iio: Remove superfluous of_node assignments
[platform/kernel/linux-rpi.git] / drivers / iio / adc / ab8500-gpadc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * Author: Arun R Murthy <arun.murthy@stericsson.com>
6  * Author: Daniel Willerud <daniel.willerud@stericsson.com>
7  * Author: Johan Palsson <johan.palsson@stericsson.com>
8  * Author: M'boumba Cedric Madianga
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * AB8500 General Purpose ADC driver. The AB8500 uses reference voltages:
12  * VinVADC, and VADC relative to GND to do its job. It monitors main and backup
13  * battery voltages, AC (mains) voltage, USB cable voltage, as well as voltages
14  * representing the temperature of the chip die and battery, accessory
15  * detection by resistance measurements using relative voltages and GSM burst
16  * information.
17  *
18  * Some of the voltages are measured on external pins on the IC, such as
19  * battery temperature or "ADC aux" 1 and 2. Other voltages are internal rails
20  * from other parts of the ASIC such as main charger voltage, main and battery
21  * backup voltage or USB VBUS voltage. For this reason drivers for other
22  * parts of the system are required to obtain handles to the ADC to do work
23  * for them and the IIO driver provides arbitration among these consumers.
24  */
25 #include <linux/init.h>
26 #include <linux/bits.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/sysfs.h>
29 #include <linux/device.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/delay.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/platform_device.h>
35 #include <linux/completion.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/random.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/mfd/abx500.h>
41 #include <linux/mfd/abx500/ab8500.h>
42
43 /* GPADC register offsets and bit definitions */
44
45 #define AB8500_GPADC_CTRL1_REG          0x00
46 /* GPADC control register 1 bits */
47 #define AB8500_GPADC_CTRL1_DISABLE              0x00
48 #define AB8500_GPADC_CTRL1_ENABLE               BIT(0)
49 #define AB8500_GPADC_CTRL1_TRIG_ENA             BIT(1)
50 #define AB8500_GPADC_CTRL1_START_SW_CONV        BIT(2)
51 #define AB8500_GPADC_CTRL1_BTEMP_PULL_UP        BIT(3)
52 /* 0 = use rising edge, 1 = use falling edge */
53 #define AB8500_GPADC_CTRL1_TRIG_EDGE            BIT(4)
54 /* 0 = use VTVOUT, 1 = use VRTC as pull-up supply for battery temp NTC */
55 #define AB8500_GPADC_CTRL1_PUPSUPSEL            BIT(5)
56 #define AB8500_GPADC_CTRL1_BUF_ENA              BIT(6)
57 #define AB8500_GPADC_CTRL1_ICHAR_ENA            BIT(7)
58
59 #define AB8500_GPADC_CTRL2_REG          0x01
60 #define AB8500_GPADC_CTRL3_REG          0x02
61 /*
62  * GPADC control register 2 and 3 bits
63  * the bit layout is the same for SW and HW conversion set-up
64  */
65 #define AB8500_GPADC_CTRL2_AVG_1                0x00
66 #define AB8500_GPADC_CTRL2_AVG_4                BIT(5)
67 #define AB8500_GPADC_CTRL2_AVG_8                BIT(6)
68 #define AB8500_GPADC_CTRL2_AVG_16               (BIT(5) | BIT(6))
69
70 enum ab8500_gpadc_channel {
71         AB8500_GPADC_CHAN_UNUSED = 0x00,
72         AB8500_GPADC_CHAN_BAT_CTRL = 0x01,
73         AB8500_GPADC_CHAN_BAT_TEMP = 0x02,
74         /* This is not used on AB8505 */
75         AB8500_GPADC_CHAN_MAIN_CHARGER = 0x03,
76         AB8500_GPADC_CHAN_ACC_DET_1 = 0x04,
77         AB8500_GPADC_CHAN_ACC_DET_2 = 0x05,
78         AB8500_GPADC_CHAN_ADC_AUX_1 = 0x06,
79         AB8500_GPADC_CHAN_ADC_AUX_2 = 0x07,
80         AB8500_GPADC_CHAN_VBAT_A = 0x08,
81         AB8500_GPADC_CHAN_VBUS = 0x09,
82         AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT = 0x0a,
83         AB8500_GPADC_CHAN_USB_CHARGER_CURRENT = 0x0b,
84         AB8500_GPADC_CHAN_BACKUP_BAT = 0x0c,
85         /* Only on AB8505 */
86         AB8505_GPADC_CHAN_DIE_TEMP = 0x0d,
87         AB8500_GPADC_CHAN_ID = 0x0e,
88         AB8500_GPADC_CHAN_INTERNAL_TEST_1 = 0x0f,
89         AB8500_GPADC_CHAN_INTERNAL_TEST_2 = 0x10,
90         AB8500_GPADC_CHAN_INTERNAL_TEST_3 = 0x11,
91         /* FIXME: Applicable to all ASIC variants? */
92         AB8500_GPADC_CHAN_XTAL_TEMP = 0x12,
93         AB8500_GPADC_CHAN_VBAT_TRUE_MEAS = 0x13,
94         /* FIXME: Doesn't seem to work with pure AB8500 */
95         AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT = 0x1c,
96         AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT = 0x1d,
97         AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT = 0x1e,
98         AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT = 0x1f,
99         /*
100          * Virtual channel used only for ibat conversion to ampere.
101          * Battery current conversion (ibat) cannot be requested as a
102          * single conversion but it is always requested in combination
103          * with other input requests.
