5dc35e7fb2ea31d559d270106ddbba2ce488c79a
[kernel/u-boot.git] / drivers / i2c / s3c24x0_i2c.c
1 /*
2  * (C) Copyright 2002
3  * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7
8 /* This code should work for both the S3C2400 and the S3C2410
9  * as they seem to have the same I2C controller inside.
10  * The different address mapping is handled by the s3c24xx.h files below.
11  */
12
13 #include <common.h>
14 #include <fdtdec.h>
15 #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
16 #include <asm/arch/clk.h>
17 #include <asm/arch/cpu.h>
18 #include <asm/arch/pinmux.h>
19 #else
20 #include <asm/arch/s3c24x0_cpu.h>
21 #endif
22 #include <asm/io.h>
23 #include <i2c.h>
24 #include "s3c24x0_i2c.h"
25
26 #define I2C_WRITE       0
27 #define I2C_READ        1
28
29 #define I2C_OK          0
30 #define I2C_NOK         1
31 #define I2C_NACK        2
32 #define I2C_NOK_LA      3       /* Lost arbitration */
33 #define I2C_NOK_TOUT    4       /* time out */
34
35 /* HSI2C specific register description */
36
37 /* I2C_CTL Register bits */
38 #define HSI2C_FUNC_MODE_I2C             (1u << 0)
39 #define HSI2C_MASTER                    (1u << 3)
40 #define HSI2C_RXCHON                    (1u << 6)       /* Write/Send */
41 #define HSI2C_TXCHON                    (1u << 7)       /* Read/Receive */
42 #define HSI2C_SW_RST                    (1u << 31)
43
44 /* I2C_FIFO_CTL Register bits */
45 #define HSI2C_RXFIFO_EN                 (1u << 0)
46 #define HSI2C_TXFIFO_EN                 (1u << 1)
47 #define HSI2C_TXFIFO_TRIGGER_LEVEL      (0x20 << 16)
48 #define HSI2C_RXFIFO_TRIGGER_LEVEL      (0x20 << 4)
49
50 /* I2C_TRAILING_CTL Register bits */
51 #define HSI2C_TRAILING_COUNT            (0xff)
52
53 /* I2C_INT_EN Register bits */
54 #define HSI2C_TX_UNDERRUN_EN            (1u << 2)
55 #define HSI2C_TX_OVERRUN_EN             (1u << 3)
56 #define HSI2C_RX_UNDERRUN_EN            (1u << 4)
57 #define HSI2C_RX_OVERRUN_EN             (1u << 5)
58 #define HSI2C_INT_TRAILING_EN           (1u << 6)
59 #define HSI2C_INT_I2C_EN                (1u << 9)
60
61 #define HSI2C_INT_ERROR_MASK    (HSI2C_TX_UNDERRUN_EN |\
62                                  HSI2C_TX_OVERRUN_EN  |\
63                                  HSI2C_RX_UNDERRUN_EN |\
64                                  HSI2C_RX_OVERRUN_EN  |\
65                                  HSI2C_INT_TRAILING_EN)
66
67 /* I2C_CONF Register bits */
68 #define HSI2C_AUTO_MODE                 (1u << 31)
69 #define HSI2C_10BIT_ADDR_MODE           (1u << 30)
70 #define HSI2C_HS_MODE                   (1u << 29)
71
72 /* I2C_AUTO_CONF Register bits */
73 #define HSI2C_READ_WRITE                (1u << 16)
74 #define HSI2C_STOP_AFTER_TRANS          (1u << 17)
75 #define HSI2C_MASTER_RUN                (1u << 31)
76
77 /* I2C_TIMEOUT Register bits */
78 #define HSI2C_TIMEOUT_EN                (1u << 31)
79
80 /* I2C_TRANS_STATUS register bits */
81 #define HSI2C_MASTER_BUSY               (1u << 17)
82 #define HSI2C_SLAVE_BUSY                (1u << 16)
83 #define HSI2C_TIMEOUT_AUTO              (1u << 4)
84 #define HSI2C_NO_DEV                    (1u << 3)
85 #define HSI2C_NO_DEV_ACK                (1u << 2)
86 #define HSI2C_TRANS_ABORT               (1u << 1)
87 #define HSI2C_TRANS_SUCCESS             (1u << 0)
88 #define HSI2C_TRANS_ERROR_MASK  (HSI2C_TIMEOUT_AUTO |\
89                                  HSI2C_NO_DEV | HSI2C_NO_DEV_ACK |\
90                                  HSI2C_TRANS_ABORT)
91 #define HSI2C_TRANS_FINISHED_MASK (HSI2C_TRANS_ERROR_MASK | HSI2C_TRANS_SUCCESS)
92
93
94 /* I2C_FIFO_STAT Register bits */
95 #define HSI2C_RX_FIFO_EMPTY             (1u << 24)
96 #define HSI2C_RX_FIFO_FULL              (1u << 23)
97 #define HSI2C_TX_FIFO_EMPTY             (1u << 8)
98 #define HSI2C_TX_FIFO_FULL              (1u << 7)
