ide: remove ->data_phase field from ide_hwif_t
[platform/kernel/linux-starfive.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124  *      ide_end_dequeued_request        -       complete an IDE I/O
125  *      @drive: IDE device for the I/O
126  *      @uptodate:
127  *      @nr_sectors: number of sectors completed
128  *
129  *      Complete an I/O that is no longer on the request queue. This
130  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
131  *      We must still finish the old request but we must not tamper with the
132  *      queue in the meantime.
133  *
134  *      NOTE: This path does not handle barrier, but barrier is not supported
135  *      on ide-cd anyway.
136  */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139                              int uptodate, int nr_sectors)
140 {
141         BUG_ON(!blk_rq_started(rq));
142
143         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 void ide_complete_task(ide_drive_t *drive, ide_task_t *task, u8 stat, u8 err)
148 {
149         struct ide_taskfile *tf = &task->tf;
150         struct request *rq = task->rq;
151
152         tf->error = err;
153         tf->status = stat;
154
155         drive->hwif->tp_ops->tf_read(drive, task);
156
157         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
158                 memcpy(rq->special, task, sizeof(*task));
159
160         if (task->tf_flags & IDE_TFLAG_DYN)
161                 kfree(task);
162 }
163
164 void ide_complete_rq(ide_drive_t *drive, u8 err)
165 {
166         ide_hwif_t *hwif = drive->hwif;
167         struct request *rq = hwif->rq;
168
169         hwif->rq = NULL;
170
171         rq->errors = err;
172
173         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
174                                      blk_rq_bytes(rq))))
175                 BUG();
176 }
177 EXPORT_SYMBOL(ide_complete_rq);
178
179 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
180 {
181         if (rq->rq_disk) {
182                 struct ide_driver *drv;
183
184                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
185                 drv->end_request(drive, 0, 0);
186         } else
187                 ide_end_request(drive, 0, 0);
188 }
189
190 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
191 {
192         tf->nsect   = drive->sect;
193         tf->lbal    = drive->sect;
194         tf->lbam    = drive->cyl;
195         tf->lbah    = drive->cyl >> 8;
196         tf->device  = (drive->head - 1) | drive->select;
197         tf->command = ATA_CMD_INIT_DEV_PARAMS;
198 }
199
200 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
201 {
202         tf->nsect   = drive->sect;
203         tf->command = ATA_CMD_RESTORE;
204 }
205
206 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
207 {
208         tf->nsect   = drive->mult_req;
209         tf->command = ATA_CMD_SET_MULTI;
210 }
211
212 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
213 {
214         special_t *s = &drive->special;
215         ide_task_t args;
216
217         memset(&args, 0, sizeof(ide_task_t));
218         args.data_phase = TASKFILE_NO_DATA;
219
220         if (s->b.set_geometry) {
221                 s->b.set_geometry = 0;
222                 ide_tf_set_specify_cmd(drive, &args.tf);
223         } else if (s->b.recalibrate) {
224                 s->b.recalibrate = 0;
225                 ide_tf_set_restore_cmd(drive, &args.tf);
226         } else if (s->b.set_multmode) {
227                 s->b.set_multmode = 0;
228                 ide_tf_set_setmult_cmd(drive, &args.tf);
229         } else if (s->all) {
230                 int special = s->all;
231                 s->all = 0;
232                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
233                 return ide_stopped;
234         }
235
236         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
237                         IDE_TFLAG_CUSTOM_HANDLER;
238
239         do_rw_taskfile(drive, &args);
240
241         return ide_started;
242 }
243
244 /**
245  *      do_special              -       issue some special commands
246  *      @drive: drive the command is for
247  *
248  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
249  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
250  *
251  *      It used to do much more, but has been scaled back.
