i += set_size)
578                 iio_push_to_buffers(indio_dev, &st->fifo_rx_buf[i]);
579 }
580
581 static irqreturn_t ad4130_irq_handler(int irq, void *private)
582 {
583         struct iio_dev *indio_dev = private;
584         struct ad4130_state *st = iio_priv(indio_dev);
585
586         if (iio_buffer_enabled(indio_dev))
587                 ad4130_push_fifo_data(indio_dev);
588         else
589                 complete(&st->completion);
590
591         return IRQ_HANDLED;
592 }
593
594 static int ad4130_find_slot(struct ad4130_state *st,
595                             struct ad4130_setup_info *target_setup_info,
596                             unsigned int *slot, bool *overwrite)
597 {
598         unsigned int i;
599
600         *slot = AD4130_INVALID_SLOT;
601         *overwrite = false;
602
603         for (i = 0; i < AD4130_MAX_SETUPS; i++) {
604                 struct ad4130_slot_info *slot_info = &st->slots_info[i];
605
606                 /* Immediately accept a matching setup info. */
607                 if (!memcmp(target_setup_info, &slot_info->setup,
608                             sizeof(*target_setup_info))) {
609                         *slot = i;
610                         return 0;
611                 }
612
613                 /* Ignore all setups which are used by enabled channels. */
614                 if (slot_info->enabled_channels)
615                         continue;
616
617                 /* Find the least used slot. */
618                 if (*slot == AD4130_INVALID_SLOT ||
619                     slot_info->channels < st->slots_info[*slot].channels)
620                         *slot = i;
621         }
622
623         if (*slot == AD4130_INVALID_SLOT)
624                 return -EINVAL;
625
626         *overwrite = true;
627
628         return 0;
629 }
630
631 static void ad4130_unlink_channel(struct ad4130_state *st, unsigned int channel)
632 {
633         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
634         struct ad4130_slot_info *slot_info = &st->slots_info[chan_info->slot];
635
636         chan_info->slot = AD4130_INVALID_SLOT;
637         slot_info->channels--;
638 }
639
640 static int ad4130_unlink_slot(struct ad4130_state *st, unsigned int slot)
641 {
642         unsigned int i;
643
644         for (i = 0; i < AD4130_MAX_CHANNELS; i++) {
645                 struct ad4130_chan_info *chan_info = &st->chans_info[i];
646
647                 if (!chan_info->initialized || chan_info->slot != slot)
648                         continue;
649
650                 ad4130_unlink_channel(st, i);
651         }
652
653         return 0;
654 }
655
656 static int ad4130_link_channel_slot(struct ad4130_state *st,
657                                     unsigned int channel, unsigned int slot)
658 {
659         struct ad4130_slot_info *slot_info = &st->slots_info[slot];
660         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
661         int ret;
662
663         ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
664                                  AD4130_CHANNEL_SETUP_MASK,
665                                  FIELD_PREP(AD4130_CHANNEL_SETUP_MASK, slot));
666         if (ret)
667                 return ret;
668
669         chan_info->slot = slot;
670         slot_info->channels++;
671
672         return 0;
673 }
674
675 static int ad4130_write_slot_setup(struct ad4130_state *st,
676                                    unsigned int slot,
677                                    struct ad4130_setup_info *setup_info)
678 {
679         unsigned int val;
680         int ret;
681
682         val = FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout0_val) |
683               FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout1_val) |
684               FIELD_PREP(AD4130_CONFIG_BURNOUT_MASK, setup_info->burnout) |
685               FIELD_PREP(AD4130_CONFIG_REF_BUFP_MASK, setup_info->ref_bufp) |
686               FIELD_PREP(AD4130_CONFIG_REF_BUFM_MASK, setup_info->ref_bufm) |
687               FIELD_PREP(AD4130_CONFIG_REF_SEL_MASK, setup_info->ref_sel) |
688               FIELD_PREP(AD4130_CONFIG_PGA_MASK, setup_info->pga);
689
690         ret = regmap_write(st->regmap, AD4130_CONFIG_X_REG(slot), val);
691         if (ret)
692                 return ret;
693
694         val = FIELD_PREP(AD4130_FILTER_MODE_MASK, setup_info->filter_mode) |
695               FIELD_PREP(AD4130_FILTER_SELECT_MASK, setup_info->fs);
696
697         ret = regmap_write(st->regmap, AD4130_FILTER_X_REG(slot), val);
698         if (ret)
699                 return ret;
700
701         memcpy(&st->slots_info[slot].setup, setup_info, sizeof(*setup_info));
702
703         return 0;
704 }
705
706 static int ad4130_write_channel_setup(struct ad4130_state *st,
707                                       unsigned int channel, bool on_enable)
708 {
709         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
710         struct ad4130_setup_info *setup_info = &chan_info->setup;
711         bool overwrite;
712         int slot;
713         int ret;
714
715         /*
716          * The following cases need to be handled.
717          *
718          * 1. Enabled and linked channel with setup changes:
719          *    - Find a slot. If not possible, return error.
720          *    - Unlink channel from current slot.
721          *    - If the slot has channels linked to it, unlink all channels, and
722          *      write the new setup to it.
723          *    - Link channel to new slot.
724          *
725          * 2. Soon to be enabled and unlinked channel:
726          *    - Find a slot. If not possible, return error.
727          *    - If the slot has channels linked to it, unlink all channels, and
728          *      write the new setup to it.
729          *    - Link channel to the slot.
730          *
731          * 3. Disabled and linked channel with setup changes:
732          *    - Unlink channel from current slot.
733          *
734          * 4. Soon to be enabled and linked channel:
735          * 5. Disabled and unlinked channel with setup changes:
736          *    - Do nothing.
737          */
738
739         /* Case 4 */
740         if (on_enable && chan_info->slot != AD4130_INVALID_SLOT)
741                 return 0;
742
743         if (!on_enable && !chan_info->enabled) {
744                 if (chan_info->slot != AD4130_INVALID_SLOT)
745                         /* Case 3 */
746                         ad4130_unlink_channel(st, channel);
747
748                 /* Cases 3 & 5 */
749                 return 0;
750         }
751
752         /* Cases 1 & 2 */
753         ret = ad4130_find_slot(st, setup_info, &slot, &overwrite);
754         if (ret)
755                 return ret;
756
757         if (chan_info->slot != AD4130_INVALID_SLOT)
758                 /* Case 1 */
759                 ad4130_unlink_channel(st, channel);
760
761         if (overwrite) {
762                 ret = ad4130_unlink_slot(st, slot);
763                 if (ret)
764                         return ret;
765
766                 ret = ad4130_write_slot_setup(st, slot, setup_info);
767                 if (ret)
768                         return ret;
769         }
770
771         return ad4130_link_channel_slot(st, channel, slot);
772 }
773
774 static int ad4130_set_channel_enable(struct ad4130_state *st,
775                                      unsigned int channel, bool status)
776 {
777         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
778         struct ad4130_slot_info *slot_info;
779         int ret;
780
781         if (chan_info->enabled == status)
782                 return 0;
783
784         if (status) {
785                 ret = ad4130_write_channel_setup(st, channel, true);
786                 if (ret)
787                         return ret;
788         }
789
790         slot_info = &st->slots_info[chan_info->slot];
791
792         ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
793                                  AD4130_CHANNEL_EN_MASK,
794                                  FIELD_PREP(AD4130_CHANNEL_EN_MASK, status));
795         if (ret)
796                 return ret;
797
798         slot_info->enabled_channels += status ? 1 : -1;
799         chan_info->enabled = status;
800
801         return 0;
802 }
803
804 /*
805  * Table 58. FILTER_MODE_n bits and Filter Types of the datasheet describes
806  * the relation between filter mode, ODR and FS.