99 #define HSI2C_RX_FIFO_LEVEL(x)          (((x) >> 16) & 0x7f)
100 #define HSI2C_TX_FIFO_LEVEL(x)          ((x) & 0x7f)
101
102 #define HSI2C_SLV_ADDR_MAS(x)           ((x & 0x3ff) << 10)
103
104 /* S3C I2C Controller bits */
105 #define I2CSTAT_BSY     0x20    /* Busy bit */
106 #define I2CSTAT_NACK    0x01    /* Nack bit */
107 #define I2CCON_ACKGEN   0x80    /* Acknowledge generation */
108 #define I2CCON_IRPND    0x10    /* Interrupt pending bit */
109 #define I2C_MODE_MT     0xC0    /* Master Transmit Mode */
110 #define I2C_MODE_MR     0x80    /* Master Receive Mode */
111 #define I2C_START_STOP  0x20    /* START / STOP */
112 #define I2C_TXRX_ENA    0x10    /* I2C Tx/Rx enable */
113
114 #define I2C_TIMEOUT_MS 1000             /* 1 second */
115
116 #define HSI2C_TIMEOUT_US 100000 /* 100 ms, finer granularity */
117
118
119 /* To support VCMA9 boards and other who dont define max_i2c_num */
120 #ifndef CONFIG_MAX_I2C_NUM
121 #define CONFIG_MAX_I2C_NUM 1
122 #endif
123
124 /*
125  * For SPL boot some boards need i2c before SDRAM is initialised so force
126  * variables to live in SRAM
127  */
128 static struct s3c24x0_i2c_bus i2c_bus[CONFIG_MAX_I2C_NUM]
129                         __attribute__((section(".data")));
130
131 /**
132  * Get a pointer to the given bus index
133  *
134  * @bus_idx: Bus index to look up
135  * @return pointer to bus, or NULL if invalid or not available
136  */
137 static struct s3c24x0_i2c_bus *get_bus(unsigned int bus_idx)
138 {
139         if (bus_idx < ARRAY_SIZE(i2c_bus)) {
140                 struct s3c24x0_i2c_bus *bus;
141
142                 bus = &i2c_bus[bus_idx];
143                 if (bus->active)
144                         return bus;
145         }
146
147         debug("Undefined bus: %d\n", bus_idx);
148         return NULL;
149 }
150
151 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
152 static int GetI2CSDA(void)
153 {
154         struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
155
156 #ifdef CONFIG_S3C2410
157         return (readl(&gpio->gpedat) & 0x8000) >> 15;
158 #endif
159 #ifdef CONFIG_S3C2400
160         return (readl(&gpio->pgdat) & 0x0020) >> 5;
161 #endif
162 }
163
164 static void SetI2CSCL(int x)
165 {
166         struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
167
168 #ifdef CONFIG_S3C2410
169         writel((readl(&gpio->gpedat) & ~0x4000) |
170                                         (x & 1) << 14, &gpio->gpedat);
171 #endif
172 #ifdef CONFIG_S3C2400
173         writel((readl(&gpio->pgdat) & ~0x0040) | (x & 1) << 6, &gpio->pgdat);
174 #endif
175 }
176 #endif
177
178 /*
179  * Wait til the byte transfer is completed.
180  *
181  * @param i2c- pointer to the appropriate i2c register bank.
182  * @return I2C_OK, if transmission was ACKED
183  *         I2C_NACK, if transmission was NACKED
184  *         I2C_NOK_TIMEOUT, if transaction did not complete in I2C_TIMEOUT_MS
185  */
186
187 static int WaitForXfer(struct s3c24x0_i2c *i2c)
188 {
189         ulong start_time = get_timer(0);
190
191         do {
192                 if (readl(&i2c->iiccon) & I2CCON_IRPND)
193                         return (readl(&i2c->iicstat) & I2CSTAT_NACK) ?
194                                 I2C_NACK : I2C_OK;
195         } while (get_timer(start_time) < I2C_TIMEOUT_MS);
196
197         return I2C_NOK_TOUT;
198 }
199
200 /*
201  * Wait for transfer completion.
202  *
203  * This function reads the interrupt status register waiting for the INT_I2C
204  * bit to be set, which indicates copletion of a transaction.
205  *
206  * @param i2c: pointer to the appropriate register bank
207  *
208  * @return: I2C_OK in case of successful completion, I2C_NOK_TIMEOUT in case
209  *          the status bits do not get set in time, or an approrpiate error
210  *          value in case of transfer errors.
