WIP: merge_config
[platform/kernel/linux-starfive.git] / drivers / i2c / busses / i2c-npcm7xx.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/regmap.h>
23
24 enum i2c_mode {
25         I2C_MASTER,
26         I2C_SLAVE,
27 };
28
29 /*
30  * External I2C Interface driver xfer indication values, which indicate status
31  * of the bus.
32  */
33 enum i2c_state_ind {
34         I2C_NO_STATUS_IND = 0,
35         I2C_SLAVE_RCV_IND,
36         I2C_SLAVE_XMIT_IND,
37         I2C_SLAVE_XMIT_MISSING_DATA_IND,
38         I2C_SLAVE_RESTART_IND,
39         I2C_SLAVE_DONE_IND,
40         I2C_MASTER_DONE_IND,
41         I2C_NACK_IND,
42         I2C_BUS_ERR_IND,
43         I2C_WAKE_UP_IND,
44         I2C_BLOCK_BYTES_ERR_IND,
45         I2C_SLAVE_RCV_MISSING_DATA_IND,
46 };
47
48 /*
49  * Operation type values (used to define the operation currently running)
50  * module is interrupt driven, on each interrupt the current operation is
51  * checked to see if the module is currently reading or writing.
52  */
53 enum i2c_oper {
54         I2C_NO_OPER = 0,
55         I2C_WRITE_OPER,
56         I2C_READ_OPER,
57 };
58
59 /* I2C Bank (module had 2 banks of registers) */
60 enum i2c_bank {
61         I2C_BANK_0 = 0,
62         I2C_BANK_1,
63 };
64
65 /* Internal I2C states values (for the I2C module state machine). */
66 enum i2c_state {
67         I2C_DISABLE = 0,
68         I2C_IDLE,
69         I2C_MASTER_START,
70         I2C_SLAVE_MATCH,
71         I2C_OPER_STARTED,
72         I2C_STOP_PENDING,
73 };
74
75 #if IS_ENABLED(CONFIG_I2C_SLAVE)
76 /* Module supports setting multiple own slave addresses */
77 enum i2c_addr {
78         I2C_SLAVE_ADDR1 = 0,
79         I2C_SLAVE_ADDR2,
80         I2C_SLAVE_ADDR3,
81         I2C_SLAVE_ADDR4,
82         I2C_SLAVE_ADDR5,
83         I2C_SLAVE_ADDR6,
84         I2C_SLAVE_ADDR7,
85         I2C_SLAVE_ADDR8,
86         I2C_SLAVE_ADDR9,
87         I2C_SLAVE_ADDR10,
88         I2C_GC_ADDR,
89         I2C_ARP_ADDR,
90 };
91 #endif
92
93 /* init register and default value required to enable module */
94 #define NPCM_I2CSEGCTL                  0xE4
95
96 /* Common regs */
97 #define NPCM_I2CSDA                     0x00
98 #define NPCM_I2CST                      0x02
99 #define NPCM_I2CCST                     0x04
100 #define NPCM_I2CCTL1                    0x06
101 #define NPCM_I2CADDR1                   0x08
102 #define NPCM_I2CCTL2                    0x0A
103 #define NPCM_I2CADDR2                   0x0C
104 #define NPCM_I2CCTL3                    0x0E
105 #define NPCM_I2CCST2                    0x18
106 #define NPCM_I2CCST3                    0x19
107 #define I2C_VER                         0x1F
108
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3                   0x10
111 #define NPCM_I2CADDR7                   0x11
112 #define NPCM_I2CADDR4                   0x12
113 #define NPCM_I2CADDR8                   0x13
114 #define NPCM_I2CADDR5                   0x14
115 #define NPCM_I2CADDR9                   0x15
116 #define NPCM_I2CADDR6                   0x16
117 #define NPCM_I2CADDR10                  0x17
118
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121  * npcm_i2caddr array:
122  * The module supports having multiple own slave addresses.
123  * Since the addr regs are sprinkled all over the address space,
124  * use this array to get the address or each register.
125  */
126 #define I2C_NUM_OWN_ADDR 2
127 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
128
129 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
130         NPCM_I2CADDR1, NPCM_I2CADDR2,
131 };
132 #endif
133
134 #define NPCM_I2CCTL4                    0x1A
135 #define NPCM_I2CCTL5                    0x1B
136 #define NPCM_I2CSCLLT                   0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL                 0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT                   0x1E /* SCL High Time */
139
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS                 0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL                 0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT                   0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC                     0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS                 0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS                 0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL                 0x1E /* Rx-FIFO Control */
148
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT                 BIT(0)
151 #define NPCM_I2CST_MASTER               BIT(1)
152 #define NPCM_I2CST_NMATCH               BIT(2)
153 #define NPCM_I2CST_STASTR               BIT(3)
154 #define NPCM_I2CST_NEGACK               BIT(4)
155 #define NPCM_I2CST_BER                  BIT(5)
156 #define NPCM_I2CST_SDAST                BIT(6)
157 #define NPCM_I2CST_SLVSTP               BIT(7)
158
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY                BIT(0)
161 #define NPCM_I2CCST_BB                  BIT(1)
162 #define NPCM_I2CCST_MATCH               BIT(2)
163 #define NPCM_I2CCST_GCMATCH             BIT(3)
164 #define NPCM_I2CCST_TSDA                BIT(4)
165 #define NPCM_I2CCST_TGSCL               BIT(5)
166 #define NPCM_I2CCST_MATCHAF             BIT(6)
167 #define NPCM_I2CCST_ARPMATCH            BIT(7)
168
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START              BIT(0)
171 #define NPCM_I2CCTL1_STOP               BIT(1)
172 #define NPCM_I2CCTL1_INTEN              BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE            BIT(3)
174 #define NPCM_I2CCTL1_ACK                BIT(4)
175 #define NPCM_I2CCTL1_GCMEN              BIT(5)
176 #define NPCM_I2CCTL1_NMINTE             BIT(6)
177 #define NPCM_I2CCTL1_STASTRE            BIT(7)
178
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181         (NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A                  GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN               BIT(7)
186
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE                  BIT(0)
189 #define I2CCTL2_SCLFRQ6_0               GENMASK(7, 1)
190
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7               GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN                  BIT(2)
194 #define I2CCTL3_IDL_START               BIT(3)
195 #define I2CCTL3_400K_MODE               BIT(4)
196 #define I2CCTL3_BNK_SEL                 BIT(5)
197 #define I2CCTL3_SDA_LVL                 BIT(6)
198 #define I2CCTL3_SCL_LVL                 BIT(7)
199
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F           BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F           BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F           BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F           BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F           BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F           BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F           BIT(5)
208 #define NPCM_I2CCST2_INTSTS             BIT(7)
209
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F           BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F           BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F          BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY            BIT(7)
215
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT                    GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE                  BIT(7)
219
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT                   GENMASK(3, 0)
222
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE         BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE         BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO        BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR         BIT(7)
228
229 /* NPCM_I2CTXF_CTL reg field */
230 #define NPCM_I2CTXF_CTL_THR_TXIE        BIT(6)
231
232 /* NPCM_I2CT_OUT reg fields */
233 #define NPCM_I2CT_OUT_TO_CKDIV          GENMASK(5, 0)
234 #define NPCM_I2CT_OUT_T_OUTIE           BIT(6)
235 #define NPCM_I2CT_OUT_T_OUTST           BIT(7)
236
237 /* NPCM_I2CTXF_STS reg fields */
238 #define NPCM_I2CTXF_STS_TX_THST         BIT(6)
239
240 /* NPCM_I2CRXF_STS reg fields */
241 #define NPCM_I2CRXF_STS_RX_THST         BIT(6)
242
243 /* NPCM_I2CFIF_CTL reg fields */
244 #define NPCM_I2CFIF_CTL_FIFO_EN         BIT(4)
245
246 /* NPCM_I2CRXF_CTL reg fields */
247 #define NPCM_I2CRXF_CTL_THR_RXIE        BIT(6)
248
249 #define MAX_I2C_HW_FIFO_SIZE            32
250
251 /* I2C_VER reg fields */
252 #define I2C_VER_VERSION                 GENMASK(6, 0)
253 #define I2C_VER_FIFO_EN                 BIT(7)
254
255 /* stall/stuck timeout in us */
256 #define DEFAULT_STALL_COUNT             25
257
258 /* SCLFRQ field position */
259 #define SCLFRQ_0_TO_6                   GENMASK(6, 0)
260 #define SCLFRQ_7_TO_8                   GENMASK(8, 7)
261
262 /* supported clk settings. values in Hz. */
263 #define I2C_FREQ_MIN_HZ                 10000
264 #define I2C_FREQ_MAX_HZ                 I2C_MAX_FAST_MODE_PLUS_FREQ
265
266 struct npcm_i2c_data {
267         u8 fifo_size;
268         u32 segctl_init_val;
269         u8 txf_sts_tx_bytes;
270         u8 rxf_sts_rx_bytes;
271         u8 rxf_ctl_last_pec;
272 };
273
274 static const struct npcm_i2c_data npxm7xx_i2c_data = {
275         .fifo_size = 16,
276         .segctl_init_val = 0x0333F000,
277         .txf_sts_tx_bytes = GENMASK(4, 0),
278         .rxf_sts_rx_bytes = GENMASK(4, 0),
279         .rxf_ctl_last_pec = BIT(5),
280 };
281
282 static const struct npcm_i2c_data npxm8xx_i2c_data = {
283         .fifo_size = 32,
284         .segctl_init_val = 0x9333F000,
285         .txf_sts_tx_bytes = GENMASK(5, 0),
286         .rxf_sts_rx_bytes = GENMASK(5, 0),
287         .rxf_ctl_last_pec = BIT(7),
288 };
289
290 /* Status of one I2C module */
291 struct npcm_i2c {
292         struct i2c_adapter adap;
293         struct device *dev;
294         unsigned char __iomem *reg;
295         const struct npcm_i2c_data *data;
296         spinlock_t lock;   /* IRQ synchronization */
297         struct completion cmd_complete;
298         int cmd_err;
299         struct i2c_msg *msgs;
300         int msgs_num;
301         int num;
302         u32 apb_clk;
303         struct i2c_bus_recovery_info rinfo;
304         enum i2c_state state;
305         enum i2c_oper operation;
306         enum i2c_mode master_or_slave;
307         enum i2c_state_ind stop_ind;
308         u8 dest_addr;
309         u8 *rd_buf;
310         u16 rd_size;
311         u16 rd_ind;
312         u8 *wr_buf;
313         u16 wr_size;
314         u16 wr_ind;
315         bool fifo_use;
316         u16 PEC_mask; /* PEC bit mask per slave address */
317         bool PEC_use;
318         bool read_block_use;
319         unsigned long int_time_stamp;
320         unsigned long bus_freq; /* in Hz */
321 #if IS_ENABLED(CONFIG_I2C_SLAVE)