252  */
253
254 static ide_startstop_t do_special (ide_drive_t *drive)
255 {
256         special_t *s = &drive->special;
257
258 #ifdef DEBUG
259         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
260 #endif
261         if (drive->media == ide_disk)
262                 return ide_disk_special(drive);
263
264         s->all = 0;
265         drive->mult_req = 0;
266         return ide_stopped;
267 }
268
269 void ide_map_sg(ide_drive_t *drive, struct request *rq)
270 {
271         ide_hwif_t *hwif = drive->hwif;
272         struct scatterlist *sg = hwif->sg_table;
273
274         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
275                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
276                 hwif->sg_nents = 1;
277         } else if (!rq->bio) {
278                 sg_init_one(sg, rq->data, rq->data_len);
279                 hwif->sg_nents = 1;
280         } else {
281                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
282         }
283 }
284
285 EXPORT_SYMBOL_GPL(ide_map_sg);
286
287 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
288 {
289         ide_hwif_t *hwif = drive->hwif;
290
291         hwif->nsect = hwif->nleft = rq->nr_sectors;
292         hwif->cursg_ofs = 0;
293         hwif->cursg = NULL;
294 }
295
296 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
297
298 /**
299  *      execute_drive_command   -       issue special drive command
300  *      @drive: the drive to issue the command on
301  *      @rq: the request structure holding the command
302  *
303  *      execute_drive_cmd() issues a special drive command,  usually 
304  *      initiated by ioctl() from the external hdparm program. The
305  *      command can be a drive command, drive task or taskfile 
306  *      operation. Weirdly you can call it with NULL to wait for
307  *      all commands to finish. Don't do this as that is due to change
308  */
309
310 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
311                 struct request *rq)
312 {
313         ide_task_t *task = rq->special;
314
315         if (task) {
316                 switch (task->data_phase) {
317                 case TASKFILE_MULTI_OUT:
318                 case TASKFILE_OUT:
319                 case TASKFILE_MULTI_IN:
320                 case TASKFILE_IN:
321                         ide_init_sg_cmd(drive, rq);
322                         ide_map_sg(drive, rq);
323                 default:
324                         break;
325                 }
326
327                 return do_rw_taskfile(drive, task);
328         }
329
330         /*
331          * NULL is actually a valid way of waiting for
332          * all current requests to be flushed from the queue.
333          */
334 #ifdef DEBUG
335         printk("%s: DRIVE_CMD (null)\n", drive->name);
336 #endif
337         ide_complete_rq(drive, 0);
338
339         return ide_stopped;
340 }
341
342 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
343 {
344         u8 cmd = rq->cmd[0];
345
346         switch (cmd) {
347         case REQ_PARK_HEADS:
348         case REQ_UNPARK_HEADS:
349                 return ide_do_park_unpark(drive, rq);
350         case REQ_DEVSET_EXEC:
351                 return ide_do_devset(drive, rq);
352         case REQ_DRIVE_RESET:
353                 return ide_do_reset(drive);
354         default:
355                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
356                 ide_end_request(drive, 0, 0);
357                 return ide_stopped;
358         }
359 }
360
361 /**
362  *      start_request   -       start of I/O and command issuing for IDE
363  *
364  *      start_request() initiates handling of a new I/O request. It
365  *      accepts commands and I/O (read/write) requests.
366  *
367  *      FIXME: this function needs a rename
368  */
369  
370 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
371 {
372         ide_startstop_t startstop;
373
374         BUG_ON(!blk_rq_started(rq));
375
376 #ifdef DEBUG
377         printk("%s: start_request: current=0x%08lx\n",
378                 drive->hwif->name, (unsigned long) rq);
379 #endif
380
381         /* bail early if we've exceeded max_failures */
382         if (drive->max_failures && (drive->failures > drive->max_failures)) {
383                 rq->cmd_flags |= REQ_FAILED;
384                 goto kill_rq;
385         }
386
387         if (blk_pm_request(rq))
388                 ide_check_pm_state(drive, rq);
389
390         SELECT_DRIVE(drive);
391         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
392                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
393                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
394                 return startstop;
395         }
396         if (!drive->special.all) {
397                 struct ide_driver *drv;
398
399                 /*
400                  * We reset the drive so we need to issue a SETFEATURES.
401                  * Do it _after_ do_special() restored device parameters.
402                  */
403                 if (drive->current_speed == 0xff)
404                         ide_config_drive_speed(drive, drive->desired_speed);
405
406                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
407                         return execute_drive_cmd(drive, rq);
408                 else if (blk_pm_request(rq)) {
409                         struct request_pm_state *pm = rq->data;
410 #ifdef DEBUG_PM
411                         printk("%s: start_power_step(step: %d)\n",
412                                 drive->name, pm->pm_step);
413 #endif
414                         startstop = ide_start_power_step(drive, rq);
415                         if (startstop == ide_stopped &&
416                             pm->pm_step == IDE_PM_COMPLETED)
417                                 ide_complete_pm_rq(drive, rq);
418                         return startstop;
419                 } else if (!rq->rq_disk && blk_special_request(rq))
420                         /*
421                          * TODO: Once all ULDs have been modified to
422                          * check for specific op codes rather than
423                          * blindly accepting any special request, the
424                          * check for ->rq_disk above may be replaced
425                          * by a more suitable mechanism or even
426                          * dropped entirely.