211  */
212 static int hsi2c_wait_for_trx(struct exynos5_hsi2c *i2c)
213 {
214         int i = HSI2C_TIMEOUT_US;
215
216         while (i-- > 0) {
217                 u32 int_status = readl(&i2c->usi_int_stat);
218
219                 if (int_status & HSI2C_INT_I2C_EN) {
220                         u32 trans_status = readl(&i2c->usi_trans_status);
221
222                         /* Deassert pending interrupt. */
223                         writel(int_status, &i2c->usi_int_stat);
224
225                         if (trans_status & HSI2C_NO_DEV_ACK) {
226                                 debug("%s: no ACK from device\n", __func__);
227                                 return I2C_NACK;
228                         }
229                         if (trans_status & HSI2C_NO_DEV) {
230                                 debug("%s: no device\n", __func__);
231                                 return I2C_NOK;
232                         }
233                         if (trans_status & HSI2C_TRANS_ABORT) {
234                                 debug("%s: arbitration lost\n", __func__);
235                                 return I2C_NOK_LA;
236                         }
237                         if (trans_status & HSI2C_TIMEOUT_AUTO) {
238                                 debug("%s: device timed out\n", __func__);
239                                 return I2C_NOK_TOUT;
240                         }
241                         return I2C_OK;
242                 }
243                 udelay(1);
244         }
245         debug("%s: transaction timeout!\n", __func__);
246         return I2C_NOK_TOUT;
247 }
248
249 static void ReadWriteByte(struct s3c24x0_i2c *i2c)
250 {
251         writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
252 }
253
254 static struct s3c24x0_i2c *get_base_i2c(int bus)
255 {
256 #ifdef CONFIG_EXYNOS4
257         struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
258                                                         + (EXYNOS4_I2C_SPACING
259                                                         * bus));
260         return i2c;
261 #elif defined CONFIG_EXYNOS5
262         struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
263                                                         + (EXYNOS5_I2C_SPACING
264                                                         * bus));
265         return i2c;
266 #else
267         return s3c24x0_get_base_i2c();
268 #endif
269 }
270
271 static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
272 {
273         ulong freq, pres = 16, div;
274 #if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
275         freq = get_i2c_clk();
276 #else
277         freq = get_PCLK();
278 #endif
279         /* calculate prescaler and divisor values */
280         if ((freq / pres / (16 + 1)) > speed)
281                 /* set prescaler to 512 */
282                 pres = 512;
283
284         div = 0;
285         while ((freq / pres / (div + 1)) > speed)
286                 div++;
287
288         /* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
289         writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
290
291         /* init to SLAVE REVEIVE and set slaveaddr */
292         writel(0, &i2c->iicstat);
293         writel(slaveadd, &i2c->iicadd);
294         /* program Master Transmit (and implicit STOP) */
295         writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
296 }
297
298 static int hsi2c_get_clk_details(struct s3c24x0_i2c_bus *i2c_bus)
299 {
300         struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
301         ulong clkin;
302         unsigned int op_clk = i2c_bus->clock_frequency;
303         unsigned int i = 0, utemp0 = 0, utemp1 = 0;
304         unsigned int t_ftl_cycle;
305
306 #if defined CONFIG_EXYNOS5
307         clkin = get_i2c_clk();
308 #endif
309         /* FPCLK / FI2C =
310          * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
311          * uTemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
312          * uTemp1 = (TSCLK_L + TSCLK_H + 2)
313          * uTemp2 = TSCLK_L + TSCLK_H
314          */
315         t_ftl_cycle = (readl(&hsregs->usi_conf) >> 16) & 0x7;
316         utemp0 = (clkin / op_clk) - 8 - 2 * t_ftl_cycle;
317
318         /* CLK_DIV max is 256 */
319         for (i = 0; i < 256; i++) {
320                 utemp1 = utemp0 / (i + 1);
321                 if ((utemp1 < 512) && (utemp1 > 4)) {
322                         i2c_bus->clk_cycle = utemp1 - 2;
323                         i2c_bus->clk_div = i;
324                         return 0;
325                 }
326         }
327         return -1;
328 }
329
330 static void hsi2c_ch_init(struct s3c24x0_i2c_bus *i2c_bus)
331 {
332         struct exynos5_hsi2c *hsregs = i2c_bus->hsregs;
333         unsigned int t_sr_release;
334         unsigned int n_clkdiv;
335         unsigned int t_start_su, t_start_hd;
336         unsigned int t_stop_su;
337         unsigned int t_data_su, t_data_hd;
338         unsigned int t_scl_l, t_scl_h;
339         u32 i2c_timing_s1;
340         u32 i2c_timing_s2;
341         u32 i2c_timing_s3;
342         u32 i2c_timing_sla;
343
344         n_clkdiv = i2c_bus->clk_div;
345         t_scl_l = i2c_bus->clk_cycle / 2;
346         t_scl_h = i2c_bus->clk_cycle / 2;
347         t_start_su = t_scl_l;
348         t_start_hd = t_scl_l;
349         t_stop_su = t_scl_l;
350         t_data_su = t_scl_l / 2;
351         t_data_hd = t_scl_l / 2;
352         t_sr_release = i2c_bus->clk_cycle;
353
354         i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
355         i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
356         i2c_timing_s3 = n_clkdiv << 16 | t_sr_release << 0;
357         i2c_timing_sla = t_data_hd << 0;
358
359         writel(HSI2C_TRAILING_COUNT, &hsregs->usi_trailing_ctl);
360
361         /* Clear to enable Timeout */