322         u8 own_slave_addr;
323         struct i2c_client *slave;
324         int slv_rd_size;
325         int slv_rd_ind;
326         int slv_wr_size;
327         int slv_wr_ind;
328         u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
329         u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
330 #endif
331         struct dentry *debugfs; /* debugfs device directory */
332         u64 ber_cnt;
333         u64 rec_succ_cnt;
334         u64 rec_fail_cnt;
335         u64 nack_cnt;
336         u64 timeout_cnt;
337         u64 tx_complete_cnt;
338 };
339
340 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
341                                         enum i2c_bank bank)
342 {
343         u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
344
345         if (bank == I2C_BANK_0)
346                 i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
347         else
348                 i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
349         iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
350 }
351
352 static void npcm_i2c_init_params(struct npcm_i2c *bus)
353 {
354         bus->stop_ind = I2C_NO_STATUS_IND;
355         bus->rd_size = 0;
356         bus->wr_size = 0;
357         bus->rd_ind = 0;
358         bus->wr_ind = 0;
359         bus->read_block_use = false;
360         bus->int_time_stamp = 0;
361         bus->PEC_use = false;
362         bus->PEC_mask = 0;
363 #if IS_ENABLED(CONFIG_I2C_SLAVE)
364         if (bus->slave)
365                 bus->master_or_slave = I2C_SLAVE;
366 #endif
367 }
368
369 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
370 {
371         iowrite8(data, bus->reg + NPCM_I2CSDA);
372 }
373
374 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
375 {
376         return ioread8(bus->reg + NPCM_I2CSDA);
377 }
378
379 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
380 {
381         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
382
383         return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
384 }
385
386 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
387 {
388         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
389
390         return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
391 }
392
393 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
394 {
395         if (bus->operation == I2C_READ_OPER)
396                 return bus->rd_ind;
397         if (bus->operation == I2C_WRITE_OPER)
398                 return bus->wr_ind;
399         return 0;
400 }
401
402 /* quick protocol (just address) */
403 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
404 {
405         return bus->wr_size == 0 && bus->rd_size == 0;
406 }
407
408 static void npcm_i2c_disable(struct npcm_i2c *bus)
409 {
410         u8 i2cctl2;
411
412 #if IS_ENABLED(CONFIG_I2C_SLAVE)
413         int i;
414
415         /* Slave addresses removal */
416         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
417                 iowrite8(0, bus->reg + npcm_i2caddr[i]);
418
419 #endif
420         /* Disable module */
421         i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
422         i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
423         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
424
425         bus->state = I2C_DISABLE;
426 }
427
428 static void npcm_i2c_enable(struct npcm_i2c *bus)
429 {
430         u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
431
432         i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
433         iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
434         bus->state = I2C_IDLE;
435 }
436
437 /* enable\disable end of busy (EOB) interrupts */
438 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
439 {
440         u8 val;
441
442         /* Clear EO_BUSY pending bit: */
443         val = ioread8(bus->reg + NPCM_I2CCST3);
444         val = val | NPCM_I2CCST3_EO_BUSY;
445         iowrite8(val, bus->reg + NPCM_I2CCST3);
446
447         val = ioread8(bus->reg + NPCM_I2CCTL1);
448         val &= ~NPCM_I2CCTL1_RWS;
449         if (enable)
450                 val |= NPCM_I2CCTL1_EOBINTE;
451         else
452                 val &= ~NPCM_I2CCTL1_EOBINTE;
453         iowrite8(val, bus->reg + NPCM_I2CCTL1);
454 }
455
456 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
457 {
458         u8 tx_fifo_sts;
459
460         tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
461         /* check if TX FIFO is not empty */
462         if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
463                 return false;
464
465         /* check if TX FIFO status bit is set: */
466         return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
467 }
468
469 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
470 {
471         u8 rx_fifo_sts;
472
473         rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
474         /* check if RX FIFO is not empty: */
475         if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
476                 return false;
477
478         /* check if rx fifo full status is set: */
479         return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
480 }
481
482 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
483 {
484         u8 val;
485
486         val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
487         val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
488         iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
489 }
490
491 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
492 {
493         u8 val;
494
495         val = ioread8(bus->reg + NPCM_I2CTXF_STS);
496         val = val | NPCM_I2CTXF_STS_TX_THST;
497         iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
498 }
499
500 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
501 {
502         u8 val;
503
504         val = ioread8(bus->reg + NPCM_I2CRXF_STS);
505         val = val | NPCM_I2CRXF_STS_RX_THST;
506         iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
507 }
508
509 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
510 {
511         u8 val;
512
513         val = ioread8(bus->reg + NPCM_I2CCTL1);
514         val &= ~NPCM_I2CCTL1_RWS;
515         if (enable)
516                 val |= NPCM_I2CCTL1_INTEN;
517         else
518                 val &= ~NPCM_I2CCTL1_INTEN;
519         iowrite8(val, bus->reg + NPCM_I2CCTL1);
520 }
521
522 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
523 {
524         u8 val;
525
526         val = ioread8(bus->reg + NPCM_I2CCTL1);
527         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
528         val |= NPCM_I2CCTL1_START;
529         iowrite8(val, bus->reg + NPCM_I2CCTL1);
530 }
531
532 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
533 {
534         u8 val;
535
536         /*
537          * override HW issue: I2C may fail to supply stop condition in Master
538          * Write operation.
539          * Need to delay at least 5 us from the last int, before issueing a stop
540          */
541         udelay(10); /* function called from interrupt, can't sleep */
542         val = ioread8(bus->reg + NPCM_I2CCTL1);
543         val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
544         val |= NPCM_I2CCTL1_STOP;
545         iowrite8(val, bus->reg + NPCM_I2CCTL1);
546
547         if (!bus->fifo_use)
548                 return;
549
550         npcm_i2c_select_bank(bus, I2C_BANK_1);
551
552         if (bus->operation == I2C_READ_OPER)
553                 npcm_i2c_clear_rx_fifo(bus);
554         else
555                 npcm_i2c_clear_tx_fifo(bus);
556         npcm_i2c_clear_fifo_int(bus);
557         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
558 }
559
560 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
561 {
562         u8 val;
563
564         val = ioread8(bus->reg + NPCM_I2CCTL1);
565         val &= ~NPCM_I2CCTL1_RWS;
566         if (stall)
567                 val |= NPCM_I2CCTL1_STASTRE;
568         else
569                 val &= ~NPCM_I2CCTL1_STASTRE;
570         iowrite8(val, bus->reg + NPCM_I2CCTL1);
571 }
572
573 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
574 {
575         u8 val;
576
577         val = ioread8(bus->reg + NPCM_I2CCTL1);
578         val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
579         val |= NPCM_I2CCTL1_ACK;
580         iowrite8(val, bus->reg + NPCM_I2CCTL1);
581 }
582
583 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
584 {
585         u8 val;
586
587         /* Clear NEGACK, STASTR and BER bits */
588         val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
589         iowrite8(val, bus->reg + NPCM_I2CST);
590 }
591
592 #if IS_ENABLED(CONFIG_I2C_SLAVE)
593 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
594 {
595         u8 i2cctl1;
596
597         /* enable interrupt on slave match: */
598         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
599         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
600         if (enable)
601                 i2cctl1 |= NPCM_I2CCTL1_NMINTE;
602         else
603                 i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
604         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
605 }
606
607 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
608                                  u8 addr, bool enable)
609 {
610         u8 i2cctl1;
611         u8 i2cctl3;
612         u8 sa_reg;
613
614         sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
615         if (addr_type == I2C_GC_ADDR) {
616                 i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
617                 if (enable)
618                         i2cctl1 |= NPCM_I2CCTL1_GCMEN;
619                 else
620                         i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
621                 iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
622                 return 0;
623         } else if (addr_type == I2C_ARP_ADDR) {
624                 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
625                 if (enable)
626                         i2cctl3 |= I2CCTL3_ARPMEN;
627                 else
628                         i2cctl3 &= ~I2CCTL3_ARPMEN;
629                 iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
630                 return 0;
631         }
632         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
633                 dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
634
635         if (addr_type >= I2C_ARP_ADDR)
636                 return -EFAULT;
637
638         /* Set and enable the address */
639         iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
640         npcm_i2c_slave_int_enable(bus, enable);
641
642         return 0;
643 }
644 #endif
645
646 static void npcm_i2c_reset(struct npcm_i2c *bus)
647 {
648         /*
649          * Save I2CCTL1 relevant bits. It is being cleared when the module
650          *  is disabled.