807  *
808  * Notice that the max ODR of each filter mode is not necessarily the
809  * absolute max ODR supported by the chip.
810  *
811  * The ODR divider is not explicitly specified, but it can be deduced based
812  * on the ODR range of each filter mode.
813  *
814  * For example, for Sinc4+Sinc1, max ODR is 218.18. That means that the
815  * absolute max ODR is divided by 11 to achieve the max ODR of this filter
816  * mode.
817  *
818  * The formulas for converting between ODR and FS for a specific filter
819  * mode can be deduced from the same table.
820  *
821  * Notice that FS = 1 actually means max ODR, and that ODR decreases by
822  * (maximum ODR / maximum FS) for each increment of FS.
823  *
824  * odr = MAX_ODR / odr_div * (1 - (fs - 1) / fs_max) <=>
825  * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
826  * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
827  * odr = MAX_ODR * (fs_max - fs + 1) / (fs_max * odr_div)
828  * (used in ad4130_fs_to_freq)
829  *
830  * For the opposite formula, FS can be extracted from the last one.
831  *
832  * MAX_ODR * (fs_max - fs + 1) = fs_max * odr_div * odr <=>
833  * fs_max - fs + 1 = fs_max * odr_div * odr / MAX_ODR <=>
834  * fs = 1 + fs_max - fs_max * odr_div * odr / MAX_ODR
835  * (used in ad4130_fs_to_freq)
836  */
837
838 static void ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode,
839                               int val, int val2, unsigned int *fs)
840 {
841         const struct ad4130_filter_config *filter_config =
842                 &ad4130_filter_configs[filter_mode];
843         u64 dividend, divisor;
844         int temp;
845
846         dividend = filter_config->fs_max * filter_config->odr_div *
847                    ((u64)val * NANO + val2);
848         divisor = (u64)AD4130_MAX_ODR * NANO;
849
850         temp = AD4130_FILTER_SELECT_MIN + filter_config->fs_max -
851                DIV64_U64_ROUND_CLOSEST(dividend, divisor);
852
853         if (temp < AD4130_FILTER_SELECT_MIN)
854                 temp = AD4130_FILTER_SELECT_MIN;
855         else if (temp > filter_config->fs_max)
856                 temp = filter_config->fs_max;
857
858         *fs = temp;
859 }
860
861 static void ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode,
862                               unsigned int fs, int *val, int *val2)
863 {
864         const struct ad4130_filter_config *filter_config =
865                 &ad4130_filter_configs[filter_mode];
866         unsigned int dividend, divisor;
867         u64 temp;
868
869         dividend = (filter_config->fs_max - fs + AD4130_FILTER_SELECT_MIN) *
870                    AD4130_MAX_ODR;
871         divisor = filter_config->fs_max * filter_config->odr_div;
872
873         temp = div_u64((u64)dividend * NANO, divisor);
874         *val = div_u64_rem(temp, NANO, val2);
875 }
876
877 static int ad4130_set_filter_mode(struct iio_dev *indio_dev,
878                                   const struct iio_chan_spec *chan,
879                                   unsigned int val)
880 {
881         struct ad4130_state *st = iio_priv(indio_dev);
882         unsigned int channel = chan->scan_index;
883         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
884         struct ad4130_setup_info *setup_info = &chan_info->setup;
885         enum ad4130_filter_mode old_filter_mode;
886         int freq_val, freq_val2;
887         unsigned int old_fs;
888         int ret = 0;
889
890         mutex_lock(&st->lock);
891         if (setup_info->filter_mode == val)
892                 goto out;
893
894         old_fs = setup_info->fs;
895         old_filter_mode = setup_info->filter_mode;
896
897         /*
898          * When switching between filter modes, try to match the ODR as
899          * close as possible. To do this, convert the current FS into ODR
900          * using the old filter mode, then convert it back into FS using
901          * the new filter mode.
902          */
903         ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
904                           &freq_val, &freq_val2);
905
906         ad4130_freq_to_fs(val, freq_val, freq_val2, &setup_info->fs);
907
908         setup_info->filter_mode = val;
909
910         ret = ad4130_write_channel_setup(st, channel, false);
911         if (ret) {
912                 setup_info->fs = old_fs;
913                 setup_info->filter_mode = old_filter_mode;
914         }
915
916  out:
917         mutex_unlock(&st->lock);
918
919         return ret;
920 }
921
922 static int ad4130_get_filter_mode(struct iio_dev *indio_dev,
923                                   const struct iio_chan_spec *chan)
924 {
925         struct ad4130_state *st = iio_priv(indio_dev);
926         unsigned int channel = chan->scan_index;
927         struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
928         enum ad4130_filter_mode filter_mode;
929
930         mutex_lock(&st->lock);
931         filter_mode = setup_info->filter_mode;
932         mutex_unlock(&st->lock);
933
934         return filter_mode;
935 }
936
937 static const struct iio_enum ad4130_filter_mode_enum = {
938         .items = ad4130_filter_modes_str,
939         .num_items = ARRAY_SIZE(ad4130_filter_modes_str),
940         .set = ad4130_set_filter_mode,
941         .get = ad4130_get_filter_mode,
942 };
943
944 static const struct iio_chan_spec_ext_info ad4130_filter_mode_ext_info[] = {
945         IIO_ENUM("filter_mode", IIO_SEPARATE, &ad4130_filter_mode_enum),
946         IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_TYPE,
947                            &ad4130_filter_mode_enum),
948         { }
949 };
950
951 static const struct iio_chan_spec ad4130_channel_template = {
952         .type = IIO_VOLTAGE,
953         .indexed = 1,
954         .differential = 1,
955         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
956                               BIT(IIO_CHAN_INFO_SCALE) |
957                               BIT(IIO_CHAN_INFO_OFFSET) |
958                               BIT(IIO_CHAN_INFO_SAMP_FREQ),
959         .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) |
960                                         BIT(IIO_CHAN_INFO_SAMP_FREQ),
961         .ext_info = ad4130_filter_mode_ext_info,
962         .scan_type = {
963                 .sign = 'u',
964                 .endianness = IIO_BE,
965         },
966 };
967
968 static int ad4130_set_channel_pga(struct ad4130_state *st, unsigned int channel,
969                                   int val, int val2)
970 {
971         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
972         struct ad4130_setup_info *setup_info = &chan_info->setup;
973         unsigned int pga, old_pga;
974         int ret = 0;
975
976         for (pga = 0; pga < AD4130_MAX_PGA; pga++)
977                 if (val == st->scale_tbls[setup_info->ref_sel][pga][0] &&
978                     val2 == st->scale_tbls[setup_info->ref_sel][pga][1])
979                         break;
980
981         if (pga == AD4130_MAX_PGA)
982                 return -EINVAL;
983
984         mutex_lock(&st->lock);
985         if (pga == setup_info->pga)
986                 goto out;
987
988         old_pga = setup_info->pga;
989         setup_info->pga = pga;
990
991         ret = ad4130_write_channel_setup(st, channel, false);
992         if (ret)
993                 setup_info->pga = old_pga;
994
995 out:
996         mutex_unlock(&st->lock);
997
998         return ret;
999 }
1000
1001 static int ad4130_set_channel_freq(struct ad4130_state *st,
1002                                    unsigned int channel, int val, int val2)
1003 {
1004         struct ad4130_chan_info *chan_info = &st->chans_info[channel];
1005         struct ad4130_setup_info *setup_info = &chan_info->setup;
1006         unsigned int fs, old_fs;
1007         int ret = 0;
1008
1009         mutex_lock(&st->lock);