362         clrsetbits_le32(&hsregs->usi_timeout, HSI2C_TIMEOUT_EN, 0);
363
364         /* set AUTO mode */
365         writel(readl(&hsregs->usi_conf) | HSI2C_AUTO_MODE, &hsregs->usi_conf);
366
367         /* Enable completion conditions' reporting. */
368         writel(HSI2C_INT_I2C_EN, &hsregs->usi_int_en);
369
370         /* Enable FIFOs */
371         writel(HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN, &hsregs->usi_fifo_ctl);
372
373         /* Currently operating in Fast speed mode. */
374         writel(i2c_timing_s1, &hsregs->usi_timing_fs1);
375         writel(i2c_timing_s2, &hsregs->usi_timing_fs2);
376         writel(i2c_timing_s3, &hsregs->usi_timing_fs3);
377         writel(i2c_timing_sla, &hsregs->usi_timing_sla);
378 }
379
380 /* SW reset for the high speed bus */
381 static void exynos5_i2c_reset(struct s3c24x0_i2c_bus *i2c_bus)
382 {
383         struct exynos5_hsi2c *i2c = i2c_bus->hsregs;
384         u32 i2c_ctl;
385
386         /* Set and clear the bit for reset */
387         i2c_ctl = readl(&i2c->usi_ctl);
388         i2c_ctl |= HSI2C_SW_RST;
389         writel(i2c_ctl, &i2c->usi_ctl);
390
391         i2c_ctl = readl(&i2c->usi_ctl);
392         i2c_ctl &= ~HSI2C_SW_RST;
393         writel(i2c_ctl, &i2c->usi_ctl);
394
395         /* Initialize the configure registers */
396         hsi2c_ch_init(i2c_bus);
397 }
398
399 static void s3c24x0_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
400 {
401         struct s3c24x0_i2c *i2c;
402         struct s3c24x0_i2c_bus *bus;
403
404 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
405         struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
406 #endif
407         ulong start_time = get_timer(0);
408
409         /* By default i2c channel 0 is the current bus */
410         i2c = get_base_i2c(adap->hwadapnr);
411
412         /*
413          * In case the previous transfer is still going, wait to give it a
414          * chance to finish.
415          */
416         while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
417                 if (get_timer(start_time) > I2C_TIMEOUT_MS) {
418                         printf("%s: I2C bus busy for %p\n", __func__,
419                                &i2c->iicstat);
420                         return;
421                 }
422         }
423
424 #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
425         int i;
426
427         if ((readl(&i2c->iicstat) & I2CSTAT_BSY) || GetI2CSDA() == 0) {
428 #ifdef CONFIG_S3C2410
429                 ulong old_gpecon = readl(&gpio->gpecon);
430 #endif
431 #ifdef CONFIG_S3C2400
432                 ulong old_gpecon = readl(&gpio->pgcon);
433 #endif
434                 /* bus still busy probably by (most) previously interrupted
435                    transfer */
436
437 #ifdef CONFIG_S3C2410
438                 /* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
439                 writel((readl(&gpio->gpecon) & ~0xF0000000) | 0x10000000,
440                        &gpio->gpecon);
441 #endif
442 #ifdef CONFIG_S3C2400
443                 /* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
444                 writel((readl(&gpio->pgcon) & ~0x00003c00) | 0x00001000,
445                        &gpio->pgcon);
446 #endif
447
448                 /* toggle I2CSCL until bus idle */
449                 SetI2CSCL(0);
450                 udelay(1000);
451                 i = 10;
452                 while ((i > 0) && (GetI2CSDA() != 1)) {
453                         SetI2CSCL(1);
454                         udelay(1000);
455                         SetI2CSCL(0);
456                         udelay(1000);
457                         i--;
458                 }
459                 SetI2CSCL(1);
460                 udelay(1000);
461
462                 /* restore pin functions */
463 #ifdef CONFIG_S3C2410
464                 writel(old_gpecon, &gpio->gpecon);
465 #endif
466 #ifdef CONFIG_S3C2400
467                 writel(old_gpecon, &gpio->pgcon);
468 #endif
469         }
470 #endif /* #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5) */
471         i2c_ch_init(i2c, speed, slaveadd);
472
473         bus = &i2c_bus[adap->hwadapnr];
474         bus->active = true;
475         bus->regs = i2c;
476 }
477
478 /*
479  * Poll the appropriate bit of the fifo status register until the interface is
480  * ready to process the next byte or timeout expires.
481  *
482  * In addition to the FIFO status register this function also polls the
483  * interrupt status register to be able to detect unexpected transaction
484  * completion.
485  *
486  * When FIFO is ready to process the next byte, this function returns I2C_OK.
487  * If in course of polling the INT_I2C assertion is detected, the function
488  * returns I2C_NOK. If timeout happens before any of the above conditions is
489  * met - the function returns I2C_NOK_TOUT;
490
491  * @param i2c: pointer to the appropriate i2c register bank.
492  * @param rx_transfer: set to True if the receive transaction is in progress.
493  * @return: as described above.
494  */
495 static unsigned hsi2c_poll_fifo(struct exynos5_hsi2c *i2c, bool rx_transfer)
496 {
497         u32 fifo_bit = rx_transfer ? HSI2C_RX_FIFO_EMPTY : HSI2C_TX_FIFO_FULL;
498         int i = HSI2C_TIMEOUT_US;
499
500         while (readl(&i2c->usi_fifo_stat) & fifo_bit) {
501                 if (readl(&i2c->usi_int_stat) & HSI2C_INT_I2C_EN) {
502                         /*
503                          * There is a chance that assertion of
504                          * HSI2C_INT_I2C_EN and deassertion of
505                          * HSI2C_RX_FIFO_EMPTY happen simultaneously. Let's
506                          * give FIFO status priority and check it one more
507                          * time before reporting interrupt. The interrupt will
508                          * be reported next time this function is called.