651          */
652         u8 i2cctl1;
653 #if IS_ENABLED(CONFIG_I2C_SLAVE)
654         u8 addr;
655 #endif
656
657         i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
658
659         npcm_i2c_disable(bus);
660         npcm_i2c_enable(bus);
661
662         /* Restore NPCM_I2CCTL1 Status */
663         i2cctl1 &= ~NPCM_I2CCTL1_RWS;
664         iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
665
666         /* Clear BB (BUS BUSY) bit */
667         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
668         iowrite8(0xFF, bus->reg + NPCM_I2CST);
669
670         /* Clear and disable EOB */
671         npcm_i2c_eob_int(bus, false);
672
673         /* Clear all fifo bits: */
674         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
675
676 #if IS_ENABLED(CONFIG_I2C_SLAVE)
677         if (bus->slave) {
678                 addr = bus->slave->addr;
679                 npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
680         }
681 #endif
682
683         /* Clear status bits for spurious interrupts */
684         npcm_i2c_clear_master_status(bus);
685
686         bus->state = I2C_IDLE;
687 }
688
689 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
690 {
691         return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
692 }
693
694 static void npcm_i2c_callback(struct npcm_i2c *bus,
695                               enum i2c_state_ind op_status, u16 info)
696 {
697         struct i2c_msg *msgs;
698         int msgs_num;
699
700         msgs = bus->msgs;
701         msgs_num = bus->msgs_num;
702         /*
703          * check that transaction was not timed-out, and msgs still
704          * holds a valid value.
705          */
706         if (!msgs)
707                 return;
708
709         if (completion_done(&bus->cmd_complete))
710                 return;
711
712         switch (op_status) {
713         case I2C_MASTER_DONE_IND:
714                 bus->cmd_err = bus->msgs_num;
715                 if (bus->tx_complete_cnt < ULLONG_MAX)
716                         bus->tx_complete_cnt++;
717                 fallthrough;
718         case I2C_BLOCK_BYTES_ERR_IND:
719                 /* Master tx finished and all transmit bytes were sent */
720                 if (bus->msgs) {
721                         if (msgs[0].flags & I2C_M_RD)
722                                 msgs[0].len = info;
723                         else if (msgs_num == 2 &&
724                                  msgs[1].flags & I2C_M_RD)
725                                 msgs[1].len = info;
726                 }
727                 if (completion_done(&bus->cmd_complete) == false)
728                         complete(&bus->cmd_complete);
729         break;
730
731         case I2C_NACK_IND:
732                 /* MASTER transmit got a NACK before tx all bytes */
733                 bus->cmd_err = -ENXIO;
734                 if (bus->master_or_slave == I2C_MASTER)
735                         complete(&bus->cmd_complete);
736
737                 break;
738         case I2C_BUS_ERR_IND:
739                 /* Bus error */
740                 bus->cmd_err = -EAGAIN;
741                 if (bus->master_or_slave == I2C_MASTER)
742                         complete(&bus->cmd_complete);
743
744                 break;
745         case I2C_WAKE_UP_IND:
746                 /* I2C wake up */
747                 break;
748         default:
749                 break;
750         }
751
752         bus->operation = I2C_NO_OPER;
753 #if IS_ENABLED(CONFIG_I2C_SLAVE)
754         if (bus->slave)
755                 bus->master_or_slave = I2C_SLAVE;
756 #endif
757 }
758
759 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
760 {
761         if (bus->operation == I2C_WRITE_OPER)
762                 return (bus->data->txf_sts_tx_bytes &
763                         ioread8(bus->reg + NPCM_I2CTXF_STS));
764         if (bus->operation == I2C_READ_OPER)
765                 return (bus->data->rxf_sts_rx_bytes &
766                         ioread8(bus->reg + NPCM_I2CRXF_STS));
767         return 0;
768 }
769
770 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
771 {
772         u8 size_free_fifo;
773
774         /*
775          * Fill the FIFO, while the FIFO is not full and there are more bytes
776          * to write
777          */
778         size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
779         while (max_bytes-- && size_free_fifo) {
780                 if (bus->wr_ind < bus->wr_size)
781                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
782                 else
783                         npcm_i2c_wr_byte(bus, 0xFF);
784                 size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
785         }
786 }
787
788 /*
789  * npcm_i2c_set_fifo:
790  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
791  * configured. same for nwrite
792  */
793 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
794 {
795         u8 rxf_ctl = 0;
796
797         if (!bus->fifo_use)
798                 return;
799         npcm_i2c_select_bank(bus, I2C_BANK_1);
800         npcm_i2c_clear_tx_fifo(bus);
801         npcm_i2c_clear_rx_fifo(bus);
802
803         /* configure RX FIFO */
804         if (nread > 0) {
805                 rxf_ctl = min_t(int, nread, bus->data->fifo_size);
806
807                 /* set LAST bit. if LAST is set next FIFO packet is nacked */
808                 if (nread <= bus->data->fifo_size)
809                         rxf_ctl |= bus->data->rxf_ctl_last_pec;
810
811                 /*
812                  * if we are about to read the first byte in blk rd mode,
813                  * don't NACK it. If slave returns zero size HW can't NACK
814                  * it immediately, it will read extra byte and then NACK.
815                  */
816                 if (bus->rd_ind == 0 && bus->read_block_use) {
817                         /* set fifo to read one byte, no last: */
818                         rxf_ctl = 1;
819                 }
820
821                 /* set fifo size: */
822                 iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
823         }
824
825         /* configure TX FIFO */
826         if (nwrite > 0) {
827                 if (nwrite > bus->data->fifo_size)
828                         /* data to send is more then FIFO size. */
829                         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
830                 else
831                         iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
832
833                 npcm_i2c_clear_tx_fifo(bus);
834         }
835 }
836
837 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
838 {
839         u8 data;
840
841         while (bytes_in_fifo--) {
842                 data = npcm_i2c_rd_byte(bus);
843                 if (bus->rd_ind < bus->rd_size)
844                         bus->rd_buf[bus->rd_ind++] = data;
845         }
846 }
847
848 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
849 {
850         /* Only current master is allowed to issue a stop condition */
851         if (!npcm_i2c_is_master(bus))
852                 return;
853
854         npcm_i2c_eob_int(bus, true);
855         npcm_i2c_master_stop(bus);
856         npcm_i2c_clear_master_status(bus);
857 }
858
859 #if IS_ENABLED(CONFIG_I2C_SLAVE)
860 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
861 {
862         u8 slave_add;
863
864         if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
865                 dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
866
867         slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
868
869         return slave_add;
870 }
871
872 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
873 {
874         int i;
875
876         /* Set the enable bit */
877         slave_add |= 0x80;
878
879         for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
880                 if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
881                         iowrite8(0, bus->reg + npcm_i2caddr[i]);
882         }
883
884         return 0;
885 }
886
887 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
888 {
889         /*
890          * Fill the FIFO, while the FIFO is not full and there are more bytes
891          * to write
892          */
893         npcm_i2c_clear_fifo_int(bus);
894         npcm_i2c_clear_tx_fifo(bus);
895         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
896         while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
897                 if (bus->slv_wr_size <= 0)
898                         break;
899                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
900                 npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
901                 bus->slv_wr_ind++;
902                 bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
903                 bus->slv_wr_size--;
904         }
905 }
906
907 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
908 {
909         u8 data;
910
911         if (!bus->slave)
912                 return;
913
914         while (bytes_in_fifo--) {
915                 data = npcm_i2c_rd_byte(bus);
916
917                 bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
918                 bus->slv_rd_buf[bus->slv_rd_ind] = data;
919                 bus->slv_rd_ind++;
920
921                 /* 1st byte is length in block protocol: */
922                 if (bus->slv_rd_ind == 1 && bus->read_block_use)
923                         bus->slv_rd_size = data + bus->PEC_use + 1;
924         }
925 }
926
927 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
928 {
929         int i;
930         u8 value;
931         int ind;
932         int ret = bus->slv_wr_ind;
933
934         /* fill a cyclic buffer */
935         for (i = 0; i < bus->data->fifo_size; i++) {
936                 if (bus->slv_wr_size >= bus->data->fifo_size)
937                         break;
938                 if (bus->state == I2C_SLAVE_MATCH) {
939                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
940                         bus->state = I2C_OPER_STARTED;
941                 } else {
942                         i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
943                 }
944                 ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
945                 bus->slv_wr_buf[ind] = value;
946                 bus->slv_wr_size++;
947         }
948         return bus->data->fifo_size - ret;
949 }
950
951 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
952 {
953         int i;
954
955         for (i = 0; i < bus->slv_rd_ind; i++)
956                 i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
957                                 &bus->slv_rd_buf[i]);
958         /*
959          * once we send bytes up, need to reset the counter of the wr buf
960          * got data from master (new offset in device), ignore wr fifo:
961          */
962         if (bus->slv_rd_ind) {
963                 bus->slv_wr_size = 0;
964                 bus->slv_wr_ind = 0;
965         }
966
967         bus->slv_rd_ind = 0;
968         bus->slv_rd_size = bus->adap.quirks->max_read_len;
969
970         npcm_i2c_clear_fifo_int(bus);
971         npcm_i2c_clear_rx_fifo(bus);
972 }
973
974 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
975                                    u8 *read_data)
976 {
977         bus->state = I2C_OPER_STARTED;
978         bus->operation = I2C_READ_OPER;
979         bus->slv_rd_size = nread;
980         bus->slv_rd_ind = 0;
981
982         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
983         iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
984         npcm_i2c_clear_tx_fifo(bus);
985         npcm_i2c_clear_rx_fifo(bus);
986 }
987
988 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
989                                 u8 *write_data)
990 {
991         if (nwrite == 0)
992                 return;
993
994         bus->operation = I2C_WRITE_OPER;
995
996         /* get the next buffer */
997         npcm_i2c_slave_get_wr_buf(bus);
998         npcm_i2c_write_fifo_slave(bus, nwrite);
999 }
1000
1001 /*
1002  * npcm_i2c_slave_wr_buf_sync:
1003  * currently slave IF only supports single byte operations.