1010         old_fs = setup_info->fs;
1011
1012         ad4130_freq_to_fs(setup_info->filter_mode, val, val2, &fs);
1013
1014         if (fs == setup_info->fs)
1015                 goto out;
1016
1017         setup_info->fs = fs;
1018
1019         ret = ad4130_write_channel_setup(st, channel, false);
1020         if (ret)
1021                 setup_info->fs = old_fs;
1022
1023 out:
1024         mutex_unlock(&st->lock);
1025
1026         return ret;
1027 }
1028
1029 static int _ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1030                                int *val)
1031 {
1032         struct ad4130_state *st = iio_priv(indio_dev);
1033         int ret;
1034
1035         ret = ad4130_set_channel_enable(st, channel, true);
1036         if (ret)
1037                 return ret;
1038
1039         reinit_completion(&st->completion);
1040
1041         ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1042         if (ret)
1043                 return ret;
1044
1045         ret = wait_for_completion_timeout(&st->completion,
1046                                           msecs_to_jiffies(1000));
1047         if (!ret)
1048                 return -ETIMEDOUT;
1049
1050         ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1051         if (ret)
1052                 return ret;
1053
1054         ret = regmap_read(st->regmap, AD4130_DATA_REG, val);
1055         if (ret)
1056                 return ret;
1057
1058         ret = ad4130_set_channel_enable(st, channel, false);
1059         if (ret)
1060                 return ret;
1061
1062         return IIO_VAL_INT;
1063 }
1064
1065 static int ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1066                               int *val)
1067 {
1068         struct ad4130_state *st = iio_priv(indio_dev);
1069         int ret;
1070
1071         ret = iio_device_claim_direct_mode(indio_dev);
1072         if (ret)
1073                 return ret;
1074
1075         mutex_lock(&st->lock);
1076         ret = _ad4130_read_sample(indio_dev, channel, val);
1077         mutex_unlock(&st->lock);
1078
1079         iio_device_release_direct_mode(indio_dev);
1080
1081         return ret;
1082 }
1083
1084 static int ad4130_read_raw(struct iio_dev *indio_dev,
1085                            struct iio_chan_spec const *chan,
1086                            int *val, int *val2, long info)
1087 {
1088         struct ad4130_state *st = iio_priv(indio_dev);
1089         unsigned int channel = chan->scan_index;
1090         struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1091
1092         switch (info) {
1093         case IIO_CHAN_INFO_RAW:
1094                 return ad4130_read_sample(indio_dev, channel, val);
1095         case IIO_CHAN_INFO_SCALE:
1096                 mutex_lock(&st->lock);
1097                 *val = st->scale_tbls[setup_info->ref_sel][setup_info->pga][0];
1098                 *val2 = st->scale_tbls[setup_info->ref_sel][setup_info->pga][1];
1099                 mutex_unlock(&st->lock);
1100
1101                 return IIO_VAL_INT_PLUS_NANO;
1102         case IIO_CHAN_INFO_OFFSET:
1103                 *val = st->bipolar ? -BIT(chan->scan_type.realbits - 1) : 0;
1104
1105                 return IIO_VAL_INT;
1106         case IIO_CHAN_INFO_SAMP_FREQ:
1107                 mutex_lock(&st->lock);
1108                 ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
1109                                   val, val2);
1110                 mutex_unlock(&st->lock);
1111
1112                 return IIO_VAL_INT_PLUS_NANO;
1113         default:
1114                 return -EINVAL;
1115         }
1116 }
1117
1118 static int ad4130_read_avail(struct iio_dev *indio_dev,
1119                              struct iio_chan_spec const *chan,
1120                              const int **vals, int *type, int *length,
1121                              long info)
1122 {
1123         struct ad4130_state *st = iio_priv(indio_dev);
1124         unsigned int channel = chan->scan_index;
1125         struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1126         const struct ad4130_filter_config *filter_config;
1127
1128         switch (info) {
1129         case IIO_CHAN_INFO_SCALE:
1130                 *vals = (int *)st->scale_tbls[setup_info->ref_sel];
1131                 *length = ARRAY_SIZE(st->scale_tbls[setup_info->ref_sel]) * 2;
1132
1133                 *type = IIO_VAL_INT_PLUS_NANO;
1134
1135                 return IIO_AVAIL_LIST;
1136         case IIO_CHAN_INFO_SAMP_FREQ:
1137                 mutex_lock(&st->lock);
1138                 filter_config = &ad4130_filter_configs[setup_info->filter_mode];
1139                 mutex_unlock(&st->lock);
1140
1141                 *vals = (int *)filter_config->samp_freq_avail;
1142                 *length = filter_config->samp_freq_avail_len * 2;
1143                 *type = IIO_VAL_FRACTIONAL;
1144
1145                 return filter_config->samp_freq_avail_type;
1146         default:
1147                 return -EINVAL;
1148         }
1149 }
1150
1151 static int ad4130_write_raw_get_fmt(struct iio_dev *indio_dev,
1152                                     struct iio_chan_spec const *chan,
1153                                     long info)
1154 {
1155         switch (info) {
1156         case IIO_CHAN_INFO_SCALE:
1157         case IIO_CHAN_INFO_SAMP_FREQ:
1158                 return IIO_VAL_INT_PLUS_NANO;
1159         default:
1160                 return -EINVAL;
1161         }
1162 }
1163
1164 static int ad4130_write_raw(struct iio_dev *indio_dev,
1165                             struct iio_chan_spec const *chan,
1166                             int val, int val2, long info)
1167 {
1168         struct ad4130_state *st = iio_priv(indio_dev);
1169         unsigned int channel = chan->scan_index;
1170
1171         switch (info) {
1172         case IIO_CHAN_INFO_SCALE:
1173                 return ad4130_set_channel_pga(st, channel, val, val2);
1174         case IIO_CHAN_INFO_SAMP_FREQ:
1175                 return ad4130_set_channel_freq(st, channel, val, val2);
1176         default:
1177                 return -EINVAL;
1178         }
1179 }
1180
1181 static int ad4130_reg_access(struct iio_dev *indio_dev, unsigned int reg,
1182                              unsigned int writeval, unsigned int *readval)
1183 {
1184         struct ad4130_state *st = iio_priv(indio_dev);
1185
1186         if (readval)
1187                 return regmap_read(st->regmap, reg, readval);
1188
1189         return regmap_write(st->regmap, reg, writeval);
1190 }
1191
1192 static int ad4130_update_scan_mode(struct iio_dev *indio_dev,
1193                                    const unsigned long *scan_mask)
1194 {
1195         struct ad4130_state *st = iio_priv(indio_dev);
1196         unsigned int channel;
1197         unsigned int val = 0;
1198         int ret;
1199
1200         mutex_lock(&st->lock);
1201
1202         for_each_set_bit(channel, scan_mask, indio_dev->num_channels) {
1203                 ret = ad4130_set_channel_enable(st, channel, true);
1204                 if (ret)
1205                         goto out;
1206
1207                 val++;
1208         }
1209
1210         st->num_enabled_channels = val;
1211
1212 out:
1213         mutex_unlock(&st->lock);
1214
1215         return 0;
1216 }
1217
1218 static int ad4130_set_fifo_watermark(struct iio_dev *indio_dev, unsigned int val)
1219 {
1220         struct ad4130_state *st = iio_priv(indio_dev);
1221         unsigned int eff;
1222         int ret;
1223
1224         if (val > AD4130_FIFO_SIZE)
1225                 return -EINVAL;
1226
1227         eff = val * st->num_enabled_channels;
1228         if (eff > AD4130_FIFO_SIZE)
1229                 /*
1230                  * Always set watermark to a multiple of the number of
1231                  * enabled channels to avoid making the FIFO unaligned.