104          */
105         AB8500_GPADC_CHAN_IBAT_VIRTUAL = 0xFF,
106 };
107
108 #define AB8500_GPADC_AUTO_TIMER_REG     0x03
109
110 #define AB8500_GPADC_STAT_REG           0x04
111 #define AB8500_GPADC_STAT_BUSY          BIT(0)
112
113 #define AB8500_GPADC_MANDATAL_REG       0x05
114 #define AB8500_GPADC_MANDATAH_REG       0x06
115 #define AB8500_GPADC_AUTODATAL_REG      0x07
116 #define AB8500_GPADC_AUTODATAH_REG      0x08
117 #define AB8500_GPADC_MUX_CTRL_REG       0x09
118 #define AB8540_GPADC_MANDATA2L_REG      0x09
119 #define AB8540_GPADC_MANDATA2H_REG      0x0A
120 #define AB8540_GPADC_APEAAX_REG         0x10
121 #define AB8540_GPADC_APEAAT_REG         0x11
122 #define AB8540_GPADC_APEAAM_REG         0x12
123 #define AB8540_GPADC_APEAAH_REG         0x13
124 #define AB8540_GPADC_APEAAL_REG         0x14
125
126 /*
127  * OTP register offsets
128  * Bank : 0x15
129  */
130 #define AB8500_GPADC_CAL_1      0x0F
131 #define AB8500_GPADC_CAL_2      0x10
132 #define AB8500_GPADC_CAL_3      0x11
133 #define AB8500_GPADC_CAL_4      0x12
134 #define AB8500_GPADC_CAL_5      0x13
135 #define AB8500_GPADC_CAL_6      0x14
136 #define AB8500_GPADC_CAL_7      0x15
137 /* New calibration for 8540 */
138 #define AB8540_GPADC_OTP4_REG_7 0x38
139 #define AB8540_GPADC_OTP4_REG_6 0x39
140 #define AB8540_GPADC_OTP4_REG_5 0x3A
141
142 #define AB8540_GPADC_DIS_ZERO   0x00
143 #define AB8540_GPADC_EN_VBIAS_XTAL_TEMP 0x02
144
145 /* GPADC constants from AB8500 spec, UM0836 */
146 #define AB8500_ADC_RESOLUTION           1024
147 #define AB8500_ADC_CH_BTEMP_MIN         0
148 #define AB8500_ADC_CH_BTEMP_MAX         1350
149 #define AB8500_ADC_CH_DIETEMP_MIN       0
150 #define AB8500_ADC_CH_DIETEMP_MAX       1350
151 #define AB8500_ADC_CH_CHG_V_MIN         0
152 #define AB8500_ADC_CH_CHG_V_MAX         20030
153 #define AB8500_ADC_CH_ACCDET2_MIN       0
154 #define AB8500_ADC_CH_ACCDET2_MAX       2500
155 #define AB8500_ADC_CH_VBAT_MIN          2300
156 #define AB8500_ADC_CH_VBAT_MAX          4800
157 #define AB8500_ADC_CH_CHG_I_MIN         0
158 #define AB8500_ADC_CH_CHG_I_MAX         1500
159 #define AB8500_ADC_CH_BKBAT_MIN         0
160 #define AB8500_ADC_CH_BKBAT_MAX         3200
161
162 /* GPADC constants from AB8540 spec */
163 #define AB8500_ADC_CH_IBAT_MIN          (-6000) /* mA range measured by ADC for ibat */
164 #define AB8500_ADC_CH_IBAT_MAX          6000
165 #define AB8500_ADC_CH_IBAT_MIN_V        (-60)   /* mV range measured by ADC for ibat */
166 #define AB8500_ADC_CH_IBAT_MAX_V        60
167 #define AB8500_GPADC_IBAT_VDROP_L       (-56)  /* mV */
168 #define AB8500_GPADC_IBAT_VDROP_H       56
169
170 /* This is used to not lose precision when dividing to get gain and offset */
171 #define AB8500_GPADC_CALIB_SCALE        1000
172 /*
173  * Number of bits shift used to not lose precision
174  * when dividing to get ibat gain.
175  */
176 #define AB8500_GPADC_CALIB_SHIFT_IBAT   20
177
178 /* Time in ms before disabling regulator */
179 #define AB8500_GPADC_AUTOSUSPEND_DELAY  1
180
181 #define AB8500_GPADC_CONVERSION_TIME    500 /* ms */
182
183 enum ab8500_cal_channels {
184         AB8500_CAL_VMAIN = 0,
185         AB8500_CAL_BTEMP,
186         AB8500_CAL_VBAT,
187         AB8500_CAL_IBAT,
188         AB8500_CAL_NR,
189 };
190
191 /**
192  * struct ab8500_adc_cal_data - Table for storing gain and offset for the
193  * calibrated ADC channels
194  * @gain: Gain of the ADC channel
195  * @offset: Offset of the ADC channel
196  * @otp_calib_hi: Calibration from OTP
197  * @otp_calib_lo: Calibration from OTP
198  */
199 struct ab8500_adc_cal_data {
200         s64 gain;
201         s64 offset;
202         u16 otp_calib_hi;
203         u16 otp_calib_lo;
204 };
205
206 /**
207  * struct ab8500_gpadc_chan_info - per-channel GPADC info
208  * @name: name of the channel
209  * @id: the internal AB8500 ID number for the channel
210  * @hardware_control: indicate that we want to use hardware ADC control
211  * on this channel, the default is software ADC control. Hardware control
212  * is normally only used to test the battery voltage during GSM bursts
213  * and needs a hardware trigger on the GPADCTrig pin of the ASIC.
214  * @falling_edge: indicate that we want to trigger on falling edge
215  * rather than rising edge, rising edge is the default
216  * @avg_sample: how many samples to average: must be 1, 4, 8 or 16.