1004  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1005  * at a time, pack them in buffer, and then transmit them all together
1006  * to the FIFO and onward to the bus.
1007  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1008  * sending a NACK wherever the backend requests for it is not supported.
1009  * the next two functions allow reading to local buffer before writing it all
1010  * to the HW FIFO.
1011  */
1012 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1013 {
1014         int left_in_fifo;
1015
1016         left_in_fifo = bus->data->txf_sts_tx_bytes &
1017                         ioread8(bus->reg + NPCM_I2CTXF_STS);
1018
1019         /* fifo already full: */
1020         if (left_in_fifo >= bus->data->fifo_size ||
1021             bus->slv_wr_size >= bus->data->fifo_size)
1022                 return;
1023
1024         /* update the wr fifo index back to the untransmitted bytes: */
1025         bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1026         bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1027
1028         if (bus->slv_wr_ind < 0)
1029                 bus->slv_wr_ind += bus->data->fifo_size;
1030 }
1031
1032 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1033 {
1034         if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1035                 /*
1036                  * Slave got an address match with direction bit 1 so it should
1037                  * transmit data. Write till the master will NACK
1038                  */
1039                 bus->operation = I2C_WRITE_OPER;
1040                 npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1041                                     bus->slv_wr_buf);
1042         } else {
1043                 /*
1044                  * Slave got an address match with direction bit 0 so it should
1045                  * receive data.
1046                  * this module does not support saying no to bytes.
1047                  * it will always ACK.
1048                  */
1049                 bus->operation = I2C_READ_OPER;
1050                 npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1051                 bus->stop_ind = I2C_SLAVE_RCV_IND;
1052                 npcm_i2c_slave_send_rd_buf(bus);
1053                 npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1054                                        bus->slv_rd_buf);
1055         }
1056 }
1057
1058 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1059 {
1060         u8 val;
1061         irqreturn_t ret = IRQ_NONE;
1062         u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1063
1064         /* Slave: A NACK has occurred */
1065         if (NPCM_I2CST_NEGACK & i2cst) {
1066                 bus->stop_ind = I2C_NACK_IND;
1067                 npcm_i2c_slave_wr_buf_sync(bus);
1068                 if (bus->fifo_use)
1069                         /* clear the FIFO */
1070                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1071                                  bus->reg + NPCM_I2CFIF_CTS);
1072
1073                 /* In slave write, NACK is OK, otherwise it is a problem */
1074                 bus->stop_ind = I2C_NO_STATUS_IND;
1075                 bus->operation = I2C_NO_OPER;
1076                 bus->own_slave_addr = 0xFF;
1077
1078                 /*
1079                  * Slave has to wait for STOP to decide this is the end
1080                  * of the transaction. tx is not yet considered as done
1081                  */
1082                 iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1083
1084                 ret = IRQ_HANDLED;
1085         }
1086
1087         /* Slave mode: a Bus Error (BER) has been identified */
1088         if (NPCM_I2CST_BER & i2cst) {
1089                 /*
1090                  * Check whether bus arbitration or Start or Stop during data
1091                  * xfer bus arbitration problem should not result in recovery
1092                  */
1093                 bus->stop_ind = I2C_BUS_ERR_IND;
1094
1095                 /* wait for bus busy before clear fifo */
1096                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1097
1098                 bus->state = I2C_IDLE;
1099
1100                 /*
1101                  * in BER case we might get 2 interrupts: one for slave one for
1102                  * master ( for a channel which is master\slave switching)
1103                  */
1104                 if (completion_done(&bus->cmd_complete) == false) {
1105                         bus->cmd_err = -EIO;
1106                         complete(&bus->cmd_complete);
1107                 }
1108                 bus->own_slave_addr = 0xFF;
1109                 iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1110                 ret = IRQ_HANDLED;
1111         }
1112
1113         /* A Slave Stop Condition has been identified */
1114         if (NPCM_I2CST_SLVSTP & i2cst) {
1115                 u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1116
1117                 bus->stop_ind = I2C_SLAVE_DONE_IND;
1118
1119                 if (bus->operation == I2C_READ_OPER)
1120                         npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1121
1122                 /* if the buffer is empty nothing will be sent */
1123                 npcm_i2c_slave_send_rd_buf(bus);
1124
1125                 /* Slave done transmitting or receiving */
1126                 bus->stop_ind = I2C_NO_STATUS_IND;
1127
1128                 /*
1129                  * Note, just because we got here, it doesn't mean we through
1130                  * away the wr buffer.
1131                  * we keep it until the next received offset.
1132                  */
1133                 bus->operation = I2C_NO_OPER;
1134                 bus->own_slave_addr = 0xFF;
1135                 i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1136                 iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1137                 if (bus->fifo_use) {
1138                         npcm_i2c_clear_fifo_int(bus);
1139                         npcm_i2c_clear_rx_fifo(bus);
1140                         npcm_i2c_clear_tx_fifo(bus);
1141
1142                         iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1143                                  bus->reg + NPCM_I2CFIF_CTS);
1144                 }
1145                 bus->state = I2C_IDLE;
1146                 ret = IRQ_HANDLED;
1147         }
1148
1149         /* restart condition occurred and Rx-FIFO was not empty */
1150         if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1151                                        ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1152                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1153                 bus->master_or_slave = I2C_SLAVE;
1154                 if (bus->operation == I2C_READ_OPER)
1155                         npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1156                 bus->operation = I2C_WRITE_OPER;
1157                 iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1158                 val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1159                       NPCM_I2CFIF_CTS_RXF_TXE;
1160                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1161                 npcm_i2c_slave_rd_wr(bus);
1162                 ret = IRQ_HANDLED;
1163         }
1164
1165         /* A Slave Address Match has been identified */
1166         if (NPCM_I2CST_NMATCH & i2cst) {
1167                 u8 info = 0;
1168
1169                 /* Address match automatically implies slave mode */
1170                 bus->master_or_slave = I2C_SLAVE;
1171                 npcm_i2c_clear_fifo_int(bus);
1172                 npcm_i2c_clear_rx_fifo(bus);
1173                 npcm_i2c_clear_tx_fifo(bus);
1174                 iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1175                 iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1176                 if (NPCM_I2CST_XMIT & i2cst) {
1177                         bus->operation = I2C_WRITE_OPER;
1178                 } else {
1179                         i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1180                                         &info);
1181                         bus->operation = I2C_READ_OPER;
1182                 }
1183                 if (bus->own_slave_addr == 0xFF) {
1184                         /* Check which type of address match */
1185                         val = ioread8(bus->reg + NPCM_I2CCST);
1186                         if (NPCM_I2CCST_MATCH & val) {
1187                                 u16 addr;
1188                                 enum i2c_addr eaddr;
1189                                 u8 i2ccst2;
1190                                 u8 i2ccst3;
1191
1192                                 i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1193                                 i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1194
1195                                 /*
1196                                  * the i2c module can response to 10 own SA.
1197                                  * check which one was addressed by the master.
1198                                  * respond to the first one.
1199                                  */
1200                                 addr = ((i2ccst3 & 0x07) << 7) |
1201                                         (i2ccst2 & 0x7F);
1202                                 info = ffs(addr);
1203                                 eaddr = (enum i2c_addr)info;
1204                                 addr = npcm_i2c_get_slave_addr(bus, eaddr);
1205                                 addr &= 0x7F;
1206                                 bus->own_slave_addr = addr;
1207                                 if (bus->PEC_mask & BIT(info))
1208                                         bus->PEC_use = true;
1209                                 else
1210                                         bus->PEC_use = false;
1211                         } else {
1212                                 if (NPCM_I2CCST_GCMATCH & val)
1213                                         bus->own_slave_addr = 0;
1214                                 if (NPCM_I2CCST_ARPMATCH & val)
1215                                         bus->own_slave_addr = 0x61;
1216                         }
1217                 } else {
1218                         /*
1219                          *  Slave match can happen in two options:
1220                          *  1. Start, SA, read (slave read without further ado)
1221                          *  2. Start, SA, read, data, restart, SA, read,  ...
1222                          *     (slave read in fragmented mode)
1223                          *  3. Start, SA, write, data, restart, SA, read, ..