1232                  */
1233                 eff = rounddown(AD4130_FIFO_SIZE, st->num_enabled_channels);
1234
1235         mutex_lock(&st->lock);
1236
1237         ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1238                                  AD4130_FIFO_CONTROL_WM_MASK,
1239                                  FIELD_PREP(AD4130_FIFO_CONTROL_WM_MASK,
1240                                             ad4130_watermark_reg_val(eff)));
1241         if (ret)
1242                 goto out;
1243
1244         st->effective_watermark = eff;
1245         st->watermark = val;
1246
1247 out:
1248         mutex_unlock(&st->lock);
1249
1250         return ret;
1251 }
1252
1253 static const struct iio_info ad4130_info = {
1254         .read_raw = ad4130_read_raw,
1255         .read_avail = ad4130_read_avail,
1256         .write_raw_get_fmt = ad4130_write_raw_get_fmt,
1257         .write_raw = ad4130_write_raw,
1258         .update_scan_mode = ad4130_update_scan_mode,
1259         .hwfifo_set_watermark = ad4130_set_fifo_watermark,
1260         .debugfs_reg_access = ad4130_reg_access,
1261 };
1262
1263 static int ad4130_buffer_postenable(struct iio_dev *indio_dev)
1264 {
1265         struct ad4130_state *st = iio_priv(indio_dev);
1266         int ret;
1267
1268         mutex_lock(&st->lock);
1269
1270         ret = ad4130_set_watermark_interrupt_en(st, true);
1271         if (ret)
1272                 goto out;
1273
1274         ret = irq_set_irq_type(st->spi->irq, st->inv_irq_trigger);
1275         if (ret)
1276                 goto out;
1277
1278         ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_WM);
1279         if (ret)
1280                 goto out;
1281
1282         ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1283
1284 out:
1285         mutex_unlock(&st->lock);
1286
1287         return ret;
1288 }
1289
1290 static int ad4130_buffer_predisable(struct iio_dev *indio_dev)
1291 {
1292         struct ad4130_state *st = iio_priv(indio_dev);
1293         unsigned int i;
1294         int ret;
1295
1296         mutex_lock(&st->lock);
1297
1298         ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1299         if (ret)
1300                 goto out;
1301
1302         ret = irq_set_irq_type(st->spi->irq, st->irq_trigger);
1303         if (ret)
1304                 goto out;
1305
1306         ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_DISABLED);
1307         if (ret)
1308                 goto out;
1309
1310         ret = ad4130_set_watermark_interrupt_en(st, false);
1311         if (ret)
1312                 goto out;
1313
1314         /*
1315          * update_scan_mode() is not called in the disable path, disable all
1316          * channels here.
1317          */
1318         for (i = 0; i < indio_dev->num_channels; i++) {
1319                 ret = ad4130_set_channel_enable(st, i, false);
1320                 if (ret)
1321                         goto out;
1322         }
1323
1324 out:
1325         mutex_unlock(&st->lock);
1326
1327         return ret;
1328 }
1329
1330 static const struct iio_buffer_setup_ops ad4130_buffer_ops = {
1331         .postenable = ad4130_buffer_postenable,
1332         .predisable = ad4130_buffer_predisable,
1333 };
1334
1335 static ssize_t hwfifo_watermark_show(struct device *dev,
1336                                      struct device_attribute *attr, char *buf)
1337 {
1338         struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1339         unsigned int val;
1340
1341         mutex_lock(&st->lock);
1342         val = st->watermark;
1343         mutex_unlock(&st->lock);
1344
1345         return sysfs_emit(buf, "%d\n", val);
1346 }
1347
1348 static ssize_t hwfifo_enabled_show(struct device *dev,
1349                                    struct device_attribute *attr, char *buf)
1350 {
1351         struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1352         unsigned int val;
1353         int ret;
1354
1355         ret = regmap_read(st->regmap, AD4130_FIFO_CONTROL_REG, &val);
1356         if (ret)
1357                 return ret;
1358
1359         val = FIELD_GET(AD4130_FIFO_CONTROL_MODE_MASK, val);
1360
1361         return sysfs_emit(buf, "%d\n", val != AD4130_FIFO_MODE_DISABLED);
1362 }
1363
1364 static ssize_t hwfifo_watermark_min_show(struct device *dev,
1365                                          struct device_attribute *attr,
1366                                          char *buf)
1367 {
1368         return sysfs_emit(buf, "%s\n", "1");
1369 }
1370
1371 static ssize_t hwfifo_watermark_max_show(struct device *dev,
1372                                          struct device_attribute *attr,
1373                                          char *buf)
1374 {
1375         return sysfs_emit(buf, "%s\n", __stringify(AD4130_FIFO_SIZE));
1376 }
1377
1378 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0);
1379 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
1380 static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
1381 static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
1382
1383 static const struct iio_dev_attr *ad4130_fifo_attributes[] = {
1384         &iio_dev_attr_hwfifo_watermark_min,
1385         &iio_dev_attr_hwfifo_watermark_max,
1386         &iio_dev_attr_hwfifo_watermark,
1387         &iio_dev_attr_hwfifo_enabled,
1388         NULL
1389 };
1390
1391 static int _ad4130_find_table_index(const unsigned int *tbl, size_t len,
1392                                     unsigned int val)
1393 {
1394         unsigned int i;
1395
1396         for (i = 0; i < len; i++)
1397                 if (tbl[i] == val)
1398                         return i;
1399
1400         return -EINVAL;
1401 }
1402
1403 #define ad4130_find_table_index(table, val) \
1404         _ad4130_find_table_index(table, ARRAY_SIZE(table), val)
1405
1406 static int ad4130_get_ref_voltage(struct ad4130_state *st,
1407                                   enum ad4130_ref_sel ref_sel)