217  * @trig_timer: how long to wait for the trigger, in 32kHz periods:
218  * 0 .. 255 periods
219  */
220 struct ab8500_gpadc_chan_info {
221         const char *name;
222         u8 id;
223         bool hardware_control;
224         bool falling_edge;
225         u8 avg_sample;
226         u8 trig_timer;
227 };
228
229 /**
230  * struct ab8500_gpadc - AB8500 GPADC device information
231  * @dev: pointer to the containing device
232  * @ab8500: pointer to the parent AB8500 device
233  * @chans: internal per-channel information container
234  * @nchans: number of channels
235  * @complete: pointer to the completion that indicates
236  * the completion of an gpadc conversion cycle
237  * @vddadc: pointer to the regulator supplying VDDADC
238  * @irq_sw: interrupt number that is used by gpadc for software ADC conversion
239  * @irq_hw: interrupt number that is used by gpadc for hardware ADC conversion
240  * @cal_data: array of ADC calibration data structs
241  */
242 struct ab8500_gpadc {
243         struct device *dev;
244         struct ab8500 *ab8500;
245         struct ab8500_gpadc_chan_info *chans;
246         unsigned int nchans;
247         struct completion complete;
248         struct regulator *vddadc;
249         int irq_sw;
250         int irq_hw;
251         struct ab8500_adc_cal_data cal_data[AB8500_CAL_NR];
252 };
253
254 static struct ab8500_gpadc_chan_info *
255 ab8500_gpadc_get_channel(struct ab8500_gpadc *gpadc, u8 chan)
256 {
257         struct ab8500_gpadc_chan_info *ch;
258         int i;
259
260         for (i = 0; i < gpadc->nchans; i++) {
261                 ch = &gpadc->chans[i];
262                 if (ch->id == chan)
263                         break;
264         }
265         if (i == gpadc->nchans)
266                 return NULL;
267
268         return ch;
269 }
270
271 /**
272  * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
273  * @gpadc: GPADC instance
274  * @ch: the sampled channel this raw value is coming from
275  * @ad_value: the raw value
276  */
277 static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc,
278                                       enum ab8500_gpadc_channel ch,
279                                       int ad_value)
280 {
281         int res;
282
283         switch (ch) {
284         case AB8500_GPADC_CHAN_MAIN_CHARGER:
285                 /* No calibration data available: just interpolate */
286                 if (!gpadc->cal_data[AB8500_CAL_VMAIN].gain) {
287                         res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX -
288                                 AB8500_ADC_CH_CHG_V_MIN) * ad_value /
289                                 AB8500_ADC_RESOLUTION;
290                         break;
291                 }
292                 /* Here we can use calibration */
293                 res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VMAIN].gain +
294                         gpadc->cal_data[AB8500_CAL_VMAIN].offset) / AB8500_GPADC_CALIB_SCALE;
295                 break;
296
297         case AB8500_GPADC_CHAN_BAT_CTRL:
298         case AB8500_GPADC_CHAN_BAT_TEMP:
299         case AB8500_GPADC_CHAN_ACC_DET_1:
300         case AB8500_GPADC_CHAN_ADC_AUX_1:
301         case AB8500_GPADC_CHAN_ADC_AUX_2:
302         case AB8500_GPADC_CHAN_XTAL_TEMP:
303                 /* No calibration data available: just interpolate */
304                 if (!gpadc->cal_data[AB8500_CAL_BTEMP].gain) {
305                         res = AB8500_ADC_CH_BTEMP_MIN + (AB8500_ADC_CH_BTEMP_MAX -
306                                 AB8500_ADC_CH_BTEMP_MIN) * ad_value /
307                                 AB8500_ADC_RESOLUTION;
308                         break;
309                 }
310                 /* Here we can use calibration */
311                 res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_BTEMP].gain +
312                         gpadc->cal_data[AB8500_CAL_BTEMP].offset) / AB8500_GPADC_CALIB_SCALE;
313                 break;
314
315         case AB8500_GPADC_CHAN_VBAT_A:
316         case AB8500_GPADC_CHAN_VBAT_TRUE_MEAS:
317                 /* No calibration data available: just interpolate */
318                 if (!gpadc->cal_data[AB8500_CAL_VBAT].gain) {
319                         res = AB8500_ADC_CH_VBAT_MIN + (AB8500_ADC_CH_VBAT_MAX -
320                                 AB8500_ADC_CH_VBAT_MIN) * ad_value /
321                                 AB8500_ADC_RESOLUTION;
322                         break;
323                 }
324                 /* Here we can use calibration */
325                 res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VBAT].gain +
326                         gpadc->cal_data[AB8500_CAL_VBAT].offset) / AB8500_GPADC_CALIB_SCALE;
327                 break;
328
329         case AB8505_GPADC_CHAN_DIE_TEMP:
330                 res = AB8500_ADC_CH_DIETEMP_MIN +
331                         (AB8500_ADC_CH_DIETEMP_MAX - AB8500_ADC_CH_DIETEMP_MIN) * ad_value /
332                         AB8500_ADC_RESOLUTION;
333                 break;
334
335         case AB8500_GPADC_CHAN_ACC_DET_2:
336                 res = AB8500_ADC_CH_ACCDET2_MIN +
337                         (AB8500_ADC_CH_ACCDET2_MAX - AB8500_ADC_CH_ACCDET2_MIN) * ad_value /
338                         AB8500_ADC_RESOLUTION;
339                 break;
340
341         case AB8500_GPADC_CHAN_VBUS:
342                 res = AB8500_ADC_CH_CHG_V_MIN +
343                         (AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value /
344                         AB8500_ADC_RESOLUTION;
345                 break;
346
347         case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
348         case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
349                 res = AB8500_ADC_CH_CHG_I_MIN +
350                         (AB8500_ADC_CH_CHG_I_MAX - AB8500_ADC_CH_CHG_I_MIN) * ad_value /
351                         AB8500_ADC_RESOLUTION;
352                 break;
353
354         case AB8500_GPADC_CHAN_BACKUP_BAT:
355                 res = AB8500_ADC_CH_BKBAT_MIN +
356                         (AB8500_ADC_CH_BKBAT_MAX - AB8500_ADC_CH_BKBAT_MIN) * ad_value /
357                         AB8500_ADC_RESOLUTION;
358                 break;
359
360         case AB8500_GPADC_CHAN_IBAT_VIRTUAL:
361                 /* No calibration data available: just interpolate */
362                 if (!gpadc->cal_data[AB8500_CAL_IBAT].gain) {
363                         res = AB8500_ADC_CH_IBAT_MIN + (AB8500_ADC_CH_IBAT_MAX -
364                                 AB8500_ADC_CH_IBAT_MIN) * ad_value /
365                                 AB8500_ADC_RESOLUTION;
366                         break;
367                 }
368                 /* Here we can use calibration */
369                 res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_IBAT].gain +
370                                 gpadc->cal_data[AB8500_CAL_IBAT].offset)
371                                 >> AB8500_GPADC_CALIB_SHIFT_IBAT;
372                 break;
373
374         default:
375                 dev_err(gpadc->dev,
376                         "unknown channel ID: %d, not possible to convert\n",
377                         ch);
378                 res = -EINVAL;
379                 break;
380
381         }
382
383         return res;
384 }
385
386 static int ab8500_gpadc_read(struct ab8500_gpadc *gpadc,
387                              const struct ab8500_gpadc_chan_info *ch,
388                              int *ibat)
389 {
390         int ret;