1224                          *     (regular write-read mode)
1225                          */
1226                         if ((bus->state == I2C_OPER_STARTED &&
1227                              bus->operation == I2C_READ_OPER &&
1228                              bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1229                              bus->stop_ind == I2C_SLAVE_RCV_IND) {
1230                                 /* slave tx after slave rx w/o STOP */
1231                                 bus->stop_ind = I2C_SLAVE_RESTART_IND;
1232                         }
1233                 }
1234
1235                 if (NPCM_I2CST_XMIT & i2cst)
1236                         bus->stop_ind = I2C_SLAVE_XMIT_IND;
1237                 else
1238                         bus->stop_ind = I2C_SLAVE_RCV_IND;
1239                 bus->state = I2C_SLAVE_MATCH;
1240                 npcm_i2c_slave_rd_wr(bus);
1241                 iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1242                 ret = IRQ_HANDLED;
1243         }
1244
1245         /* Slave SDA status is set - tx or rx */
1246         if ((NPCM_I2CST_SDAST & i2cst) ||
1247             (bus->fifo_use &&
1248             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1249                 npcm_i2c_slave_rd_wr(bus);
1250                 iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1251                 ret = IRQ_HANDLED;
1252         } /* SDAST */
1253
1254         /*
1255          * If irq is not one of the above, make sure EOB is disabled and all
1256          * status bits are cleared.
1257          */
1258         if (ret == IRQ_NONE) {
1259                 npcm_i2c_eob_int(bus, false);
1260                 npcm_i2c_clear_master_status(bus);
1261         }
1262
1263         return IRQ_HANDLED;
1264 }
1265
1266 static int npcm_i2c_reg_slave(struct i2c_client *client)
1267 {
1268         unsigned long lock_flags;
1269         struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1270
1271         bus->slave = client;
1272
1273         if (!bus->slave)
1274                 return -EINVAL;
1275
1276         if (client->flags & I2C_CLIENT_TEN)
1277                 return -EAFNOSUPPORT;
1278
1279         spin_lock_irqsave(&bus->lock, lock_flags);
1280
1281         npcm_i2c_init_params(bus);
1282         bus->slv_rd_size = 0;
1283         bus->slv_wr_size = 0;
1284         bus->slv_rd_ind = 0;
1285         bus->slv_wr_ind = 0;
1286         if (client->flags & I2C_CLIENT_PEC)
1287                 bus->PEC_use = true;
1288
1289         dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1290                  client->addr, bus->PEC_use);
1291
1292         npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1293         npcm_i2c_clear_fifo_int(bus);
1294         npcm_i2c_clear_rx_fifo(bus);
1295         npcm_i2c_clear_tx_fifo(bus);
1296         npcm_i2c_slave_int_enable(bus, true);
1297
1298         spin_unlock_irqrestore(&bus->lock, lock_flags);
1299         return 0;
1300 }
1301
1302 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1303 {
1304         struct npcm_i2c *bus = client->adapter->algo_data;
1305         unsigned long lock_flags;
1306
1307         spin_lock_irqsave(&bus->lock, lock_flags);
1308         if (!bus->slave) {
1309                 spin_unlock_irqrestore(&bus->lock, lock_flags);
1310                 return -EINVAL;
1311         }
1312         npcm_i2c_slave_int_enable(bus, false);
1313         npcm_i2c_remove_slave_addr(bus, client->addr);
1314         bus->slave = NULL;
1315         spin_unlock_irqrestore(&bus->lock, lock_flags);
1316         return 0;
1317 }
1318 #endif /* CONFIG_I2C_SLAVE */
1319
1320 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1321 {
1322         int rcount;
1323         int fifo_bytes;
1324         enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1325
1326         fifo_bytes = npcm_i2c_fifo_usage(bus);
1327         rcount = bus->rd_size - bus->rd_ind;
1328
1329         /*
1330          * In order not to change the RX_TRH during transaction (we found that
1331          * this might be problematic if it takes too much time to read the FIFO)
1332          * we read the data in the following way. If the number of bytes to
1333          * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1334          * and in the next int we read rest of the data.
1335          */
1336         if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1337                 fifo_bytes = rcount - bus->data->fifo_size;
1338
1339         if (rcount <= fifo_bytes) {
1340                 /* last bytes are about to be read - end of tx */
1341                 bus->state = I2C_STOP_PENDING;
1342                 bus->stop_ind = ind;
1343                 npcm_i2c_eob_int(bus, true);
1344                 /* Stop should be set before reading last byte. */
1345                 npcm_i2c_master_stop(bus);
1346                 npcm_i2c_read_fifo(bus, fifo_bytes);
1347         } else {
1348                 npcm_i2c_read_fifo(bus, fifo_bytes);
1349                 rcount = bus->rd_size - bus->rd_ind;
1350                 npcm_i2c_set_fifo(bus, rcount, -1);
1351         }
1352 }
1353
1354 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1355 {
1356         u16 wcount;
1357
1358         if (bus->fifo_use)
1359                 npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1360
1361         /* Master write operation - last byte handling */
1362         if (bus->wr_ind == bus->wr_size) {
1363                 if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1364                         /*
1365                          * No more bytes to send (to add to the FIFO),
1366                          * however the FIFO is not empty yet. It is
1367                          * still in the middle of tx. Currently there's nothing
1368                          * to do except for waiting to the end of the tx
1369                          * We will get an int when the FIFO will get empty.
1370                          */
1371                         return;
1372
1373                 if (bus->rd_size == 0) {
1374                         /* all bytes have been written, in wr only operation */
1375                         npcm_i2c_eob_int(bus, true);
1376                         bus->state = I2C_STOP_PENDING;
1377                         bus->stop_ind = I2C_MASTER_DONE_IND;
1378                         npcm_i2c_master_stop(bus);
1379                         /* Clear SDA Status bit (by writing dummy byte) */
1380                         npcm_i2c_wr_byte(bus, 0xFF);
1381
1382                 } else {
1383                         /* last write-byte written on previous int - restart */
1384                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1385                         /* Generate repeated start upon next write to SDA */
1386                         npcm_i2c_master_start(bus);
1387
1388                         /*
1389                          * Receiving one byte only - stall after successful
1390                          * completion of send address byte. If we NACK here, and
1391                          * slave doesn't ACK the address, we might
1392                          * unintentionally NACK the next multi-byte read.
1393                          */
1394                         if (bus->rd_size == 1)
1395                                 npcm_i2c_stall_after_start(bus, true);
1396
1397                         /* Next int will occur on read */
1398                         bus->operation = I2C_READ_OPER;
1399                         /* send the slave address in read direction */
1400                         npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1401                 }
1402         } else {
1403                 /* write next byte not last byte and not slave address */
1404                 if (!bus->fifo_use || bus->wr_size == 1) {
1405                         npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1406                 } else {
1407                         wcount = bus->wr_size - bus->wr_ind;
1408                         npcm_i2c_set_fifo(bus, -1, wcount);
1409                         if (wcount)
1410                                 npcm_i2c_write_to_fifo_master(bus, wcount);
1411                 }
1412         }
1413 }
1414
1415 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1416 {
1417         u16 block_extra_bytes_size;
1418         u8 data;
1419
1420         /* added bytes to the packet: */
1421         block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1422
1423         /*
1424          * Perform master read, distinguishing between last byte and the rest of
1425          * the bytes. The last byte should be read when the clock is stopped
1426          */
1427         if (bus->rd_ind == 0) { /* first byte handling: */
1428                 if (bus->read_block_use) {
1429                         /* first byte in block protocol is the size: */
1430                         data = npcm_i2c_rd_byte(bus);
1431                         data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1432                         bus->rd_size = data + block_extra_bytes_size;
1433                         bus->rd_buf[bus->rd_ind++] = data;
1434
1435                         /* clear RX FIFO interrupt status: */
1436                         if (bus->fifo_use) {
1437                                 data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1438                                 data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1439                                 iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1440                         }
1441
1442                         npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1443                         npcm_i2c_stall_after_start(bus, false);
1444                 } else {
1445                         npcm_i2c_clear_tx_fifo(bus);
1446                         npcm_i2c_master_fifo_read(bus);
1447                 }
1448         } else {
1449                 if (bus->rd_size == block_extra_bytes_size &&
1450                     bus->read_block_use) {
1451                         bus->state = I2C_STOP_PENDING;
1452                         bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1453                         bus->cmd_err = -EIO;
1454                         npcm_i2c_eob_int(bus, true);
1455                         npcm_i2c_master_stop(bus);
1456                         npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1457                 } else {
1458                         npcm_i2c_master_fifo_read(bus);
1459                 }
1460         }
1461 }
1462
1463 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1464 {
1465         iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1466         npcm_i2c_nack(bus);
1467         bus->stop_ind = I2C_BUS_ERR_IND;
1468         npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1469 }
1470
1471 /* A NACK has occurred */
1472 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1473 {
1474         u8 val;
1475
1476         if (bus->nack_cnt < ULLONG_MAX)
1477                 bus->nack_cnt++;
1478
1479         if (bus->fifo_use) {
1480                 /*
1481                  * if there are still untransmitted bytes in TX FIFO
1482                  * reduce them from wr_ind
1483                  */
1484                 if (bus->operation == I2C_WRITE_OPER)
1485                         bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1486
1487                 /* clear the FIFO */
1488                 iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1489         }
1490
1491         /* In master write operation, got unexpected NACK */
1492         bus->stop_ind = I2C_NACK_IND;
1493         /* Only current master is allowed to issue Stop Condition */
1494         if (npcm_i2c_is_master(bus)) {
1495                 /* stopping in the middle */
1496                 npcm_i2c_eob_int(bus, false);
1497                 npcm_i2c_master_stop(bus);
1498
1499                 /* Clear SDA Status bit (by reading dummy byte) */
1500                 npcm_i2c_rd_byte(bus);
1501
1502                 /*
1503                  * The bus is released from stall only after the SW clears
1504                  * NEGACK bit. Then a Stop condition is sent.