509                          */
510                         if (rx_transfer &&
511                             !(readl(&i2c->usi_fifo_stat) & fifo_bit))
512                                 break;
513                         return I2C_NOK;
514                 }
515                 if (!i--) {
516                         debug("%s: FIFO polling timeout!\n", __func__);
517                         return I2C_NOK_TOUT;
518                 }
519                 udelay(1);
520         }
521         return I2C_OK;
522 }
523
524 /*
525  * Preapre hsi2c transaction, either read or write.
526  *
527  * Set up transfer as described in section 27.5.1.2 'I2C Channel Auto Mode' of
528  * the 5420 UM.
529  *
530  * @param i2c: pointer to the appropriate i2c register bank.
531  * @param chip: slave address on the i2c bus (with read/write bit exlcuded)
532  * @param len: number of bytes expected to be sent or received
533  * @param rx_transfer: set to true for receive transactions
534  * @param: issue_stop: set to true if i2c stop condition should be generated
535  *         after this transaction.
536  * @return: I2C_NOK_TOUT in case the bus remained busy for HSI2C_TIMEOUT_US,
537  *          I2C_OK otherwise.
538  */
539 static int hsi2c_prepare_transaction(struct exynos5_hsi2c *i2c,
540                                      u8 chip,
541                                      u16 len,
542                                      bool rx_transfer,
543                                      bool issue_stop)
544 {
545         u32 conf;
546
547         conf = len | HSI2C_MASTER_RUN;
548
549         if (issue_stop)
550                 conf |= HSI2C_STOP_AFTER_TRANS;
551
552         /* Clear to enable Timeout */
553         writel(readl(&i2c->usi_timeout) & ~HSI2C_TIMEOUT_EN, &i2c->usi_timeout);
554
555         /* Set slave address */
556         writel(HSI2C_SLV_ADDR_MAS(chip), &i2c->i2c_addr);
557
558         if (rx_transfer) {
559                 /* i2c master, read transaction */
560                 writel((HSI2C_RXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
561                        &i2c->usi_ctl);
562
563                 /* read up to len bytes, stop after transaction is finished */
564                 writel(conf | HSI2C_READ_WRITE, &i2c->usi_auto_conf);
565         } else {
566                 /* i2c master, write transaction */
567                 writel((HSI2C_TXCHON | HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
568                        &i2c->usi_ctl);
569
570                 /* write up to len bytes, stop after transaction is finished */
571                 writel(conf, &i2c->usi_auto_conf);
572         }
573
574         /* Reset all pending interrupt status bits we care about, if any */
575         writel(HSI2C_INT_I2C_EN, &i2c->usi_int_stat);
576
577         return I2C_OK;
578 }
579
580 /*
581  * Wait while i2c bus is settling down (mostly stop gets completed).
582  */
583 static int hsi2c_wait_while_busy(struct exynos5_hsi2c *i2c)
584 {
585         int i = HSI2C_TIMEOUT_US;
586
587         while (readl(&i2c->usi_trans_status) & HSI2C_MASTER_BUSY) {
588                 if (!i--) {
589                         debug("%s: bus busy\n", __func__);
590                         return I2C_NOK_TOUT;
591                 }
592                 udelay(1);
593         }
594         return I2C_OK;
595 }
596
597 static int hsi2c_write(struct exynos5_hsi2c *i2c,
598                        unsigned char chip,
599                        unsigned char addr[],
600                        unsigned char alen,
601                        unsigned char data[],
602                        unsigned short len,
603                        bool issue_stop)
604 {
605         int i, rv = 0;
606
607         if (!(len + alen)) {
608                 /* Writes of zero length not supported in auto mode. */
609                 debug("%s: zero length writes not supported\n", __func__);
610                 return I2C_NOK;
611         }
612
613         rv = hsi2c_prepare_transaction
614                 (i2c, chip, len + alen, false, issue_stop);
615         if (rv != I2C_OK)
616                 return rv;
617
618         /* Move address, if any, and the data, if any, into the FIFO. */
619         for (i = 0; i < alen; i++) {
620                 rv = hsi2c_poll_fifo(i2c, false);
621                 if (rv != I2C_OK) {
622                         debug("%s: address write failed\n", __func__);
623                         goto write_error;
624                 }
625                 writel(addr[i], &i2c->usi_txdata);
626         }
627
628         for (i = 0; i < len; i++) {
629                 rv = hsi2c_poll_fifo(i2c, false);
630                 if (rv != I2C_OK) {
631                         debug("%s: data write failed\n", __func__);
632                         goto write_error;
633                 }
634                 writel(data[i], &i2c->usi_txdata);
635         }
636
637         rv = hsi2c_wait_for_trx(i2c);
638
639  write_error:
640         if (issue_stop) {
641                 int tmp_ret = hsi2c_wait_while_busy(i2c);
642                 if (rv == I2C_OK)
643                         rv = tmp_ret;
644         }
645
646         writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
647         return rv;