391         int looplimit = 0;
392         unsigned long completion_timeout;
393         u8 val;
394         u8 low_data, high_data, low_data2, high_data2;
395         u8 ctrl1;
396         u8 ctrl23;
397         unsigned int delay_min = 0;
398         unsigned int delay_max = 0;
399         u8 data_low_addr, data_high_addr;
400
401         if (!gpadc)
402                 return -ENODEV;
403
404         /* check if conversion is supported */
405         if ((gpadc->irq_sw <= 0) && !ch->hardware_control)
406                 return -ENOTSUPP;
407         if ((gpadc->irq_hw <= 0) && ch->hardware_control)
408                 return -ENOTSUPP;
409
410         /* Enable vddadc by grabbing PM runtime */
411         pm_runtime_get_sync(gpadc->dev);
412
413         /* Check if ADC is not busy, lock and proceed */
414         do {
415                 ret = abx500_get_register_interruptible(gpadc->dev,
416                         AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
417                 if (ret < 0)
418                         goto out;
419                 if (!(val & AB8500_GPADC_STAT_BUSY))
420                         break;
421                 msleep(20);
422         } while (++looplimit < 10);
423         if (looplimit >= 10 && (val & AB8500_GPADC_STAT_BUSY)) {
424                 dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
425                 ret = -EINVAL;
426                 goto out;
427         }
428
429         /* Enable GPADC */
430         ctrl1 = AB8500_GPADC_CTRL1_ENABLE;
431
432         /* Select the channel source and set average samples */
433         switch (ch->avg_sample) {
434         case 1:
435                 ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_1;
436                 break;
437         case 4:
438                 ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_4;
439                 break;
440         case 8:
441                 ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_8;
442                 break;
443         default:
444                 ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_16;
445                 break;
446         }
447
448         if (ch->hardware_control) {
449                 ret = abx500_set_register_interruptible(gpadc->dev,
450                                 AB8500_GPADC, AB8500_GPADC_CTRL3_REG, ctrl23);
451                 ctrl1 |= AB8500_GPADC_CTRL1_TRIG_ENA;
452                 if (ch->falling_edge)
453                         ctrl1 |= AB8500_GPADC_CTRL1_TRIG_EDGE;
454         } else {
455                 ret = abx500_set_register_interruptible(gpadc->dev,
456                                 AB8500_GPADC, AB8500_GPADC_CTRL2_REG, ctrl23);
457         }
458         if (ret < 0) {
459                 dev_err(gpadc->dev,
460                         "gpadc_conversion: set avg samples failed\n");
461                 goto out;
462         }
463
464         /*
465          * Enable ADC, buffering, select rising edge and enable ADC path
466          * charging current sense if it needed, ABB 3.0 needs some special
467          * treatment too.
468          */
469         switch (ch->id) {
470         case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT:
471         case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT:
472                 ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
473                         AB8500_GPADC_CTRL1_ICHAR_ENA;
474                 break;
475         case AB8500_GPADC_CHAN_BAT_TEMP:
476                 if (!is_ab8500_2p0_or_earlier(gpadc->ab8500)) {
477                         ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA |
478                                 AB8500_GPADC_CTRL1_BTEMP_PULL_UP;
479                         /*
480                          * Delay might be needed for ABB8500 cut 3.0, if not,
481                          * remove when hardware will be available
482                          */
483                         delay_min = 1000; /* Delay in micro seconds */
484                         delay_max = 10000; /* large range optimises sleepmode */
485                         break;
486                 }
487                 /* Fall through */
488         default:
489                 ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA;
490                 break;
491         }
492
493         /* Write configuration to control register 1 */
494         ret = abx500_set_register_interruptible(gpadc->dev,
495                 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ctrl1);
496         if (ret < 0) {
497                 dev_err(gpadc->dev,
498                         "gpadc_conversion: set Control register failed\n");
499                 goto out;
500         }
501
502         if (delay_min != 0)
503                 usleep_range(delay_min, delay_max);
504
505         if (ch->hardware_control) {
506                 /* Set trigger delay timer */
507                 ret = abx500_set_register_interruptible(gpadc->dev,
508                         AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG,
509                         ch->trig_timer);
510                 if (ret < 0) {
511                         dev_err(gpadc->dev,
512                                 "gpadc_conversion: trig timer failed\n");
513                         goto out;
514                 }
515                 completion_timeout = 2 * HZ;
516                 data_low_addr = AB8500_GPADC_AUTODATAL_REG;
517                 data_high_addr = AB8500_GPADC_AUTODATAH_REG;
518         } else {
519                 /* Start SW conversion */
520                 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
521                         AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
522                         AB8500_GPADC_CTRL1_START_SW_CONV,
523                         AB8500_GPADC_CTRL1_START_SW_CONV);
524                 if (ret < 0) {
525                         dev_err(gpadc->dev,
526                                 "gpadc_conversion: start s/w conv failed\n");
527                         goto out;
528                 }
529                 completion_timeout = msecs_to_jiffies(AB8500_GPADC_CONVERSION_TIME);
530                 data_low_addr = AB8500_GPADC_MANDATAL_REG;
531                 data_high_addr = AB8500_GPADC_MANDATAH_REG;
532         }
533
534         /* Wait for completion of conversion */
535         if (!wait_for_completion_timeout(&gpadc->complete,
536                         completion_timeout)) {
537                 dev_err(gpadc->dev,
538                         "timeout didn't receive GPADC conv interrupt\n");
539                 ret = -EINVAL;
540                 goto out;
541         }
542
543         /* Read the converted RAW data */
544         ret = abx500_get_register_interruptible(gpadc->dev,
545                         AB8500_GPADC, data_low_addr, &low_data);
546         if (ret < 0) {
547                 dev_err(gpadc->dev,
548                         "gpadc_conversion: read low data failed\n");
549                 goto out;
550         }
551
552         ret = abx500_get_register_interruptible(gpadc->dev,
553                 AB8500_GPADC, data_high_addr, &high_data);
554         if (ret < 0) {
555                 dev_err(gpadc->dev,
556                         "gpadc_conversion: read high data failed\n");
557                 goto out;
558         }
559
560         /* Check if double conversion is required */
561         if ((ch->id == AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT) ||