427                          */
428                         return ide_special_rq(drive, rq);
429
430                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
431
432                 return drv->do_request(drive, rq, rq->sector);
433         }
434         return do_special(drive);
435 kill_rq:
436         ide_kill_rq(drive, rq);
437         return ide_stopped;
438 }
439
440 /**
441  *      ide_stall_queue         -       pause an IDE device
442  *      @drive: drive to stall
443  *      @timeout: time to stall for (jiffies)
444  *
445  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
446  *      to the port by sleeping for timeout jiffies.
447  */
448  
449 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
450 {
451         if (timeout > WAIT_WORSTCASE)
452                 timeout = WAIT_WORSTCASE;
453         drive->sleep = timeout + jiffies;
454         drive->dev_flags |= IDE_DFLAG_SLEEPING;
455 }
456 EXPORT_SYMBOL(ide_stall_queue);
457
458 static inline int ide_lock_port(ide_hwif_t *hwif)
459 {
460         if (hwif->busy)
461                 return 1;
462
463         hwif->busy = 1;
464
465         return 0;
466 }
467
468 static inline void ide_unlock_port(ide_hwif_t *hwif)
469 {
470         hwif->busy = 0;
471 }
472
473 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
474 {
475         int rc = 0;
476
477         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
478                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
479                 if (rc == 0) {
480                         if (host->get_lock)
481                                 host->get_lock(ide_intr, hwif);
482                 }
483         }
484         return rc;
485 }
486
487 static inline void ide_unlock_host(struct ide_host *host)
488 {
489         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
490                 if (host->release_lock)
491                         host->release_lock();
492                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
493         }
494 }
495
496 /*
497  * Issue a new request to a device.
498  */
499 void do_ide_request(struct request_queue *q)
500 {
501         ide_drive_t     *drive = q->queuedata;
502         ide_hwif_t      *hwif = drive->hwif;
503         struct ide_host *host = hwif->host;
504         struct request  *rq = NULL;
505         ide_startstop_t startstop;
506
507         /*
508          * drive is doing pre-flush, ordered write, post-flush sequence. even
509          * though that is 3 requests, it must be seen as a single transaction.
510          * we must not preempt this drive until that is complete
511          */
512         if (blk_queue_flushing(q))
513                 /*
514                  * small race where queue could get replugged during
515                  * the 3-request flush cycle, just yank the plug since
516                  * we want it to finish asap
517                  */
518                 blk_remove_plug(q);
519
520         spin_unlock_irq(q->queue_lock);
521
522         if (ide_lock_host(host, hwif))
523                 goto plug_device_2;
524
525         spin_lock_irq(&hwif->lock);
526
527         if (!ide_lock_port(hwif)) {
528                 ide_hwif_t *prev_port;
529 repeat:
530                 prev_port = hwif->host->cur_port;
531                 hwif->rq = NULL;
532
533                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
534                         if (time_before(drive->sleep, jiffies)) {
535                                 ide_unlock_port(hwif);
536                                 goto plug_device;
537                         }
538                 }
539
540                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
541                     hwif != prev_port) {
542                         /*
543                          * set nIEN for previous port, drives in the
544                          * quirk_list may not like intr setups/cleanups
545                          */
546                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
547                                 prev_port->tp_ops->set_irq(prev_port, 0);
548
549                         hwif->host->cur_port = hwif;
550                 }
551                 hwif->cur_dev = drive;
552                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
553
554                 spin_unlock_irq(&hwif->lock);
555                 spin_lock_irq(q->queue_lock);
556                 /*
557                  * we know that the queue isn't empty, but this can happen
558                  * if the q->prep_rq_fn() decides to kill a request
559                  */
560                 rq = elv_next_request(drive->queue);
561                 spin_unlock_irq(q->queue_lock);
562                 spin_lock_irq(&hwif->lock);
563
564                 if (!rq) {
565                         ide_unlock_port(hwif);
566                         goto out;
567                 }
568
569                 /*
570                  * Sanity: don't accept a request that isn't a PM request
571                  * if we are currently power managed. This is very important as
572                  * blk_stop_queue() doesn't prevent the elv_next_request()
573                  * above to return us whatever is in the queue. Since we call
574                  * ide_do_request() ourselves, we end up taking requests while
575                  * the queue is blocked...