648 }
649
650 static int hsi2c_read(struct exynos5_hsi2c *i2c,
651                       unsigned char chip,
652                       unsigned char addr[],
653                       unsigned char alen,
654                       unsigned char data[],
655                       unsigned short len)
656 {
657         int i, rv, tmp_ret;
658         bool drop_data = false;
659
660         if (!len) {
661                 /* Reads of zero length not supported in auto mode. */
662                 debug("%s: zero length read adjusted\n", __func__);
663                 drop_data = true;
664                 len = 1;
665         }
666
667         if (alen) {
668                 /* Internal register adress needs to be written first. */
669                 rv = hsi2c_write(i2c, chip, addr, alen, NULL, 0, false);
670                 if (rv != I2C_OK)
671                         return rv;
672         }
673
674         rv = hsi2c_prepare_transaction(i2c, chip, len, true, true);
675
676         if (rv != I2C_OK)
677                 return rv;
678
679         for (i = 0; i < len; i++) {
680                 rv = hsi2c_poll_fifo(i2c, true);
681                 if (rv != I2C_OK)
682                         goto read_err;
683                 if (drop_data)
684                         continue;
685                 data[i] = readl(&i2c->usi_rxdata);
686         }
687
688         rv = hsi2c_wait_for_trx(i2c);
689
690  read_err:
691         tmp_ret = hsi2c_wait_while_busy(i2c);
692         if (rv == I2C_OK)
693                 rv = tmp_ret;
694
695         writel(HSI2C_FUNC_MODE_I2C, &i2c->usi_ctl); /* done */
696         return rv;
697 }
698
699 static unsigned int s3c24x0_i2c_set_bus_speed(struct i2c_adapter *adap,
700                                           unsigned int speed)
701 {
702         struct s3c24x0_i2c_bus *i2c_bus;
703
704         i2c_bus = get_bus(adap->hwadapnr);
705         if (!i2c_bus)
706                 return -1;
707
708         i2c_bus->clock_frequency = speed;
709
710         if (i2c_bus->is_highspeed) {
711                 if (hsi2c_get_clk_details(i2c_bus))
712                         return -1;
713                 hsi2c_ch_init(i2c_bus);
714         } else {
715                 i2c_ch_init(i2c_bus->regs, i2c_bus->clock_frequency,
716                             CONFIG_SYS_I2C_S3C24X0_SLAVE);
717         }
718
719         return 0;
720 }
721
722 /*
723  * cmd_type is 0 for write, 1 for read.
724  *
725  * addr_len can take any value from 0-255, it is only limited
726  * by the char, we could make it larger if needed. If it is
727  * 0 we skip the address write cycle.
728  */
729 static int i2c_transfer(struct s3c24x0_i2c *i2c,
730                         unsigned char cmd_type,
731                         unsigned char chip,
732                         unsigned char addr[],
733                         unsigned char addr_len,
734                         unsigned char data[],
735                         unsigned short data_len)
736 {
737         int i = 0, result;
738         ulong start_time = get_timer(0);
739
740         if (data == 0 || data_len == 0) {
741                 /*Don't support data transfer of no length or to address 0 */
742                 debug("i2c_transfer: bad call\n");
743                 return I2C_NOK;
744         }
745
746         while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
747                 if (get_timer(start_time) > I2C_TIMEOUT_MS)
748                         return I2C_NOK_TOUT;
749         }
750
751         writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
752
753         /* Get the slave chip address going */
754         writel(chip, &i2c->iicds);
755         if ((cmd_type == I2C_WRITE) || (addr && addr_len))
756                 writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
757                        &i2c->iicstat);
758         else
759                 writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
760                        &i2c->iicstat);
761
762         /* Wait for chip address to transmit. */
763         result = WaitForXfer(i2c);
764         if (result != I2C_OK)
765                 goto bailout;
766
767         /* If register address needs to be transmitted - do it now. */
768         if (addr && addr_len) {
769                 while ((i < addr_len) && (result == I2C_OK)) {
770                         writel(addr[i++], &i2c->iicds);
771                         ReadWriteByte(i2c);
772                         result = WaitForXfer(i2c);
773                 }
774                 i = 0;
775                 if (result != I2C_OK)
776                         goto bailout;
777         }
778
779         switch (cmd_type) {
780         case I2C_WRITE:
781                 while ((i < data_len) && (result == I2C_OK)) {
782                         writel(data[i++], &i2c->iicds);
783                         ReadWriteByte(i2c);
784                         result = WaitForXfer(i2c);
785                 }
786                 break;
787
788         case I2C_READ:
789                 if (addr && addr_len) {
790                         /*
791                          * Register address has been sent, now send slave chip
792                          * address again to start the actual read transaction.