1408 {
1409         switch (ref_sel) {
1410         case AD4130_REF_REFIN1:
1411                 return regulator_get_voltage(st->regulators[2].consumer);
1412         case AD4130_REF_REFIN2:
1413                 return regulator_get_voltage(st->regulators[3].consumer);
1414         case AD4130_REF_AVDD_AVSS:
1415                 return regulator_get_voltage(st->regulators[0].consumer);
1416         case AD4130_REF_REFOUT_AVSS:
1417                 return st->int_ref_uv;
1418         default:
1419                 return -EINVAL;
1420         }
1421 }
1422
1423 static int ad4130_parse_fw_setup(struct ad4130_state *st,
1424                                  struct fwnode_handle *child,
1425                                  struct ad4130_setup_info *setup_info)
1426 {
1427         struct device *dev = &st->spi->dev;
1428         u32 tmp;
1429         int ret;
1430
1431         tmp = 0;
1432         fwnode_property_read_u32(child, "adi,excitation-current-0-nanoamp", &tmp);
1433         ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1434         if (ret < 0)
1435                 return dev_err_probe(dev, ret,
1436                                      "Invalid excitation current %unA\n", tmp);
1437         setup_info->iout0_val = ret;
1438
1439         tmp = 0;
1440         fwnode_property_read_u32(child, "adi,excitation-current-1-nanoamp", &tmp);
1441         ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1442         if (ret < 0)
1443                 return dev_err_probe(dev, ret,
1444                                      "Invalid excitation current %unA\n", tmp);
1445         setup_info->iout1_val = ret;
1446
1447         tmp = 0;
1448         fwnode_property_read_u32(child, "adi,burnout-current-nanoamp", &tmp);
1449         ret = ad4130_find_table_index(ad4130_burnout_current_na_tbl, tmp);
1450         if (ret < 0)
1451                 return dev_err_probe(dev, ret,
1452                                      "Invalid burnout current %unA\n", tmp);
1453         setup_info->burnout = ret;
1454
1455         setup_info->ref_bufp = fwnode_property_read_bool(child, "adi,buffered-positive");
1456         setup_info->ref_bufm = fwnode_property_read_bool(child, "adi,buffered-negative");
1457
1458         setup_info->ref_sel = AD4130_REF_REFIN1;
1459         fwnode_property_read_u32(child, "adi,reference-select",
1460                                  &setup_info->ref_sel);
1461         if (setup_info->ref_sel >= AD4130_REF_SEL_MAX)
1462                 return dev_err_probe(dev, -EINVAL,
1463                                      "Invalid reference selected %u\n",
1464                                      setup_info->ref_sel);
1465
1466         if (setup_info->ref_sel == AD4130_REF_REFOUT_AVSS)
1467                 st->int_ref_en = true;
1468
1469         ret = ad4130_get_ref_voltage(st, setup_info->ref_sel);
1470         if (ret < 0)
1471                 return dev_err_probe(dev, ret, "Cannot use reference %u\n",
1472                                      setup_info->ref_sel);
1473
1474         return 0;
1475 }
1476
1477 static int ad4130_validate_diff_channel(struct ad4130_state *st, u32 pin)
1478 {
1479         struct device *dev = &st->spi->dev;
1480
1481         if (pin >= AD4130_MAX_DIFF_INPUTS)
1482                 return dev_err_probe(dev, -EINVAL,
1483                                      "Invalid differential channel %u\n", pin);
1484
1485         if (pin >= AD4130_MAX_ANALOG_PINS)
1486                 return 0;
1487
1488         if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1489                 return dev_err_probe(dev, -EINVAL,
1490                                      "Pin %u already used with fn %u\n", pin,
1491                                      st->pins_fn[pin]);
1492
1493         st->pins_fn[pin] |= AD4130_PIN_FN_DIFF;
1494
1495         return 0;
1496 }
1497
1498 static int ad4130_validate_diff_channels(struct ad4130_state *st,
1499                                          u32 *pins, unsigned int len)
1500 {
1501         unsigned int i;
1502         int ret;
1503
1504         for (i = 0; i < len; i++) {
1505                 ret = ad4130_validate_diff_channel(st, pins[i]);
1506                 if (ret)
1507                         return ret;
1508         }
1509
1510         return 0;
1511 }
1512
1513 static int ad4130_validate_excitation_pin(struct ad4130_state *st, u32 pin)
1514 {
1515         struct device *dev = &st->spi->dev;
1516
1517         if (pin >= AD4130_MAX_ANALOG_PINS)
1518                 return dev_err_probe(dev, -EINVAL,
1519                                      "Invalid excitation pin %u\n", pin);
1520
1521         if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1522                 return dev_err_probe(dev, -EINVAL,
1523                                      "Pin %u already used with fn %u\n", pin,
1524                                      st->pins_fn[pin]);
1525
1526         st->pins_fn[pin] |= AD4130_PIN_FN_EXCITATION;
1527
1528         return 0;
1529 }
1530
1531 static int ad4130_validate_vbias_pin(struct ad4130_state *st, u32 pin)
1532 {
1533         struct device *dev = &st->spi->dev;
1534
1535         if (pin >= AD4130_MAX_ANALOG_PINS)
1536                 return dev_err_probe(dev, -EINVAL, "Invalid vbias pin %u\n",
1537                                      pin);
1538
1539         if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1540                 return dev_err_probe(dev, -EINVAL,
1541                                      "Pin %u already used with fn %u\n", pin,
1542                                      st->pins_fn[pin]);
1543
1544         st->pins_fn[pin] |= AD4130_PIN_FN_VBIAS;
1545
1546         return 0;
1547 }
1548
1549 static int ad4130_validate_vbias_pins(struct ad4130_state *st,
1550                                       u32 *pins, unsigned int len)
1551 {
1552         unsigned int i;
1553         int ret;
1554