576                  * 
577                  * We let requests forced at head of queue with ide-preempt
578                  * though. I hope that doesn't happen too much, hopefully not
579                  * unless the subdriver triggers such a thing in its own PM
580                  * state machine.
581                  */
582                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
583                     blk_pm_request(rq) == 0 &&
584                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
585                         /* there should be no pending command at this point */
586                         ide_unlock_port(hwif);
587                         goto plug_device;
588                 }
589
590                 hwif->rq = rq;
591
592                 spin_unlock_irq(&hwif->lock);
593                 startstop = start_request(drive, rq);
594                 spin_lock_irq(&hwif->lock);
595
596                 if (startstop == ide_stopped)
597                         goto repeat;
598         } else
599                 goto plug_device;
600 out:
601         spin_unlock_irq(&hwif->lock);
602         if (rq == NULL)
603                 ide_unlock_host(host);
604         spin_lock_irq(q->queue_lock);
605         return;
606
607 plug_device:
608         spin_unlock_irq(&hwif->lock);
609         ide_unlock_host(host);
610 plug_device_2:
611         spin_lock_irq(q->queue_lock);
612
613         if (!elv_queue_empty(q))
614                 blk_plug_device(q);
615 }
616
617 static void ide_plug_device(ide_drive_t *drive)
618 {
619         struct request_queue *q = drive->queue;
620         unsigned long flags;
621
622         spin_lock_irqsave(q->queue_lock, flags);
623         if (!elv_queue_empty(q))
624                 blk_plug_device(q);
625         spin_unlock_irqrestore(q->queue_lock, flags);
626 }
627
628 static int drive_is_ready(ide_drive_t *drive)
629 {
630         ide_hwif_t *hwif = drive->hwif;
631         u8 stat = 0;
632
633         if (drive->waiting_for_dma)
634                 return hwif->dma_ops->dma_test_irq(drive);
635
636         if (hwif->io_ports.ctl_addr &&
637             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
638                 stat = hwif->tp_ops->read_altstatus(hwif);
639         else
640                 /* Note: this may clear a pending IRQ!! */
641                 stat = hwif->tp_ops->read_status(hwif);
642
643         if (stat & ATA_BUSY)
644                 /* drive busy: definitely not interrupting */
645                 return 0;
646
647         /* drive ready: *might* be interrupting */
648         return 1;
649 }
650
651 /**
652  *      ide_timer_expiry        -       handle lack of an IDE interrupt
653  *      @data: timer callback magic (hwif)
654  *
655  *      An IDE command has timed out before the expected drive return
656  *      occurred. At this point we attempt to clean up the current
657  *      mess. If the current handler includes an expiry handler then
658  *      we invoke the expiry handler, and providing it is happy the
659  *      work is done. If that fails we apply generic recovery rules
660  *      invoking the handler and checking the drive DMA status. We
661  *      have an excessively incestuous relationship with the DMA
662  *      logic that wants cleaning up.
663  */
664  
665 void ide_timer_expiry (unsigned long data)
666 {
667         ide_hwif_t      *hwif = (ide_hwif_t *)data;
668         ide_drive_t     *uninitialized_var(drive);
669         ide_handler_t   *handler;
670         unsigned long   flags;
671         int             wait = -1;
672         int             plug_device = 0;
673
674         spin_lock_irqsave(&hwif->lock, flags);
675
676         handler = hwif->handler;
677
678         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
679                 /*
680                  * Either a marginal timeout occurred
681                  * (got the interrupt just as timer expired),
682                  * or we were "sleeping" to give other devices a chance.
683                  * Either way, we don't really want to complain about anything.