1505                  */
1506                 npcm_i2c_clear_master_status(bus);
1507                 readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1508                                           !(val & NPCM_I2CCST_BUSY), 10, 200);
1509                 /* Verify no status bits are still set after bus is released */
1510                 npcm_i2c_clear_master_status(bus);
1511         }
1512         bus->state = I2C_IDLE;
1513
1514         /*
1515          * In Master mode, NACK should be cleared only after STOP.
1516          * In such case, the bus is released from stall only after the
1517          * software clears NACK bit. Then a Stop condition is sent.
1518          */
1519         npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1520 }
1521
1522         /* Master mode: a Bus Error has been identified */
1523 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1524 {
1525         if (bus->ber_cnt < ULLONG_MAX)
1526                 bus->ber_cnt++;
1527         bus->stop_ind = I2C_BUS_ERR_IND;
1528         if (npcm_i2c_is_master(bus)) {
1529                 npcm_i2c_master_abort(bus);
1530         } else {
1531                 npcm_i2c_clear_master_status(bus);
1532
1533                 /* Clear BB (BUS BUSY) bit */
1534                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1535
1536                 bus->cmd_err = -EAGAIN;
1537                 npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1538         }
1539         bus->state = I2C_IDLE;
1540 }
1541
1542         /* EOB: a master End Of Busy (meaning STOP completed) */
1543 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1544 {
1545         npcm_i2c_eob_int(bus, false);
1546         bus->state = I2C_IDLE;
1547         npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1548 }
1549
1550 /* Address sent and requested stall occurred (Master mode) */
1551 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1552 {
1553         if (npcm_i2c_is_quick(bus)) {
1554                 bus->state = I2C_STOP_PENDING;
1555                 bus->stop_ind = I2C_MASTER_DONE_IND;
1556                 npcm_i2c_eob_int(bus, true);
1557                 npcm_i2c_master_stop(bus);
1558         } else if ((bus->rd_size == 1) && !bus->read_block_use) {
1559                 /*
1560                  * Receiving one byte only - set NACK after ensuring
1561                  * slave ACKed the address byte.
1562                  */
1563                 npcm_i2c_nack(bus);
1564         }
1565
1566         /* Reset stall-after-address-byte */
1567         npcm_i2c_stall_after_start(bus, false);
1568
1569         /* Clear stall only after setting STOP */
1570         iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1571 }
1572
1573 /* SDA status is set - TX or RX, master */
1574 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1575 {
1576         u8 fif_cts;
1577
1578         if (!npcm_i2c_is_master(bus))
1579                 return;
1580
1581         if (bus->state == I2C_IDLE) {
1582                 bus->stop_ind = I2C_WAKE_UP_IND;
1583
1584                 if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1585                         /*
1586                          * Need to stall after successful
1587                          * completion of sending address byte
1588                          */
1589                         npcm_i2c_stall_after_start(bus, true);
1590                 else
1591                         npcm_i2c_stall_after_start(bus, false);
1592
1593                 /*
1594                  * Receiving one byte only - stall after successful completion
1595                  * of sending address byte If we NACK here, and slave doesn't
1596                  * ACK the address, we might unintentionally NACK the next
1597                  * multi-byte read
1598                  */
1599                 if (bus->wr_size == 0 && bus->rd_size == 1)
1600                         npcm_i2c_stall_after_start(bus, true);
1601
1602                 /* Initiate I2C master tx */
1603
1604                 /* select bank 1 for FIFO regs */
1605                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1606
1607                 fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1608                 fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1609
1610                 /* clear FIFO and relevant status bits. */
1611                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1612                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1613
1614                 /* re-enable */
1615                 fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1616                 iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1617
1618                 /*
1619                  * Configure the FIFO threshold:
1620                  * according to the needed # of bytes to read.
1621                  * Note: due to HW limitation can't config the rx fifo before it
1622                  * got and ACK on the restart. LAST bit will not be reset unless
1623                  * RX completed. It will stay set on the next tx.
1624                  */
1625                 if (bus->wr_size)
1626                         npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1627                 else
1628                         npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1629
1630                 bus->state = I2C_OPER_STARTED;
1631
1632                 if (npcm_i2c_is_quick(bus) || bus->wr_size)
1633                         npcm_i2c_wr_byte(bus, bus->dest_addr);
1634                 else
1635                         npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1636         /* SDA interrupt, after start\restart */
1637         } else {
1638                 if (NPCM_I2CST_XMIT & i2cst) {
1639                         bus->operation = I2C_WRITE_OPER;
1640                         npcm_i2c_irq_master_handler_write(bus);
1641                 } else {
1642                         bus->operation = I2C_READ_OPER;
1643                         npcm_i2c_irq_master_handler_read(bus);
1644                 }
1645         }
1646 }
1647
1648 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1649 {
1650         u8 i2cst;
1651         int ret = -EIO;
1652
1653         i2cst = ioread8(bus->reg + NPCM_I2CST);
1654
1655         if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1656                 npcm_i2c_irq_handle_nmatch(bus);
1657                 return 0;
1658         }
1659         /* A NACK has occurred */
1660         if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1661                 npcm_i2c_irq_handle_nack(bus);
1662                 return 0;
1663         }
1664
1665         /* Master mode: a Bus Error has been identified */
1666         if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1667                 npcm_i2c_irq_handle_ber(bus);
1668                 return 0;
1669         }
1670
1671         /* EOB: a master End Of Busy (meaning STOP completed) */
1672         if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1673                        ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1674             (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1675                        ioread8(bus->reg + NPCM_I2CCST3)))) {
1676                 npcm_i2c_irq_handle_eob(bus);
1677                 return 0;
1678         }
1679
1680         /* Address sent and requested stall occurred (Master mode) */
1681         if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1682                 npcm_i2c_irq_handle_stall_after_start(bus);
1683                 ret = 0;
1684         }
1685
1686         /* SDA status is set - TX or RX, master */
1687         if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1688             (bus->fifo_use &&
1689             (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1690                 npcm_i2c_irq_handle_sda(bus, i2cst);
1691                 ret = 0;
1692         }
1693
1694         return ret;
1695 }
1696
1697 /* recovery using TGCLK functionality of the module */
1698 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1699 {
1700         u8               val;
1701         u8               fif_cts;
1702         bool             done = false;
1703         int              status = -ENOTRECOVERABLE;
1704         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1705         /* Allow 3 bytes (27 toggles) to be read from the slave: */
1706         int              iter = 27;
1707
1708         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1709                 dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1710                         bus->num, bus->dest_addr);
1711                 npcm_i2c_reset(bus);
1712                 return 0;
1713         }
1714
1715         npcm_i2c_int_enable(bus, false);
1716         npcm_i2c_disable(bus);
1717         npcm_i2c_enable(bus);
1718         iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1719         npcm_i2c_clear_tx_fifo(bus);
1720         npcm_i2c_clear_rx_fifo(bus);
1721         iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1722         iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1723         npcm_i2c_stall_after_start(bus, false);
1724
1725         /* select bank 1 for FIFO regs */
1726         npcm_i2c_select_bank(bus, I2C_BANK_1);
1727
1728         /* clear FIFO and relevant status bits. */
1729         fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1730         fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1731         fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1732         iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1733         npcm_i2c_set_fifo(bus, -1, 0);
1734
1735         /* Repeat the following sequence until SDA is released */
1736         do {
1737                 /* Issue a single SCL toggle */
1738                 iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1739                 usleep_range(20, 30);
1740                 /* If SDA line is inactive (high), stop */
1741                 if (npcm_i2c_get_SDA(_adap)) {
1742                         done = true;
1743                         status = 0;
1744                 }
1745         } while (!done && iter--);
1746
1747         /* If SDA line is released: send start-addr-stop, to re-sync. */
1748         if (npcm_i2c_get_SDA(_adap)) {
1749                 /* Send an address byte in write direction: */
1750                 npcm_i2c_wr_byte(bus, bus->dest_addr);
1751                 npcm_i2c_master_start(bus);
1752                 /* Wait until START condition is sent */
1753                 status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1754                                             20, 200);
1755                 /* If START condition was sent */
1756                 if (npcm_i2c_is_master(bus) > 0) {
1757                         usleep_range(20, 30);
1758                         npcm_i2c_master_stop(bus);
1759                         usleep_range(200, 500);
1760                 }
1761         }
1762         npcm_i2c_reset(bus);
1763         npcm_i2c_int_enable(bus, true);
1764
1765         if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1766                 status = 0;
1767         else
1768                 status = -ENOTRECOVERABLE;
1769         if (status) {
1770                 if (bus->rec_fail_cnt < ULLONG_MAX)
1771                         bus->rec_fail_cnt++;
1772         } else {
1773                 if (bus->rec_succ_cnt < ULLONG_MAX)
1774                         bus->rec_succ_cnt++;
1775         }
1776         return status;
1777 }
1778
1779 /* recovery using bit banging functionality of the module */
1780 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1781 {
1782         struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1783         struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1784
1785         rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1786
1787         /*
1788          * npcm i2c HW allows direct reading of SCL and SDA.
1789          * However, it does not support setting SCL and SDA directly.
1790          * The recovery function can toggle SCL when SDA is low (but not set)
1791          * Getter functions used internally, and can be used externally.
1792          */
1793         rinfo->get_scl = npcm_i2c_get_SCL;
1794         rinfo->get_sda = npcm_i2c_get_SDA;
1795         _adap->bus_recovery_info = rinfo;
1796 }
1797
1798 /* SCLFRQ min/max field values */
1799 #define SCLFRQ_MIN  10
1800 #define SCLFRQ_MAX  511
1801 #define clk_coef(freq, mul)     DIV_ROUND_UP((freq) * (mul), 1000000)
1802
1803 /*
1804  * npcm_i2c_init_clk: init HW timing parameters.