1555         for (i = 0; i < st->num_vbias_pins; i++) {
1556                 ret = ad4130_validate_vbias_pin(st, pins[i]);
1557                 if (ret)
1558                         return ret;
1559         }
1560
1561         return 0;
1562 }
1563
1564 static int ad4130_parse_fw_channel(struct iio_dev *indio_dev,
1565                                    struct fwnode_handle *child)
1566 {
1567         struct ad4130_state *st = iio_priv(indio_dev);
1568         unsigned int resolution = ad4130_resolution(st);
1569         unsigned int index = indio_dev->num_channels++;
1570         struct device *dev = &st->spi->dev;
1571         struct ad4130_chan_info *chan_info;
1572         struct iio_chan_spec *chan;
1573         u32 pins[2];
1574         int ret;
1575
1576         if (index >= AD4130_MAX_CHANNELS)
1577                 return dev_err_probe(dev, -EINVAL, "Too many channels\n");
1578
1579         chan = &st->chans[index];
1580         chan_info = &st->chans_info[index];
1581
1582         *chan = ad4130_channel_template;
1583         chan->scan_type.realbits = resolution;
1584         chan->scan_type.storagebits = resolution;
1585         chan->scan_index = index;
1586
1587         chan_info->slot = AD4130_INVALID_SLOT;
1588         chan_info->setup.fs = AD4130_FILTER_SELECT_MIN;
1589         chan_info->initialized = true;
1590
1591         ret = fwnode_property_read_u32_array(child, "diff-channels", pins,
1592                                              ARRAY_SIZE(pins));
1593         if (ret)
1594                 return ret;
1595
1596         ret = ad4130_validate_diff_channels(st, pins, ARRAY_SIZE(pins));
1597         if (ret)
1598                 return ret;
1599
1600         chan->channel = pins[0];
1601         chan->channel2 = pins[1];
1602
1603         ret = ad4130_parse_fw_setup(st, child, &chan_info->setup);
1604         if (ret)
1605                 return ret;
1606
1607         fwnode_property_read_u32(child, "adi,excitation-pin-0",
1608                                  &chan_info->iout0);
1609         if (chan_info->setup.iout0_val != AD4130_IOUT_OFF) {
1610                 ret = ad4130_validate_excitation_pin(st, chan_info->iout0);
1611                 if (ret)
1612                         return ret;
1613         }
1614
1615         fwnode_property_read_u32(child, "adi,excitation-pin-1",
1616                                  &chan_info->iout1);
1617         if (chan_info->setup.iout1_val != AD4130_IOUT_OFF) {
1618                 ret = ad4130_validate_excitation_pin(st, chan_info->iout1);
1619                 if (ret)
1620                         return ret;
1621         }
1622
1623         return 0;
1624 }
1625
1626 static int ad4130_parse_fw_children(struct iio_dev *indio_dev)
1627 {
1628         struct ad4130_state *st = iio_priv(indio_dev);
1629         struct device *dev = &st->spi->dev;
1630         struct fwnode_handle *child;
1631         int ret;
1632
1633         indio_dev->channels = st->chans;
1634
1635         device_for_each_child_node(dev, child) {
1636                 ret = ad4130_parse_fw_channel(indio_dev, child);
1637                 if (ret) {
1638                         fwnode_handle_put(child);
1639                         return ret;
1640                 }
1641         }
1642
1643         return 0;
1644 }
1645
1646 static int ad4310_parse_fw(struct iio_dev *indio_dev)
1647 {
1648         struct ad4130_state *st = iio_priv(indio_dev);
1649         struct device *dev = &st->spi->dev;
1650         u32 ext_clk_freq = AD4130_MCLK_FREQ_76_8KHZ;
1651         unsigned int i;
1652         int avdd_uv;
1653         int irq;
1654         int ret;
1655
1656         st->mclk = devm_clk_get_optional(dev, "mclk");
1657         if (IS_ERR(st->mclk))
1658                 return dev_err_probe(dev, PTR_ERR(st->mclk),
1659                                      "Failed to get mclk\n");
1660
1661         st->int_pin_sel = AD4130_INT_PIN_INT;
1662
1663         for (i = 0; i < ARRAY_SIZE(ad4130_int_pin_names); i++) {
1664                 irq = fwnode_irq_get_byname(dev_fwnode(dev),
1665                                             ad4130_int_pin_names[i]);
1666                 if (irq > 0) {
1667                         st->int_pin_sel = i;
1668                         break;
1669                 }
1670         }
1671
1672         if (st->int_pin_sel == AD4130_INT_PIN_DOUT)
1673                 return dev_err_probe(dev, -EINVAL,
1674                                      "Cannot use DOUT as interrupt pin\n");
1675
1676         if (st->int_pin_sel == AD4130_INT_PIN_P2)
1677                 st->pins_fn[AD4130_AIN3_P2] = AD4130_PIN_FN_SPECIAL;
1678
1679         device_property_read_u32(dev, "adi,ext-clk-freq-hz", &ext_clk_freq);
1680         if (ext_clk_freq != AD4130_MCLK_FREQ_153_6KHZ &&
1681             ext_clk_freq != AD4130_MCLK_FREQ_76_8KHZ)
1682                 return dev_err_probe(dev, -EINVAL,
1683                                      "Invalid external clock frequency %u\n",
1684                                      ext_clk_freq);
1685
1686         if (st->mclk && ext_clk_freq == AD4130_MCLK_FREQ_153_6KHZ)
1687                 st->mclk_sel = AD4130_MCLK_153_6KHZ_EXT;
1688         else if (st->mclk)
1689                 st->mclk_sel = AD4130_MCLK_76_8KHZ_EXT;
1690         else
1691                 st->mclk_sel = AD4130_MCLK_76_8KHZ;
1692
1693         if (st->int_pin_sel == AD4130_INT_PIN_CLK &&
1694             st->mclk_sel != AD4130_MCLK_76_8KHZ)
1695                 return dev_err_probe(dev, -EINVAL,
1696                                      "Invalid clock %u for interrupt pin %u\n",
1697                                      st->mclk_sel, st->int_pin_sel);
1698
1699         st->int_ref_uv = AD4130_INT_REF_2_5V;
1700
1701         /*
1702          * When the AVDD supply is set to below 2.5V the internal reference of
1703          * 1.25V should be selected.
1704          * See datasheet page 37, section ADC REFERENCE.