793                          */
794                         writel(chip, &i2c->iicds);
795
796                         /* Generate a re-START. */
797                         writel(I2C_MODE_MR | I2C_TXRX_ENA | I2C_START_STOP,
798                                 &i2c->iicstat);
799                         ReadWriteByte(i2c);
800                         result = WaitForXfer(i2c);
801
802                         if (result != I2C_OK)
803                                 goto bailout;
804                 }
805
806                 while ((i < data_len) && (result == I2C_OK)) {
807                         /* disable ACK for final READ */
808                         if (i == data_len - 1)
809                                 writel(readl(&i2c->iiccon)
810                                        & ~I2CCON_ACKGEN,
811                                        &i2c->iiccon);
812                         ReadWriteByte(i2c);
813                         result = WaitForXfer(i2c);
814                         data[i++] = readl(&i2c->iicds);
815                 }
816                 if (result == I2C_NACK)
817                         result = I2C_OK; /* Normal terminated read. */
818                 break;
819
820         default:
821                 debug("i2c_transfer: bad call\n");
822                 result = I2C_NOK;
823                 break;
824         }
825
826 bailout:
827         /* Send STOP. */
828         writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
829         ReadWriteByte(i2c);
830
831         return result;
832 }
833
834 static int s3c24x0_i2c_probe(struct i2c_adapter *adap, uchar chip)
835 {
836         struct s3c24x0_i2c_bus *i2c_bus;
837         uchar buf[1];
838         int ret;
839
840         i2c_bus = get_bus(adap->hwadapnr);
841         if (!i2c_bus)
842                 return -1;
843         buf[0] = 0;
844
845         /*
846          * What is needed is to send the chip address and verify that the
847          * address was <ACK>ed (i.e. there was a chip at that address which
848          * drove the data line low).
849          */
850         if (i2c_bus->is_highspeed) {
851                 ret = hsi2c_read(i2c_bus->hsregs,
852                                 chip, 0, 0, buf, 1);
853         } else {
854                 ret = i2c_transfer(i2c_bus->regs,
855                                 I2C_READ, chip << 1, 0, 0, buf, 1);
856         }
857
858         return ret != I2C_OK;
859 }
860
861 static int s3c24x0_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
862                             int alen, uchar *buffer, int len)
863 {
864         struct s3c24x0_i2c_bus *i2c_bus;
865         uchar xaddr[4];
866         int ret;
867
868         if (alen > 4) {
869                 debug("I2C read: addr len %d not supported\n", alen);
870                 return 1;
871         }
872
873         if (alen > 0) {
874                 xaddr[0] = (addr >> 24) & 0xFF;
875                 xaddr[1] = (addr >> 16) & 0xFF;
876                 xaddr[2] = (addr >> 8) & 0xFF;
877                 xaddr[3] = addr & 0xFF;
878         }
879
880 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
881         /*
882          * EEPROM chips that implement "address overflow" are ones
883          * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
884          * address and the extra bits end up in the "chip address"
885          * bit slots. This makes a 24WC08 (1Kbyte) chip look like
886          * four 256 byte chips.
887          *
888          * Note that we consider the length of the address field to
889          * still be one byte because the extra address bits are
890          * hidden in the chip address.
891          */
892         if (alen > 0)
893                 chip |= ((addr >> (alen * 8)) &
894                          CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
895 #endif
896         i2c_bus = get_bus(adap->hwadapnr);
897         if (!i2c_bus)
898                 return -1;
899
900         if (i2c_bus->is_highspeed)
901                 ret = hsi2c_read(i2c_bus->hsregs, chip, &xaddr[4 - alen],
902                                  alen, buffer, len);
903         else
904                 ret = i2c_transfer(i2c_bus->regs, I2C_READ, chip << 1,
905                                 &xaddr[4 - alen], alen, buffer, len);
906
907         if (ret) {
908                 if (i2c_bus->is_highspeed)
909                         exynos5_i2c_reset(i2c_bus);
910                 debug("I2c read failed %d\n", ret);
911                 return 1;
912         }
913         return 0;
914 }
915
916 static int s3c24x0_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
917                          int alen, uchar *buffer, int len)
918 {
919         struct s3c24x0_i2c_bus *i2c_bus;
920         uchar xaddr[4];
921         int ret;
922
923         if (alen > 4) {
924                 debug("I2C write: addr len %d not supported\n", alen);
925                 return 1;
926         }
927
928         if (alen > 0) {
929                 xaddr[0] = (addr >> 24) & 0xFF;
930                 xaddr[1] = (addr >> 16) & 0xFF;
931                 xaddr[2] = (addr >> 8) & 0xFF;
932                 xaddr[3] = addr & 0xFF;
933         }
934 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
935         /*
936          * EEPROM chips that implement "address overflow" are ones
937          * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
938          * address and the extra bits end up in the "chip address"
939          * bit slots. This makes a 24WC08 (1Kbyte) chip look like
940          * four 256 byte chips.
941          *
942          * Note that we consider the length of the address field to
943          * still be one byte because the extra address bits are
944          * hidden in the chip address.