1805  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1806  * and bus frequency.
1807  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1808  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1809  * by the HW designer, given core clock range (equations in comments below).
1810  *
1811  */
1812 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1813 {
1814         u32  k1 = 0;
1815         u32  k2 = 0;
1816         u8   dbnct = 0;
1817         u32  sclfrq = 0;
1818         u8   hldt = 7;
1819         u8   fast_mode = 0;
1820         u32  src_clk_khz;
1821         u32  bus_freq_khz;
1822
1823         src_clk_khz = bus->apb_clk / 1000;
1824         bus_freq_khz = bus_freq_hz / 1000;
1825         bus->bus_freq = bus_freq_hz;
1826
1827         /* 100KHz and below: */
1828         if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1829                 sclfrq = src_clk_khz / (bus_freq_khz * 4);
1830
1831                 if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1832                         return -EDOM;
1833
1834                 if (src_clk_khz >= 40000)
1835                         hldt = 17;
1836                 else if (src_clk_khz >= 12500)
1837                         hldt = 15;
1838                 else
1839                         hldt = 7;
1840         }
1841
1842         /* 400KHz: */
1843         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1844                 sclfrq = 0;
1845                 fast_mode = I2CCTL3_400K_MODE;
1846
1847                 if (src_clk_khz < 7500)
1848                         /* 400KHZ cannot be supported for core clock < 7.5MHz */
1849                         return -EDOM;
1850
1851                 else if (src_clk_khz >= 50000) {
1852                         k1 = 80;
1853                         k2 = 48;
1854                         hldt = 12;
1855                         dbnct = 7;
1856                 }
1857
1858                 /* Master or Slave with frequency > 25MHz */
1859                 else if (src_clk_khz > 25000) {
1860                         hldt = clk_coef(src_clk_khz, 300) + 7;
1861                         k1 = clk_coef(src_clk_khz, 1600);
1862                         k2 = clk_coef(src_clk_khz, 900);
1863                 }
1864         }
1865
1866         /* 1MHz: */
1867         else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1868                 sclfrq = 0;
1869                 fast_mode = I2CCTL3_400K_MODE;
1870
1871                 /* 1MHZ cannot be supported for core clock < 24 MHz */
1872                 if (src_clk_khz < 24000)
1873                         return -EDOM;
1874
1875                 k1 = clk_coef(src_clk_khz, 620);
1876                 k2 = clk_coef(src_clk_khz, 380);
1877
1878                 /* Core clk > 40 MHz */
1879                 if (src_clk_khz > 40000) {
1880                         /*
1881                          * Set HLDT:
1882                          * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1883                          * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1884                          */
1885                         hldt = clk_coef(src_clk_khz, 120) + 7;
1886                 } else {
1887                         hldt = 7;
1888                         dbnct = 2;
1889                 }
1890         }
1891
1892         /* Frequency larger than 1 MHz is not supported */
1893         else
1894                 return -EINVAL;
1895
1896         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1897                 k1 = round_up(k1, 2);
1898                 k2 = round_up(k2 + 1, 2);
1899                 if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1900                     k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1901                         return -EDOM;
1902         }
1903
1904         /* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1905         iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1906                  bus->reg + NPCM_I2CCTL2);
1907
1908         /* bits [8:7] are in I2CCTL3 reg */
1909         iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1910                  bus->reg + NPCM_I2CCTL3);
1911
1912         /* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1913         npcm_i2c_select_bank(bus, I2C_BANK_0);
1914
1915         if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1916                 /*
1917                  * Set SCL Low/High Time:
1918                  * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1919                  * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1920                  */
1921                 iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1922                 iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1923
1924                 iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1925         }
1926
1927         iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1928
1929         /* Return to Bank 1, and stay there by default: */
1930         npcm_i2c_select_bank(bus, I2C_BANK_1);
1931
1932         return 0;
1933 }
1934
1935 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1936                                 u32 bus_freq_hz)
1937 {
1938         u8 val;
1939         int ret;
1940
1941         /* Check whether module already enabled or frequency is out of bounds */
1942         if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1943             bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1944                 return -EINVAL;
1945
1946         npcm_i2c_int_enable(bus, false);
1947         npcm_i2c_disable(bus);
1948
1949         /* Configure FIFO mode : */
1950         if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1951                 bus->fifo_use = true;
1952                 npcm_i2c_select_bank(bus, I2C_BANK_0);
1953                 val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1954                 val |= NPCM_I2CFIF_CTL_FIFO_EN;
1955                 iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1956                 npcm_i2c_select_bank(bus, I2C_BANK_1);
1957         } else {
1958                 bus->fifo_use = false;
1959         }
1960
1961         /* Configure I2C module clock frequency */
1962         ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1963         if (ret) {
1964                 dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1965                 return ret;
1966         }
1967
1968         /* Enable module (before configuring CTL1) */
1969         npcm_i2c_enable(bus);
1970         bus->state = I2C_IDLE;
1971         val = ioread8(bus->reg + NPCM_I2CCTL1);
1972         val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1973         iowrite8(val, bus->reg + NPCM_I2CCTL1);
1974
1975         npcm_i2c_reset(bus);
1976
1977         /* Check HW is OK: SDA and SCL should be high at this point. */
1978         if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1979                 dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1980                 dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1981                         npcm_i2c_get_SCL(&bus->adap));
1982                 return -ENXIO;
1983         }
1984
1985         npcm_i2c_int_enable(bus, true);
1986         return 0;
1987 }
1988
1989 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1990 {
1991         u32 clk_freq_hz;
1992         int ret;
1993
1994         /* Initialize the internal data structures */
1995         bus->state = I2C_DISABLE;
1996         bus->master_or_slave = I2C_SLAVE;
1997         bus->int_time_stamp = 0;
1998 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1999         bus->slave = NULL;
2000 #endif
2001
2002         ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2003                                        &clk_freq_hz);
2004         if (ret) {
2005                 dev_info(&pdev->dev, "Could not read clock-frequency property");
2006                 clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2007         }
2008
2009         ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2010         if (ret) {
2011                 dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2012                 return ret;
2013         }
2014
2015         return 0;
2016 }
2017
2018 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2019 {
2020         struct npcm_i2c *bus = dev_id;
2021
2022         if (npcm_i2c_is_master(bus))
2023                 bus->master_or_slave = I2C_MASTER;
2024
2025         if (bus->master_or_slave == I2C_MASTER) {
2026                 bus->int_time_stamp = jiffies;
2027                 if (!npcm_i2c_int_master_handler(bus))
2028                         return IRQ_HANDLED;
2029         }
2030 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2031         if (bus->slave) {
2032                 bus->master_or_slave = I2C_SLAVE;
2033                 if (npcm_i2c_int_slave_handler(bus))
2034                         return IRQ_HANDLED;
2035         }
2036 #endif
2037         /* Clear status bits for spurious interrupts */
2038         npcm_i2c_clear_master_status(bus);
2039
2040         return IRQ_HANDLED;
2041 }
2042
2043 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2044                                        u8 slave_addr, u16 nwrite, u16 nread,
2045                                        u8 *write_data, u8 *read_data,
2046                                        bool use_PEC, bool use_read_block)
2047 {
2048         if (bus->state != I2C_IDLE) {
2049                 bus->cmd_err = -EBUSY;
2050                 return false;
2051         }
2052         bus->dest_addr = slave_addr << 1;
2053         bus->wr_buf = write_data;
2054         bus->wr_size = nwrite;
2055         bus->wr_ind = 0;
2056         bus->rd_buf = read_data;
2057         bus->rd_size = nread;
2058         bus->rd_ind = 0;
2059         bus->PEC_use = 0;
2060
2061         /* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2062         if (nread)
2063                 bus->PEC_use = use_PEC;
2064
2065         bus->read_block_use = use_read_block;
2066         if (nread && !nwrite)
2067                 bus->operation = I2C_READ_OPER;
2068         else
2069                 bus->operation = I2C_WRITE_OPER;
2070         if (bus->fifo_use) {
2071                 u8 i2cfif_cts;
2072
2073                 npcm_i2c_select_bank(bus, I2C_BANK_1);
2074                 /* clear FIFO and relevant status bits. */
2075                 i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2076                 i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2077                 i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2078                 iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2079         }
2080
2081         bus->state = I2C_IDLE;
2082         npcm_i2c_stall_after_start(bus, true);
2083         npcm_i2c_master_start(bus);
2084         return true;
2085 }
2086
2087 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2088                                 int num)
2089 {
2090         struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2091         struct i2c_msg *msg0, *msg1;
2092         unsigned long time_left, flags;
2093         u16 nwrite, nread;
2094         u8 *write_data, *read_data;
2095         u8 slave_addr;
2096         unsigned long timeout;
2097         bool read_block = false;
2098         bool read_PEC = false;
2099         u8 bus_busy;
2100         unsigned long timeout_usec;
2101
2102         if (bus->state == I2C_DISABLE) {
2103                 dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2104                 return -EINVAL;
2105         }
2106
2107         msg0 = &msgs[0];
2108         slave_addr = msg0->addr;
2109         if (msg0->flags & I2C_M_RD) { /* read */
2110                 nwrite = 0;
2111                 write_data = NULL;
2112                 read_data = msg0->buf;
2113                 if (msg0->flags & I2C_M_RECV_LEN) {
2114                         nread = 1;
2115                         read_block = true;
2116                         if (msg0->flags & I2C_CLIENT_PEC)
2117                                 read_PEC = true;
2118                 } else {
2119                         nread = msg0->len;
2120                 }
2121         } else { /* write */
2122                 nwrite = msg0->len;
2123                 write_data = msg0->buf;
2124                 nread = 0;
2125                 read_data = NULL;
2126                 if (num == 2) {
2127                         msg1 = &msgs[1];
2128                         read_data = msg1->buf;
2129                         if (msg1->flags & I2C_M_RECV_LEN) {
2130                                 nread = 1;
2131                                 read_block = true;
2132                                 if (msg1->flags & I2C_CLIENT_PEC)
2133                                         read_PEC = true;
2134                         } else {
2135                                 nread = msg1->len;
2136                                 read_block = false;
2137                         }
2138                 }
2139         }
2140
2141         /*
2142          * Adaptive TimeOut: estimated time in usec + 100% margin:
2143          * 2: double the timeout for clock stretching case
2144          * 9: bits per transaction (including the ack/nack)
2145          */
2146         timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2147         timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2148         if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2149                 dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2150                 return -EINVAL;
2151         }
2152
2153         time_left = jiffies + timeout + 1;
2154         do {
2155                 /*
2156                  * we must clear slave address immediately when the bus is not
2157                  * busy, so we spinlock it, but we don't keep the lock for the
2158                  * entire while since it is too long.