684                  */
685         } else {
686                 ide_expiry_t *expiry = hwif->expiry;
687                 ide_startstop_t startstop = ide_stopped;
688
689                 drive = hwif->cur_dev;
690
691                 if (expiry) {
692                         wait = expiry(drive);
693                         if (wait > 0) { /* continue */
694                                 /* reset timer */
695                                 hwif->timer.expires = jiffies + wait;
696                                 hwif->req_gen_timer = hwif->req_gen;
697                                 add_timer(&hwif->timer);
698                                 spin_unlock_irqrestore(&hwif->lock, flags);
699                                 return;
700                         }
701                 }
702                 hwif->handler = NULL;
703                 /*
704                  * We need to simulate a real interrupt when invoking
705                  * the handler() function, which means we need to
706                  * globally mask the specific IRQ:
707                  */
708                 spin_unlock(&hwif->lock);
709                 /* disable_irq_nosync ?? */
710                 disable_irq(hwif->irq);
711                 /* local CPU only, as if we were handling an interrupt */
712                 local_irq_disable();
713                 if (hwif->polling) {
714                         startstop = handler(drive);
715                 } else if (drive_is_ready(drive)) {
716                         if (drive->waiting_for_dma)
717                                 hwif->dma_ops->dma_lost_irq(drive);
718                         if (hwif->ack_intr)
719                                 hwif->ack_intr(hwif);
720                         printk(KERN_WARNING "%s: lost interrupt\n",
721                                 drive->name);
722                         startstop = handler(drive);
723                 } else {
724                         if (drive->waiting_for_dma)
725                                 startstop = ide_dma_timeout_retry(drive, wait);
726                         else
727                                 startstop = ide_error(drive, "irq timeout",
728                                         hwif->tp_ops->read_status(hwif));
729                 }
730                 spin_lock_irq(&hwif->lock);
731                 enable_irq(hwif->irq);
732                 if (startstop == ide_stopped) {
733                         ide_unlock_port(hwif);
734                         plug_device = 1;
735                 }
736         }
737         spin_unlock_irqrestore(&hwif->lock, flags);
738
739         if (plug_device) {
740                 ide_unlock_host(hwif->host);
741                 ide_plug_device(drive);
742         }
743 }
744
745 /**
746  *      unexpected_intr         -       handle an unexpected IDE interrupt
747  *      @irq: interrupt line
748  *      @hwif: port being processed
749  *
750  *      There's nothing really useful we can do with an unexpected interrupt,
751  *      other than reading the status register (to clear it), and logging it.
752  *      There should be no way that an irq can happen before we're ready for it,
753  *      so we needn't worry much about losing an "important" interrupt here.
754  *
755  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
756  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
757  *      looks "good", we just ignore the interrupt completely.
758  *
759  *      This routine assumes __cli() is in effect when called.
760  *
761  *      If an unexpected interrupt happens on irq15 while we are handling irq14
762  *      and if the two interfaces are "serialized" (CMD640), then it looks like
763  *      we could screw up by interfering with a new request being set up for 
764  *      irq15.
765  *
766  *      In reality, this is a non-issue.  The new command is not sent unless 
767  *      the drive is ready to accept one, in which case we know the drive is
768  *      not trying to interrupt us.  And ide_set_handler() is always invoked
769  *      before completing the issuance of any new drive command, so we will not
770  *      be accidentally invoked as a result of any valid command completion
771  *      interrupt.
772  */
773
774 static void unexpected_intr(int irq, ide_hwif_t *hwif)
775 {
776         u8 stat = hwif->tp_ops->read_status(hwif);
777
778         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
779                 /* Try to not flood the console with msgs */
780                 static unsigned long last_msgtime, count;
781                 ++count;
782
783                 if (time_after(jiffies, last_msgtime + HZ)) {
784                         last_msgtime = jiffies;
785                         printk(KERN_ERR "%s: unexpected interrupt, "
786                                 "status=0x%02x, count=%ld\n",
787                                 hwif->name, stat, count);
788                 }
789         }
790 }
791
792 /**
793  *      ide_intr        -       default IDE interrupt handler
794  *      @irq: interrupt number
795  *      @dev_id: hwif
796  *      @regs: unused weirdness from the kernel irq layer
797  *
798  *      This is the default IRQ handler for the IDE layer. You should
799  *      not need to override it. If you do be aware it is subtle in
800  *      places
801  *
802  *      hwif is the interface in the group currently performing
803  *      a command. hwif->cur_dev is the drive and hwif->handler is
804  *      the IRQ handler to call. As we issue a command the handlers
805  *      step through multiple states, reassigning the handler to the
806  *      next step in the process. Unlike a smart SCSI controller IDE
807  *      expects the main processor to sequence the various transfer
808  *      stages. We also manage a poll timer to catch up with most
809  *      timeout situations. There are still a few where the handlers
810  *      don't ever decide to give up.