945          */
946         if (alen > 0)
947                 chip |= ((addr >> (alen * 8)) &
948                          CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
949 #endif
950         i2c_bus = get_bus(adap->hwadapnr);
951         if (!i2c_bus)
952                 return -1;
953
954         if (i2c_bus->is_highspeed)
955                 ret = hsi2c_write(i2c_bus->hsregs, chip, &xaddr[4 - alen],
956                                   alen, buffer, len, true);
957         else
958                 ret = i2c_transfer(i2c_bus->regs, I2C_WRITE, chip << 1,
959                                 &xaddr[4 - alen], alen, buffer, len);
960
961         if (ret != 0) {
962                 if (i2c_bus->is_highspeed)
963                         exynos5_i2c_reset(i2c_bus);
964                 return 1;
965         } else {
966                 return 0;
967         }
968 }
969
970 #ifdef CONFIG_OF_CONTROL
971 static void process_nodes(const void *blob, int node_list[], int count,
972                          int is_highspeed)
973 {
974         struct s3c24x0_i2c_bus *bus;
975         int i;
976
977         for (i = 0; i < count; i++) {
978                 int node = node_list[i];
979
980                 if (node <= 0)
981                         continue;
982
983                 bus = &i2c_bus[i];
984                 bus->active = true;
985                 bus->is_highspeed = is_highspeed;
986
987                 if (is_highspeed)
988                         bus->hsregs = (struct exynos5_hsi2c *)
989                                         fdtdec_get_addr(blob, node, "reg");
990                 else
991                         bus->regs = (struct s3c24x0_i2c *)
992                                         fdtdec_get_addr(blob, node, "reg");
993
994                 bus->id = pinmux_decode_periph_id(blob, node);
995                 bus->clock_frequency = fdtdec_get_int(blob, node,
996                                                 "clock-frequency",
997                                                 CONFIG_SYS_I2C_S3C24X0_SPEED);
998                 bus->node = node;
999                 bus->bus_num = i;
1000                 exynos_pinmux_config(bus->id, 0);
1001
1002                 /* Mark position as used */
1003                 node_list[i] = -1;
1004         }
1005 }
1006
1007 void board_i2c_init(const void *blob)
1008 {
1009         int node_list[CONFIG_MAX_I2C_NUM];
1010         int count;
1011
1012         /* First get the normal i2c ports */
1013         count = fdtdec_find_aliases_for_id(blob, "i2c",
1014                 COMPAT_SAMSUNG_S3C2440_I2C, node_list,
1015                 CONFIG_MAX_I2C_NUM);
1016         process_nodes(blob, node_list, count, 0);
1017
1018         /* Now look for high speed i2c ports */
1019         count = fdtdec_find_aliases_for_id(blob, "i2c",
1020                 COMPAT_SAMSUNG_EXYNOS5_I2C, node_list,
1021                 CONFIG_MAX_I2C_NUM);
1022         process_nodes(blob, node_list, count, 1);
1023
1024 }
1025
1026 int i2c_get_bus_num_fdt(int node)
1027 {
1028         int i;
1029
1030         for (i = 0; i < ARRAY_SIZE(i2c_bus); i++) {
1031                 if (node == i2c_bus[i].node)
1032                         return i;
1033         }
1034
1035         debug("%s: Can't find any matched I2C bus\n", __func__);
1036         return -1;
1037 }
1038
1039 int i2c_reset_port_fdt(const void *blob, int node)
1040 {
1041         struct s3c24x0_i2c_bus *i2c_bus;
1042         int bus;
1043
1044         bus = i2c_get_bus_num_fdt(node);
1045         if (bus < 0) {
1046                 debug("could not get bus for node %d\n", node);
1047                 return -1;
1048         }
1049
1050         i2c_bus = get_bus(bus);
1051         if (!i2c_bus) {
1052                 debug("get_bus() failed for node node %d\n", node);
1053                 return -1;
1054         }
1055
1056         if (i2c_bus->is_highspeed) {
1057                 if (hsi2c_get_clk_details(i2c_bus))
1058                         return -1;
1059                 hsi2c_ch_init(i2c_bus);
1060         } else {
1061                 i2c_ch_init(i2c_bus->regs, i2c_bus->clock_frequency,
1062                             CONFIG_SYS_I2C_S3C24X0_SLAVE);
1063         }
1064
1065         return 0;
1066 }
1067 #endif
1068
1069 /*
1070  * Register s3c24x0 i2c adapters
1071  */
1072 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_0, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1073                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1074                          s3c24x0_i2c_set_bus_speed,
1075                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1076                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1077                          0)
1078 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_1, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1079                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1080                          s3c24x0_i2c_set_bus_speed,
1081                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1082                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1083                          1)
1084 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_2, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1085                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1086                          s3c24x0_i2c_set_bus_speed,
1087                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1088                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1089                          2)
1090 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_3, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1091                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1092                          s3c24x0_i2c_set_bus_speed,
1093                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1094                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1095                          3)
1096 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_4, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1097                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1098                          s3c24x0_i2c_set_bus_speed,
1099                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1100                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1101                          4)
1102 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_5, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1103                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1104                          s3c24x0_i2c_set_bus_speed,
1105                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1106                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1107                          5)
1108 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_6, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1109                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1110                          s3c24x0_i2c_set_bus_speed,
1111                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1112                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1113                          6)
1114 U_BOOT_I2C_ADAP_COMPLETE(s3c24x0_7, s3c24x0_i2c_init, s3c24x0_i2c_probe,
1115                          s3c24x0_i2c_read, s3c24x0_i2c_write,
1116                          s3c24x0_i2c_set_bus_speed,
1117                          CONFIG_SYS_I2C_S3C24X0_SPEED,
1118                          CONFIG_SYS_I2C_S3C24X0_SLAVE,
1119                          7)