1705          */
1706         avdd_uv = regulator_get_voltage(st->regulators[0].consumer);
1707         if (avdd_uv > 0 && avdd_uv < AD4130_INT_REF_2_5V)
1708                 st->int_ref_uv = AD4130_INT_REF_1_25V;
1709
1710         st->bipolar = device_property_read_bool(dev, "adi,bipolar");
1711
1712         ret = device_property_count_u32(dev, "adi,vbias-pins");
1713         if (ret > 0) {
1714                 if (ret > AD4130_MAX_ANALOG_PINS)
1715                         return dev_err_probe(dev, -EINVAL,
1716                                              "Too many vbias pins %u\n", ret);
1717
1718                 st->num_vbias_pins = ret;
1719
1720                 ret = device_property_read_u32_array(dev, "adi,vbias-pins",
1721                                                      st->vbias_pins,
1722                                                      st->num_vbias_pins);
1723                 if (ret)
1724                         return dev_err_probe(dev, ret,
1725                                              "Failed to read vbias pins\n");
1726
1727                 ret = ad4130_validate_vbias_pins(st, st->vbias_pins,
1728                                                  st->num_vbias_pins);
1729                 if (ret)
1730                         return ret;
1731         }
1732
1733         ret = ad4130_parse_fw_children(indio_dev);
1734         if (ret)
1735                 return ret;
1736
1737         return 0;
1738 }
1739
1740 static void ad4130_fill_scale_tbls(struct ad4130_state *st)
1741 {
1742         unsigned int pow = ad4130_resolution(st) - st->bipolar;
1743         unsigned int i, j;
1744
1745         for (i = 0; i < AD4130_REF_SEL_MAX; i++) {
1746                 int ret;
1747                 u64 nv;
1748
1749                 ret = ad4130_get_ref_voltage(st, i);
1750                 if (ret < 0)
1751                         continue;
1752
1753                 nv = (u64)ret * NANO;
1754
1755                 for (j = 0; j < AD4130_MAX_PGA; j++)
1756                         st->scale_tbls[i][j][1] = div_u64(nv >> (pow + j), MILLI);
1757         }
1758 }
1759
1760 static void ad4130_clk_disable_unprepare(void *clk)
1761 {
1762         clk_disable_unprepare(clk);
1763 }
1764
1765 static int ad4130_set_mclk_sel(struct ad4130_state *st,
1766                                enum ad4130_mclk_sel mclk_sel)
1767 {
1768         return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
1769                                  AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1770                                  FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1771                                             mclk_sel));
1772 }
1773
1774 static unsigned long ad4130_int_clk_recalc_rate(struct clk_hw *hw,
1775                                                 unsigned long parent_rate)
1776 {
1777         return AD4130_MCLK_FREQ_76_8KHZ;
1778 }
1779
1780 static int ad4130_int_clk_is_enabled(struct clk_hw *hw)
1781 {
1782         struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1783
1784         return st->mclk_sel == AD4130_MCLK_76_8KHZ_OUT;
1785 }
1786
1787 static int ad4130_int_clk_prepare(struct clk_hw *hw)
1788 {
1789         struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1790         int ret;
1791
1792         ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ_OUT);
1793         if (ret)
1794                 return ret;
1795
1796         st->mclk_sel = AD4130_MCLK_76_8KHZ_OUT;
1797
1798         return 0;
1799 }
1800
1801 static void ad4130_int_clk_unprepare(struct clk_hw *hw)
1802 {
1803         struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1804         int ret;
1805
1806         ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ);
1807         if (ret)
1808                 return;
1809
1810         st->mclk_sel = AD4130_MCLK_76_8KHZ;
1811 }
1812
1813 static const struct clk_ops ad4130_int_clk_ops = {
1814         .recalc_rate = ad4130_int_clk_recalc_rate,
1815         .is_enabled = ad4130_int_clk_is_enabled,
1816         .prepare = ad4130_int_clk_prepare,
1817         .unprepare = ad4130_int_clk_unprepare,
1818 };
1819
1820 static void ad4130_clk_del_provider(void *of_node)
1821 {
1822         of_clk_del_provider(of_node);
1823 }
1824
1825 static int ad4130_setup_int_clk(struct ad4130_state *st)
1826 {
1827         struct device *dev = &st->spi->dev;
1828         struct device_node *of_node = dev_of_node(dev);
1829         struct clk_init_data init;
1830         const char *clk_name;
1831         struct clk *clk;
1832         int ret;
1833
1834         if (st->int_pin_sel == AD4130_INT_PIN_CLK ||
1835             st->mclk_sel != AD4130_MCLK_76_8KHZ)
1836                 return 0;
1837
1838         if (!of_node)
1839                 return 0;
1840
1841         clk_name = of_node->name;
1842         of_property_read_string(of_node, "clock-output-names", &clk_name);
1843
1844         init.name = clk_name;
1845         init.ops = &ad4130_int_clk_ops;
1846
1847         st->int_clk_hw.init = &init;
1848         clk = devm_clk_register(dev, &st->int_clk_hw);
1849         if (IS_ERR(clk))
1850                 return PTR_ERR(clk);
1851
1852         ret = of_clk_add_provider(of_node, of_clk_src_simple_get, clk);
1853         if (ret)
1854                 return ret;
1855
1856         return devm_add_action_or_reset(dev, ad4130_clk_del_provider, of_node);
1857 }
1858
1859 static int ad4130_setup(struct iio_dev *indio_dev)
1860 {
1861         struct ad4130_state *st = iio_priv(indio_dev);
1862         struct device *dev = &st->spi->dev;
1863         unsigned int int_ref_val;
1864         unsigned long rate = AD4130_MCLK_FREQ_76_8KHZ;
1865         unsigned int val;
1866         unsigned int i;
1867         int ret;
1868
1869         if (st->mclk_sel == AD4130_MCLK_153_6KHZ_EXT)
1870                 rate = AD4130_MCLK_FREQ_153_6KHZ;
1871
1872         ret = clk_set_rate(st->mclk, rate);
1873         if (ret)
1874                 return ret;
1875
1876         ret = clk_prepare_enable(st->mclk);
1877         if (ret)
1878                 return ret;
1879
1880         ret = devm_add_action_or_reset(dev, ad4130_clk_disable_unprepare,
1881                                        st->mclk);
1882         if (ret)
1883                 return ret;
1884
1885         if (st->int_ref_uv == AD4130_INT_REF_2_5V)
1886                 int_ref_val = AD4130_INT_REF_VAL_2_5V;
1887         else
1888                 int_ref_val = AD4130_INT_REF_VAL_1_25V;
1889
1890         /* Switch to SPI 4-wire mode. */
1891         val =  FIELD_PREP(AD4130_ADC_CONTROL_CSB_EN_MASK, 1);
1892         val |= FIELD_PREP(AD4130_ADC_CONTROL_BIPOLAR_MASK, st->bipolar);
1893         val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_EN_MASK, st->int_ref_en);
1894         val |= FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, AD4130_MODE_IDLE);
1895         val |= FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, st->mclk_sel);
1896         val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_VAL_MASK, int_ref_val);
1897
1898         ret = regmap_write(st->regmap, AD4130_ADC_CONTROL_REG, val);
1899         if (ret)
1900                 return ret;
1901
1902         /*
1903          * Configure all GPIOs for output. If configured, the interrupt function
1904          * of P2 takes priority over the GPIO out function.