562             (ch->id == AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT) ||
563             (ch->id == AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT) ||
564             (ch->id == AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT)) {
565
566                 if (ch->hardware_control) {
567                         /* not supported */
568                         ret = -ENOTSUPP;
569                         dev_err(gpadc->dev,
570                                 "gpadc_conversion: only SW double conversion supported\n");
571                         goto out;
572                 } else {
573                         /* Read the converted RAW data 2 */
574                         ret = abx500_get_register_interruptible(gpadc->dev,
575                                 AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
576                                 &low_data2);
577                         if (ret < 0) {
578                                 dev_err(gpadc->dev,
579                                         "gpadc_conversion: read sw low data 2 failed\n");
580                                 goto out;
581                         }
582
583                         ret = abx500_get_register_interruptible(gpadc->dev,
584                                 AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
585                                 &high_data2);
586                         if (ret < 0) {
587                                 dev_err(gpadc->dev,
588                                         "gpadc_conversion: read sw high data 2 failed\n");
589                                 goto out;
590                         }
591                         if (ibat != NULL) {
592                                 *ibat = (high_data2 << 8) | low_data2;
593                         } else {
594                                 dev_warn(gpadc->dev,
595                                         "gpadc_conversion: ibat not stored\n");
596                         }
597
598                 }
599         }
600
601         /* Disable GPADC */
602         ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
603                 AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
604         if (ret < 0) {
605                 dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
606                 goto out;
607         }
608
609         /* This eventually drops the regulator */
610         pm_runtime_mark_last_busy(gpadc->dev);
611         pm_runtime_put_autosuspend(gpadc->dev);
612
613         return (high_data << 8) | low_data;
614
615 out:
616         /*
617          * It has shown to be needed to turn off the GPADC if an error occurs,
618          * otherwise we might have problem when waiting for the busy bit in the
619          * GPADC status register to go low. In V1.1 there wait_for_completion
620          * seems to timeout when waiting for an interrupt.. Not seen in V2.0
621          */
622         (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
623                 AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE);
624         pm_runtime_put(gpadc->dev);
625         dev_err(gpadc->dev,
626                 "gpadc_conversion: Failed to AD convert channel %d\n", ch->id);
627
628         return ret;
629 }
630
631 /**
632  * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
633  * @irq: irq number
634  * @data: pointer to the data passed during request irq
635  *
636  * This is a interrupt service routine for gpadc conversion completion.
637  * Notifies the gpadc completion is completed and the converted raw value
638  * can be read from the registers.
639  * Returns IRQ status(IRQ_HANDLED)
640  */
641 static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *data)
642 {
643         struct ab8500_gpadc *gpadc = data;
644
645         complete(&gpadc->complete);
646
647         return IRQ_HANDLED;
648 }
649
650 static int otp_cal_regs[] = {
651         AB8500_GPADC_CAL_1,
652         AB8500_GPADC_CAL_2,
653         AB8500_GPADC_CAL_3,
654         AB8500_GPADC_CAL_4,
655         AB8500_GPADC_CAL_5,
656         AB8500_GPADC_CAL_6,
657         AB8500_GPADC_CAL_7,
658 };
659
660 static int otp4_cal_regs[] = {
661         AB8540_GPADC_OTP4_REG_7,
662         AB8540_GPADC_OTP4_REG_6,
663         AB8540_GPADC_OTP4_REG_5,
664 };
665
666 static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
667 {
668         int i;
669         int ret[ARRAY_SIZE(otp_cal_regs)];
670         u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
671         int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
672         u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
673         int vmain_high, vmain_low;
674         int btemp_high, btemp_low;
675         int vbat_high, vbat_low;
676         int ibat_high, ibat_low;
677         s64 V_gain, V_offset, V2A_gain, V2A_offset;
678
679         /* First we read all OTP registers and store the error code */
680         for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
681                 ret[i] = abx500_get_register_interruptible(gpadc->dev,
682                         AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
683                 if (ret[i] < 0) {
684                         /* Continue anyway: maybe the other registers are OK */
685                         dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
686                                 __func__, otp_cal_regs[i]);
687                 } else {
688                         /* Put this in the entropy pool as device-unique */
689                         add_device_randomness(&ret[i], sizeof(ret[i]));
690                 }
691         }
692
693         /*
694          * The ADC calibration data is stored in OTP registers.
695          * The layout of the calibration data is outlined below and a more
696          * detailed description can be found in UM0836
697          *
698          * vm_h/l = vmain_high/low
699          * bt_h/l = btemp_high/low
700          * vb_h/l = vbat_high/low
701          *
702          * Data bits 8500/9540:
703          * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
704          * |.......|.......|.......|.......|.......|.......|.......|.......
705          * |                                               | vm_h9 | vm_h8
706          * |.......|.......|.......|.......|.......|.......|.......|.......
707          * |               | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
708          * |.......|.......|.......|.......|.......|.......|.......|.......
709          * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
710          * |.......|.......|.......|.......|.......|.......|.......|.......
711          * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
712          * |.......|.......|.......|.......|.......|.......|.......|.......
713          * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
714          * |.......|.......|.......|.......|.......|.......|.......|.......
715          * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
716          * |.......|.......|.......|.......|.......|.......|.......|.......
717          * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
718          * |.......|.......|.......|.......|.......|.......|.......|.......
719          *
720          * Data bits 8540:
721          * OTP2
722          * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
723          * |.......|.......|.......|.......|.......|.......|.......|.......