811  *
812  *      The handler eventually returns ide_stopped to indicate the
813  *      request completed. At this point we issue the next request
814  *      on the port and the process begins again.
815  */
816
817 irqreturn_t ide_intr (int irq, void *dev_id)
818 {
819         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
820         struct ide_host *host = hwif->host;
821         ide_drive_t *uninitialized_var(drive);
822         ide_handler_t *handler;
823         unsigned long flags;
824         ide_startstop_t startstop;
825         irqreturn_t irq_ret = IRQ_NONE;
826         int plug_device = 0;
827
828         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
829                 if (hwif != host->cur_port)
830                         goto out_early;
831         }
832
833         spin_lock_irqsave(&hwif->lock, flags);
834
835         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
836                 goto out;
837
838         handler = hwif->handler;
839
840         if (handler == NULL || hwif->polling) {
841                 /*
842                  * Not expecting an interrupt from this drive.
843                  * That means this could be:
844                  *      (1) an interrupt from another PCI device
845                  *      sharing the same PCI INT# as us.
846                  * or   (2) a drive just entered sleep or standby mode,
847                  *      and is interrupting to let us know.
848                  * or   (3) a spurious interrupt of unknown origin.
849                  *
850                  * For PCI, we cannot tell the difference,
851                  * so in that case we just ignore it and hope it goes away.
852                  */
853                 if ((host->irq_flags & IRQF_SHARED) == 0) {
854                         /*
855                          * Probably not a shared PCI interrupt,
856                          * so we can safely try to do something about it:
857                          */
858                         unexpected_intr(irq, hwif);
859                 } else {
860                         /*
861                          * Whack the status register, just in case
862                          * we have a leftover pending IRQ.
863                          */
864                         (void)hwif->tp_ops->read_status(hwif);
865                 }
866                 goto out;
867         }
868
869         drive = hwif->cur_dev;
870
871         if (!drive_is_ready(drive))
872                 /*
873                  * This happens regularly when we share a PCI IRQ with
874                  * another device.  Unfortunately, it can also happen
875                  * with some buggy drives that trigger the IRQ before
876                  * their status register is up to date.  Hopefully we have
877                  * enough advance overhead that the latter isn't a problem.
878                  */
879                 goto out;
880
881         hwif->handler = NULL;
882         hwif->req_gen++;
883         del_timer(&hwif->timer);
884         spin_unlock(&hwif->lock);
885
886         if (hwif->port_ops && hwif->port_ops->clear_irq)
887                 hwif->port_ops->clear_irq(drive);
888
889         if (drive->dev_flags & IDE_DFLAG_UNMASK)
890                 local_irq_enable_in_hardirq();
891
892         /* service this interrupt, may set handler for next interrupt */
893         startstop = handler(drive);
894
895         spin_lock_irq(&hwif->lock);
896         /*
897          * Note that handler() may have set things up for another
898          * interrupt to occur soon, but it cannot happen until
899          * we exit from this routine, because it will be the
900          * same irq as is currently being serviced here, and Linux
901          * won't allow another of the same (on any CPU) until we return.
902          */
903         if (startstop == ide_stopped) {
904                 BUG_ON(hwif->handler);
905                 ide_unlock_port(hwif);
906                 plug_device = 1;
907         }
908         irq_ret = IRQ_HANDLED;
909 out:
910         spin_unlock_irqrestore(&hwif->lock, flags);
911 out_early:
912         if (plug_device) {
913                 ide_unlock_host(hwif->host);
914                 ide_plug_device(drive);
915         }
916
917         return irq_ret;
918 }
919 EXPORT_SYMBOL_GPL(ide_intr);
920
921 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
922 {
923         ide_hwif_t *hwif = drive->hwif;
924         u8 buf[4] = { 0 };
925
926         while (len > 0) {
927                 if (write)
928                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
929                 else
930                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
931                 len -= 4;
932         }
933 }
934 EXPORT_SYMBOL_GPL(ide_pad_transfer);