1905          */
1906         val =  AD4130_IO_CONTROL_GPIO_CTRL_MASK;
1907         val |= FIELD_PREP(AD4130_IO_CONTROL_INT_PIN_SEL_MASK, st->int_pin_sel);
1908
1909         ret = regmap_write(st->regmap, AD4130_IO_CONTROL_REG, val);
1910         if (ret)
1911                 return ret;
1912
1913         val = 0;
1914         for (i = 0; i < st->num_vbias_pins; i++)
1915                 val |= BIT(st->vbias_pins[i]);
1916
1917         ret = regmap_write(st->regmap, AD4130_VBIAS_REG, val);
1918         if (ret)
1919                 return ret;
1920
1921         ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1922                                  AD4130_FIFO_CONTROL_HEADER_MASK, 0);
1923         if (ret)
1924                 return ret;
1925
1926         /* FIFO watermark interrupt starts out as enabled, disable it. */
1927         ret = ad4130_set_watermark_interrupt_en(st, false);
1928         if (ret)
1929                 return ret;
1930
1931         /* Setup channels. */
1932         for (i = 0; i < indio_dev->num_channels; i++) {
1933                 struct ad4130_chan_info *chan_info = &st->chans_info[i];
1934                 struct iio_chan_spec *chan = &st->chans[i];
1935                 unsigned int val;
1936
1937                 val = FIELD_PREP(AD4130_CHANNEL_AINP_MASK, chan->channel) |
1938                       FIELD_PREP(AD4130_CHANNEL_AINM_MASK, chan->channel2) |
1939                       FIELD_PREP(AD4130_CHANNEL_IOUT1_MASK, chan_info->iout0) |
1940                       FIELD_PREP(AD4130_CHANNEL_IOUT2_MASK, chan_info->iout1);
1941
1942                 ret = regmap_write(st->regmap, AD4130_CHANNEL_X_REG(i), val);
1943                 if (ret)
1944                         return ret;
1945         }
1946
1947         return 0;
1948 }
1949
1950 static int ad4130_soft_reset(struct ad4130_state *st)
1951 {
1952         int ret;
1953
1954         ret = spi_write(st->spi, st->reset_buf, sizeof(st->reset_buf));
1955         if (ret)
1956                 return ret;
1957
1958         fsleep(AD4130_RESET_SLEEP_US);
1959
1960         return 0;
1961 }
1962
1963 static void ad4130_disable_regulators(void *data)
1964 {
1965         struct ad4130_state *st = data;
1966
1967         regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators);
1968 }
1969
1970 static int ad4130_probe(struct spi_device *spi)
1971 {
1972         struct device *dev = &spi->dev;
1973         struct iio_dev *indio_dev;
1974         struct ad4130_state *st;
1975         int ret;
1976
1977         indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1978         if (!indio_dev)
1979                 return -ENOMEM;
1980
1981         st = iio_priv(indio_dev);
1982
1983         memset(st->reset_buf, 0xff, sizeof(st->reset_buf));
1984         init_completion(&st->completion);
1985         mutex_init(&st->lock);
1986         st->spi = spi;
1987
1988         /*
1989          * Xfer:   [ XFR1 ] [         XFR2         ]
1990          * Master:  0x7D N   ......................
1991          * Slave:   ......   DATA1 DATA2 ... DATAN
1992          */
1993         st->fifo_tx_buf[0] = AD4130_COMMS_READ_MASK | AD4130_FIFO_DATA_REG;
1994         st->fifo_xfer[0].tx_buf = st->fifo_tx_buf;
1995         st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf);
1996         st->fifo_xfer[1].rx_buf = st->fifo_rx_buf;
1997         spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer,
1998                                         ARRAY_SIZE(st->fifo_xfer));
1999
2000         indio_dev->name = AD4130_NAME;
2001         indio_dev->modes = INDIO_DIRECT_MODE;
2002         indio_dev->info = &ad4130_info;
2003
2004         st->regmap = devm_regmap_init(dev, NULL, st, &ad4130_regmap_config);
2005         if (IS_ERR(st->regmap))
2006                 return PTR_ERR(st->regmap);
2007
2008         st->regulators[0].supply = "avdd";
2009         st->regulators[1].supply = "iovdd";
2010         st->regulators[2].supply = "refin1";
2011         st->regulators[3].supply = "refin2";
2012
2013         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators),
2014                                       st->regulators);
2015         if (ret)
2016                 return dev_err_probe(dev, ret, "Failed to get regulators\n");
2017
2018         ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators);
2019         if (ret)
2020                 return dev_err_probe(dev, ret, "Failed to enable regulators\n");
2021
2022         ret = devm_add_action_or_reset(dev, ad4130_disable_regulators, st);
2023         if (ret)
2024                 return dev_err_probe(dev, ret,
2025                                      "Failed to add regulators disable action\n");
2026
2027         ret = ad4130_soft_reset(st);
2028         if (ret)
2029                 return ret;
2030
2031         ret = ad4310_parse_fw(indio_dev);
2032         if (ret)
2033                 return ret;
2034
2035         ret = ad4130_setup(indio_dev);
2036         if (ret)
2037                 return ret;
2038
2039         ret = ad4130_setup_int_clk(st);
2040         if (ret)
2041                 return ret;
2042
2043         ad4130_fill_scale_tbls(st);
2044
2045         st->gc.owner = THIS_MODULE;
2046         st->gc.label = AD4130_NAME;
2047         st->gc.base = -1;
2048         st->gc.ngpio = AD4130_MAX_GPIOS;
2049         st->gc.parent = dev;
2050         st->gc.can_sleep = true;
2051         st->gc.init_valid_mask = ad4130_gpio_init_valid_mask;
2052         st->gc.get_direction = ad4130_gpio_get_direction;
2053         st->gc.set = ad4130_gpio_set;
2054
2055         ret = devm_gpiochip_add_data(dev, &st->gc, st);
2056         if (ret)
2057                 return ret;
2058
2059         ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev,
2060                                               &ad4130_buffer_ops,
2061                                               ad4130_fifo_attributes);
2062         if (ret)
2063                 return ret;
2064
2065         ret = devm_request_threaded_irq(dev, spi->irq, NULL,
2066                                         ad4130_irq_handler, IRQF_ONESHOT,
2067                                         indio_dev->name, indio_dev);
2068         if (ret)
2069                 return dev_err_probe(dev, ret, "Failed to request irq\n");
2070
2071         /*
2072          * When the chip enters FIFO mode, IRQ polarity is inverted.
2073          * When the chip exits FIFO mode, IRQ polarity returns to normal.
2074          * See datasheet pages: 65, FIFO Watermark Interrupt section,
2075          * and 71, Bit Descriptions for STATUS Register, RDYB.
2076          * Cache the normal and inverted IRQ triggers to set them when
2077          * entering and exiting FIFO mode.
2078          */
2079         st->irq_trigger = irq_get_trigger_type(spi->irq);
2080         if (st->irq_trigger & IRQF_TRIGGER_RISING)
2081                 st->inv_irq_trigger = IRQF_TRIGGER_FALLING;
2082         else if (st->irq_trigger & IRQF_TRIGGER_FALLING)
2083                 st->inv_irq_trigger = IRQF_TRIGGER_RISING;
2084         else
2085                 return dev_err_probe(dev, -EINVAL, "Invalid irq flags: %u\n",
2086                                      st->irq_trigger);
2087
2088         return devm_iio_device_register(dev, indio_dev);
2089 }
2090
2091 static const struct of_device_id ad4130_of_match[] = {
2092         {
2093                 .compatible = "adi,ad4130",
2094         },
2095         { }
2096 };
2097 MODULE_DEVICE_TABLE(of, ad4130_of_match);
2098
2099 static struct spi_driver ad4130_driver = {
2100         .driver = {
2101                 .name = AD4130_NAME,
2102                 .of_match_table = ad4130_of_match,
2103         },
2104         .probe = ad4130_probe,
2105 };
2106 module_spi_driver(ad4130_driver);
2107
2108 MODULE_AUTHOR("Cosmin Tanislav <cosmin.tanislav@analog.com>");
2109 MODULE_DESCRIPTION("Analog Devices AD4130 SPI driver");
2110 MODULE_LICENSE("GPL");