724          * |
725          * |.......|.......|.......|.......|.......|.......|.......|.......
726          * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
727          * |.......|.......|.......|.......|.......|.......|.......|.......
728          * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
729          * |.......|.......|.......|.......|.......|.......|.......|.......
730          * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
731          * |.......|.......|.......|.......|.......|.......|.......|.......
732          * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
733          * |.......|.......|.......|.......|.......|.......|.......|.......
734          * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
735          * |.......|.......|.......|.......|.......|.......|.......|.......
736          * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
737          * |.......|.......|.......|.......|.......|.......|.......|.......
738          *
739          * Data bits 8540:
740          * OTP4
741          * | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0
742          * |.......|.......|.......|.......|.......|.......|.......|.......
743          * |                                       | ib_h9 | ib_h8 | ib_h7
744          * |.......|.......|.......|.......|.......|.......|.......|.......
745          * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
746          * |.......|.......|.......|.......|.......|.......|.......|.......
747          * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
748          *
749          *
750          * Ideal output ADC codes corresponding to injected input voltages
751          * during manufacturing is:
752          *
753          * vmain_high: Vin = 19500mV / ADC ideal code = 997
754          * vmain_low:  Vin = 315mV   / ADC ideal code = 16
755          * btemp_high: Vin = 1300mV  / ADC ideal code = 985
756          * btemp_low:  Vin = 21mV    / ADC ideal code = 16
757          * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
758          * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
759          */
760
761         if (is_ab8540(gpadc->ab8500)) {
762                 /* Calculate gain and offset for VMAIN if all reads succeeded*/
763                 if (!(ret[1] < 0 || ret[2] < 0)) {
764                         vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
765                                 ((gpadc_cal[2] & 0xC0) >> 6));
766                         vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
767
768                         gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
769                                 (u16)vmain_high;
770                         gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
771                                 (u16)vmain_low;
772
773                         gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
774                                 (19500 - 315) / (vmain_high - vmain_low);
775                         gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
776                                 19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
777                                 (vmain_high - vmain_low)) * vmain_high;
778                 } else {
779                         gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
780                 }
781
782                 /* Read IBAT calibration Data */
783                 for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
784                         ret_otp4[i] = abx500_get_register_interruptible(
785                                         gpadc->dev, AB8500_OTP_EMUL,
786                                         otp4_cal_regs[i],  &gpadc_otp4[i]);
787                         if (ret_otp4[i] < 0)
788                                 dev_err(gpadc->dev,
789                                         "%s: read otp4 reg 0x%02x failed\n",
790                                         __func__, otp4_cal_regs[i]);
791                 }
792
793                 /* Calculate gain and offset for IBAT if all reads succeeded */
794                 if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
795                         ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
796                                 ((gpadc_otp4[1] & 0xFE) >> 1));
797                         ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
798                                 ((gpadc_otp4[2] & 0xF8) >> 3));
799
800                         gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_hi =
801                                 (u16)ibat_high;
802                         gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_lo =
803                                 (u16)ibat_low;
804
805                         V_gain = ((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L)
806                                 << AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
807
808                         V_offset = (AB8500_GPADC_IBAT_VDROP_H << AB8500_GPADC_CALIB_SHIFT_IBAT) -
809                                 (((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) <<
810                                 AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
811                                 * ibat_high;
812                         /*
813                          * Result obtained is in mV (at a scale factor),
814                          * we need to calculate gain and offset to get mA
815                          */
816                         V2A_gain = (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN)/
817                                 (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
818                         V2A_offset = ((AB8500_ADC_CH_IBAT_MAX_V * AB8500_ADC_CH_IBAT_MIN -
819                                 AB8500_ADC_CH_IBAT_MAX * AB8500_ADC_CH_IBAT_MIN_V)
820                                 << AB8500_GPADC_CALIB_SHIFT_IBAT)
821                                 / (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V);
822
823                         gpadc->cal_data[AB8500_CAL_IBAT].gain =
824                                 V_gain * V2A_gain;
825                         gpadc->cal_data[AB8500_CAL_IBAT].offset =
826                                 V_offset * V2A_gain + V2A_offset;
827                 } else {
828                         gpadc->cal_data[AB8500_CAL_IBAT].gain = 0;
829                 }
830         } else {
831                 /* Calculate gain and offset for VMAIN if all reads succeeded */
832                 if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
833                         vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
834                                 ((gpadc_cal[1] & 0x3F) << 2) |
835                                 ((gpadc_cal[2] & 0xC0) >> 6));
836                         vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
837
838                         gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi =
839                                 (u16)vmain_high;
840                         gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo =
841                                 (u16)vmain_low;
842
843                         gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE *
844                                 (19500 - 315) / (vmain_high - vmain_low);
845
846                         gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE *
847                                 19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) /
848                                 (vmain_high - vmain_low)) * vmain_high;
849                 } else {
850                         gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0;
851                 }
852         }
853
854         /* Calculate gain and offset for BTEMP if all reads succeeded */
855         if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
856                 btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
857                         (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
858                 btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
859
860                 gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_hi = (u16)btemp_high;
861                 gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_lo = (u16)btemp_low;
862
863                 gpadc->cal_data[AB8500_CAL_BTEMP].gain =
864                         AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
865                 gpadc->cal_data[AB8500_CAL_BTEMP].offset = AB8500_GPADC_CALIB_SCALE * 1300 -
866                         (AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
867                         * btemp_high;
868         } else {
869                 gpadc->cal_data[AB8500_CAL_BTEMP].gain = 0;
870         }
871
872         /* Calculate gain and offset for VBAT if all reads succeeded */
873         if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
874                 vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
875                 vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
876
877                 gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_hi = (u16)vbat_high;
878                 gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_lo = (u16)vbat_low;
879
880                 gpadc->cal_data[AB8500_CAL_VBAT].gain = AB8500_GPADC_CALIB_SCALE *
881                         (4700 - 2380) / (vbat_high - vbat_low);
882                 gpadc->cal_data[AB8500_CAL_VBAT].offset = AB8500_GPADC_CALIB_SCALE * 4700 -
883                         (AB8500_GPADC_CALIB_SCALE * (4700 - 2380) /
884                         (vbat_high - vbat_low)) * vbat_high;
885         } else {
886                 gpadc->cal_data[AB8500_CAL_VBAT].gain = 0;
887         }
888 }
889
890 static int ab8500_gpadc_read_raw(struct iio_dev *indio_dev,
891                                  struct iio_chan_spec const *chan,
892                                  int *val, int *val2, long mask)
893 {
894         struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
895         const struct ab8500_gpadc_chan_info *ch;
896         int raw_val;
897         int processed;
898
899         ch = ab8500_gpadc_get_channel(gpadc, chan->address);
900         if (!ch) {
901                 dev_err(gpadc->dev, "no such channel %lu\n",
902                         chan->address);
903                 return -EINVAL;
904         }
905
906         raw_val = ab8500_gpadc_read(gpadc, ch, NULL);
907         if (raw_val < 0)
908                 return raw_val;
909
910         if (mask == IIO_CHAN_INFO_RAW) {
911                 *val = raw_val;
912                 return IIO_VAL_INT;
913         }
914
915         if (mask == IIO_CHAN_INFO_PROCESSED) {
916                 processed = ab8500_gpadc_ad_to_voltage(gpadc, ch->id, raw_val);
917                 if (processed < 0)
918                         return processed;
919
920                 /* Return millivolt or milliamps or millicentigrades */
921                 *val = processed * 1000;
922                 return IIO_VAL_INT;
923         }
924
925         return -EINVAL;
926 }
927
928 static int ab8500_gpadc_of_xlate(struct iio_dev *indio_dev,
929                                  const struct of_phandle_args *iiospec)
930 {
931         int i;
932
933         for (i = 0; i < indio_dev->num_channels; i++)
934                 if (indio_dev->channels[i].channel == iiospec->args[0])
935                         return i;
936
937         return -EINVAL;
938 }
939
940 static const struct iio_info ab8500_gpadc_info = {
941         .of_xlate = ab8500_gpadc_of_xlate,
942         .read_raw = ab8500_gpadc_read_raw,
943 };
944
945 #ifdef CONFIG_PM
946 static int ab8500_gpadc_runtime_suspend(struct device *dev)
947 {
948         struct iio_dev *indio_dev = dev_get_drvdata(dev);
949         struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
950
951         regulator_disable(gpadc->vddadc);
952
953         return 0;
954 }
955
956 static int ab8500_gpadc_runtime_resume(struct device *dev)
957 {
958         struct iio_dev *indio_dev = dev_get_drvdata(dev);
959         struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
960         int ret;
961
962         ret = regulator_enable(gpadc->vddadc);
963         if (ret)
964                 dev_err(dev, "Failed to enable vddadc: %d\n", ret);
965
966         return ret;
967 }
968 #endif
969
970 /**
971  * ab8500_gpadc_parse_channel() - process devicetree channel configuration
972  * @dev: pointer to containing device
973  * @np: device tree node for the channel to configure
974  * @ch: channel info to fill in
975  * @iio_chan: IIO channel specification to fill in
976  *
977  * The devicetree will set up the channel for use with the specific device,
978  * and define usage for things like AUX GPADC inputs more precisely.
979  */
980 static int ab8500_gpadc_parse_channel(struct device *dev,
981                                       struct device_node *np,
982                                       struct ab8500_gpadc_chan_info *ch,
983                                       struct iio_chan_spec *iio_chan)
984 {
985         const char *name = np->name;
986         u32 chan;
987         int ret;
988
989         ret = of_property_read_u32(np, "reg", &chan);
990         if (ret) {
991                 dev_err(dev, "invalid channel number %s\n", name);
992                 return ret;
993         }
994         if (chan > AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT) {
995                 dev_err(dev, "%s channel number out of range %d\n", name, chan);
996                 return -EINVAL;
997         }
998
999         iio_chan->channel = chan;
1000         iio_chan->datasheet_name = name;
1001         iio_chan->indexed = 1;
1002         iio_chan->address = chan;
1003         iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1004                 BIT(IIO_CHAN_INFO_PROCESSED);
1005         /* Most are voltages (also temperatures), some are currents */
1006         if ((chan == AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT) ||
1007             (chan == AB8500_GPADC_CHAN_USB_CHARGER_CURRENT))
1008                 iio_chan->type = IIO_CURRENT;
1009         else
1010                 iio_chan->type = IIO_VOLTAGE;
1011
1012         ch->id = chan;
1013
1014         /* Sensible defaults */
1015         ch->avg_sample = 16;
1016         ch->hardware_control = false;
1017         ch->falling_edge = false;
1018         ch->trig_timer = 0;
1019
1020         return 0;
1021 }
1022
1023 /**