2159                  */
2160                 spin_lock_irqsave(&bus->lock, flags);
2161                 bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2162 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2163                 if (!bus_busy && bus->slave)
2164                         iowrite8((bus->slave->addr & 0x7F),
2165                                  bus->reg + NPCM_I2CADDR1);
2166 #endif
2167                 spin_unlock_irqrestore(&bus->lock, flags);
2168
2169         } while (time_is_after_jiffies(time_left) && bus_busy);
2170
2171         if (bus_busy) {
2172                 iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2173                 npcm_i2c_reset(bus);
2174                 i2c_recover_bus(adap);
2175                 return -EAGAIN;
2176         }
2177
2178         npcm_i2c_init_params(bus);
2179         bus->dest_addr = slave_addr;
2180         bus->msgs = msgs;
2181         bus->msgs_num = num;
2182         bus->cmd_err = 0;
2183         bus->read_block_use = read_block;
2184
2185         reinit_completion(&bus->cmd_complete);
2186
2187         npcm_i2c_int_enable(bus, true);
2188
2189         if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2190                                        write_data, read_data, read_PEC,
2191                                        read_block)) {
2192                 time_left = wait_for_completion_timeout(&bus->cmd_complete,
2193                                                         timeout);
2194
2195                 if (time_left == 0) {
2196                         if (bus->timeout_cnt < ULLONG_MAX)
2197                                 bus->timeout_cnt++;
2198                         if (bus->master_or_slave == I2C_MASTER) {
2199                                 i2c_recover_bus(adap);
2200                                 bus->cmd_err = -EIO;
2201                                 bus->state = I2C_IDLE;
2202                         }
2203                 }
2204         }
2205
2206         /* if there was BER, check if need to recover the bus: */
2207         if (bus->cmd_err == -EAGAIN)
2208                 bus->cmd_err = i2c_recover_bus(adap);
2209
2210         /*
2211          * After any type of error, check if LAST bit is still set,
2212          * due to a HW issue.
2213          * It cannot be cleared without resetting the module.
2214          */
2215         else if (bus->cmd_err &&
2216                  (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2217                 npcm_i2c_reset(bus);
2218
2219         /* After any xfer, successful or not, stall and EOB must be disabled */
2220         npcm_i2c_stall_after_start(bus, false);
2221         npcm_i2c_eob_int(bus, false);
2222
2223 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2224         /* reenable slave if it was enabled */
2225         if (bus->slave)
2226                 iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2227                          bus->reg + NPCM_I2CADDR1);
2228 #else
2229         npcm_i2c_int_enable(bus, false);
2230 #endif
2231         return bus->cmd_err;
2232 }
2233
2234 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2235 {
2236         return I2C_FUNC_I2C |
2237                I2C_FUNC_SMBUS_EMUL |
2238                I2C_FUNC_SMBUS_BLOCK_DATA |
2239                I2C_FUNC_SMBUS_PEC |
2240                I2C_FUNC_SLAVE;
2241 }
2242
2243 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2244         .max_read_len = 32768,
2245         .max_write_len = 32768,
2246         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
2247 };
2248
2249 static const struct i2c_algorithm npcm_i2c_algo = {
2250         .master_xfer = npcm_i2c_master_xfer,
2251         .functionality = npcm_i2c_functionality,
2252 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2253         .reg_slave      = npcm_i2c_reg_slave,
2254         .unreg_slave    = npcm_i2c_unreg_slave,
2255 #endif
2256 };
2257
2258 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2259 static struct dentry *npcm_i2c_debugfs_dir;
2260
2261 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2262                                   struct npcm_i2c *bus)
2263 {
2264         struct dentry *d;
2265
2266         if (!npcm_i2c_debugfs_dir)
2267                 return;
2268         d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2269         if (IS_ERR_OR_NULL(d))
2270                 return;
2271         debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2272         debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2273         debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2274         debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2275         debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2276         debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2277
2278         bus->debugfs = d;
2279 }
2280
2281 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2282 {
2283         struct device_node *np = pdev->dev.of_node;
2284         static struct regmap *gcr_regmap;
2285         struct device *dev = &pdev->dev;
2286         struct i2c_adapter *adap;
2287         struct npcm_i2c *bus;
2288         struct clk *i2c_clk;
2289         int irq;
2290         int ret;
2291
2292         bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2293         if (!bus)
2294                 return -ENOMEM;
2295
2296         bus->dev = &pdev->dev;
2297
2298         bus->data = of_device_get_match_data(dev);
2299         if (!bus->data) {
2300                 dev_err(dev, "OF data missing\n");
2301                 return -EINVAL;
2302         }
2303
2304         bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2305         /* core clk must be acquired to calculate module timing settings */
2306         i2c_clk = devm_clk_get(&pdev->dev, NULL);
2307         if (IS_ERR(i2c_clk))
2308                 return PTR_ERR(i2c_clk);
2309         bus->apb_clk = clk_get_rate(i2c_clk);
2310
2311         gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2312         if (IS_ERR(gcr_regmap))
2313                 gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2314
2315         if (IS_ERR(gcr_regmap))
2316                 return PTR_ERR(gcr_regmap);
2317         regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2318
2319         bus->reg = devm_platform_ioremap_resource(pdev, 0);
2320         if (IS_ERR(bus->reg))
2321                 return PTR_ERR(bus->reg);
2322
2323         spin_lock_init(&bus->lock);
2324         init_completion(&bus->cmd_complete);
2325
2326         adap = &bus->adap;
2327         adap->owner = THIS_MODULE;
2328         adap->retries = 3;
2329         adap->timeout = msecs_to_jiffies(35);
2330         adap->algo = &npcm_i2c_algo;
2331         adap->quirks = &npcm_i2c_quirks;
2332         adap->algo_data = bus;
2333         adap->dev.parent = &pdev->dev;
2334         adap->dev.of_node = pdev->dev.of_node;
2335         adap->nr = pdev->id;
2336
2337         irq = platform_get_irq(pdev, 0);
2338         if (irq < 0)
2339                 return irq;
2340
2341         ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2342                                dev_name(bus->dev), bus);
2343         if (ret)
2344                 return ret;
2345
2346         ret = __npcm_i2c_init(bus, pdev);
2347         if (ret)
2348                 return ret;
2349
2350         npcm_i2c_recovery_init(adap);
2351
2352         i2c_set_adapdata(adap, bus);
2353
2354         snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2355                  bus->num);
2356         ret = i2c_add_numbered_adapter(&bus->adap);
2357         if (ret)
2358                 return ret;
2359
2360         platform_set_drvdata(pdev, bus);
2361         npcm_i2c_init_debugfs(pdev, bus);
2362         return 0;
2363 }
2364
2365 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2366 {
2367         unsigned long lock_flags;
2368         struct npcm_i2c *bus = platform_get_drvdata(pdev);
2369
2370         debugfs_remove_recursive(bus->debugfs);
2371         spin_lock_irqsave(&bus->lock, lock_flags);
2372         npcm_i2c_disable(bus);
2373         spin_unlock_irqrestore(&bus->lock, lock_flags);
2374         i2c_del_adapter(&bus->adap);
2375         return 0;
2376 }
2377
2378 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2379         { .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2380         { .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2381         {}
2382 };
2383 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2384
2385 static struct platform_driver npcm_i2c_bus_driver = {
2386         .probe = npcm_i2c_probe_bus,
2387         .remove = npcm_i2c_remove_bus,
2388         .driver = {
2389                 .name = "nuvoton-i2c",
2390                 .of_match_table = npcm_i2c_bus_of_table,
2391         }
2392 };
2393
2394 static int __init npcm_i2c_init(void)
2395 {
2396         int ret;
2397
2398         npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2399
2400         ret = platform_driver_register(&npcm_i2c_bus_driver);
2401         if (ret) {
2402                 debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2403                 return ret;
2404         }
2405
2406         return 0;
2407 }
2408 module_init(npcm_i2c_init);
2409
2410 static void __exit npcm_i2c_exit(void)
2411 {
2412         platform_driver_unregister(&npcm_i2c_bus_driver);
2413         debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2414 }
2415 module_exit(npcm_i2c_exit);
2416
2417 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2418 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2419 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2420 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2421 MODULE_LICENSE("GPL v2");