1024  * ab8500_gpadc_parse_channels() - Parse the GPADC channels from DT
1025  * @gpadc: the GPADC to configure the channels for
1026  * @np: device tree node containing the channel configurations
1027  * @chans: the IIO channels we parsed
1028  * @nchans: the number of IIO channels we parsed
1029  */
1030 static int ab8500_gpadc_parse_channels(struct ab8500_gpadc *gpadc,
1031                                        struct device_node *np,
1032                                        struct iio_chan_spec **chans_parsed,
1033                                        unsigned int *nchans_parsed)
1034 {
1035         struct device_node *child;
1036         struct ab8500_gpadc_chan_info *ch;
1037         struct iio_chan_spec *iio_chans;
1038         unsigned int nchans;
1039         int i;
1040
1041         nchans = of_get_available_child_count(np);
1042         if (!nchans) {
1043                 dev_err(gpadc->dev, "no channel children\n");
1044                 return -ENODEV;
1045         }
1046         dev_info(gpadc->dev, "found %d ADC channels\n", nchans);
1047
1048         iio_chans = devm_kcalloc(gpadc->dev, nchans,
1049                                  sizeof(*iio_chans), GFP_KERNEL);
1050         if (!iio_chans)
1051                 return -ENOMEM;
1052
1053         gpadc->chans = devm_kcalloc(gpadc->dev, nchans,
1054                                     sizeof(*gpadc->chans), GFP_KERNEL);
1055         if (!gpadc->chans)
1056                 return -ENOMEM;
1057
1058         i = 0;
1059         for_each_available_child_of_node(np, child) {
1060                 struct iio_chan_spec *iio_chan;
1061                 int ret;
1062
1063                 ch = &gpadc->chans[i];
1064                 iio_chan = &iio_chans[i];
1065
1066                 ret = ab8500_gpadc_parse_channel(gpadc->dev, child, ch,
1067                                                  iio_chan);
1068                 if (ret) {
1069                         of_node_put(child);
1070                         return ret;
1071                 }
1072                 i++;
1073         }
1074         gpadc->nchans = nchans;
1075         *chans_parsed = iio_chans;
1076         *nchans_parsed = nchans;
1077
1078         return 0;
1079 }
1080
1081 static int ab8500_gpadc_probe(struct platform_device *pdev)
1082 {
1083         struct ab8500_gpadc *gpadc;
1084         struct iio_dev *indio_dev;
1085         struct device *dev = &pdev->dev;
1086         struct device_node *np = pdev->dev.of_node;
1087         struct iio_chan_spec *iio_chans;
1088         unsigned int n_iio_chans;
1089         int ret;
1090
1091         indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc));
1092         if (!indio_dev)
1093                 return -ENOMEM;
1094
1095         platform_set_drvdata(pdev, indio_dev);
1096         gpadc = iio_priv(indio_dev);
1097
1098         gpadc->dev = dev;
1099         gpadc->ab8500 = dev_get_drvdata(dev->parent);
1100
1101         ret = ab8500_gpadc_parse_channels(gpadc, np, &iio_chans, &n_iio_chans);
1102         if (ret)
1103                 return ret;
1104
1105         gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
1106         if (gpadc->irq_sw < 0) {
1107                 dev_err(dev, "failed to get platform sw_conv_end irq\n");
1108                 return gpadc->irq_sw;
1109         }
1110
1111         gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
1112         if (gpadc->irq_hw < 0) {
1113                 dev_err(dev, "failed to get platform hw_conv_end irq\n");
1114                 return gpadc->irq_hw;
1115         }
1116
1117         /* Initialize completion used to notify completion of conversion */
1118         init_completion(&gpadc->complete);
1119
1120         /* Request interrupts */
1121         ret = devm_request_threaded_irq(dev, gpadc->irq_sw, NULL,
1122                 ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT,
1123                 "ab8500-gpadc-sw", gpadc);
1124         if (ret < 0) {
1125                 dev_err(dev,
1126                         "failed to request sw conversion irq %d\n",
1127                         gpadc->irq_sw);
1128                 return ret;
1129         }
1130
1131         ret = devm_request_threaded_irq(dev, gpadc->irq_hw, NULL,
1132                 ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT,
1133                 "ab8500-gpadc-hw", gpadc);
1134         if (ret < 0) {
1135                 dev_err(dev,
1136                         "Failed to request hw conversion irq: %d\n",
1137                         gpadc->irq_hw);
1138                 return ret;
1139         }
1140
1141         /* The VTVout LDO used to power the AB8500 GPADC */
1142         gpadc->vddadc = devm_regulator_get(dev, "vddadc");
1143         if (IS_ERR(gpadc->vddadc)) {
1144                 ret = PTR_ERR(gpadc->vddadc);
1145                 dev_err(dev, "failed to get vddadc\n");
1146                 return ret;
1147         }
1148
1149         ret = regulator_enable(gpadc->vddadc);
1150         if (ret) {
1151                 dev_err(dev, "failed to enable vddadc: %d\n", ret);
1152                 return ret;
1153         }
1154
1155         /* Enable runtime PM */
1156         pm_runtime_get_noresume(dev);
1157         pm_runtime_set_active(dev);
1158         pm_runtime_enable(dev);
1159         pm_runtime_set_autosuspend_delay(dev, AB8500_GPADC_AUTOSUSPEND_DELAY);
1160         pm_runtime_use_autosuspend(dev);
1161
1162         ab8500_gpadc_read_calibration_data(gpadc);
1163
1164         pm_runtime_put(dev);
1165
1166         indio_dev->name = "ab8500-gpadc";
1167         indio_dev->modes = INDIO_DIRECT_MODE;
1168         indio_dev->info = &ab8500_gpadc_info;
1169         indio_dev->channels = iio_chans;
1170         indio_dev->num_channels = n_iio_chans;
1171
1172         ret = devm_iio_device_register(dev, indio_dev);
1173         if (ret)
1174                 goto out_dis_pm;
1175
1176         return 0;
1177
1178 out_dis_pm:
1179         pm_runtime_get_sync(dev);
1180         pm_runtime_put_noidle(dev);
1181         pm_runtime_disable(dev);
1182         regulator_disable(gpadc->vddadc);
1183
1184         return ret;
1185 }
1186
1187 static int ab8500_gpadc_remove(struct platform_device *pdev)
1188 {
1189         struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1190         struct ab8500_gpadc *gpadc = iio_priv(indio_dev);
1191
1192         pm_runtime_get_sync(gpadc->dev);
1193         pm_runtime_put_noidle(gpadc->dev);
1194         pm_runtime_disable(gpadc->dev);
1195         regulator_disable(gpadc->vddadc);
1196
1197         return 0;
1198 }
1199
1200 static const struct dev_pm_ops ab8500_gpadc_pm_ops = {
1201         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1202                                 pm_runtime_force_resume)
1203         SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend,
1204                            ab8500_gpadc_runtime_resume,
1205                            NULL)
1206 };
1207
1208 static struct platform_driver ab8500_gpadc_driver = {
1209         .probe = ab8500_gpadc_probe,
1210         .remove = ab8500_gpadc_remove,
1211         .driver = {
1212                 .name = "ab8500-gpadc",
1213                 .pm = &ab8500_gpadc_pm_ops,
1214         },
1215 };
1216 builtin_platform_driver(ab8500_gpadc_driver);